sock.c 71 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Generic socket support routines. Memory allocators, socket lock/release
  7. * handler for protocols to use and generic option handler.
  8. *
  9. *
  10. * Authors: Ross Biro
  11. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Alan Cox, <A.Cox@swansea.ac.uk>
  14. *
  15. * Fixes:
  16. * Alan Cox : Numerous verify_area() problems
  17. * Alan Cox : Connecting on a connecting socket
  18. * now returns an error for tcp.
  19. * Alan Cox : sock->protocol is set correctly.
  20. * and is not sometimes left as 0.
  21. * Alan Cox : connect handles icmp errors on a
  22. * connect properly. Unfortunately there
  23. * is a restart syscall nasty there. I
  24. * can't match BSD without hacking the C
  25. * library. Ideas urgently sought!
  26. * Alan Cox : Disallow bind() to addresses that are
  27. * not ours - especially broadcast ones!!
  28. * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
  29. * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
  30. * instead they leave that for the DESTROY timer.
  31. * Alan Cox : Clean up error flag in accept
  32. * Alan Cox : TCP ack handling is buggy, the DESTROY timer
  33. * was buggy. Put a remove_sock() in the handler
  34. * for memory when we hit 0. Also altered the timer
  35. * code. The ACK stuff can wait and needs major
  36. * TCP layer surgery.
  37. * Alan Cox : Fixed TCP ack bug, removed remove sock
  38. * and fixed timer/inet_bh race.
  39. * Alan Cox : Added zapped flag for TCP
  40. * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
  41. * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42. * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
  43. * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44. * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45. * Rick Sladkey : Relaxed UDP rules for matching packets.
  46. * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
  47. * Pauline Middelink : identd support
  48. * Alan Cox : Fixed connect() taking signals I think.
  49. * Alan Cox : SO_LINGER supported
  50. * Alan Cox : Error reporting fixes
  51. * Anonymous : inet_create tidied up (sk->reuse setting)
  52. * Alan Cox : inet sockets don't set sk->type!
  53. * Alan Cox : Split socket option code
  54. * Alan Cox : Callbacks
  55. * Alan Cox : Nagle flag for Charles & Johannes stuff
  56. * Alex : Removed restriction on inet fioctl
  57. * Alan Cox : Splitting INET from NET core
  58. * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
  59. * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
  60. * Alan Cox : Split IP from generic code
  61. * Alan Cox : New kfree_skbmem()
  62. * Alan Cox : Make SO_DEBUG superuser only.
  63. * Alan Cox : Allow anyone to clear SO_DEBUG
  64. * (compatibility fix)
  65. * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
  66. * Alan Cox : Allocator for a socket is settable.
  67. * Alan Cox : SO_ERROR includes soft errors.
  68. * Alan Cox : Allow NULL arguments on some SO_ opts
  69. * Alan Cox : Generic socket allocation to make hooks
  70. * easier (suggested by Craig Metz).
  71. * Michael Pall : SO_ERROR returns positive errno again
  72. * Steve Whitehouse: Added default destructor to free
  73. * protocol private data.
  74. * Steve Whitehouse: Added various other default routines
  75. * common to several socket families.
  76. * Chris Evans : Call suser() check last on F_SETOWN
  77. * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78. * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
  79. * Andi Kleen : Fix write_space callback
  80. * Chris Evans : Security fixes - signedness again
  81. * Arnaldo C. Melo : cleanups, use skb_queue_purge
  82. *
  83. * To Fix:
  84. *
  85. *
  86. * This program is free software; you can redistribute it and/or
  87. * modify it under the terms of the GNU General Public License
  88. * as published by the Free Software Foundation; either version
  89. * 2 of the License, or (at your option) any later version.
  90. */
  91. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  92. #include <linux/capability.h>
  93. #include <linux/errno.h>
  94. #include <linux/types.h>
  95. #include <linux/socket.h>
  96. #include <linux/in.h>
  97. #include <linux/kernel.h>
  98. #include <linux/module.h>
  99. #include <linux/proc_fs.h>
  100. #include <linux/seq_file.h>
  101. #include <linux/sched.h>
  102. #include <linux/timer.h>
  103. #include <linux/string.h>
  104. #include <linux/sockios.h>
  105. #include <linux/net.h>
  106. #include <linux/mm.h>
  107. #include <linux/slab.h>
  108. #include <linux/interrupt.h>
  109. #include <linux/poll.h>
  110. #include <linux/tcp.h>
  111. #include <linux/init.h>
  112. #include <linux/highmem.h>
  113. #include <linux/user_namespace.h>
  114. #include <linux/static_key.h>
  115. #include <linux/memcontrol.h>
  116. #include <linux/prefetch.h>
  117. #include <asm/uaccess.h>
  118. #include <linux/netdevice.h>
  119. #include <net/protocol.h>
  120. #include <linux/skbuff.h>
  121. #include <net/net_namespace.h>
  122. #include <net/request_sock.h>
  123. #include <net/sock.h>
  124. #include <linux/net_tstamp.h>
  125. #include <net/xfrm.h>
  126. #include <linux/ipsec.h>
  127. #include <net/cls_cgroup.h>
  128. #include <net/netprio_cgroup.h>
  129. #include <linux/filter.h>
  130. #include <trace/events/sock.h>
  131. #ifdef CONFIG_INET
  132. #include <net/tcp.h>
  133. #endif
  134. #include <net/busy_poll.h>
  135. static DEFINE_MUTEX(proto_list_mutex);
  136. static LIST_HEAD(proto_list);
  137. #ifdef CONFIG_MEMCG_KMEM
  138. int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
  139. {
  140. struct proto *proto;
  141. int ret = 0;
  142. mutex_lock(&proto_list_mutex);
  143. list_for_each_entry(proto, &proto_list, node) {
  144. if (proto->init_cgroup) {
  145. ret = proto->init_cgroup(memcg, ss);
  146. if (ret)
  147. goto out;
  148. }
  149. }
  150. mutex_unlock(&proto_list_mutex);
  151. return ret;
  152. out:
  153. list_for_each_entry_continue_reverse(proto, &proto_list, node)
  154. if (proto->destroy_cgroup)
  155. proto->destroy_cgroup(memcg);
  156. mutex_unlock(&proto_list_mutex);
  157. return ret;
  158. }
  159. void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
  160. {
  161. struct proto *proto;
  162. mutex_lock(&proto_list_mutex);
  163. list_for_each_entry_reverse(proto, &proto_list, node)
  164. if (proto->destroy_cgroup)
  165. proto->destroy_cgroup(memcg);
  166. mutex_unlock(&proto_list_mutex);
  167. }
  168. #endif
  169. /*
  170. * Each address family might have different locking rules, so we have
  171. * one slock key per address family:
  172. */
  173. static struct lock_class_key af_family_keys[AF_MAX];
  174. static struct lock_class_key af_family_slock_keys[AF_MAX];
  175. #if defined(CONFIG_MEMCG_KMEM)
  176. struct static_key memcg_socket_limit_enabled;
  177. EXPORT_SYMBOL(memcg_socket_limit_enabled);
  178. #endif
  179. /*
  180. * Make lock validator output more readable. (we pre-construct these
  181. * strings build-time, so that runtime initialization of socket
  182. * locks is fast):
  183. */
  184. static const char *const af_family_key_strings[AF_MAX+1] = {
  185. "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
  186. "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
  187. "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
  188. "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
  189. "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
  190. "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
  191. "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
  192. "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
  193. "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
  194. "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
  195. "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
  196. "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
  197. "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
  198. "sk_lock-AF_NFC" , "sk_lock-AF_VSOCK" , "sk_lock-AF_MAX"
  199. };
  200. static const char *const af_family_slock_key_strings[AF_MAX+1] = {
  201. "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
  202. "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
  203. "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
  204. "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
  205. "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
  206. "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
  207. "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
  208. "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
  209. "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
  210. "slock-27" , "slock-28" , "slock-AF_CAN" ,
  211. "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
  212. "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
  213. "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
  214. "slock-AF_NFC" , "slock-AF_VSOCK" ,"slock-AF_MAX"
  215. };
  216. static const char *const af_family_clock_key_strings[AF_MAX+1] = {
  217. "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
  218. "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
  219. "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
  220. "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
  221. "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
  222. "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
  223. "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
  224. "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
  225. "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
  226. "clock-27" , "clock-28" , "clock-AF_CAN" ,
  227. "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
  228. "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
  229. "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
  230. "clock-AF_NFC" , "clock-AF_VSOCK" , "clock-AF_MAX"
  231. };
  232. /*
  233. * sk_callback_lock locking rules are per-address-family,
  234. * so split the lock classes by using a per-AF key:
  235. */
  236. static struct lock_class_key af_callback_keys[AF_MAX];
  237. /* Take into consideration the size of the struct sk_buff overhead in the
  238. * determination of these values, since that is non-constant across
  239. * platforms. This makes socket queueing behavior and performance
  240. * not depend upon such differences.
  241. */
  242. #define _SK_MEM_PACKETS 256
  243. #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
  244. #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
  245. #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
  246. /* Run time adjustable parameters. */
  247. __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
  248. EXPORT_SYMBOL(sysctl_wmem_max);
  249. __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
  250. EXPORT_SYMBOL(sysctl_rmem_max);
  251. __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
  252. __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
  253. /* Maximal space eaten by iovec or ancillary data plus some space */
  254. int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
  255. EXPORT_SYMBOL(sysctl_optmem_max);
  256. struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
  257. EXPORT_SYMBOL_GPL(memalloc_socks);
  258. /**
  259. * sk_set_memalloc - sets %SOCK_MEMALLOC
  260. * @sk: socket to set it on
  261. *
  262. * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
  263. * It's the responsibility of the admin to adjust min_free_kbytes
  264. * to meet the requirements
  265. */
  266. void sk_set_memalloc(struct sock *sk)
  267. {
  268. sock_set_flag(sk, SOCK_MEMALLOC);
  269. sk->sk_allocation |= __GFP_MEMALLOC;
  270. static_key_slow_inc(&memalloc_socks);
  271. }
  272. EXPORT_SYMBOL_GPL(sk_set_memalloc);
  273. void sk_clear_memalloc(struct sock *sk)
  274. {
  275. sock_reset_flag(sk, SOCK_MEMALLOC);
  276. sk->sk_allocation &= ~__GFP_MEMALLOC;
  277. static_key_slow_dec(&memalloc_socks);
  278. /*
  279. * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
  280. * progress of swapping. However, if SOCK_MEMALLOC is cleared while
  281. * it has rmem allocations there is a risk that the user of the
  282. * socket cannot make forward progress due to exceeding the rmem
  283. * limits. By rights, sk_clear_memalloc() should only be called
  284. * on sockets being torn down but warn and reset the accounting if
  285. * that assumption breaks.
  286. */
  287. if (WARN_ON(sk->sk_forward_alloc))
  288. sk_mem_reclaim(sk);
  289. }
  290. EXPORT_SYMBOL_GPL(sk_clear_memalloc);
  291. int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
  292. {
  293. int ret;
  294. unsigned long pflags = current->flags;
  295. /* these should have been dropped before queueing */
  296. BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
  297. current->flags |= PF_MEMALLOC;
  298. ret = sk->sk_backlog_rcv(sk, skb);
  299. tsk_restore_flags(current, pflags, PF_MEMALLOC);
  300. return ret;
  301. }
  302. EXPORT_SYMBOL(__sk_backlog_rcv);
  303. static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
  304. {
  305. struct timeval tv;
  306. if (optlen < sizeof(tv))
  307. return -EINVAL;
  308. if (copy_from_user(&tv, optval, sizeof(tv)))
  309. return -EFAULT;
  310. if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
  311. return -EDOM;
  312. if (tv.tv_sec < 0) {
  313. static int warned __read_mostly;
  314. *timeo_p = 0;
  315. if (warned < 10 && net_ratelimit()) {
  316. warned++;
  317. pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
  318. __func__, current->comm, task_pid_nr(current));
  319. }
  320. return 0;
  321. }
  322. *timeo_p = MAX_SCHEDULE_TIMEOUT;
  323. if (tv.tv_sec == 0 && tv.tv_usec == 0)
  324. return 0;
  325. if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
  326. *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
  327. return 0;
  328. }
  329. static void sock_warn_obsolete_bsdism(const char *name)
  330. {
  331. static int warned;
  332. static char warncomm[TASK_COMM_LEN];
  333. if (strcmp(warncomm, current->comm) && warned < 5) {
  334. strcpy(warncomm, current->comm);
  335. pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
  336. warncomm, name);
  337. warned++;
  338. }
  339. }
  340. #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
  341. static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
  342. {
  343. if (sk->sk_flags & flags) {
  344. sk->sk_flags &= ~flags;
  345. if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
  346. net_disable_timestamp();
  347. }
  348. }
  349. int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
  350. {
  351. int err;
  352. int skb_len;
  353. unsigned long flags;
  354. struct sk_buff_head *list = &sk->sk_receive_queue;
  355. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
  356. atomic_inc(&sk->sk_drops);
  357. trace_sock_rcvqueue_full(sk, skb);
  358. return -ENOMEM;
  359. }
  360. err = sk_filter(sk, skb);
  361. if (err)
  362. return err;
  363. if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
  364. atomic_inc(&sk->sk_drops);
  365. return -ENOBUFS;
  366. }
  367. skb->dev = NULL;
  368. skb_set_owner_r(skb, sk);
  369. /* Cache the SKB length before we tack it onto the receive
  370. * queue. Once it is added it no longer belongs to us and
  371. * may be freed by other threads of control pulling packets
  372. * from the queue.
  373. */
  374. skb_len = skb->len;
  375. /* we escape from rcu protected region, make sure we dont leak
  376. * a norefcounted dst
  377. */
  378. skb_dst_force(skb);
  379. spin_lock_irqsave(&list->lock, flags);
  380. skb->dropcount = atomic_read(&sk->sk_drops);
  381. __skb_queue_tail(list, skb);
  382. spin_unlock_irqrestore(&list->lock, flags);
  383. if (!sock_flag(sk, SOCK_DEAD))
  384. sk->sk_data_ready(sk, skb_len);
  385. return 0;
  386. }
  387. EXPORT_SYMBOL(sock_queue_rcv_skb);
  388. int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
  389. {
  390. int rc = NET_RX_SUCCESS;
  391. if (sk_filter(sk, skb))
  392. goto discard_and_relse;
  393. skb->dev = NULL;
  394. if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf)) {
  395. atomic_inc(&sk->sk_drops);
  396. goto discard_and_relse;
  397. }
  398. if (nested)
  399. bh_lock_sock_nested(sk);
  400. else
  401. bh_lock_sock(sk);
  402. if (!sock_owned_by_user(sk)) {
  403. /*
  404. * trylock + unlock semantics:
  405. */
  406. mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
  407. rc = sk_backlog_rcv(sk, skb);
  408. mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
  409. } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
  410. bh_unlock_sock(sk);
  411. atomic_inc(&sk->sk_drops);
  412. goto discard_and_relse;
  413. }
  414. bh_unlock_sock(sk);
  415. out:
  416. sock_put(sk);
  417. return rc;
  418. discard_and_relse:
  419. kfree_skb(skb);
  420. goto out;
  421. }
  422. EXPORT_SYMBOL(sk_receive_skb);
  423. void sk_reset_txq(struct sock *sk)
  424. {
  425. sk_tx_queue_clear(sk);
  426. }
  427. EXPORT_SYMBOL(sk_reset_txq);
  428. struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
  429. {
  430. struct dst_entry *dst = __sk_dst_get(sk);
  431. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  432. sk_tx_queue_clear(sk);
  433. RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
  434. dst_release(dst);
  435. return NULL;
  436. }
  437. return dst;
  438. }
  439. EXPORT_SYMBOL(__sk_dst_check);
  440. struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
  441. {
  442. struct dst_entry *dst = sk_dst_get(sk);
  443. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  444. sk_dst_reset(sk);
  445. dst_release(dst);
  446. return NULL;
  447. }
  448. return dst;
  449. }
  450. EXPORT_SYMBOL(sk_dst_check);
  451. static int sock_setbindtodevice(struct sock *sk, char __user *optval,
  452. int optlen)
  453. {
  454. int ret = -ENOPROTOOPT;
  455. #ifdef CONFIG_NETDEVICES
  456. struct net *net = sock_net(sk);
  457. char devname[IFNAMSIZ];
  458. int index;
  459. /* Sorry... */
  460. ret = -EPERM;
  461. if (!ns_capable(net->user_ns, CAP_NET_RAW))
  462. goto out;
  463. ret = -EINVAL;
  464. if (optlen < 0)
  465. goto out;
  466. /* Bind this socket to a particular device like "eth0",
  467. * as specified in the passed interface name. If the
  468. * name is "" or the option length is zero the socket
  469. * is not bound.
  470. */
  471. if (optlen > IFNAMSIZ - 1)
  472. optlen = IFNAMSIZ - 1;
  473. memset(devname, 0, sizeof(devname));
  474. ret = -EFAULT;
  475. if (copy_from_user(devname, optval, optlen))
  476. goto out;
  477. index = 0;
  478. if (devname[0] != '\0') {
  479. struct net_device *dev;
  480. rcu_read_lock();
  481. dev = dev_get_by_name_rcu(net, devname);
  482. if (dev)
  483. index = dev->ifindex;
  484. rcu_read_unlock();
  485. ret = -ENODEV;
  486. if (!dev)
  487. goto out;
  488. }
  489. lock_sock(sk);
  490. sk->sk_bound_dev_if = index;
  491. sk_dst_reset(sk);
  492. release_sock(sk);
  493. ret = 0;
  494. out:
  495. #endif
  496. return ret;
  497. }
  498. static int sock_getbindtodevice(struct sock *sk, char __user *optval,
  499. int __user *optlen, int len)
  500. {
  501. int ret = -ENOPROTOOPT;
  502. #ifdef CONFIG_NETDEVICES
  503. struct net *net = sock_net(sk);
  504. char devname[IFNAMSIZ];
  505. if (sk->sk_bound_dev_if == 0) {
  506. len = 0;
  507. goto zero;
  508. }
  509. ret = -EINVAL;
  510. if (len < IFNAMSIZ)
  511. goto out;
  512. ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
  513. if (ret)
  514. goto out;
  515. len = strlen(devname) + 1;
  516. ret = -EFAULT;
  517. if (copy_to_user(optval, devname, len))
  518. goto out;
  519. zero:
  520. ret = -EFAULT;
  521. if (put_user(len, optlen))
  522. goto out;
  523. ret = 0;
  524. out:
  525. #endif
  526. return ret;
  527. }
  528. static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
  529. {
  530. if (valbool)
  531. sock_set_flag(sk, bit);
  532. else
  533. sock_reset_flag(sk, bit);
  534. }
  535. /*
  536. * This is meant for all protocols to use and covers goings on
  537. * at the socket level. Everything here is generic.
  538. */
  539. int sock_setsockopt(struct socket *sock, int level, int optname,
  540. char __user *optval, unsigned int optlen)
  541. {
  542. struct sock *sk = sock->sk;
  543. int val;
  544. int valbool;
  545. struct linger ling;
  546. int ret = 0;
  547. /*
  548. * Options without arguments
  549. */
  550. if (optname == SO_BINDTODEVICE)
  551. return sock_setbindtodevice(sk, optval, optlen);
  552. if (optlen < sizeof(int))
  553. return -EINVAL;
  554. if (get_user(val, (int __user *)optval))
  555. return -EFAULT;
  556. valbool = val ? 1 : 0;
  557. lock_sock(sk);
  558. switch (optname) {
  559. case SO_DEBUG:
  560. if (val && !capable(CAP_NET_ADMIN))
  561. ret = -EACCES;
  562. else
  563. sock_valbool_flag(sk, SOCK_DBG, valbool);
  564. break;
  565. case SO_REUSEADDR:
  566. sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
  567. break;
  568. case SO_REUSEPORT:
  569. sk->sk_reuseport = valbool;
  570. break;
  571. case SO_TYPE:
  572. case SO_PROTOCOL:
  573. case SO_DOMAIN:
  574. case SO_ERROR:
  575. ret = -ENOPROTOOPT;
  576. break;
  577. case SO_DONTROUTE:
  578. sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
  579. break;
  580. case SO_BROADCAST:
  581. sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
  582. break;
  583. case SO_SNDBUF:
  584. /* Don't error on this BSD doesn't and if you think
  585. * about it this is right. Otherwise apps have to
  586. * play 'guess the biggest size' games. RCVBUF/SNDBUF
  587. * are treated in BSD as hints
  588. */
  589. val = min_t(u32, val, sysctl_wmem_max);
  590. set_sndbuf:
  591. sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
  592. sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
  593. /* Wake up sending tasks if we upped the value. */
  594. sk->sk_write_space(sk);
  595. break;
  596. case SO_SNDBUFFORCE:
  597. if (!capable(CAP_NET_ADMIN)) {
  598. ret = -EPERM;
  599. break;
  600. }
  601. goto set_sndbuf;
  602. case SO_RCVBUF:
  603. /* Don't error on this BSD doesn't and if you think
  604. * about it this is right. Otherwise apps have to
  605. * play 'guess the biggest size' games. RCVBUF/SNDBUF
  606. * are treated in BSD as hints
  607. */
  608. val = min_t(u32, val, sysctl_rmem_max);
  609. set_rcvbuf:
  610. sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
  611. /*
  612. * We double it on the way in to account for
  613. * "struct sk_buff" etc. overhead. Applications
  614. * assume that the SO_RCVBUF setting they make will
  615. * allow that much actual data to be received on that
  616. * socket.
  617. *
  618. * Applications are unaware that "struct sk_buff" and
  619. * other overheads allocate from the receive buffer
  620. * during socket buffer allocation.
  621. *
  622. * And after considering the possible alternatives,
  623. * returning the value we actually used in getsockopt
  624. * is the most desirable behavior.
  625. */
  626. sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
  627. break;
  628. case SO_RCVBUFFORCE:
  629. if (!capable(CAP_NET_ADMIN)) {
  630. ret = -EPERM;
  631. break;
  632. }
  633. goto set_rcvbuf;
  634. case SO_KEEPALIVE:
  635. #ifdef CONFIG_INET
  636. if (sk->sk_protocol == IPPROTO_TCP &&
  637. sk->sk_type == SOCK_STREAM)
  638. tcp_set_keepalive(sk, valbool);
  639. #endif
  640. sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
  641. break;
  642. case SO_OOBINLINE:
  643. sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
  644. break;
  645. case SO_NO_CHECK:
  646. sk->sk_no_check = valbool;
  647. break;
  648. case SO_PRIORITY:
  649. if ((val >= 0 && val <= 6) ||
  650. ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
  651. sk->sk_priority = val;
  652. else
  653. ret = -EPERM;
  654. break;
  655. case SO_LINGER:
  656. if (optlen < sizeof(ling)) {
  657. ret = -EINVAL; /* 1003.1g */
  658. break;
  659. }
  660. if (copy_from_user(&ling, optval, sizeof(ling))) {
  661. ret = -EFAULT;
  662. break;
  663. }
  664. if (!ling.l_onoff)
  665. sock_reset_flag(sk, SOCK_LINGER);
  666. else {
  667. #if (BITS_PER_LONG == 32)
  668. if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
  669. sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
  670. else
  671. #endif
  672. sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
  673. sock_set_flag(sk, SOCK_LINGER);
  674. }
  675. break;
  676. case SO_BSDCOMPAT:
  677. sock_warn_obsolete_bsdism("setsockopt");
  678. break;
  679. case SO_PASSCRED:
  680. if (valbool)
  681. set_bit(SOCK_PASSCRED, &sock->flags);
  682. else
  683. clear_bit(SOCK_PASSCRED, &sock->flags);
  684. break;
  685. case SO_TIMESTAMP:
  686. case SO_TIMESTAMPNS:
  687. if (valbool) {
  688. if (optname == SO_TIMESTAMP)
  689. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  690. else
  691. sock_set_flag(sk, SOCK_RCVTSTAMPNS);
  692. sock_set_flag(sk, SOCK_RCVTSTAMP);
  693. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  694. } else {
  695. sock_reset_flag(sk, SOCK_RCVTSTAMP);
  696. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  697. }
  698. break;
  699. case SO_TIMESTAMPING:
  700. if (val & ~SOF_TIMESTAMPING_MASK) {
  701. ret = -EINVAL;
  702. break;
  703. }
  704. sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
  705. val & SOF_TIMESTAMPING_TX_HARDWARE);
  706. sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
  707. val & SOF_TIMESTAMPING_TX_SOFTWARE);
  708. sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
  709. val & SOF_TIMESTAMPING_RX_HARDWARE);
  710. if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
  711. sock_enable_timestamp(sk,
  712. SOCK_TIMESTAMPING_RX_SOFTWARE);
  713. else
  714. sock_disable_timestamp(sk,
  715. (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
  716. sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
  717. val & SOF_TIMESTAMPING_SOFTWARE);
  718. sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
  719. val & SOF_TIMESTAMPING_SYS_HARDWARE);
  720. sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
  721. val & SOF_TIMESTAMPING_RAW_HARDWARE);
  722. break;
  723. case SO_RCVLOWAT:
  724. if (val < 0)
  725. val = INT_MAX;
  726. sk->sk_rcvlowat = val ? : 1;
  727. break;
  728. case SO_RCVTIMEO:
  729. ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
  730. break;
  731. case SO_SNDTIMEO:
  732. ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
  733. break;
  734. case SO_ATTACH_FILTER:
  735. ret = -EINVAL;
  736. if (optlen == sizeof(struct sock_fprog)) {
  737. struct sock_fprog fprog;
  738. ret = -EFAULT;
  739. if (copy_from_user(&fprog, optval, sizeof(fprog)))
  740. break;
  741. ret = sk_attach_filter(&fprog, sk);
  742. }
  743. break;
  744. case SO_DETACH_FILTER:
  745. ret = sk_detach_filter(sk);
  746. break;
  747. case SO_LOCK_FILTER:
  748. if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
  749. ret = -EPERM;
  750. else
  751. sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
  752. break;
  753. case SO_PASSSEC:
  754. if (valbool)
  755. set_bit(SOCK_PASSSEC, &sock->flags);
  756. else
  757. clear_bit(SOCK_PASSSEC, &sock->flags);
  758. break;
  759. case SO_MARK:
  760. if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
  761. ret = -EPERM;
  762. else
  763. sk->sk_mark = val;
  764. break;
  765. /* We implement the SO_SNDLOWAT etc to
  766. not be settable (1003.1g 5.3) */
  767. case SO_RXQ_OVFL:
  768. sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
  769. break;
  770. case SO_WIFI_STATUS:
  771. sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
  772. break;
  773. case SO_PEEK_OFF:
  774. if (sock->ops->set_peek_off)
  775. sock->ops->set_peek_off(sk, val);
  776. else
  777. ret = -EOPNOTSUPP;
  778. break;
  779. case SO_NOFCS:
  780. sock_valbool_flag(sk, SOCK_NOFCS, valbool);
  781. break;
  782. case SO_SELECT_ERR_QUEUE:
  783. sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
  784. break;
  785. #ifdef CONFIG_NET_LL_RX_POLL
  786. case SO_LL:
  787. /* allow unprivileged users to decrease the value */
  788. if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
  789. ret = -EPERM;
  790. else {
  791. if (val < 0)
  792. ret = -EINVAL;
  793. else
  794. sk->sk_ll_usec = val;
  795. }
  796. break;
  797. #endif
  798. default:
  799. ret = -ENOPROTOOPT;
  800. break;
  801. }
  802. release_sock(sk);
  803. return ret;
  804. }
  805. EXPORT_SYMBOL(sock_setsockopt);
  806. void cred_to_ucred(struct pid *pid, const struct cred *cred,
  807. struct ucred *ucred)
  808. {
  809. ucred->pid = pid_vnr(pid);
  810. ucred->uid = ucred->gid = -1;
  811. if (cred) {
  812. struct user_namespace *current_ns = current_user_ns();
  813. ucred->uid = from_kuid_munged(current_ns, cred->euid);
  814. ucred->gid = from_kgid_munged(current_ns, cred->egid);
  815. }
  816. }
  817. EXPORT_SYMBOL_GPL(cred_to_ucred);
  818. int sock_getsockopt(struct socket *sock, int level, int optname,
  819. char __user *optval, int __user *optlen)
  820. {
  821. struct sock *sk = sock->sk;
  822. union {
  823. int val;
  824. struct linger ling;
  825. struct timeval tm;
  826. } v;
  827. int lv = sizeof(int);
  828. int len;
  829. if (get_user(len, optlen))
  830. return -EFAULT;
  831. if (len < 0)
  832. return -EINVAL;
  833. memset(&v, 0, sizeof(v));
  834. switch (optname) {
  835. case SO_DEBUG:
  836. v.val = sock_flag(sk, SOCK_DBG);
  837. break;
  838. case SO_DONTROUTE:
  839. v.val = sock_flag(sk, SOCK_LOCALROUTE);
  840. break;
  841. case SO_BROADCAST:
  842. v.val = sock_flag(sk, SOCK_BROADCAST);
  843. break;
  844. case SO_SNDBUF:
  845. v.val = sk->sk_sndbuf;
  846. break;
  847. case SO_RCVBUF:
  848. v.val = sk->sk_rcvbuf;
  849. break;
  850. case SO_REUSEADDR:
  851. v.val = sk->sk_reuse;
  852. break;
  853. case SO_REUSEPORT:
  854. v.val = sk->sk_reuseport;
  855. break;
  856. case SO_KEEPALIVE:
  857. v.val = sock_flag(sk, SOCK_KEEPOPEN);
  858. break;
  859. case SO_TYPE:
  860. v.val = sk->sk_type;
  861. break;
  862. case SO_PROTOCOL:
  863. v.val = sk->sk_protocol;
  864. break;
  865. case SO_DOMAIN:
  866. v.val = sk->sk_family;
  867. break;
  868. case SO_ERROR:
  869. v.val = -sock_error(sk);
  870. if (v.val == 0)
  871. v.val = xchg(&sk->sk_err_soft, 0);
  872. break;
  873. case SO_OOBINLINE:
  874. v.val = sock_flag(sk, SOCK_URGINLINE);
  875. break;
  876. case SO_NO_CHECK:
  877. v.val = sk->sk_no_check;
  878. break;
  879. case SO_PRIORITY:
  880. v.val = sk->sk_priority;
  881. break;
  882. case SO_LINGER:
  883. lv = sizeof(v.ling);
  884. v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
  885. v.ling.l_linger = sk->sk_lingertime / HZ;
  886. break;
  887. case SO_BSDCOMPAT:
  888. sock_warn_obsolete_bsdism("getsockopt");
  889. break;
  890. case SO_TIMESTAMP:
  891. v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
  892. !sock_flag(sk, SOCK_RCVTSTAMPNS);
  893. break;
  894. case SO_TIMESTAMPNS:
  895. v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
  896. break;
  897. case SO_TIMESTAMPING:
  898. v.val = 0;
  899. if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
  900. v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
  901. if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
  902. v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
  903. if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
  904. v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
  905. if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
  906. v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
  907. if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
  908. v.val |= SOF_TIMESTAMPING_SOFTWARE;
  909. if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
  910. v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
  911. if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
  912. v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
  913. break;
  914. case SO_RCVTIMEO:
  915. lv = sizeof(struct timeval);
  916. if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
  917. v.tm.tv_sec = 0;
  918. v.tm.tv_usec = 0;
  919. } else {
  920. v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
  921. v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
  922. }
  923. break;
  924. case SO_SNDTIMEO:
  925. lv = sizeof(struct timeval);
  926. if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
  927. v.tm.tv_sec = 0;
  928. v.tm.tv_usec = 0;
  929. } else {
  930. v.tm.tv_sec = sk->sk_sndtimeo / HZ;
  931. v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
  932. }
  933. break;
  934. case SO_RCVLOWAT:
  935. v.val = sk->sk_rcvlowat;
  936. break;
  937. case SO_SNDLOWAT:
  938. v.val = 1;
  939. break;
  940. case SO_PASSCRED:
  941. v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
  942. break;
  943. case SO_PEERCRED:
  944. {
  945. struct ucred peercred;
  946. if (len > sizeof(peercred))
  947. len = sizeof(peercred);
  948. cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
  949. if (copy_to_user(optval, &peercred, len))
  950. return -EFAULT;
  951. goto lenout;
  952. }
  953. case SO_PEERNAME:
  954. {
  955. char address[128];
  956. if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
  957. return -ENOTCONN;
  958. if (lv < len)
  959. return -EINVAL;
  960. if (copy_to_user(optval, address, len))
  961. return -EFAULT;
  962. goto lenout;
  963. }
  964. /* Dubious BSD thing... Probably nobody even uses it, but
  965. * the UNIX standard wants it for whatever reason... -DaveM
  966. */
  967. case SO_ACCEPTCONN:
  968. v.val = sk->sk_state == TCP_LISTEN;
  969. break;
  970. case SO_PASSSEC:
  971. v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
  972. break;
  973. case SO_PEERSEC:
  974. return security_socket_getpeersec_stream(sock, optval, optlen, len);
  975. case SO_MARK:
  976. v.val = sk->sk_mark;
  977. break;
  978. case SO_RXQ_OVFL:
  979. v.val = sock_flag(sk, SOCK_RXQ_OVFL);
  980. break;
  981. case SO_WIFI_STATUS:
  982. v.val = sock_flag(sk, SOCK_WIFI_STATUS);
  983. break;
  984. case SO_PEEK_OFF:
  985. if (!sock->ops->set_peek_off)
  986. return -EOPNOTSUPP;
  987. v.val = sk->sk_peek_off;
  988. break;
  989. case SO_NOFCS:
  990. v.val = sock_flag(sk, SOCK_NOFCS);
  991. break;
  992. case SO_BINDTODEVICE:
  993. return sock_getbindtodevice(sk, optval, optlen, len);
  994. case SO_GET_FILTER:
  995. len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
  996. if (len < 0)
  997. return len;
  998. goto lenout;
  999. case SO_LOCK_FILTER:
  1000. v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
  1001. break;
  1002. case SO_SELECT_ERR_QUEUE:
  1003. v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
  1004. break;
  1005. #ifdef CONFIG_NET_LL_RX_POLL
  1006. case SO_LL:
  1007. v.val = sk->sk_ll_usec;
  1008. break;
  1009. #endif
  1010. default:
  1011. return -ENOPROTOOPT;
  1012. }
  1013. if (len > lv)
  1014. len = lv;
  1015. if (copy_to_user(optval, &v, len))
  1016. return -EFAULT;
  1017. lenout:
  1018. if (put_user(len, optlen))
  1019. return -EFAULT;
  1020. return 0;
  1021. }
  1022. /*
  1023. * Initialize an sk_lock.
  1024. *
  1025. * (We also register the sk_lock with the lock validator.)
  1026. */
  1027. static inline void sock_lock_init(struct sock *sk)
  1028. {
  1029. sock_lock_init_class_and_name(sk,
  1030. af_family_slock_key_strings[sk->sk_family],
  1031. af_family_slock_keys + sk->sk_family,
  1032. af_family_key_strings[sk->sk_family],
  1033. af_family_keys + sk->sk_family);
  1034. }
  1035. /*
  1036. * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
  1037. * even temporarly, because of RCU lookups. sk_node should also be left as is.
  1038. * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
  1039. */
  1040. static void sock_copy(struct sock *nsk, const struct sock *osk)
  1041. {
  1042. #ifdef CONFIG_SECURITY_NETWORK
  1043. void *sptr = nsk->sk_security;
  1044. #endif
  1045. memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
  1046. memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
  1047. osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
  1048. #ifdef CONFIG_SECURITY_NETWORK
  1049. nsk->sk_security = sptr;
  1050. security_sk_clone(osk, nsk);
  1051. #endif
  1052. }
  1053. void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
  1054. {
  1055. unsigned long nulls1, nulls2;
  1056. nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
  1057. nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
  1058. if (nulls1 > nulls2)
  1059. swap(nulls1, nulls2);
  1060. if (nulls1 != 0)
  1061. memset((char *)sk, 0, nulls1);
  1062. memset((char *)sk + nulls1 + sizeof(void *), 0,
  1063. nulls2 - nulls1 - sizeof(void *));
  1064. memset((char *)sk + nulls2 + sizeof(void *), 0,
  1065. size - nulls2 - sizeof(void *));
  1066. }
  1067. EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
  1068. static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
  1069. int family)
  1070. {
  1071. struct sock *sk;
  1072. struct kmem_cache *slab;
  1073. slab = prot->slab;
  1074. if (slab != NULL) {
  1075. sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
  1076. if (!sk)
  1077. return sk;
  1078. if (priority & __GFP_ZERO) {
  1079. if (prot->clear_sk)
  1080. prot->clear_sk(sk, prot->obj_size);
  1081. else
  1082. sk_prot_clear_nulls(sk, prot->obj_size);
  1083. }
  1084. } else
  1085. sk = kmalloc(prot->obj_size, priority);
  1086. if (sk != NULL) {
  1087. kmemcheck_annotate_bitfield(sk, flags);
  1088. if (security_sk_alloc(sk, family, priority))
  1089. goto out_free;
  1090. if (!try_module_get(prot->owner))
  1091. goto out_free_sec;
  1092. sk_tx_queue_clear(sk);
  1093. }
  1094. return sk;
  1095. out_free_sec:
  1096. security_sk_free(sk);
  1097. out_free:
  1098. if (slab != NULL)
  1099. kmem_cache_free(slab, sk);
  1100. else
  1101. kfree(sk);
  1102. return NULL;
  1103. }
  1104. static void sk_prot_free(struct proto *prot, struct sock *sk)
  1105. {
  1106. struct kmem_cache *slab;
  1107. struct module *owner;
  1108. owner = prot->owner;
  1109. slab = prot->slab;
  1110. security_sk_free(sk);
  1111. if (slab != NULL)
  1112. kmem_cache_free(slab, sk);
  1113. else
  1114. kfree(sk);
  1115. module_put(owner);
  1116. }
  1117. #if IS_ENABLED(CONFIG_NET_CLS_CGROUP)
  1118. void sock_update_classid(struct sock *sk)
  1119. {
  1120. u32 classid;
  1121. classid = task_cls_classid(current);
  1122. if (classid != sk->sk_classid)
  1123. sk->sk_classid = classid;
  1124. }
  1125. EXPORT_SYMBOL(sock_update_classid);
  1126. #endif
  1127. #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
  1128. void sock_update_netprioidx(struct sock *sk)
  1129. {
  1130. if (in_interrupt())
  1131. return;
  1132. sk->sk_cgrp_prioidx = task_netprioidx(current);
  1133. }
  1134. EXPORT_SYMBOL_GPL(sock_update_netprioidx);
  1135. #endif
  1136. /**
  1137. * sk_alloc - All socket objects are allocated here
  1138. * @net: the applicable net namespace
  1139. * @family: protocol family
  1140. * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
  1141. * @prot: struct proto associated with this new sock instance
  1142. */
  1143. struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
  1144. struct proto *prot)
  1145. {
  1146. struct sock *sk;
  1147. sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
  1148. if (sk) {
  1149. sk->sk_family = family;
  1150. /*
  1151. * See comment in struct sock definition to understand
  1152. * why we need sk_prot_creator -acme
  1153. */
  1154. sk->sk_prot = sk->sk_prot_creator = prot;
  1155. sock_lock_init(sk);
  1156. sock_net_set(sk, get_net(net));
  1157. atomic_set(&sk->sk_wmem_alloc, 1);
  1158. sock_update_classid(sk);
  1159. sock_update_netprioidx(sk);
  1160. }
  1161. return sk;
  1162. }
  1163. EXPORT_SYMBOL(sk_alloc);
  1164. static void __sk_free(struct sock *sk)
  1165. {
  1166. struct sk_filter *filter;
  1167. if (sk->sk_destruct)
  1168. sk->sk_destruct(sk);
  1169. filter = rcu_dereference_check(sk->sk_filter,
  1170. atomic_read(&sk->sk_wmem_alloc) == 0);
  1171. if (filter) {
  1172. sk_filter_uncharge(sk, filter);
  1173. RCU_INIT_POINTER(sk->sk_filter, NULL);
  1174. }
  1175. sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
  1176. if (atomic_read(&sk->sk_omem_alloc))
  1177. pr_debug("%s: optmem leakage (%d bytes) detected\n",
  1178. __func__, atomic_read(&sk->sk_omem_alloc));
  1179. if (sk->sk_peer_cred)
  1180. put_cred(sk->sk_peer_cred);
  1181. put_pid(sk->sk_peer_pid);
  1182. put_net(sock_net(sk));
  1183. sk_prot_free(sk->sk_prot_creator, sk);
  1184. }
  1185. void sk_free(struct sock *sk)
  1186. {
  1187. /*
  1188. * We subtract one from sk_wmem_alloc and can know if
  1189. * some packets are still in some tx queue.
  1190. * If not null, sock_wfree() will call __sk_free(sk) later
  1191. */
  1192. if (atomic_dec_and_test(&sk->sk_wmem_alloc))
  1193. __sk_free(sk);
  1194. }
  1195. EXPORT_SYMBOL(sk_free);
  1196. /*
  1197. * Last sock_put should drop reference to sk->sk_net. It has already
  1198. * been dropped in sk_change_net. Taking reference to stopping namespace
  1199. * is not an option.
  1200. * Take reference to a socket to remove it from hash _alive_ and after that
  1201. * destroy it in the context of init_net.
  1202. */
  1203. void sk_release_kernel(struct sock *sk)
  1204. {
  1205. if (sk == NULL || sk->sk_socket == NULL)
  1206. return;
  1207. sock_hold(sk);
  1208. sock_release(sk->sk_socket);
  1209. release_net(sock_net(sk));
  1210. sock_net_set(sk, get_net(&init_net));
  1211. sock_put(sk);
  1212. }
  1213. EXPORT_SYMBOL(sk_release_kernel);
  1214. static void sk_update_clone(const struct sock *sk, struct sock *newsk)
  1215. {
  1216. if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
  1217. sock_update_memcg(newsk);
  1218. }
  1219. /**
  1220. * sk_clone_lock - clone a socket, and lock its clone
  1221. * @sk: the socket to clone
  1222. * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
  1223. *
  1224. * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
  1225. */
  1226. struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
  1227. {
  1228. struct sock *newsk;
  1229. newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
  1230. if (newsk != NULL) {
  1231. struct sk_filter *filter;
  1232. sock_copy(newsk, sk);
  1233. /* SANITY */
  1234. get_net(sock_net(newsk));
  1235. sk_node_init(&newsk->sk_node);
  1236. sock_lock_init(newsk);
  1237. bh_lock_sock(newsk);
  1238. newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
  1239. newsk->sk_backlog.len = 0;
  1240. atomic_set(&newsk->sk_rmem_alloc, 0);
  1241. /*
  1242. * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
  1243. */
  1244. atomic_set(&newsk->sk_wmem_alloc, 1);
  1245. atomic_set(&newsk->sk_omem_alloc, 0);
  1246. skb_queue_head_init(&newsk->sk_receive_queue);
  1247. skb_queue_head_init(&newsk->sk_write_queue);
  1248. #ifdef CONFIG_NET_DMA
  1249. skb_queue_head_init(&newsk->sk_async_wait_queue);
  1250. #endif
  1251. spin_lock_init(&newsk->sk_dst_lock);
  1252. rwlock_init(&newsk->sk_callback_lock);
  1253. lockdep_set_class_and_name(&newsk->sk_callback_lock,
  1254. af_callback_keys + newsk->sk_family,
  1255. af_family_clock_key_strings[newsk->sk_family]);
  1256. newsk->sk_dst_cache = NULL;
  1257. newsk->sk_wmem_queued = 0;
  1258. newsk->sk_forward_alloc = 0;
  1259. newsk->sk_send_head = NULL;
  1260. newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
  1261. sock_reset_flag(newsk, SOCK_DONE);
  1262. skb_queue_head_init(&newsk->sk_error_queue);
  1263. filter = rcu_dereference_protected(newsk->sk_filter, 1);
  1264. if (filter != NULL)
  1265. sk_filter_charge(newsk, filter);
  1266. if (unlikely(xfrm_sk_clone_policy(newsk))) {
  1267. /* It is still raw copy of parent, so invalidate
  1268. * destructor and make plain sk_free() */
  1269. newsk->sk_destruct = NULL;
  1270. bh_unlock_sock(newsk);
  1271. sk_free(newsk);
  1272. newsk = NULL;
  1273. goto out;
  1274. }
  1275. newsk->sk_err = 0;
  1276. newsk->sk_priority = 0;
  1277. /*
  1278. * Before updating sk_refcnt, we must commit prior changes to memory
  1279. * (Documentation/RCU/rculist_nulls.txt for details)
  1280. */
  1281. smp_wmb();
  1282. atomic_set(&newsk->sk_refcnt, 2);
  1283. /*
  1284. * Increment the counter in the same struct proto as the master
  1285. * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
  1286. * is the same as sk->sk_prot->socks, as this field was copied
  1287. * with memcpy).
  1288. *
  1289. * This _changes_ the previous behaviour, where
  1290. * tcp_create_openreq_child always was incrementing the
  1291. * equivalent to tcp_prot->socks (inet_sock_nr), so this have
  1292. * to be taken into account in all callers. -acme
  1293. */
  1294. sk_refcnt_debug_inc(newsk);
  1295. sk_set_socket(newsk, NULL);
  1296. newsk->sk_wq = NULL;
  1297. sk_update_clone(sk, newsk);
  1298. if (newsk->sk_prot->sockets_allocated)
  1299. sk_sockets_allocated_inc(newsk);
  1300. if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
  1301. net_enable_timestamp();
  1302. }
  1303. out:
  1304. return newsk;
  1305. }
  1306. EXPORT_SYMBOL_GPL(sk_clone_lock);
  1307. void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
  1308. {
  1309. __sk_dst_set(sk, dst);
  1310. sk->sk_route_caps = dst->dev->features;
  1311. if (sk->sk_route_caps & NETIF_F_GSO)
  1312. sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
  1313. sk->sk_route_caps &= ~sk->sk_route_nocaps;
  1314. if (sk_can_gso(sk)) {
  1315. if (dst->header_len) {
  1316. sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
  1317. } else {
  1318. sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
  1319. sk->sk_gso_max_size = dst->dev->gso_max_size;
  1320. sk->sk_gso_max_segs = dst->dev->gso_max_segs;
  1321. }
  1322. }
  1323. }
  1324. EXPORT_SYMBOL_GPL(sk_setup_caps);
  1325. /*
  1326. * Simple resource managers for sockets.
  1327. */
  1328. /*
  1329. * Write buffer destructor automatically called from kfree_skb.
  1330. */
  1331. void sock_wfree(struct sk_buff *skb)
  1332. {
  1333. struct sock *sk = skb->sk;
  1334. unsigned int len = skb->truesize;
  1335. if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
  1336. /*
  1337. * Keep a reference on sk_wmem_alloc, this will be released
  1338. * after sk_write_space() call
  1339. */
  1340. atomic_sub(len - 1, &sk->sk_wmem_alloc);
  1341. sk->sk_write_space(sk);
  1342. len = 1;
  1343. }
  1344. /*
  1345. * if sk_wmem_alloc reaches 0, we must finish what sk_free()
  1346. * could not do because of in-flight packets
  1347. */
  1348. if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
  1349. __sk_free(sk);
  1350. }
  1351. EXPORT_SYMBOL(sock_wfree);
  1352. /*
  1353. * Read buffer destructor automatically called from kfree_skb.
  1354. */
  1355. void sock_rfree(struct sk_buff *skb)
  1356. {
  1357. struct sock *sk = skb->sk;
  1358. unsigned int len = skb->truesize;
  1359. atomic_sub(len, &sk->sk_rmem_alloc);
  1360. sk_mem_uncharge(sk, len);
  1361. }
  1362. EXPORT_SYMBOL(sock_rfree);
  1363. void sock_edemux(struct sk_buff *skb)
  1364. {
  1365. struct sock *sk = skb->sk;
  1366. #ifdef CONFIG_INET
  1367. if (sk->sk_state == TCP_TIME_WAIT)
  1368. inet_twsk_put(inet_twsk(sk));
  1369. else
  1370. #endif
  1371. sock_put(sk);
  1372. }
  1373. EXPORT_SYMBOL(sock_edemux);
  1374. kuid_t sock_i_uid(struct sock *sk)
  1375. {
  1376. kuid_t uid;
  1377. read_lock_bh(&sk->sk_callback_lock);
  1378. uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
  1379. read_unlock_bh(&sk->sk_callback_lock);
  1380. return uid;
  1381. }
  1382. EXPORT_SYMBOL(sock_i_uid);
  1383. unsigned long sock_i_ino(struct sock *sk)
  1384. {
  1385. unsigned long ino;
  1386. read_lock_bh(&sk->sk_callback_lock);
  1387. ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
  1388. read_unlock_bh(&sk->sk_callback_lock);
  1389. return ino;
  1390. }
  1391. EXPORT_SYMBOL(sock_i_ino);
  1392. /*
  1393. * Allocate a skb from the socket's send buffer.
  1394. */
  1395. struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
  1396. gfp_t priority)
  1397. {
  1398. if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
  1399. struct sk_buff *skb = alloc_skb(size, priority);
  1400. if (skb) {
  1401. skb_set_owner_w(skb, sk);
  1402. return skb;
  1403. }
  1404. }
  1405. return NULL;
  1406. }
  1407. EXPORT_SYMBOL(sock_wmalloc);
  1408. /*
  1409. * Allocate a skb from the socket's receive buffer.
  1410. */
  1411. struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
  1412. gfp_t priority)
  1413. {
  1414. if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
  1415. struct sk_buff *skb = alloc_skb(size, priority);
  1416. if (skb) {
  1417. skb_set_owner_r(skb, sk);
  1418. return skb;
  1419. }
  1420. }
  1421. return NULL;
  1422. }
  1423. /*
  1424. * Allocate a memory block from the socket's option memory buffer.
  1425. */
  1426. void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
  1427. {
  1428. if ((unsigned int)size <= sysctl_optmem_max &&
  1429. atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
  1430. void *mem;
  1431. /* First do the add, to avoid the race if kmalloc
  1432. * might sleep.
  1433. */
  1434. atomic_add(size, &sk->sk_omem_alloc);
  1435. mem = kmalloc(size, priority);
  1436. if (mem)
  1437. return mem;
  1438. atomic_sub(size, &sk->sk_omem_alloc);
  1439. }
  1440. return NULL;
  1441. }
  1442. EXPORT_SYMBOL(sock_kmalloc);
  1443. /*
  1444. * Free an option memory block.
  1445. */
  1446. void sock_kfree_s(struct sock *sk, void *mem, int size)
  1447. {
  1448. kfree(mem);
  1449. atomic_sub(size, &sk->sk_omem_alloc);
  1450. }
  1451. EXPORT_SYMBOL(sock_kfree_s);
  1452. /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
  1453. I think, these locks should be removed for datagram sockets.
  1454. */
  1455. static long sock_wait_for_wmem(struct sock *sk, long timeo)
  1456. {
  1457. DEFINE_WAIT(wait);
  1458. clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1459. for (;;) {
  1460. if (!timeo)
  1461. break;
  1462. if (signal_pending(current))
  1463. break;
  1464. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1465. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1466. if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
  1467. break;
  1468. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1469. break;
  1470. if (sk->sk_err)
  1471. break;
  1472. timeo = schedule_timeout(timeo);
  1473. }
  1474. finish_wait(sk_sleep(sk), &wait);
  1475. return timeo;
  1476. }
  1477. /*
  1478. * Generic send/receive buffer handlers
  1479. */
  1480. struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
  1481. unsigned long data_len, int noblock,
  1482. int *errcode)
  1483. {
  1484. struct sk_buff *skb;
  1485. gfp_t gfp_mask;
  1486. long timeo;
  1487. int err;
  1488. int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
  1489. err = -EMSGSIZE;
  1490. if (npages > MAX_SKB_FRAGS)
  1491. goto failure;
  1492. gfp_mask = sk->sk_allocation;
  1493. if (gfp_mask & __GFP_WAIT)
  1494. gfp_mask |= __GFP_REPEAT;
  1495. timeo = sock_sndtimeo(sk, noblock);
  1496. while (1) {
  1497. err = sock_error(sk);
  1498. if (err != 0)
  1499. goto failure;
  1500. err = -EPIPE;
  1501. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1502. goto failure;
  1503. if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
  1504. skb = alloc_skb(header_len, gfp_mask);
  1505. if (skb) {
  1506. int i;
  1507. /* No pages, we're done... */
  1508. if (!data_len)
  1509. break;
  1510. skb->truesize += data_len;
  1511. skb_shinfo(skb)->nr_frags = npages;
  1512. for (i = 0; i < npages; i++) {
  1513. struct page *page;
  1514. page = alloc_pages(sk->sk_allocation, 0);
  1515. if (!page) {
  1516. err = -ENOBUFS;
  1517. skb_shinfo(skb)->nr_frags = i;
  1518. kfree_skb(skb);
  1519. goto failure;
  1520. }
  1521. __skb_fill_page_desc(skb, i,
  1522. page, 0,
  1523. (data_len >= PAGE_SIZE ?
  1524. PAGE_SIZE :
  1525. data_len));
  1526. data_len -= PAGE_SIZE;
  1527. }
  1528. /* Full success... */
  1529. break;
  1530. }
  1531. err = -ENOBUFS;
  1532. goto failure;
  1533. }
  1534. set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1535. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1536. err = -EAGAIN;
  1537. if (!timeo)
  1538. goto failure;
  1539. if (signal_pending(current))
  1540. goto interrupted;
  1541. timeo = sock_wait_for_wmem(sk, timeo);
  1542. }
  1543. skb_set_owner_w(skb, sk);
  1544. return skb;
  1545. interrupted:
  1546. err = sock_intr_errno(timeo);
  1547. failure:
  1548. *errcode = err;
  1549. return NULL;
  1550. }
  1551. EXPORT_SYMBOL(sock_alloc_send_pskb);
  1552. struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
  1553. int noblock, int *errcode)
  1554. {
  1555. return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
  1556. }
  1557. EXPORT_SYMBOL(sock_alloc_send_skb);
  1558. /* On 32bit arches, an skb frag is limited to 2^15 */
  1559. #define SKB_FRAG_PAGE_ORDER get_order(32768)
  1560. bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
  1561. {
  1562. int order;
  1563. if (pfrag->page) {
  1564. if (atomic_read(&pfrag->page->_count) == 1) {
  1565. pfrag->offset = 0;
  1566. return true;
  1567. }
  1568. if (pfrag->offset < pfrag->size)
  1569. return true;
  1570. put_page(pfrag->page);
  1571. }
  1572. /* We restrict high order allocations to users that can afford to wait */
  1573. order = (sk->sk_allocation & __GFP_WAIT) ? SKB_FRAG_PAGE_ORDER : 0;
  1574. do {
  1575. gfp_t gfp = sk->sk_allocation;
  1576. if (order)
  1577. gfp |= __GFP_COMP | __GFP_NOWARN;
  1578. pfrag->page = alloc_pages(gfp, order);
  1579. if (likely(pfrag->page)) {
  1580. pfrag->offset = 0;
  1581. pfrag->size = PAGE_SIZE << order;
  1582. return true;
  1583. }
  1584. } while (--order >= 0);
  1585. sk_enter_memory_pressure(sk);
  1586. sk_stream_moderate_sndbuf(sk);
  1587. return false;
  1588. }
  1589. EXPORT_SYMBOL(sk_page_frag_refill);
  1590. static void __lock_sock(struct sock *sk)
  1591. __releases(&sk->sk_lock.slock)
  1592. __acquires(&sk->sk_lock.slock)
  1593. {
  1594. DEFINE_WAIT(wait);
  1595. for (;;) {
  1596. prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
  1597. TASK_UNINTERRUPTIBLE);
  1598. spin_unlock_bh(&sk->sk_lock.slock);
  1599. schedule();
  1600. spin_lock_bh(&sk->sk_lock.slock);
  1601. if (!sock_owned_by_user(sk))
  1602. break;
  1603. }
  1604. finish_wait(&sk->sk_lock.wq, &wait);
  1605. }
  1606. static void __release_sock(struct sock *sk)
  1607. __releases(&sk->sk_lock.slock)
  1608. __acquires(&sk->sk_lock.slock)
  1609. {
  1610. struct sk_buff *skb = sk->sk_backlog.head;
  1611. do {
  1612. sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
  1613. bh_unlock_sock(sk);
  1614. do {
  1615. struct sk_buff *next = skb->next;
  1616. prefetch(next);
  1617. WARN_ON_ONCE(skb_dst_is_noref(skb));
  1618. skb->next = NULL;
  1619. sk_backlog_rcv(sk, skb);
  1620. /*
  1621. * We are in process context here with softirqs
  1622. * disabled, use cond_resched_softirq() to preempt.
  1623. * This is safe to do because we've taken the backlog
  1624. * queue private:
  1625. */
  1626. cond_resched_softirq();
  1627. skb = next;
  1628. } while (skb != NULL);
  1629. bh_lock_sock(sk);
  1630. } while ((skb = sk->sk_backlog.head) != NULL);
  1631. /*
  1632. * Doing the zeroing here guarantee we can not loop forever
  1633. * while a wild producer attempts to flood us.
  1634. */
  1635. sk->sk_backlog.len = 0;
  1636. }
  1637. /**
  1638. * sk_wait_data - wait for data to arrive at sk_receive_queue
  1639. * @sk: sock to wait on
  1640. * @timeo: for how long
  1641. *
  1642. * Now socket state including sk->sk_err is changed only under lock,
  1643. * hence we may omit checks after joining wait queue.
  1644. * We check receive queue before schedule() only as optimization;
  1645. * it is very likely that release_sock() added new data.
  1646. */
  1647. int sk_wait_data(struct sock *sk, long *timeo)
  1648. {
  1649. int rc;
  1650. DEFINE_WAIT(wait);
  1651. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1652. set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
  1653. rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
  1654. clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
  1655. finish_wait(sk_sleep(sk), &wait);
  1656. return rc;
  1657. }
  1658. EXPORT_SYMBOL(sk_wait_data);
  1659. /**
  1660. * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
  1661. * @sk: socket
  1662. * @size: memory size to allocate
  1663. * @kind: allocation type
  1664. *
  1665. * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
  1666. * rmem allocation. This function assumes that protocols which have
  1667. * memory_pressure use sk_wmem_queued as write buffer accounting.
  1668. */
  1669. int __sk_mem_schedule(struct sock *sk, int size, int kind)
  1670. {
  1671. struct proto *prot = sk->sk_prot;
  1672. int amt = sk_mem_pages(size);
  1673. long allocated;
  1674. int parent_status = UNDER_LIMIT;
  1675. sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
  1676. allocated = sk_memory_allocated_add(sk, amt, &parent_status);
  1677. /* Under limit. */
  1678. if (parent_status == UNDER_LIMIT &&
  1679. allocated <= sk_prot_mem_limits(sk, 0)) {
  1680. sk_leave_memory_pressure(sk);
  1681. return 1;
  1682. }
  1683. /* Under pressure. (we or our parents) */
  1684. if ((parent_status > SOFT_LIMIT) ||
  1685. allocated > sk_prot_mem_limits(sk, 1))
  1686. sk_enter_memory_pressure(sk);
  1687. /* Over hard limit (we or our parents) */
  1688. if ((parent_status == OVER_LIMIT) ||
  1689. (allocated > sk_prot_mem_limits(sk, 2)))
  1690. goto suppress_allocation;
  1691. /* guarantee minimum buffer size under pressure */
  1692. if (kind == SK_MEM_RECV) {
  1693. if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
  1694. return 1;
  1695. } else { /* SK_MEM_SEND */
  1696. if (sk->sk_type == SOCK_STREAM) {
  1697. if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
  1698. return 1;
  1699. } else if (atomic_read(&sk->sk_wmem_alloc) <
  1700. prot->sysctl_wmem[0])
  1701. return 1;
  1702. }
  1703. if (sk_has_memory_pressure(sk)) {
  1704. int alloc;
  1705. if (!sk_under_memory_pressure(sk))
  1706. return 1;
  1707. alloc = sk_sockets_allocated_read_positive(sk);
  1708. if (sk_prot_mem_limits(sk, 2) > alloc *
  1709. sk_mem_pages(sk->sk_wmem_queued +
  1710. atomic_read(&sk->sk_rmem_alloc) +
  1711. sk->sk_forward_alloc))
  1712. return 1;
  1713. }
  1714. suppress_allocation:
  1715. if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
  1716. sk_stream_moderate_sndbuf(sk);
  1717. /* Fail only if socket is _under_ its sndbuf.
  1718. * In this case we cannot block, so that we have to fail.
  1719. */
  1720. if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
  1721. return 1;
  1722. }
  1723. trace_sock_exceed_buf_limit(sk, prot, allocated);
  1724. /* Alas. Undo changes. */
  1725. sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
  1726. sk_memory_allocated_sub(sk, amt);
  1727. return 0;
  1728. }
  1729. EXPORT_SYMBOL(__sk_mem_schedule);
  1730. /**
  1731. * __sk_reclaim - reclaim memory_allocated
  1732. * @sk: socket
  1733. */
  1734. void __sk_mem_reclaim(struct sock *sk)
  1735. {
  1736. sk_memory_allocated_sub(sk,
  1737. sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
  1738. sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
  1739. if (sk_under_memory_pressure(sk) &&
  1740. (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
  1741. sk_leave_memory_pressure(sk);
  1742. }
  1743. EXPORT_SYMBOL(__sk_mem_reclaim);
  1744. /*
  1745. * Set of default routines for initialising struct proto_ops when
  1746. * the protocol does not support a particular function. In certain
  1747. * cases where it makes no sense for a protocol to have a "do nothing"
  1748. * function, some default processing is provided.
  1749. */
  1750. int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
  1751. {
  1752. return -EOPNOTSUPP;
  1753. }
  1754. EXPORT_SYMBOL(sock_no_bind);
  1755. int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
  1756. int len, int flags)
  1757. {
  1758. return -EOPNOTSUPP;
  1759. }
  1760. EXPORT_SYMBOL(sock_no_connect);
  1761. int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
  1762. {
  1763. return -EOPNOTSUPP;
  1764. }
  1765. EXPORT_SYMBOL(sock_no_socketpair);
  1766. int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
  1767. {
  1768. return -EOPNOTSUPP;
  1769. }
  1770. EXPORT_SYMBOL(sock_no_accept);
  1771. int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
  1772. int *len, int peer)
  1773. {
  1774. return -EOPNOTSUPP;
  1775. }
  1776. EXPORT_SYMBOL(sock_no_getname);
  1777. unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
  1778. {
  1779. return 0;
  1780. }
  1781. EXPORT_SYMBOL(sock_no_poll);
  1782. int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
  1783. {
  1784. return -EOPNOTSUPP;
  1785. }
  1786. EXPORT_SYMBOL(sock_no_ioctl);
  1787. int sock_no_listen(struct socket *sock, int backlog)
  1788. {
  1789. return -EOPNOTSUPP;
  1790. }
  1791. EXPORT_SYMBOL(sock_no_listen);
  1792. int sock_no_shutdown(struct socket *sock, int how)
  1793. {
  1794. return -EOPNOTSUPP;
  1795. }
  1796. EXPORT_SYMBOL(sock_no_shutdown);
  1797. int sock_no_setsockopt(struct socket *sock, int level, int optname,
  1798. char __user *optval, unsigned int optlen)
  1799. {
  1800. return -EOPNOTSUPP;
  1801. }
  1802. EXPORT_SYMBOL(sock_no_setsockopt);
  1803. int sock_no_getsockopt(struct socket *sock, int level, int optname,
  1804. char __user *optval, int __user *optlen)
  1805. {
  1806. return -EOPNOTSUPP;
  1807. }
  1808. EXPORT_SYMBOL(sock_no_getsockopt);
  1809. int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
  1810. size_t len)
  1811. {
  1812. return -EOPNOTSUPP;
  1813. }
  1814. EXPORT_SYMBOL(sock_no_sendmsg);
  1815. int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
  1816. size_t len, int flags)
  1817. {
  1818. return -EOPNOTSUPP;
  1819. }
  1820. EXPORT_SYMBOL(sock_no_recvmsg);
  1821. int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
  1822. {
  1823. /* Mirror missing mmap method error code */
  1824. return -ENODEV;
  1825. }
  1826. EXPORT_SYMBOL(sock_no_mmap);
  1827. ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
  1828. {
  1829. ssize_t res;
  1830. struct msghdr msg = {.msg_flags = flags};
  1831. struct kvec iov;
  1832. char *kaddr = kmap(page);
  1833. iov.iov_base = kaddr + offset;
  1834. iov.iov_len = size;
  1835. res = kernel_sendmsg(sock, &msg, &iov, 1, size);
  1836. kunmap(page);
  1837. return res;
  1838. }
  1839. EXPORT_SYMBOL(sock_no_sendpage);
  1840. /*
  1841. * Default Socket Callbacks
  1842. */
  1843. static void sock_def_wakeup(struct sock *sk)
  1844. {
  1845. struct socket_wq *wq;
  1846. rcu_read_lock();
  1847. wq = rcu_dereference(sk->sk_wq);
  1848. if (wq_has_sleeper(wq))
  1849. wake_up_interruptible_all(&wq->wait);
  1850. rcu_read_unlock();
  1851. }
  1852. static void sock_def_error_report(struct sock *sk)
  1853. {
  1854. struct socket_wq *wq;
  1855. rcu_read_lock();
  1856. wq = rcu_dereference(sk->sk_wq);
  1857. if (wq_has_sleeper(wq))
  1858. wake_up_interruptible_poll(&wq->wait, POLLERR);
  1859. sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
  1860. rcu_read_unlock();
  1861. }
  1862. static void sock_def_readable(struct sock *sk, int len)
  1863. {
  1864. struct socket_wq *wq;
  1865. rcu_read_lock();
  1866. wq = rcu_dereference(sk->sk_wq);
  1867. if (wq_has_sleeper(wq))
  1868. wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
  1869. POLLRDNORM | POLLRDBAND);
  1870. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  1871. rcu_read_unlock();
  1872. }
  1873. static void sock_def_write_space(struct sock *sk)
  1874. {
  1875. struct socket_wq *wq;
  1876. rcu_read_lock();
  1877. /* Do not wake up a writer until he can make "significant"
  1878. * progress. --DaveM
  1879. */
  1880. if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
  1881. wq = rcu_dereference(sk->sk_wq);
  1882. if (wq_has_sleeper(wq))
  1883. wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
  1884. POLLWRNORM | POLLWRBAND);
  1885. /* Should agree with poll, otherwise some programs break */
  1886. if (sock_writeable(sk))
  1887. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  1888. }
  1889. rcu_read_unlock();
  1890. }
  1891. static void sock_def_destruct(struct sock *sk)
  1892. {
  1893. kfree(sk->sk_protinfo);
  1894. }
  1895. void sk_send_sigurg(struct sock *sk)
  1896. {
  1897. if (sk->sk_socket && sk->sk_socket->file)
  1898. if (send_sigurg(&sk->sk_socket->file->f_owner))
  1899. sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
  1900. }
  1901. EXPORT_SYMBOL(sk_send_sigurg);
  1902. void sk_reset_timer(struct sock *sk, struct timer_list* timer,
  1903. unsigned long expires)
  1904. {
  1905. if (!mod_timer(timer, expires))
  1906. sock_hold(sk);
  1907. }
  1908. EXPORT_SYMBOL(sk_reset_timer);
  1909. void sk_stop_timer(struct sock *sk, struct timer_list* timer)
  1910. {
  1911. if (del_timer(timer))
  1912. __sock_put(sk);
  1913. }
  1914. EXPORT_SYMBOL(sk_stop_timer);
  1915. void sock_init_data(struct socket *sock, struct sock *sk)
  1916. {
  1917. skb_queue_head_init(&sk->sk_receive_queue);
  1918. skb_queue_head_init(&sk->sk_write_queue);
  1919. skb_queue_head_init(&sk->sk_error_queue);
  1920. #ifdef CONFIG_NET_DMA
  1921. skb_queue_head_init(&sk->sk_async_wait_queue);
  1922. #endif
  1923. sk->sk_send_head = NULL;
  1924. init_timer(&sk->sk_timer);
  1925. sk->sk_allocation = GFP_KERNEL;
  1926. sk->sk_rcvbuf = sysctl_rmem_default;
  1927. sk->sk_sndbuf = sysctl_wmem_default;
  1928. sk->sk_state = TCP_CLOSE;
  1929. sk_set_socket(sk, sock);
  1930. sock_set_flag(sk, SOCK_ZAPPED);
  1931. if (sock) {
  1932. sk->sk_type = sock->type;
  1933. sk->sk_wq = sock->wq;
  1934. sock->sk = sk;
  1935. } else
  1936. sk->sk_wq = NULL;
  1937. spin_lock_init(&sk->sk_dst_lock);
  1938. rwlock_init(&sk->sk_callback_lock);
  1939. lockdep_set_class_and_name(&sk->sk_callback_lock,
  1940. af_callback_keys + sk->sk_family,
  1941. af_family_clock_key_strings[sk->sk_family]);
  1942. sk->sk_state_change = sock_def_wakeup;
  1943. sk->sk_data_ready = sock_def_readable;
  1944. sk->sk_write_space = sock_def_write_space;
  1945. sk->sk_error_report = sock_def_error_report;
  1946. sk->sk_destruct = sock_def_destruct;
  1947. sk->sk_frag.page = NULL;
  1948. sk->sk_frag.offset = 0;
  1949. sk->sk_peek_off = -1;
  1950. sk->sk_peer_pid = NULL;
  1951. sk->sk_peer_cred = NULL;
  1952. sk->sk_write_pending = 0;
  1953. sk->sk_rcvlowat = 1;
  1954. sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
  1955. sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
  1956. sk->sk_stamp = ktime_set(-1L, 0);
  1957. #ifdef CONFIG_NET_LL_RX_POLL
  1958. sk->sk_napi_id = 0;
  1959. sk->sk_ll_usec = sysctl_net_ll_read;
  1960. #endif
  1961. /*
  1962. * Before updating sk_refcnt, we must commit prior changes to memory
  1963. * (Documentation/RCU/rculist_nulls.txt for details)
  1964. */
  1965. smp_wmb();
  1966. atomic_set(&sk->sk_refcnt, 1);
  1967. atomic_set(&sk->sk_drops, 0);
  1968. }
  1969. EXPORT_SYMBOL(sock_init_data);
  1970. void lock_sock_nested(struct sock *sk, int subclass)
  1971. {
  1972. might_sleep();
  1973. spin_lock_bh(&sk->sk_lock.slock);
  1974. if (sk->sk_lock.owned)
  1975. __lock_sock(sk);
  1976. sk->sk_lock.owned = 1;
  1977. spin_unlock(&sk->sk_lock.slock);
  1978. /*
  1979. * The sk_lock has mutex_lock() semantics here:
  1980. */
  1981. mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
  1982. local_bh_enable();
  1983. }
  1984. EXPORT_SYMBOL(lock_sock_nested);
  1985. void release_sock(struct sock *sk)
  1986. {
  1987. /*
  1988. * The sk_lock has mutex_unlock() semantics:
  1989. */
  1990. mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
  1991. spin_lock_bh(&sk->sk_lock.slock);
  1992. if (sk->sk_backlog.tail)
  1993. __release_sock(sk);
  1994. if (sk->sk_prot->release_cb)
  1995. sk->sk_prot->release_cb(sk);
  1996. sk->sk_lock.owned = 0;
  1997. if (waitqueue_active(&sk->sk_lock.wq))
  1998. wake_up(&sk->sk_lock.wq);
  1999. spin_unlock_bh(&sk->sk_lock.slock);
  2000. }
  2001. EXPORT_SYMBOL(release_sock);
  2002. /**
  2003. * lock_sock_fast - fast version of lock_sock
  2004. * @sk: socket
  2005. *
  2006. * This version should be used for very small section, where process wont block
  2007. * return false if fast path is taken
  2008. * sk_lock.slock locked, owned = 0, BH disabled
  2009. * return true if slow path is taken
  2010. * sk_lock.slock unlocked, owned = 1, BH enabled
  2011. */
  2012. bool lock_sock_fast(struct sock *sk)
  2013. {
  2014. might_sleep();
  2015. spin_lock_bh(&sk->sk_lock.slock);
  2016. if (!sk->sk_lock.owned)
  2017. /*
  2018. * Note : We must disable BH
  2019. */
  2020. return false;
  2021. __lock_sock(sk);
  2022. sk->sk_lock.owned = 1;
  2023. spin_unlock(&sk->sk_lock.slock);
  2024. /*
  2025. * The sk_lock has mutex_lock() semantics here:
  2026. */
  2027. mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
  2028. local_bh_enable();
  2029. return true;
  2030. }
  2031. EXPORT_SYMBOL(lock_sock_fast);
  2032. int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
  2033. {
  2034. struct timeval tv;
  2035. if (!sock_flag(sk, SOCK_TIMESTAMP))
  2036. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  2037. tv = ktime_to_timeval(sk->sk_stamp);
  2038. if (tv.tv_sec == -1)
  2039. return -ENOENT;
  2040. if (tv.tv_sec == 0) {
  2041. sk->sk_stamp = ktime_get_real();
  2042. tv = ktime_to_timeval(sk->sk_stamp);
  2043. }
  2044. return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
  2045. }
  2046. EXPORT_SYMBOL(sock_get_timestamp);
  2047. int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
  2048. {
  2049. struct timespec ts;
  2050. if (!sock_flag(sk, SOCK_TIMESTAMP))
  2051. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  2052. ts = ktime_to_timespec(sk->sk_stamp);
  2053. if (ts.tv_sec == -1)
  2054. return -ENOENT;
  2055. if (ts.tv_sec == 0) {
  2056. sk->sk_stamp = ktime_get_real();
  2057. ts = ktime_to_timespec(sk->sk_stamp);
  2058. }
  2059. return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
  2060. }
  2061. EXPORT_SYMBOL(sock_get_timestampns);
  2062. void sock_enable_timestamp(struct sock *sk, int flag)
  2063. {
  2064. if (!sock_flag(sk, flag)) {
  2065. unsigned long previous_flags = sk->sk_flags;
  2066. sock_set_flag(sk, flag);
  2067. /*
  2068. * we just set one of the two flags which require net
  2069. * time stamping, but time stamping might have been on
  2070. * already because of the other one
  2071. */
  2072. if (!(previous_flags & SK_FLAGS_TIMESTAMP))
  2073. net_enable_timestamp();
  2074. }
  2075. }
  2076. /*
  2077. * Get a socket option on an socket.
  2078. *
  2079. * FIX: POSIX 1003.1g is very ambiguous here. It states that
  2080. * asynchronous errors should be reported by getsockopt. We assume
  2081. * this means if you specify SO_ERROR (otherwise whats the point of it).
  2082. */
  2083. int sock_common_getsockopt(struct socket *sock, int level, int optname,
  2084. char __user *optval, int __user *optlen)
  2085. {
  2086. struct sock *sk = sock->sk;
  2087. return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
  2088. }
  2089. EXPORT_SYMBOL(sock_common_getsockopt);
  2090. #ifdef CONFIG_COMPAT
  2091. int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
  2092. char __user *optval, int __user *optlen)
  2093. {
  2094. struct sock *sk = sock->sk;
  2095. if (sk->sk_prot->compat_getsockopt != NULL)
  2096. return sk->sk_prot->compat_getsockopt(sk, level, optname,
  2097. optval, optlen);
  2098. return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
  2099. }
  2100. EXPORT_SYMBOL(compat_sock_common_getsockopt);
  2101. #endif
  2102. int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
  2103. struct msghdr *msg, size_t size, int flags)
  2104. {
  2105. struct sock *sk = sock->sk;
  2106. int addr_len = 0;
  2107. int err;
  2108. err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
  2109. flags & ~MSG_DONTWAIT, &addr_len);
  2110. if (err >= 0)
  2111. msg->msg_namelen = addr_len;
  2112. return err;
  2113. }
  2114. EXPORT_SYMBOL(sock_common_recvmsg);
  2115. /*
  2116. * Set socket options on an inet socket.
  2117. */
  2118. int sock_common_setsockopt(struct socket *sock, int level, int optname,
  2119. char __user *optval, unsigned int optlen)
  2120. {
  2121. struct sock *sk = sock->sk;
  2122. return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
  2123. }
  2124. EXPORT_SYMBOL(sock_common_setsockopt);
  2125. #ifdef CONFIG_COMPAT
  2126. int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
  2127. char __user *optval, unsigned int optlen)
  2128. {
  2129. struct sock *sk = sock->sk;
  2130. if (sk->sk_prot->compat_setsockopt != NULL)
  2131. return sk->sk_prot->compat_setsockopt(sk, level, optname,
  2132. optval, optlen);
  2133. return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
  2134. }
  2135. EXPORT_SYMBOL(compat_sock_common_setsockopt);
  2136. #endif
  2137. void sk_common_release(struct sock *sk)
  2138. {
  2139. if (sk->sk_prot->destroy)
  2140. sk->sk_prot->destroy(sk);
  2141. /*
  2142. * Observation: when sock_common_release is called, processes have
  2143. * no access to socket. But net still has.
  2144. * Step one, detach it from networking:
  2145. *
  2146. * A. Remove from hash tables.
  2147. */
  2148. sk->sk_prot->unhash(sk);
  2149. /*
  2150. * In this point socket cannot receive new packets, but it is possible
  2151. * that some packets are in flight because some CPU runs receiver and
  2152. * did hash table lookup before we unhashed socket. They will achieve
  2153. * receive queue and will be purged by socket destructor.
  2154. *
  2155. * Also we still have packets pending on receive queue and probably,
  2156. * our own packets waiting in device queues. sock_destroy will drain
  2157. * receive queue, but transmitted packets will delay socket destruction
  2158. * until the last reference will be released.
  2159. */
  2160. sock_orphan(sk);
  2161. xfrm_sk_free_policy(sk);
  2162. sk_refcnt_debug_release(sk);
  2163. if (sk->sk_frag.page) {
  2164. put_page(sk->sk_frag.page);
  2165. sk->sk_frag.page = NULL;
  2166. }
  2167. sock_put(sk);
  2168. }
  2169. EXPORT_SYMBOL(sk_common_release);
  2170. #ifdef CONFIG_PROC_FS
  2171. #define PROTO_INUSE_NR 64 /* should be enough for the first time */
  2172. struct prot_inuse {
  2173. int val[PROTO_INUSE_NR];
  2174. };
  2175. static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
  2176. #ifdef CONFIG_NET_NS
  2177. void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
  2178. {
  2179. __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
  2180. }
  2181. EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
  2182. int sock_prot_inuse_get(struct net *net, struct proto *prot)
  2183. {
  2184. int cpu, idx = prot->inuse_idx;
  2185. int res = 0;
  2186. for_each_possible_cpu(cpu)
  2187. res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
  2188. return res >= 0 ? res : 0;
  2189. }
  2190. EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
  2191. static int __net_init sock_inuse_init_net(struct net *net)
  2192. {
  2193. net->core.inuse = alloc_percpu(struct prot_inuse);
  2194. return net->core.inuse ? 0 : -ENOMEM;
  2195. }
  2196. static void __net_exit sock_inuse_exit_net(struct net *net)
  2197. {
  2198. free_percpu(net->core.inuse);
  2199. }
  2200. static struct pernet_operations net_inuse_ops = {
  2201. .init = sock_inuse_init_net,
  2202. .exit = sock_inuse_exit_net,
  2203. };
  2204. static __init int net_inuse_init(void)
  2205. {
  2206. if (register_pernet_subsys(&net_inuse_ops))
  2207. panic("Cannot initialize net inuse counters");
  2208. return 0;
  2209. }
  2210. core_initcall(net_inuse_init);
  2211. #else
  2212. static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
  2213. void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
  2214. {
  2215. __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
  2216. }
  2217. EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
  2218. int sock_prot_inuse_get(struct net *net, struct proto *prot)
  2219. {
  2220. int cpu, idx = prot->inuse_idx;
  2221. int res = 0;
  2222. for_each_possible_cpu(cpu)
  2223. res += per_cpu(prot_inuse, cpu).val[idx];
  2224. return res >= 0 ? res : 0;
  2225. }
  2226. EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
  2227. #endif
  2228. static void assign_proto_idx(struct proto *prot)
  2229. {
  2230. prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
  2231. if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
  2232. pr_err("PROTO_INUSE_NR exhausted\n");
  2233. return;
  2234. }
  2235. set_bit(prot->inuse_idx, proto_inuse_idx);
  2236. }
  2237. static void release_proto_idx(struct proto *prot)
  2238. {
  2239. if (prot->inuse_idx != PROTO_INUSE_NR - 1)
  2240. clear_bit(prot->inuse_idx, proto_inuse_idx);
  2241. }
  2242. #else
  2243. static inline void assign_proto_idx(struct proto *prot)
  2244. {
  2245. }
  2246. static inline void release_proto_idx(struct proto *prot)
  2247. {
  2248. }
  2249. #endif
  2250. int proto_register(struct proto *prot, int alloc_slab)
  2251. {
  2252. if (alloc_slab) {
  2253. prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
  2254. SLAB_HWCACHE_ALIGN | prot->slab_flags,
  2255. NULL);
  2256. if (prot->slab == NULL) {
  2257. pr_crit("%s: Can't create sock SLAB cache!\n",
  2258. prot->name);
  2259. goto out;
  2260. }
  2261. if (prot->rsk_prot != NULL) {
  2262. prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
  2263. if (prot->rsk_prot->slab_name == NULL)
  2264. goto out_free_sock_slab;
  2265. prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
  2266. prot->rsk_prot->obj_size, 0,
  2267. SLAB_HWCACHE_ALIGN, NULL);
  2268. if (prot->rsk_prot->slab == NULL) {
  2269. pr_crit("%s: Can't create request sock SLAB cache!\n",
  2270. prot->name);
  2271. goto out_free_request_sock_slab_name;
  2272. }
  2273. }
  2274. if (prot->twsk_prot != NULL) {
  2275. prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
  2276. if (prot->twsk_prot->twsk_slab_name == NULL)
  2277. goto out_free_request_sock_slab;
  2278. prot->twsk_prot->twsk_slab =
  2279. kmem_cache_create(prot->twsk_prot->twsk_slab_name,
  2280. prot->twsk_prot->twsk_obj_size,
  2281. 0,
  2282. SLAB_HWCACHE_ALIGN |
  2283. prot->slab_flags,
  2284. NULL);
  2285. if (prot->twsk_prot->twsk_slab == NULL)
  2286. goto out_free_timewait_sock_slab_name;
  2287. }
  2288. }
  2289. mutex_lock(&proto_list_mutex);
  2290. list_add(&prot->node, &proto_list);
  2291. assign_proto_idx(prot);
  2292. mutex_unlock(&proto_list_mutex);
  2293. return 0;
  2294. out_free_timewait_sock_slab_name:
  2295. kfree(prot->twsk_prot->twsk_slab_name);
  2296. out_free_request_sock_slab:
  2297. if (prot->rsk_prot && prot->rsk_prot->slab) {
  2298. kmem_cache_destroy(prot->rsk_prot->slab);
  2299. prot->rsk_prot->slab = NULL;
  2300. }
  2301. out_free_request_sock_slab_name:
  2302. if (prot->rsk_prot)
  2303. kfree(prot->rsk_prot->slab_name);
  2304. out_free_sock_slab:
  2305. kmem_cache_destroy(prot->slab);
  2306. prot->slab = NULL;
  2307. out:
  2308. return -ENOBUFS;
  2309. }
  2310. EXPORT_SYMBOL(proto_register);
  2311. void proto_unregister(struct proto *prot)
  2312. {
  2313. mutex_lock(&proto_list_mutex);
  2314. release_proto_idx(prot);
  2315. list_del(&prot->node);
  2316. mutex_unlock(&proto_list_mutex);
  2317. if (prot->slab != NULL) {
  2318. kmem_cache_destroy(prot->slab);
  2319. prot->slab = NULL;
  2320. }
  2321. if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
  2322. kmem_cache_destroy(prot->rsk_prot->slab);
  2323. kfree(prot->rsk_prot->slab_name);
  2324. prot->rsk_prot->slab = NULL;
  2325. }
  2326. if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
  2327. kmem_cache_destroy(prot->twsk_prot->twsk_slab);
  2328. kfree(prot->twsk_prot->twsk_slab_name);
  2329. prot->twsk_prot->twsk_slab = NULL;
  2330. }
  2331. }
  2332. EXPORT_SYMBOL(proto_unregister);
  2333. #ifdef CONFIG_PROC_FS
  2334. static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
  2335. __acquires(proto_list_mutex)
  2336. {
  2337. mutex_lock(&proto_list_mutex);
  2338. return seq_list_start_head(&proto_list, *pos);
  2339. }
  2340. static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2341. {
  2342. return seq_list_next(v, &proto_list, pos);
  2343. }
  2344. static void proto_seq_stop(struct seq_file *seq, void *v)
  2345. __releases(proto_list_mutex)
  2346. {
  2347. mutex_unlock(&proto_list_mutex);
  2348. }
  2349. static char proto_method_implemented(const void *method)
  2350. {
  2351. return method == NULL ? 'n' : 'y';
  2352. }
  2353. static long sock_prot_memory_allocated(struct proto *proto)
  2354. {
  2355. return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
  2356. }
  2357. static char *sock_prot_memory_pressure(struct proto *proto)
  2358. {
  2359. return proto->memory_pressure != NULL ?
  2360. proto_memory_pressure(proto) ? "yes" : "no" : "NI";
  2361. }
  2362. static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
  2363. {
  2364. seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
  2365. "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
  2366. proto->name,
  2367. proto->obj_size,
  2368. sock_prot_inuse_get(seq_file_net(seq), proto),
  2369. sock_prot_memory_allocated(proto),
  2370. sock_prot_memory_pressure(proto),
  2371. proto->max_header,
  2372. proto->slab == NULL ? "no" : "yes",
  2373. module_name(proto->owner),
  2374. proto_method_implemented(proto->close),
  2375. proto_method_implemented(proto->connect),
  2376. proto_method_implemented(proto->disconnect),
  2377. proto_method_implemented(proto->accept),
  2378. proto_method_implemented(proto->ioctl),
  2379. proto_method_implemented(proto->init),
  2380. proto_method_implemented(proto->destroy),
  2381. proto_method_implemented(proto->shutdown),
  2382. proto_method_implemented(proto->setsockopt),
  2383. proto_method_implemented(proto->getsockopt),
  2384. proto_method_implemented(proto->sendmsg),
  2385. proto_method_implemented(proto->recvmsg),
  2386. proto_method_implemented(proto->sendpage),
  2387. proto_method_implemented(proto->bind),
  2388. proto_method_implemented(proto->backlog_rcv),
  2389. proto_method_implemented(proto->hash),
  2390. proto_method_implemented(proto->unhash),
  2391. proto_method_implemented(proto->get_port),
  2392. proto_method_implemented(proto->enter_memory_pressure));
  2393. }
  2394. static int proto_seq_show(struct seq_file *seq, void *v)
  2395. {
  2396. if (v == &proto_list)
  2397. seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
  2398. "protocol",
  2399. "size",
  2400. "sockets",
  2401. "memory",
  2402. "press",
  2403. "maxhdr",
  2404. "slab",
  2405. "module",
  2406. "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
  2407. else
  2408. proto_seq_printf(seq, list_entry(v, struct proto, node));
  2409. return 0;
  2410. }
  2411. static const struct seq_operations proto_seq_ops = {
  2412. .start = proto_seq_start,
  2413. .next = proto_seq_next,
  2414. .stop = proto_seq_stop,
  2415. .show = proto_seq_show,
  2416. };
  2417. static int proto_seq_open(struct inode *inode, struct file *file)
  2418. {
  2419. return seq_open_net(inode, file, &proto_seq_ops,
  2420. sizeof(struct seq_net_private));
  2421. }
  2422. static const struct file_operations proto_seq_fops = {
  2423. .owner = THIS_MODULE,
  2424. .open = proto_seq_open,
  2425. .read = seq_read,
  2426. .llseek = seq_lseek,
  2427. .release = seq_release_net,
  2428. };
  2429. static __net_init int proto_init_net(struct net *net)
  2430. {
  2431. if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
  2432. return -ENOMEM;
  2433. return 0;
  2434. }
  2435. static __net_exit void proto_exit_net(struct net *net)
  2436. {
  2437. remove_proc_entry("protocols", net->proc_net);
  2438. }
  2439. static __net_initdata struct pernet_operations proto_net_ops = {
  2440. .init = proto_init_net,
  2441. .exit = proto_exit_net,
  2442. };
  2443. static int __init proto_init(void)
  2444. {
  2445. return register_pernet_subsys(&proto_net_ops);
  2446. }
  2447. subsys_initcall(proto_init);
  2448. #endif /* PROC_FS */