write.c 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680
  1. /*
  2. * linux/fs/nfs/write.c
  3. *
  4. * Write file data over NFS.
  5. *
  6. * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
  7. */
  8. #include <linux/types.h>
  9. #include <linux/slab.h>
  10. #include <linux/mm.h>
  11. #include <linux/pagemap.h>
  12. #include <linux/file.h>
  13. #include <linux/writeback.h>
  14. #include <linux/swap.h>
  15. #include <linux/migrate.h>
  16. #include <linux/sunrpc/clnt.h>
  17. #include <linux/nfs_fs.h>
  18. #include <linux/nfs_mount.h>
  19. #include <linux/nfs_page.h>
  20. #include <linux/backing-dev.h>
  21. #include <asm/uaccess.h>
  22. #include "delegation.h"
  23. #include "internal.h"
  24. #include "iostat.h"
  25. #include "nfs4_fs.h"
  26. #include "fscache.h"
  27. #define NFSDBG_FACILITY NFSDBG_PAGECACHE
  28. #define MIN_POOL_WRITE (32)
  29. #define MIN_POOL_COMMIT (4)
  30. /*
  31. * Local function declarations
  32. */
  33. static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
  34. struct inode *inode, int ioflags);
  35. static void nfs_redirty_request(struct nfs_page *req);
  36. static const struct rpc_call_ops nfs_write_partial_ops;
  37. static const struct rpc_call_ops nfs_write_full_ops;
  38. static const struct rpc_call_ops nfs_commit_ops;
  39. static struct kmem_cache *nfs_wdata_cachep;
  40. static mempool_t *nfs_wdata_mempool;
  41. static mempool_t *nfs_commit_mempool;
  42. struct nfs_write_data *nfs_commitdata_alloc(void)
  43. {
  44. struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
  45. if (p) {
  46. memset(p, 0, sizeof(*p));
  47. INIT_LIST_HEAD(&p->pages);
  48. p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE;
  49. }
  50. return p;
  51. }
  52. void nfs_commit_free(struct nfs_write_data *p)
  53. {
  54. if (p && (p->pagevec != &p->page_array[0]))
  55. kfree(p->pagevec);
  56. mempool_free(p, nfs_commit_mempool);
  57. }
  58. struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
  59. {
  60. struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
  61. if (p) {
  62. memset(p, 0, sizeof(*p));
  63. INIT_LIST_HEAD(&p->pages);
  64. p->npages = pagecount;
  65. p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE;
  66. if (pagecount <= ARRAY_SIZE(p->page_array))
  67. p->pagevec = p->page_array;
  68. else {
  69. p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
  70. if (!p->pagevec) {
  71. mempool_free(p, nfs_wdata_mempool);
  72. p = NULL;
  73. }
  74. }
  75. }
  76. return p;
  77. }
  78. static void nfs_writedata_free(struct nfs_write_data *p)
  79. {
  80. if (p && (p->pagevec != &p->page_array[0]))
  81. kfree(p->pagevec);
  82. mempool_free(p, nfs_wdata_mempool);
  83. }
  84. void nfs_writedata_release(void *data)
  85. {
  86. struct nfs_write_data *wdata = data;
  87. put_nfs_open_context(wdata->args.context);
  88. nfs_writedata_free(wdata);
  89. }
  90. static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
  91. {
  92. ctx->error = error;
  93. smp_wmb();
  94. set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
  95. }
  96. static struct nfs_page *nfs_page_find_request_locked(struct page *page)
  97. {
  98. struct nfs_page *req = NULL;
  99. if (PagePrivate(page)) {
  100. req = (struct nfs_page *)page_private(page);
  101. if (req != NULL)
  102. kref_get(&req->wb_kref);
  103. }
  104. return req;
  105. }
  106. static struct nfs_page *nfs_page_find_request(struct page *page)
  107. {
  108. struct inode *inode = page->mapping->host;
  109. struct nfs_page *req = NULL;
  110. spin_lock(&inode->i_lock);
  111. req = nfs_page_find_request_locked(page);
  112. spin_unlock(&inode->i_lock);
  113. return req;
  114. }
  115. /* Adjust the file length if we're writing beyond the end */
  116. static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
  117. {
  118. struct inode *inode = page->mapping->host;
  119. loff_t end, i_size;
  120. pgoff_t end_index;
  121. spin_lock(&inode->i_lock);
  122. i_size = i_size_read(inode);
  123. end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
  124. if (i_size > 0 && page->index < end_index)
  125. goto out;
  126. end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
  127. if (i_size >= end)
  128. goto out;
  129. i_size_write(inode, end);
  130. nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
  131. out:
  132. spin_unlock(&inode->i_lock);
  133. }
  134. /* A writeback failed: mark the page as bad, and invalidate the page cache */
  135. static void nfs_set_pageerror(struct page *page)
  136. {
  137. SetPageError(page);
  138. nfs_zap_mapping(page->mapping->host, page->mapping);
  139. }
  140. /* We can set the PG_uptodate flag if we see that a write request
  141. * covers the full page.
  142. */
  143. static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
  144. {
  145. if (PageUptodate(page))
  146. return;
  147. if (base != 0)
  148. return;
  149. if (count != nfs_page_length(page))
  150. return;
  151. SetPageUptodate(page);
  152. }
  153. static int wb_priority(struct writeback_control *wbc)
  154. {
  155. if (wbc->for_reclaim)
  156. return FLUSH_HIGHPRI | FLUSH_STABLE;
  157. if (wbc->for_kupdate)
  158. return FLUSH_LOWPRI;
  159. return 0;
  160. }
  161. /*
  162. * NFS congestion control
  163. */
  164. int nfs_congestion_kb;
  165. #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10))
  166. #define NFS_CONGESTION_OFF_THRESH \
  167. (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
  168. static int nfs_set_page_writeback(struct page *page)
  169. {
  170. int ret = test_set_page_writeback(page);
  171. if (!ret) {
  172. struct inode *inode = page->mapping->host;
  173. struct nfs_server *nfss = NFS_SERVER(inode);
  174. if (atomic_long_inc_return(&nfss->writeback) >
  175. NFS_CONGESTION_ON_THRESH) {
  176. set_bdi_congested(&nfss->backing_dev_info,
  177. BLK_RW_ASYNC);
  178. }
  179. }
  180. return ret;
  181. }
  182. static void nfs_end_page_writeback(struct page *page)
  183. {
  184. struct inode *inode = page->mapping->host;
  185. struct nfs_server *nfss = NFS_SERVER(inode);
  186. end_page_writeback(page);
  187. if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
  188. clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
  189. }
  190. static struct nfs_page *nfs_find_and_lock_request(struct page *page)
  191. {
  192. struct inode *inode = page->mapping->host;
  193. struct nfs_page *req;
  194. int ret;
  195. spin_lock(&inode->i_lock);
  196. for (;;) {
  197. req = nfs_page_find_request_locked(page);
  198. if (req == NULL)
  199. break;
  200. if (nfs_set_page_tag_locked(req))
  201. break;
  202. /* Note: If we hold the page lock, as is the case in nfs_writepage,
  203. * then the call to nfs_set_page_tag_locked() will always
  204. * succeed provided that someone hasn't already marked the
  205. * request as dirty (in which case we don't care).
  206. */
  207. spin_unlock(&inode->i_lock);
  208. ret = nfs_wait_on_request(req);
  209. nfs_release_request(req);
  210. if (ret != 0)
  211. return ERR_PTR(ret);
  212. spin_lock(&inode->i_lock);
  213. }
  214. spin_unlock(&inode->i_lock);
  215. return req;
  216. }
  217. /*
  218. * Find an associated nfs write request, and prepare to flush it out
  219. * May return an error if the user signalled nfs_wait_on_request().
  220. */
  221. static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
  222. struct page *page)
  223. {
  224. struct nfs_page *req;
  225. int ret = 0;
  226. req = nfs_find_and_lock_request(page);
  227. if (!req)
  228. goto out;
  229. ret = PTR_ERR(req);
  230. if (IS_ERR(req))
  231. goto out;
  232. ret = nfs_set_page_writeback(page);
  233. BUG_ON(ret != 0);
  234. BUG_ON(test_bit(PG_CLEAN, &req->wb_flags));
  235. if (!nfs_pageio_add_request(pgio, req)) {
  236. nfs_redirty_request(req);
  237. ret = pgio->pg_error;
  238. }
  239. out:
  240. return ret;
  241. }
  242. static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
  243. {
  244. struct inode *inode = page->mapping->host;
  245. nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
  246. nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
  247. nfs_pageio_cond_complete(pgio, page->index);
  248. return nfs_page_async_flush(pgio, page);
  249. }
  250. /*
  251. * Write an mmapped page to the server.
  252. */
  253. static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
  254. {
  255. struct nfs_pageio_descriptor pgio;
  256. int err;
  257. nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
  258. err = nfs_do_writepage(page, wbc, &pgio);
  259. nfs_pageio_complete(&pgio);
  260. if (err < 0)
  261. return err;
  262. if (pgio.pg_error < 0)
  263. return pgio.pg_error;
  264. return 0;
  265. }
  266. int nfs_writepage(struct page *page, struct writeback_control *wbc)
  267. {
  268. int ret;
  269. ret = nfs_writepage_locked(page, wbc);
  270. unlock_page(page);
  271. return ret;
  272. }
  273. static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
  274. {
  275. int ret;
  276. ret = nfs_do_writepage(page, wbc, data);
  277. unlock_page(page);
  278. return ret;
  279. }
  280. int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
  281. {
  282. struct inode *inode = mapping->host;
  283. unsigned long *bitlock = &NFS_I(inode)->flags;
  284. struct nfs_pageio_descriptor pgio;
  285. int err;
  286. /* Stop dirtying of new pages while we sync */
  287. err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
  288. nfs_wait_bit_killable, TASK_KILLABLE);
  289. if (err)
  290. goto out_err;
  291. nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
  292. nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
  293. err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
  294. nfs_pageio_complete(&pgio);
  295. clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
  296. smp_mb__after_clear_bit();
  297. wake_up_bit(bitlock, NFS_INO_FLUSHING);
  298. if (err < 0)
  299. goto out_err;
  300. err = pgio.pg_error;
  301. if (err < 0)
  302. goto out_err;
  303. return 0;
  304. out_err:
  305. return err;
  306. }
  307. /*
  308. * Insert a write request into an inode
  309. */
  310. static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
  311. {
  312. struct nfs_inode *nfsi = NFS_I(inode);
  313. int error;
  314. error = radix_tree_preload(GFP_NOFS);
  315. if (error != 0)
  316. goto out;
  317. /* Lock the request! */
  318. nfs_lock_request_dontget(req);
  319. spin_lock(&inode->i_lock);
  320. error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
  321. BUG_ON(error);
  322. if (!nfsi->npages) {
  323. igrab(inode);
  324. if (nfs_have_delegation(inode, FMODE_WRITE))
  325. nfsi->change_attr++;
  326. }
  327. SetPagePrivate(req->wb_page);
  328. set_page_private(req->wb_page, (unsigned long)req);
  329. nfsi->npages++;
  330. kref_get(&req->wb_kref);
  331. radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
  332. NFS_PAGE_TAG_LOCKED);
  333. spin_unlock(&inode->i_lock);
  334. radix_tree_preload_end();
  335. out:
  336. return error;
  337. }
  338. /*
  339. * Remove a write request from an inode
  340. */
  341. static void nfs_inode_remove_request(struct nfs_page *req)
  342. {
  343. struct inode *inode = req->wb_context->path.dentry->d_inode;
  344. struct nfs_inode *nfsi = NFS_I(inode);
  345. BUG_ON (!NFS_WBACK_BUSY(req));
  346. spin_lock(&inode->i_lock);
  347. set_page_private(req->wb_page, 0);
  348. ClearPagePrivate(req->wb_page);
  349. radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
  350. nfsi->npages--;
  351. if (!nfsi->npages) {
  352. spin_unlock(&inode->i_lock);
  353. iput(inode);
  354. } else
  355. spin_unlock(&inode->i_lock);
  356. nfs_clear_request(req);
  357. nfs_release_request(req);
  358. }
  359. static void
  360. nfs_mark_request_dirty(struct nfs_page *req)
  361. {
  362. __set_page_dirty_nobuffers(req->wb_page);
  363. }
  364. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  365. /*
  366. * Add a request to the inode's commit list.
  367. */
  368. static void
  369. nfs_mark_request_commit(struct nfs_page *req)
  370. {
  371. struct inode *inode = req->wb_context->path.dentry->d_inode;
  372. struct nfs_inode *nfsi = NFS_I(inode);
  373. spin_lock(&inode->i_lock);
  374. set_bit(PG_CLEAN, &(req)->wb_flags);
  375. radix_tree_tag_set(&nfsi->nfs_page_tree,
  376. req->wb_index,
  377. NFS_PAGE_TAG_COMMIT);
  378. spin_unlock(&inode->i_lock);
  379. inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
  380. inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
  381. __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
  382. }
  383. static int
  384. nfs_clear_request_commit(struct nfs_page *req)
  385. {
  386. struct page *page = req->wb_page;
  387. if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) {
  388. dec_zone_page_state(page, NR_UNSTABLE_NFS);
  389. dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
  390. return 1;
  391. }
  392. return 0;
  393. }
  394. static inline
  395. int nfs_write_need_commit(struct nfs_write_data *data)
  396. {
  397. return data->verf.committed != NFS_FILE_SYNC;
  398. }
  399. static inline
  400. int nfs_reschedule_unstable_write(struct nfs_page *req)
  401. {
  402. if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
  403. nfs_mark_request_commit(req);
  404. return 1;
  405. }
  406. if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
  407. nfs_mark_request_dirty(req);
  408. return 1;
  409. }
  410. return 0;
  411. }
  412. #else
  413. static inline void
  414. nfs_mark_request_commit(struct nfs_page *req)
  415. {
  416. }
  417. static inline int
  418. nfs_clear_request_commit(struct nfs_page *req)
  419. {
  420. return 0;
  421. }
  422. static inline
  423. int nfs_write_need_commit(struct nfs_write_data *data)
  424. {
  425. return 0;
  426. }
  427. static inline
  428. int nfs_reschedule_unstable_write(struct nfs_page *req)
  429. {
  430. return 0;
  431. }
  432. #endif
  433. /*
  434. * Wait for a request to complete.
  435. *
  436. * Interruptible by fatal signals only.
  437. */
  438. static int nfs_wait_on_requests_locked(struct inode *inode, pgoff_t idx_start, unsigned int npages)
  439. {
  440. struct nfs_inode *nfsi = NFS_I(inode);
  441. struct nfs_page *req;
  442. pgoff_t idx_end, next;
  443. unsigned int res = 0;
  444. int error;
  445. if (npages == 0)
  446. idx_end = ~0;
  447. else
  448. idx_end = idx_start + npages - 1;
  449. next = idx_start;
  450. while (radix_tree_gang_lookup_tag(&nfsi->nfs_page_tree, (void **)&req, next, 1, NFS_PAGE_TAG_LOCKED)) {
  451. if (req->wb_index > idx_end)
  452. break;
  453. next = req->wb_index + 1;
  454. BUG_ON(!NFS_WBACK_BUSY(req));
  455. kref_get(&req->wb_kref);
  456. spin_unlock(&inode->i_lock);
  457. error = nfs_wait_on_request(req);
  458. nfs_release_request(req);
  459. spin_lock(&inode->i_lock);
  460. if (error < 0)
  461. return error;
  462. res++;
  463. }
  464. return res;
  465. }
  466. static void nfs_cancel_commit_list(struct list_head *head)
  467. {
  468. struct nfs_page *req;
  469. while(!list_empty(head)) {
  470. req = nfs_list_entry(head->next);
  471. nfs_list_remove_request(req);
  472. nfs_clear_request_commit(req);
  473. nfs_inode_remove_request(req);
  474. nfs_unlock_request(req);
  475. }
  476. }
  477. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  478. static int
  479. nfs_need_commit(struct nfs_inode *nfsi)
  480. {
  481. return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT);
  482. }
  483. /*
  484. * nfs_scan_commit - Scan an inode for commit requests
  485. * @inode: NFS inode to scan
  486. * @dst: destination list
  487. * @idx_start: lower bound of page->index to scan.
  488. * @npages: idx_start + npages sets the upper bound to scan.
  489. *
  490. * Moves requests from the inode's 'commit' request list.
  491. * The requests are *not* checked to ensure that they form a contiguous set.
  492. */
  493. static int
  494. nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
  495. {
  496. struct nfs_inode *nfsi = NFS_I(inode);
  497. if (!nfs_need_commit(nfsi))
  498. return 0;
  499. return nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT);
  500. }
  501. #else
  502. static inline int nfs_need_commit(struct nfs_inode *nfsi)
  503. {
  504. return 0;
  505. }
  506. static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
  507. {
  508. return 0;
  509. }
  510. #endif
  511. /*
  512. * Search for an existing write request, and attempt to update
  513. * it to reflect a new dirty region on a given page.
  514. *
  515. * If the attempt fails, then the existing request is flushed out
  516. * to disk.
  517. */
  518. static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
  519. struct page *page,
  520. unsigned int offset,
  521. unsigned int bytes)
  522. {
  523. struct nfs_page *req;
  524. unsigned int rqend;
  525. unsigned int end;
  526. int error;
  527. if (!PagePrivate(page))
  528. return NULL;
  529. end = offset + bytes;
  530. spin_lock(&inode->i_lock);
  531. for (;;) {
  532. req = nfs_page_find_request_locked(page);
  533. if (req == NULL)
  534. goto out_unlock;
  535. rqend = req->wb_offset + req->wb_bytes;
  536. /*
  537. * Tell the caller to flush out the request if
  538. * the offsets are non-contiguous.
  539. * Note: nfs_flush_incompatible() will already
  540. * have flushed out requests having wrong owners.
  541. */
  542. if (offset > rqend
  543. || end < req->wb_offset)
  544. goto out_flushme;
  545. if (nfs_set_page_tag_locked(req))
  546. break;
  547. /* The request is locked, so wait and then retry */
  548. spin_unlock(&inode->i_lock);
  549. error = nfs_wait_on_request(req);
  550. nfs_release_request(req);
  551. if (error != 0)
  552. goto out_err;
  553. spin_lock(&inode->i_lock);
  554. }
  555. if (nfs_clear_request_commit(req))
  556. radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree,
  557. req->wb_index, NFS_PAGE_TAG_COMMIT);
  558. /* Okay, the request matches. Update the region */
  559. if (offset < req->wb_offset) {
  560. req->wb_offset = offset;
  561. req->wb_pgbase = offset;
  562. }
  563. if (end > rqend)
  564. req->wb_bytes = end - req->wb_offset;
  565. else
  566. req->wb_bytes = rqend - req->wb_offset;
  567. out_unlock:
  568. spin_unlock(&inode->i_lock);
  569. return req;
  570. out_flushme:
  571. spin_unlock(&inode->i_lock);
  572. nfs_release_request(req);
  573. error = nfs_wb_page(inode, page);
  574. out_err:
  575. return ERR_PTR(error);
  576. }
  577. /*
  578. * Try to update an existing write request, or create one if there is none.
  579. *
  580. * Note: Should always be called with the Page Lock held to prevent races
  581. * if we have to add a new request. Also assumes that the caller has
  582. * already called nfs_flush_incompatible() if necessary.
  583. */
  584. static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
  585. struct page *page, unsigned int offset, unsigned int bytes)
  586. {
  587. struct inode *inode = page->mapping->host;
  588. struct nfs_page *req;
  589. int error;
  590. req = nfs_try_to_update_request(inode, page, offset, bytes);
  591. if (req != NULL)
  592. goto out;
  593. req = nfs_create_request(ctx, inode, page, offset, bytes);
  594. if (IS_ERR(req))
  595. goto out;
  596. error = nfs_inode_add_request(inode, req);
  597. if (error != 0) {
  598. nfs_release_request(req);
  599. req = ERR_PTR(error);
  600. }
  601. out:
  602. return req;
  603. }
  604. static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
  605. unsigned int offset, unsigned int count)
  606. {
  607. struct nfs_page *req;
  608. req = nfs_setup_write_request(ctx, page, offset, count);
  609. if (IS_ERR(req))
  610. return PTR_ERR(req);
  611. /* Update file length */
  612. nfs_grow_file(page, offset, count);
  613. nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
  614. nfs_clear_page_tag_locked(req);
  615. return 0;
  616. }
  617. int nfs_flush_incompatible(struct file *file, struct page *page)
  618. {
  619. struct nfs_open_context *ctx = nfs_file_open_context(file);
  620. struct nfs_page *req;
  621. int do_flush, status;
  622. /*
  623. * Look for a request corresponding to this page. If there
  624. * is one, and it belongs to another file, we flush it out
  625. * before we try to copy anything into the page. Do this
  626. * due to the lack of an ACCESS-type call in NFSv2.
  627. * Also do the same if we find a request from an existing
  628. * dropped page.
  629. */
  630. do {
  631. req = nfs_page_find_request(page);
  632. if (req == NULL)
  633. return 0;
  634. do_flush = req->wb_page != page || req->wb_context != ctx;
  635. nfs_release_request(req);
  636. if (!do_flush)
  637. return 0;
  638. status = nfs_wb_page(page->mapping->host, page);
  639. } while (status == 0);
  640. return status;
  641. }
  642. /*
  643. * If the page cache is marked as unsafe or invalid, then we can't rely on
  644. * the PageUptodate() flag. In this case, we will need to turn off
  645. * write optimisations that depend on the page contents being correct.
  646. */
  647. static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
  648. {
  649. return PageUptodate(page) &&
  650. !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
  651. }
  652. /*
  653. * Update and possibly write a cached page of an NFS file.
  654. *
  655. * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
  656. * things with a page scheduled for an RPC call (e.g. invalidate it).
  657. */
  658. int nfs_updatepage(struct file *file, struct page *page,
  659. unsigned int offset, unsigned int count)
  660. {
  661. struct nfs_open_context *ctx = nfs_file_open_context(file);
  662. struct inode *inode = page->mapping->host;
  663. int status = 0;
  664. nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
  665. dprintk("NFS: nfs_updatepage(%s/%s %d@%lld)\n",
  666. file->f_path.dentry->d_parent->d_name.name,
  667. file->f_path.dentry->d_name.name, count,
  668. (long long)(page_offset(page) + offset));
  669. /* If we're not using byte range locks, and we know the page
  670. * is up to date, it may be more efficient to extend the write
  671. * to cover the entire page in order to avoid fragmentation
  672. * inefficiencies.
  673. */
  674. if (nfs_write_pageuptodate(page, inode) &&
  675. inode->i_flock == NULL &&
  676. !(file->f_flags & O_SYNC)) {
  677. count = max(count + offset, nfs_page_length(page));
  678. offset = 0;
  679. }
  680. status = nfs_writepage_setup(ctx, page, offset, count);
  681. if (status < 0)
  682. nfs_set_pageerror(page);
  683. else
  684. __set_page_dirty_nobuffers(page);
  685. dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n",
  686. status, (long long)i_size_read(inode));
  687. return status;
  688. }
  689. static void nfs_writepage_release(struct nfs_page *req)
  690. {
  691. if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req)) {
  692. nfs_end_page_writeback(req->wb_page);
  693. nfs_inode_remove_request(req);
  694. } else
  695. nfs_end_page_writeback(req->wb_page);
  696. nfs_clear_page_tag_locked(req);
  697. }
  698. static int flush_task_priority(int how)
  699. {
  700. switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
  701. case FLUSH_HIGHPRI:
  702. return RPC_PRIORITY_HIGH;
  703. case FLUSH_LOWPRI:
  704. return RPC_PRIORITY_LOW;
  705. }
  706. return RPC_PRIORITY_NORMAL;
  707. }
  708. /*
  709. * Set up the argument/result storage required for the RPC call.
  710. */
  711. static int nfs_write_rpcsetup(struct nfs_page *req,
  712. struct nfs_write_data *data,
  713. const struct rpc_call_ops *call_ops,
  714. unsigned int count, unsigned int offset,
  715. int how)
  716. {
  717. struct inode *inode = req->wb_context->path.dentry->d_inode;
  718. int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
  719. int priority = flush_task_priority(how);
  720. struct rpc_task *task;
  721. struct rpc_message msg = {
  722. .rpc_argp = &data->args,
  723. .rpc_resp = &data->res,
  724. .rpc_cred = req->wb_context->cred,
  725. };
  726. struct rpc_task_setup task_setup_data = {
  727. .rpc_client = NFS_CLIENT(inode),
  728. .task = &data->task,
  729. .rpc_message = &msg,
  730. .callback_ops = call_ops,
  731. .callback_data = data,
  732. .workqueue = nfsiod_workqueue,
  733. .flags = flags,
  734. .priority = priority,
  735. };
  736. /* Set up the RPC argument and reply structs
  737. * NB: take care not to mess about with data->commit et al. */
  738. data->req = req;
  739. data->inode = inode = req->wb_context->path.dentry->d_inode;
  740. data->cred = msg.rpc_cred;
  741. data->args.fh = NFS_FH(inode);
  742. data->args.offset = req_offset(req) + offset;
  743. data->args.pgbase = req->wb_pgbase + offset;
  744. data->args.pages = data->pagevec;
  745. data->args.count = count;
  746. data->args.context = get_nfs_open_context(req->wb_context);
  747. data->args.stable = NFS_UNSTABLE;
  748. if (how & FLUSH_STABLE) {
  749. data->args.stable = NFS_DATA_SYNC;
  750. if (!nfs_need_commit(NFS_I(inode)))
  751. data->args.stable = NFS_FILE_SYNC;
  752. }
  753. data->res.fattr = &data->fattr;
  754. data->res.count = count;
  755. data->res.verf = &data->verf;
  756. nfs_fattr_init(&data->fattr);
  757. /* Set up the initial task struct. */
  758. NFS_PROTO(inode)->write_setup(data, &msg);
  759. dprintk("NFS: %5u initiated write call "
  760. "(req %s/%lld, %u bytes @ offset %llu)\n",
  761. data->task.tk_pid,
  762. inode->i_sb->s_id,
  763. (long long)NFS_FILEID(inode),
  764. count,
  765. (unsigned long long)data->args.offset);
  766. task = rpc_run_task(&task_setup_data);
  767. if (IS_ERR(task))
  768. return PTR_ERR(task);
  769. rpc_put_task(task);
  770. return 0;
  771. }
  772. /* If a nfs_flush_* function fails, it should remove reqs from @head and
  773. * call this on each, which will prepare them to be retried on next
  774. * writeback using standard nfs.
  775. */
  776. static void nfs_redirty_request(struct nfs_page *req)
  777. {
  778. nfs_mark_request_dirty(req);
  779. nfs_end_page_writeback(req->wb_page);
  780. nfs_clear_page_tag_locked(req);
  781. }
  782. /*
  783. * Generate multiple small requests to write out a single
  784. * contiguous dirty area on one page.
  785. */
  786. static int nfs_flush_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
  787. {
  788. struct nfs_page *req = nfs_list_entry(head->next);
  789. struct page *page = req->wb_page;
  790. struct nfs_write_data *data;
  791. size_t wsize = NFS_SERVER(inode)->wsize, nbytes;
  792. unsigned int offset;
  793. int requests = 0;
  794. int ret = 0;
  795. LIST_HEAD(list);
  796. nfs_list_remove_request(req);
  797. nbytes = count;
  798. do {
  799. size_t len = min(nbytes, wsize);
  800. data = nfs_writedata_alloc(1);
  801. if (!data)
  802. goto out_bad;
  803. list_add(&data->pages, &list);
  804. requests++;
  805. nbytes -= len;
  806. } while (nbytes != 0);
  807. atomic_set(&req->wb_complete, requests);
  808. ClearPageError(page);
  809. offset = 0;
  810. nbytes = count;
  811. do {
  812. int ret2;
  813. data = list_entry(list.next, struct nfs_write_data, pages);
  814. list_del_init(&data->pages);
  815. data->pagevec[0] = page;
  816. if (nbytes < wsize)
  817. wsize = nbytes;
  818. ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
  819. wsize, offset, how);
  820. if (ret == 0)
  821. ret = ret2;
  822. offset += wsize;
  823. nbytes -= wsize;
  824. } while (nbytes != 0);
  825. return ret;
  826. out_bad:
  827. while (!list_empty(&list)) {
  828. data = list_entry(list.next, struct nfs_write_data, pages);
  829. list_del(&data->pages);
  830. nfs_writedata_release(data);
  831. }
  832. nfs_redirty_request(req);
  833. return -ENOMEM;
  834. }
  835. /*
  836. * Create an RPC task for the given write request and kick it.
  837. * The page must have been locked by the caller.
  838. *
  839. * It may happen that the page we're passed is not marked dirty.
  840. * This is the case if nfs_updatepage detects a conflicting request
  841. * that has been written but not committed.
  842. */
  843. static int nfs_flush_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
  844. {
  845. struct nfs_page *req;
  846. struct page **pages;
  847. struct nfs_write_data *data;
  848. data = nfs_writedata_alloc(npages);
  849. if (!data)
  850. goto out_bad;
  851. pages = data->pagevec;
  852. while (!list_empty(head)) {
  853. req = nfs_list_entry(head->next);
  854. nfs_list_remove_request(req);
  855. nfs_list_add_request(req, &data->pages);
  856. ClearPageError(req->wb_page);
  857. *pages++ = req->wb_page;
  858. }
  859. req = nfs_list_entry(data->pages.next);
  860. /* Set up the argument struct */
  861. return nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how);
  862. out_bad:
  863. while (!list_empty(head)) {
  864. req = nfs_list_entry(head->next);
  865. nfs_list_remove_request(req);
  866. nfs_redirty_request(req);
  867. }
  868. return -ENOMEM;
  869. }
  870. static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
  871. struct inode *inode, int ioflags)
  872. {
  873. size_t wsize = NFS_SERVER(inode)->wsize;
  874. if (wsize < PAGE_CACHE_SIZE)
  875. nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags);
  876. else
  877. nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags);
  878. }
  879. /*
  880. * Handle a write reply that flushed part of a page.
  881. */
  882. static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
  883. {
  884. struct nfs_write_data *data = calldata;
  885. dprintk("NFS: %5u write(%s/%lld %d@%lld)",
  886. task->tk_pid,
  887. data->req->wb_context->path.dentry->d_inode->i_sb->s_id,
  888. (long long)
  889. NFS_FILEID(data->req->wb_context->path.dentry->d_inode),
  890. data->req->wb_bytes, (long long)req_offset(data->req));
  891. nfs_writeback_done(task, data);
  892. }
  893. static void nfs_writeback_release_partial(void *calldata)
  894. {
  895. struct nfs_write_data *data = calldata;
  896. struct nfs_page *req = data->req;
  897. struct page *page = req->wb_page;
  898. int status = data->task.tk_status;
  899. if (status < 0) {
  900. nfs_set_pageerror(page);
  901. nfs_context_set_write_error(req->wb_context, status);
  902. dprintk(", error = %d\n", status);
  903. goto out;
  904. }
  905. if (nfs_write_need_commit(data)) {
  906. struct inode *inode = page->mapping->host;
  907. spin_lock(&inode->i_lock);
  908. if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
  909. /* Do nothing we need to resend the writes */
  910. } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
  911. memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
  912. dprintk(" defer commit\n");
  913. } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
  914. set_bit(PG_NEED_RESCHED, &req->wb_flags);
  915. clear_bit(PG_NEED_COMMIT, &req->wb_flags);
  916. dprintk(" server reboot detected\n");
  917. }
  918. spin_unlock(&inode->i_lock);
  919. } else
  920. dprintk(" OK\n");
  921. out:
  922. if (atomic_dec_and_test(&req->wb_complete))
  923. nfs_writepage_release(req);
  924. nfs_writedata_release(calldata);
  925. }
  926. #if defined(CONFIG_NFS_V4_1)
  927. void nfs_write_prepare(struct rpc_task *task, void *calldata)
  928. {
  929. struct nfs_write_data *data = calldata;
  930. struct nfs_client *clp = (NFS_SERVER(data->inode))->nfs_client;
  931. if (nfs4_setup_sequence(clp, &data->args.seq_args,
  932. &data->res.seq_res, 1, task))
  933. return;
  934. rpc_call_start(task);
  935. }
  936. #endif /* CONFIG_NFS_V4_1 */
  937. static const struct rpc_call_ops nfs_write_partial_ops = {
  938. #if defined(CONFIG_NFS_V4_1)
  939. .rpc_call_prepare = nfs_write_prepare,
  940. #endif /* CONFIG_NFS_V4_1 */
  941. .rpc_call_done = nfs_writeback_done_partial,
  942. .rpc_release = nfs_writeback_release_partial,
  943. };
  944. /*
  945. * Handle a write reply that flushes a whole page.
  946. *
  947. * FIXME: There is an inherent race with invalidate_inode_pages and
  948. * writebacks since the page->count is kept > 1 for as long
  949. * as the page has a write request pending.
  950. */
  951. static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
  952. {
  953. struct nfs_write_data *data = calldata;
  954. nfs_writeback_done(task, data);
  955. }
  956. static void nfs_writeback_release_full(void *calldata)
  957. {
  958. struct nfs_write_data *data = calldata;
  959. int status = data->task.tk_status;
  960. /* Update attributes as result of writeback. */
  961. while (!list_empty(&data->pages)) {
  962. struct nfs_page *req = nfs_list_entry(data->pages.next);
  963. struct page *page = req->wb_page;
  964. nfs_list_remove_request(req);
  965. dprintk("NFS: %5u write (%s/%lld %d@%lld)",
  966. data->task.tk_pid,
  967. req->wb_context->path.dentry->d_inode->i_sb->s_id,
  968. (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
  969. req->wb_bytes,
  970. (long long)req_offset(req));
  971. if (status < 0) {
  972. nfs_set_pageerror(page);
  973. nfs_context_set_write_error(req->wb_context, status);
  974. dprintk(", error = %d\n", status);
  975. goto remove_request;
  976. }
  977. if (nfs_write_need_commit(data)) {
  978. memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
  979. nfs_mark_request_commit(req);
  980. nfs_end_page_writeback(page);
  981. dprintk(" marked for commit\n");
  982. goto next;
  983. }
  984. dprintk(" OK\n");
  985. remove_request:
  986. nfs_end_page_writeback(page);
  987. nfs_inode_remove_request(req);
  988. next:
  989. nfs_clear_page_tag_locked(req);
  990. }
  991. nfs_writedata_release(calldata);
  992. }
  993. static const struct rpc_call_ops nfs_write_full_ops = {
  994. #if defined(CONFIG_NFS_V4_1)
  995. .rpc_call_prepare = nfs_write_prepare,
  996. #endif /* CONFIG_NFS_V4_1 */
  997. .rpc_call_done = nfs_writeback_done_full,
  998. .rpc_release = nfs_writeback_release_full,
  999. };
  1000. /*
  1001. * This function is called when the WRITE call is complete.
  1002. */
  1003. int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
  1004. {
  1005. struct nfs_writeargs *argp = &data->args;
  1006. struct nfs_writeres *resp = &data->res;
  1007. struct nfs_server *server = NFS_SERVER(data->inode);
  1008. int status;
  1009. dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
  1010. task->tk_pid, task->tk_status);
  1011. /*
  1012. * ->write_done will attempt to use post-op attributes to detect
  1013. * conflicting writes by other clients. A strict interpretation
  1014. * of close-to-open would allow us to continue caching even if
  1015. * another writer had changed the file, but some applications
  1016. * depend on tighter cache coherency when writing.
  1017. */
  1018. status = NFS_PROTO(data->inode)->write_done(task, data);
  1019. if (status != 0)
  1020. return status;
  1021. nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
  1022. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  1023. if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
  1024. /* We tried a write call, but the server did not
  1025. * commit data to stable storage even though we
  1026. * requested it.
  1027. * Note: There is a known bug in Tru64 < 5.0 in which
  1028. * the server reports NFS_DATA_SYNC, but performs
  1029. * NFS_FILE_SYNC. We therefore implement this checking
  1030. * as a dprintk() in order to avoid filling syslog.
  1031. */
  1032. static unsigned long complain;
  1033. if (time_before(complain, jiffies)) {
  1034. dprintk("NFS: faulty NFS server %s:"
  1035. " (committed = %d) != (stable = %d)\n",
  1036. server->nfs_client->cl_hostname,
  1037. resp->verf->committed, argp->stable);
  1038. complain = jiffies + 300 * HZ;
  1039. }
  1040. }
  1041. #endif
  1042. /* Is this a short write? */
  1043. if (task->tk_status >= 0 && resp->count < argp->count) {
  1044. static unsigned long complain;
  1045. nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
  1046. /* Has the server at least made some progress? */
  1047. if (resp->count != 0) {
  1048. /* Was this an NFSv2 write or an NFSv3 stable write? */
  1049. if (resp->verf->committed != NFS_UNSTABLE) {
  1050. /* Resend from where the server left off */
  1051. argp->offset += resp->count;
  1052. argp->pgbase += resp->count;
  1053. argp->count -= resp->count;
  1054. } else {
  1055. /* Resend as a stable write in order to avoid
  1056. * headaches in the case of a server crash.
  1057. */
  1058. argp->stable = NFS_FILE_SYNC;
  1059. }
  1060. nfs4_restart_rpc(task, server->nfs_client);
  1061. return -EAGAIN;
  1062. }
  1063. if (time_before(complain, jiffies)) {
  1064. printk(KERN_WARNING
  1065. "NFS: Server wrote zero bytes, expected %u.\n",
  1066. argp->count);
  1067. complain = jiffies + 300 * HZ;
  1068. }
  1069. /* Can't do anything about it except throw an error. */
  1070. task->tk_status = -EIO;
  1071. }
  1072. nfs4_sequence_free_slot(server->nfs_client, &data->res.seq_res);
  1073. return 0;
  1074. }
  1075. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  1076. void nfs_commitdata_release(void *data)
  1077. {
  1078. struct nfs_write_data *wdata = data;
  1079. put_nfs_open_context(wdata->args.context);
  1080. nfs_commit_free(wdata);
  1081. }
  1082. /*
  1083. * Set up the argument/result storage required for the RPC call.
  1084. */
  1085. static int nfs_commit_rpcsetup(struct list_head *head,
  1086. struct nfs_write_data *data,
  1087. int how)
  1088. {
  1089. struct nfs_page *first = nfs_list_entry(head->next);
  1090. struct inode *inode = first->wb_context->path.dentry->d_inode;
  1091. int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
  1092. int priority = flush_task_priority(how);
  1093. struct rpc_task *task;
  1094. struct rpc_message msg = {
  1095. .rpc_argp = &data->args,
  1096. .rpc_resp = &data->res,
  1097. .rpc_cred = first->wb_context->cred,
  1098. };
  1099. struct rpc_task_setup task_setup_data = {
  1100. .task = &data->task,
  1101. .rpc_client = NFS_CLIENT(inode),
  1102. .rpc_message = &msg,
  1103. .callback_ops = &nfs_commit_ops,
  1104. .callback_data = data,
  1105. .workqueue = nfsiod_workqueue,
  1106. .flags = flags,
  1107. .priority = priority,
  1108. };
  1109. /* Set up the RPC argument and reply structs
  1110. * NB: take care not to mess about with data->commit et al. */
  1111. list_splice_init(head, &data->pages);
  1112. data->inode = inode;
  1113. data->cred = msg.rpc_cred;
  1114. data->args.fh = NFS_FH(data->inode);
  1115. /* Note: we always request a commit of the entire inode */
  1116. data->args.offset = 0;
  1117. data->args.count = 0;
  1118. data->args.context = get_nfs_open_context(first->wb_context);
  1119. data->res.count = 0;
  1120. data->res.fattr = &data->fattr;
  1121. data->res.verf = &data->verf;
  1122. nfs_fattr_init(&data->fattr);
  1123. /* Set up the initial task struct. */
  1124. NFS_PROTO(inode)->commit_setup(data, &msg);
  1125. dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
  1126. task = rpc_run_task(&task_setup_data);
  1127. if (IS_ERR(task))
  1128. return PTR_ERR(task);
  1129. rpc_put_task(task);
  1130. return 0;
  1131. }
  1132. /*
  1133. * Commit dirty pages
  1134. */
  1135. static int
  1136. nfs_commit_list(struct inode *inode, struct list_head *head, int how)
  1137. {
  1138. struct nfs_write_data *data;
  1139. struct nfs_page *req;
  1140. data = nfs_commitdata_alloc();
  1141. if (!data)
  1142. goto out_bad;
  1143. /* Set up the argument struct */
  1144. return nfs_commit_rpcsetup(head, data, how);
  1145. out_bad:
  1146. while (!list_empty(head)) {
  1147. req = nfs_list_entry(head->next);
  1148. nfs_list_remove_request(req);
  1149. nfs_mark_request_commit(req);
  1150. dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
  1151. dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
  1152. BDI_RECLAIMABLE);
  1153. nfs_clear_page_tag_locked(req);
  1154. }
  1155. return -ENOMEM;
  1156. }
  1157. /*
  1158. * COMMIT call returned
  1159. */
  1160. static void nfs_commit_done(struct rpc_task *task, void *calldata)
  1161. {
  1162. struct nfs_write_data *data = calldata;
  1163. dprintk("NFS: %5u nfs_commit_done (status %d)\n",
  1164. task->tk_pid, task->tk_status);
  1165. /* Call the NFS version-specific code */
  1166. if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
  1167. return;
  1168. }
  1169. static void nfs_commit_release(void *calldata)
  1170. {
  1171. struct nfs_write_data *data = calldata;
  1172. struct nfs_page *req;
  1173. int status = data->task.tk_status;
  1174. while (!list_empty(&data->pages)) {
  1175. req = nfs_list_entry(data->pages.next);
  1176. nfs_list_remove_request(req);
  1177. nfs_clear_request_commit(req);
  1178. dprintk("NFS: commit (%s/%lld %d@%lld)",
  1179. req->wb_context->path.dentry->d_inode->i_sb->s_id,
  1180. (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
  1181. req->wb_bytes,
  1182. (long long)req_offset(req));
  1183. if (status < 0) {
  1184. nfs_context_set_write_error(req->wb_context, status);
  1185. nfs_inode_remove_request(req);
  1186. dprintk(", error = %d\n", status);
  1187. goto next;
  1188. }
  1189. /* Okay, COMMIT succeeded, apparently. Check the verifier
  1190. * returned by the server against all stored verfs. */
  1191. if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
  1192. /* We have a match */
  1193. nfs_inode_remove_request(req);
  1194. dprintk(" OK\n");
  1195. goto next;
  1196. }
  1197. /* We have a mismatch. Write the page again */
  1198. dprintk(" mismatch\n");
  1199. nfs_mark_request_dirty(req);
  1200. next:
  1201. nfs_clear_page_tag_locked(req);
  1202. }
  1203. nfs_commitdata_release(calldata);
  1204. }
  1205. static const struct rpc_call_ops nfs_commit_ops = {
  1206. #if defined(CONFIG_NFS_V4_1)
  1207. .rpc_call_prepare = nfs_write_prepare,
  1208. #endif /* CONFIG_NFS_V4_1 */
  1209. .rpc_call_done = nfs_commit_done,
  1210. .rpc_release = nfs_commit_release,
  1211. };
  1212. int nfs_commit_inode(struct inode *inode, int how)
  1213. {
  1214. LIST_HEAD(head);
  1215. int res;
  1216. spin_lock(&inode->i_lock);
  1217. res = nfs_scan_commit(inode, &head, 0, 0);
  1218. spin_unlock(&inode->i_lock);
  1219. if (res) {
  1220. int error = nfs_commit_list(inode, &head, how);
  1221. if (error < 0)
  1222. return error;
  1223. }
  1224. return res;
  1225. }
  1226. #else
  1227. static inline int nfs_commit_list(struct inode *inode, struct list_head *head, int how)
  1228. {
  1229. return 0;
  1230. }
  1231. #endif
  1232. long nfs_sync_mapping_wait(struct address_space *mapping, struct writeback_control *wbc, int how)
  1233. {
  1234. struct inode *inode = mapping->host;
  1235. pgoff_t idx_start, idx_end;
  1236. unsigned int npages = 0;
  1237. LIST_HEAD(head);
  1238. int nocommit = how & FLUSH_NOCOMMIT;
  1239. long pages, ret;
  1240. /* FIXME */
  1241. if (wbc->range_cyclic)
  1242. idx_start = 0;
  1243. else {
  1244. idx_start = wbc->range_start >> PAGE_CACHE_SHIFT;
  1245. idx_end = wbc->range_end >> PAGE_CACHE_SHIFT;
  1246. if (idx_end > idx_start) {
  1247. pgoff_t l_npages = 1 + idx_end - idx_start;
  1248. npages = l_npages;
  1249. if (sizeof(npages) != sizeof(l_npages) &&
  1250. (pgoff_t)npages != l_npages)
  1251. npages = 0;
  1252. }
  1253. }
  1254. how &= ~FLUSH_NOCOMMIT;
  1255. spin_lock(&inode->i_lock);
  1256. do {
  1257. ret = nfs_wait_on_requests_locked(inode, idx_start, npages);
  1258. if (ret != 0)
  1259. continue;
  1260. if (nocommit)
  1261. break;
  1262. pages = nfs_scan_commit(inode, &head, idx_start, npages);
  1263. if (pages == 0)
  1264. break;
  1265. if (how & FLUSH_INVALIDATE) {
  1266. spin_unlock(&inode->i_lock);
  1267. nfs_cancel_commit_list(&head);
  1268. ret = pages;
  1269. spin_lock(&inode->i_lock);
  1270. continue;
  1271. }
  1272. pages += nfs_scan_commit(inode, &head, 0, 0);
  1273. spin_unlock(&inode->i_lock);
  1274. ret = nfs_commit_list(inode, &head, how);
  1275. spin_lock(&inode->i_lock);
  1276. } while (ret >= 0);
  1277. spin_unlock(&inode->i_lock);
  1278. return ret;
  1279. }
  1280. static int __nfs_write_mapping(struct address_space *mapping, struct writeback_control *wbc, int how)
  1281. {
  1282. int ret;
  1283. ret = nfs_writepages(mapping, wbc);
  1284. if (ret < 0)
  1285. goto out;
  1286. ret = nfs_sync_mapping_wait(mapping, wbc, how);
  1287. if (ret < 0)
  1288. goto out;
  1289. return 0;
  1290. out:
  1291. __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
  1292. return ret;
  1293. }
  1294. /* Two pass sync: first using WB_SYNC_NONE, then WB_SYNC_ALL */
  1295. static int nfs_write_mapping(struct address_space *mapping, int how)
  1296. {
  1297. struct writeback_control wbc = {
  1298. .bdi = mapping->backing_dev_info,
  1299. .sync_mode = WB_SYNC_ALL,
  1300. .nr_to_write = LONG_MAX,
  1301. .range_start = 0,
  1302. .range_end = LLONG_MAX,
  1303. .for_writepages = 1,
  1304. };
  1305. return __nfs_write_mapping(mapping, &wbc, how);
  1306. }
  1307. /*
  1308. * flush the inode to disk.
  1309. */
  1310. int nfs_wb_all(struct inode *inode)
  1311. {
  1312. return nfs_write_mapping(inode->i_mapping, 0);
  1313. }
  1314. int nfs_wb_nocommit(struct inode *inode)
  1315. {
  1316. return nfs_write_mapping(inode->i_mapping, FLUSH_NOCOMMIT);
  1317. }
  1318. int nfs_wb_page_cancel(struct inode *inode, struct page *page)
  1319. {
  1320. struct nfs_page *req;
  1321. loff_t range_start = page_offset(page);
  1322. loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
  1323. struct writeback_control wbc = {
  1324. .bdi = page->mapping->backing_dev_info,
  1325. .sync_mode = WB_SYNC_ALL,
  1326. .nr_to_write = LONG_MAX,
  1327. .range_start = range_start,
  1328. .range_end = range_end,
  1329. };
  1330. int ret = 0;
  1331. BUG_ON(!PageLocked(page));
  1332. for (;;) {
  1333. req = nfs_page_find_request(page);
  1334. if (req == NULL)
  1335. goto out;
  1336. if (test_bit(PG_CLEAN, &req->wb_flags)) {
  1337. nfs_release_request(req);
  1338. break;
  1339. }
  1340. if (nfs_lock_request_dontget(req)) {
  1341. nfs_inode_remove_request(req);
  1342. /*
  1343. * In case nfs_inode_remove_request has marked the
  1344. * page as being dirty
  1345. */
  1346. cancel_dirty_page(page, PAGE_CACHE_SIZE);
  1347. nfs_unlock_request(req);
  1348. break;
  1349. }
  1350. ret = nfs_wait_on_request(req);
  1351. if (ret < 0)
  1352. goto out;
  1353. }
  1354. if (!PagePrivate(page))
  1355. return 0;
  1356. ret = nfs_sync_mapping_wait(page->mapping, &wbc, FLUSH_INVALIDATE);
  1357. out:
  1358. return ret;
  1359. }
  1360. static int nfs_wb_page_priority(struct inode *inode, struct page *page,
  1361. int how)
  1362. {
  1363. loff_t range_start = page_offset(page);
  1364. loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
  1365. struct writeback_control wbc = {
  1366. .bdi = page->mapping->backing_dev_info,
  1367. .sync_mode = WB_SYNC_ALL,
  1368. .nr_to_write = LONG_MAX,
  1369. .range_start = range_start,
  1370. .range_end = range_end,
  1371. };
  1372. int ret;
  1373. do {
  1374. if (clear_page_dirty_for_io(page)) {
  1375. ret = nfs_writepage_locked(page, &wbc);
  1376. if (ret < 0)
  1377. goto out_error;
  1378. } else if (!PagePrivate(page))
  1379. break;
  1380. ret = nfs_sync_mapping_wait(page->mapping, &wbc, how);
  1381. if (ret < 0)
  1382. goto out_error;
  1383. } while (PagePrivate(page));
  1384. return 0;
  1385. out_error:
  1386. __mark_inode_dirty(inode, I_DIRTY_PAGES);
  1387. return ret;
  1388. }
  1389. /*
  1390. * Write back all requests on one page - we do this before reading it.
  1391. */
  1392. int nfs_wb_page(struct inode *inode, struct page* page)
  1393. {
  1394. return nfs_wb_page_priority(inode, page, FLUSH_STABLE);
  1395. }
  1396. #ifdef CONFIG_MIGRATION
  1397. int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
  1398. struct page *page)
  1399. {
  1400. struct nfs_page *req;
  1401. int ret;
  1402. if (PageFsCache(page))
  1403. nfs_fscache_release_page(page, GFP_KERNEL);
  1404. req = nfs_find_and_lock_request(page);
  1405. ret = PTR_ERR(req);
  1406. if (IS_ERR(req))
  1407. goto out;
  1408. ret = migrate_page(mapping, newpage, page);
  1409. if (!req)
  1410. goto out;
  1411. if (ret)
  1412. goto out_unlock;
  1413. page_cache_get(newpage);
  1414. req->wb_page = newpage;
  1415. SetPagePrivate(newpage);
  1416. set_page_private(newpage, page_private(page));
  1417. ClearPagePrivate(page);
  1418. set_page_private(page, 0);
  1419. page_cache_release(page);
  1420. out_unlock:
  1421. nfs_clear_page_tag_locked(req);
  1422. nfs_release_request(req);
  1423. out:
  1424. return ret;
  1425. }
  1426. #endif
  1427. int __init nfs_init_writepagecache(void)
  1428. {
  1429. nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
  1430. sizeof(struct nfs_write_data),
  1431. 0, SLAB_HWCACHE_ALIGN,
  1432. NULL);
  1433. if (nfs_wdata_cachep == NULL)
  1434. return -ENOMEM;
  1435. nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
  1436. nfs_wdata_cachep);
  1437. if (nfs_wdata_mempool == NULL)
  1438. return -ENOMEM;
  1439. nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
  1440. nfs_wdata_cachep);
  1441. if (nfs_commit_mempool == NULL)
  1442. return -ENOMEM;
  1443. /*
  1444. * NFS congestion size, scale with available memory.
  1445. *
  1446. * 64MB: 8192k
  1447. * 128MB: 11585k
  1448. * 256MB: 16384k
  1449. * 512MB: 23170k
  1450. * 1GB: 32768k
  1451. * 2GB: 46340k
  1452. * 4GB: 65536k
  1453. * 8GB: 92681k
  1454. * 16GB: 131072k
  1455. *
  1456. * This allows larger machines to have larger/more transfers.
  1457. * Limit the default to 256M
  1458. */
  1459. nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
  1460. if (nfs_congestion_kb > 256*1024)
  1461. nfs_congestion_kb = 256*1024;
  1462. return 0;
  1463. }
  1464. void nfs_destroy_writepagecache(void)
  1465. {
  1466. mempool_destroy(nfs_commit_mempool);
  1467. mempool_destroy(nfs_wdata_mempool);
  1468. kmem_cache_destroy(nfs_wdata_cachep);
  1469. }