ste_dma40.c 73 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886
  1. /*
  2. * driver/dma/ste_dma40.c
  3. *
  4. * Copyright (C) ST-Ericsson 2007-2010
  5. * License terms: GNU General Public License (GPL) version 2
  6. * Author: Per Friden <per.friden@stericsson.com>
  7. * Author: Jonas Aaberg <jonas.aberg@stericsson.com>
  8. *
  9. */
  10. #include <linux/kernel.h>
  11. #include <linux/slab.h>
  12. #include <linux/dmaengine.h>
  13. #include <linux/platform_device.h>
  14. #include <linux/clk.h>
  15. #include <linux/delay.h>
  16. #include <plat/ste_dma40.h>
  17. #include "ste_dma40_ll.h"
  18. #define D40_NAME "dma40"
  19. #define D40_PHY_CHAN -1
  20. /* For masking out/in 2 bit channel positions */
  21. #define D40_CHAN_POS(chan) (2 * (chan / 2))
  22. #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  23. /* Maximum iterations taken before giving up suspending a channel */
  24. #define D40_SUSPEND_MAX_IT 500
  25. /* Hardware requirement on LCLA alignment */
  26. #define LCLA_ALIGNMENT 0x40000
  27. /* Attempts before giving up to trying to get pages that are aligned */
  28. #define MAX_LCLA_ALLOC_ATTEMPTS 256
  29. /* Bit markings for allocation map */
  30. #define D40_ALLOC_FREE (1 << 31)
  31. #define D40_ALLOC_PHY (1 << 30)
  32. #define D40_ALLOC_LOG_FREE 0
  33. /* Hardware designer of the block */
  34. #define D40_PERIPHID2_DESIGNER 0x8
  35. /**
  36. * enum 40_command - The different commands and/or statuses.
  37. *
  38. * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
  39. * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
  40. * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
  41. * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
  42. */
  43. enum d40_command {
  44. D40_DMA_STOP = 0,
  45. D40_DMA_RUN = 1,
  46. D40_DMA_SUSPEND_REQ = 2,
  47. D40_DMA_SUSPENDED = 3
  48. };
  49. /**
  50. * struct d40_lli_pool - Structure for keeping LLIs in memory
  51. *
  52. * @base: Pointer to memory area when the pre_alloc_lli's are not large
  53. * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
  54. * pre_alloc_lli is used.
  55. * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
  56. * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
  57. * one buffer to one buffer.
  58. */
  59. struct d40_lli_pool {
  60. void *base;
  61. int size;
  62. /* Space for dst and src, plus an extra for padding */
  63. u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
  64. };
  65. /**
  66. * struct d40_desc - A descriptor is one DMA job.
  67. *
  68. * @lli_phy: LLI settings for physical channel. Both src and dst=
  69. * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
  70. * lli_len equals one.
  71. * @lli_log: Same as above but for logical channels.
  72. * @lli_pool: The pool with two entries pre-allocated.
  73. * @lli_len: Number of llis of current descriptor.
  74. * @lli_count: Number of transfered llis.
  75. * @lli_tx_len: Max number of LLIs per transfer, there can be
  76. * many transfer for one descriptor.
  77. * @txd: DMA engine struct. Used for among other things for communication
  78. * during a transfer.
  79. * @node: List entry.
  80. * @dir: The transfer direction of this job.
  81. * @is_in_client_list: true if the client owns this descriptor.
  82. *
  83. * This descriptor is used for both logical and physical transfers.
  84. */
  85. struct d40_desc {
  86. /* LLI physical */
  87. struct d40_phy_lli_bidir lli_phy;
  88. /* LLI logical */
  89. struct d40_log_lli_bidir lli_log;
  90. struct d40_lli_pool lli_pool;
  91. int lli_len;
  92. int lli_count;
  93. u32 lli_tx_len;
  94. struct dma_async_tx_descriptor txd;
  95. struct list_head node;
  96. enum dma_data_direction dir;
  97. bool is_in_client_list;
  98. };
  99. /**
  100. * struct d40_lcla_pool - LCLA pool settings and data.
  101. *
  102. * @base: The virtual address of LCLA. 18 bit aligned.
  103. * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
  104. * This pointer is only there for clean-up on error.
  105. * @pages: The number of pages needed for all physical channels.
  106. * Only used later for clean-up on error
  107. * @lock: Lock to protect the content in this struct.
  108. * @alloc_map: Bitmap mapping between physical channel and LCLA entries.
  109. * @num_blocks: The number of entries of alloc_map. Equals to the
  110. * number of physical channels.
  111. */
  112. struct d40_lcla_pool {
  113. void *base;
  114. void *base_unaligned;
  115. int pages;
  116. spinlock_t lock;
  117. u32 *alloc_map;
  118. int num_blocks;
  119. };
  120. /**
  121. * struct d40_phy_res - struct for handling eventlines mapped to physical
  122. * channels.
  123. *
  124. * @lock: A lock protection this entity.
  125. * @num: The physical channel number of this entity.
  126. * @allocated_src: Bit mapped to show which src event line's are mapped to
  127. * this physical channel. Can also be free or physically allocated.
  128. * @allocated_dst: Same as for src but is dst.
  129. * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
  130. * event line number. Both allocated_src and allocated_dst can not be
  131. * allocated to a physical channel, since the interrupt handler has then
  132. * no way of figure out which one the interrupt belongs to.
  133. */
  134. struct d40_phy_res {
  135. spinlock_t lock;
  136. int num;
  137. u32 allocated_src;
  138. u32 allocated_dst;
  139. };
  140. struct d40_base;
  141. /**
  142. * struct d40_chan - Struct that describes a channel.
  143. *
  144. * @lock: A spinlock to protect this struct.
  145. * @log_num: The logical number, if any of this channel.
  146. * @completed: Starts with 1, after first interrupt it is set to dma engine's
  147. * current cookie.
  148. * @pending_tx: The number of pending transfers. Used between interrupt handler
  149. * and tasklet.
  150. * @busy: Set to true when transfer is ongoing on this channel.
  151. * @phy_chan: Pointer to physical channel which this instance runs on. If this
  152. * point is NULL, then the channel is not allocated.
  153. * @chan: DMA engine handle.
  154. * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
  155. * transfer and call client callback.
  156. * @client: Cliented owned descriptor list.
  157. * @active: Active descriptor.
  158. * @queue: Queued jobs.
  159. * @dma_cfg: The client configuration of this dma channel.
  160. * @base: Pointer to the device instance struct.
  161. * @src_def_cfg: Default cfg register setting for src.
  162. * @dst_def_cfg: Default cfg register setting for dst.
  163. * @log_def: Default logical channel settings.
  164. * @lcla: Space for one dst src pair for logical channel transfers.
  165. * @lcpa: Pointer to dst and src lcpa settings.
  166. *
  167. * This struct can either "be" a logical or a physical channel.
  168. */
  169. struct d40_chan {
  170. spinlock_t lock;
  171. int log_num;
  172. /* ID of the most recent completed transfer */
  173. int completed;
  174. int pending_tx;
  175. bool busy;
  176. struct d40_phy_res *phy_chan;
  177. struct dma_chan chan;
  178. struct tasklet_struct tasklet;
  179. struct list_head client;
  180. struct list_head active;
  181. struct list_head queue;
  182. struct stedma40_chan_cfg dma_cfg;
  183. struct d40_base *base;
  184. /* Default register configurations */
  185. u32 src_def_cfg;
  186. u32 dst_def_cfg;
  187. struct d40_def_lcsp log_def;
  188. struct d40_lcla_elem lcla;
  189. struct d40_log_lli_full *lcpa;
  190. /* Runtime reconfiguration */
  191. dma_addr_t runtime_addr;
  192. enum dma_data_direction runtime_direction;
  193. };
  194. /**
  195. * struct d40_base - The big global struct, one for each probe'd instance.
  196. *
  197. * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
  198. * @execmd_lock: Lock for execute command usage since several channels share
  199. * the same physical register.
  200. * @dev: The device structure.
  201. * @virtbase: The virtual base address of the DMA's register.
  202. * @rev: silicon revision detected.
  203. * @clk: Pointer to the DMA clock structure.
  204. * @phy_start: Physical memory start of the DMA registers.
  205. * @phy_size: Size of the DMA register map.
  206. * @irq: The IRQ number.
  207. * @num_phy_chans: The number of physical channels. Read from HW. This
  208. * is the number of available channels for this driver, not counting "Secure
  209. * mode" allocated physical channels.
  210. * @num_log_chans: The number of logical channels. Calculated from
  211. * num_phy_chans.
  212. * @dma_both: dma_device channels that can do both memcpy and slave transfers.
  213. * @dma_slave: dma_device channels that can do only do slave transfers.
  214. * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
  215. * @phy_chans: Room for all possible physical channels in system.
  216. * @log_chans: Room for all possible logical channels in system.
  217. * @lookup_log_chans: Used to map interrupt number to logical channel. Points
  218. * to log_chans entries.
  219. * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
  220. * to phy_chans entries.
  221. * @plat_data: Pointer to provided platform_data which is the driver
  222. * configuration.
  223. * @phy_res: Vector containing all physical channels.
  224. * @lcla_pool: lcla pool settings and data.
  225. * @lcpa_base: The virtual mapped address of LCPA.
  226. * @phy_lcpa: The physical address of the LCPA.
  227. * @lcpa_size: The size of the LCPA area.
  228. * @desc_slab: cache for descriptors.
  229. */
  230. struct d40_base {
  231. spinlock_t interrupt_lock;
  232. spinlock_t execmd_lock;
  233. struct device *dev;
  234. void __iomem *virtbase;
  235. u8 rev:4;
  236. struct clk *clk;
  237. phys_addr_t phy_start;
  238. resource_size_t phy_size;
  239. int irq;
  240. int num_phy_chans;
  241. int num_log_chans;
  242. struct dma_device dma_both;
  243. struct dma_device dma_slave;
  244. struct dma_device dma_memcpy;
  245. struct d40_chan *phy_chans;
  246. struct d40_chan *log_chans;
  247. struct d40_chan **lookup_log_chans;
  248. struct d40_chan **lookup_phy_chans;
  249. struct stedma40_platform_data *plat_data;
  250. /* Physical half channels */
  251. struct d40_phy_res *phy_res;
  252. struct d40_lcla_pool lcla_pool;
  253. void *lcpa_base;
  254. dma_addr_t phy_lcpa;
  255. resource_size_t lcpa_size;
  256. struct kmem_cache *desc_slab;
  257. };
  258. /**
  259. * struct d40_interrupt_lookup - lookup table for interrupt handler
  260. *
  261. * @src: Interrupt mask register.
  262. * @clr: Interrupt clear register.
  263. * @is_error: true if this is an error interrupt.
  264. * @offset: start delta in the lookup_log_chans in d40_base. If equals to
  265. * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
  266. */
  267. struct d40_interrupt_lookup {
  268. u32 src;
  269. u32 clr;
  270. bool is_error;
  271. int offset;
  272. };
  273. /**
  274. * struct d40_reg_val - simple lookup struct
  275. *
  276. * @reg: The register.
  277. * @val: The value that belongs to the register in reg.
  278. */
  279. struct d40_reg_val {
  280. unsigned int reg;
  281. unsigned int val;
  282. };
  283. static int d40_pool_lli_alloc(struct d40_desc *d40d,
  284. int lli_len, bool is_log)
  285. {
  286. u32 align;
  287. void *base;
  288. if (is_log)
  289. align = sizeof(struct d40_log_lli);
  290. else
  291. align = sizeof(struct d40_phy_lli);
  292. if (lli_len == 1) {
  293. base = d40d->lli_pool.pre_alloc_lli;
  294. d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
  295. d40d->lli_pool.base = NULL;
  296. } else {
  297. d40d->lli_pool.size = ALIGN(lli_len * 2 * align, align);
  298. base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
  299. d40d->lli_pool.base = base;
  300. if (d40d->lli_pool.base == NULL)
  301. return -ENOMEM;
  302. }
  303. if (is_log) {
  304. d40d->lli_log.src = PTR_ALIGN((struct d40_log_lli *) base,
  305. align);
  306. d40d->lli_log.dst = PTR_ALIGN(d40d->lli_log.src + lli_len,
  307. align);
  308. } else {
  309. d40d->lli_phy.src = PTR_ALIGN((struct d40_phy_lli *)base,
  310. align);
  311. d40d->lli_phy.dst = PTR_ALIGN(d40d->lli_phy.src + lli_len,
  312. align);
  313. d40d->lli_phy.src_addr = virt_to_phys(d40d->lli_phy.src);
  314. d40d->lli_phy.dst_addr = virt_to_phys(d40d->lli_phy.dst);
  315. }
  316. return 0;
  317. }
  318. static void d40_pool_lli_free(struct d40_desc *d40d)
  319. {
  320. kfree(d40d->lli_pool.base);
  321. d40d->lli_pool.base = NULL;
  322. d40d->lli_pool.size = 0;
  323. d40d->lli_log.src = NULL;
  324. d40d->lli_log.dst = NULL;
  325. d40d->lli_phy.src = NULL;
  326. d40d->lli_phy.dst = NULL;
  327. d40d->lli_phy.src_addr = 0;
  328. d40d->lli_phy.dst_addr = 0;
  329. }
  330. static dma_cookie_t d40_assign_cookie(struct d40_chan *d40c,
  331. struct d40_desc *desc)
  332. {
  333. dma_cookie_t cookie = d40c->chan.cookie;
  334. if (++cookie < 0)
  335. cookie = 1;
  336. d40c->chan.cookie = cookie;
  337. desc->txd.cookie = cookie;
  338. return cookie;
  339. }
  340. static void d40_desc_remove(struct d40_desc *d40d)
  341. {
  342. list_del(&d40d->node);
  343. }
  344. static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
  345. {
  346. struct d40_desc *d;
  347. struct d40_desc *_d;
  348. if (!list_empty(&d40c->client)) {
  349. list_for_each_entry_safe(d, _d, &d40c->client, node)
  350. if (async_tx_test_ack(&d->txd)) {
  351. d40_pool_lli_free(d);
  352. d40_desc_remove(d);
  353. break;
  354. }
  355. } else {
  356. d = kmem_cache_alloc(d40c->base->desc_slab, GFP_NOWAIT);
  357. if (d != NULL) {
  358. memset(d, 0, sizeof(struct d40_desc));
  359. INIT_LIST_HEAD(&d->node);
  360. }
  361. }
  362. return d;
  363. }
  364. static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
  365. {
  366. kmem_cache_free(d40c->base->desc_slab, d40d);
  367. }
  368. static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
  369. {
  370. list_add_tail(&desc->node, &d40c->active);
  371. }
  372. static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
  373. {
  374. struct d40_desc *d;
  375. if (list_empty(&d40c->active))
  376. return NULL;
  377. d = list_first_entry(&d40c->active,
  378. struct d40_desc,
  379. node);
  380. return d;
  381. }
  382. static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
  383. {
  384. list_add_tail(&desc->node, &d40c->queue);
  385. }
  386. static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
  387. {
  388. struct d40_desc *d;
  389. if (list_empty(&d40c->queue))
  390. return NULL;
  391. d = list_first_entry(&d40c->queue,
  392. struct d40_desc,
  393. node);
  394. return d;
  395. }
  396. /* Support functions for logical channels */
  397. static int d40_lcla_id_get(struct d40_chan *d40c)
  398. {
  399. int src_id = 0;
  400. int dst_id = 0;
  401. struct d40_log_lli *lcla_lidx_base =
  402. d40c->base->lcla_pool.base + d40c->phy_chan->num * 1024;
  403. int i;
  404. int lli_per_log = d40c->base->plat_data->llis_per_log;
  405. unsigned long flags;
  406. if (d40c->lcla.src_id >= 0 && d40c->lcla.dst_id >= 0)
  407. return 0;
  408. if (d40c->base->lcla_pool.num_blocks > 32)
  409. return -EINVAL;
  410. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  411. for (i = 0; i < d40c->base->lcla_pool.num_blocks; i++) {
  412. if (!(d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &
  413. (0x1 << i))) {
  414. d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] |=
  415. (0x1 << i);
  416. break;
  417. }
  418. }
  419. src_id = i;
  420. if (src_id >= d40c->base->lcla_pool.num_blocks)
  421. goto err;
  422. for (; i < d40c->base->lcla_pool.num_blocks; i++) {
  423. if (!(d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &
  424. (0x1 << i))) {
  425. d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] |=
  426. (0x1 << i);
  427. break;
  428. }
  429. }
  430. dst_id = i;
  431. if (dst_id == src_id)
  432. goto err;
  433. d40c->lcla.src_id = src_id;
  434. d40c->lcla.dst_id = dst_id;
  435. d40c->lcla.dst = lcla_lidx_base + dst_id * lli_per_log + 1;
  436. d40c->lcla.src = lcla_lidx_base + src_id * lli_per_log + 1;
  437. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  438. return 0;
  439. err:
  440. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  441. return -EINVAL;
  442. }
  443. static int d40_channel_execute_command(struct d40_chan *d40c,
  444. enum d40_command command)
  445. {
  446. int status, i;
  447. void __iomem *active_reg;
  448. int ret = 0;
  449. unsigned long flags;
  450. u32 wmask;
  451. spin_lock_irqsave(&d40c->base->execmd_lock, flags);
  452. if (d40c->phy_chan->num % 2 == 0)
  453. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  454. else
  455. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  456. if (command == D40_DMA_SUSPEND_REQ) {
  457. status = (readl(active_reg) &
  458. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  459. D40_CHAN_POS(d40c->phy_chan->num);
  460. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  461. goto done;
  462. }
  463. wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
  464. writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
  465. active_reg);
  466. if (command == D40_DMA_SUSPEND_REQ) {
  467. for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
  468. status = (readl(active_reg) &
  469. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  470. D40_CHAN_POS(d40c->phy_chan->num);
  471. cpu_relax();
  472. /*
  473. * Reduce the number of bus accesses while
  474. * waiting for the DMA to suspend.
  475. */
  476. udelay(3);
  477. if (status == D40_DMA_STOP ||
  478. status == D40_DMA_SUSPENDED)
  479. break;
  480. }
  481. if (i == D40_SUSPEND_MAX_IT) {
  482. dev_err(&d40c->chan.dev->device,
  483. "[%s]: unable to suspend the chl %d (log: %d) status %x\n",
  484. __func__, d40c->phy_chan->num, d40c->log_num,
  485. status);
  486. dump_stack();
  487. ret = -EBUSY;
  488. }
  489. }
  490. done:
  491. spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
  492. return ret;
  493. }
  494. static void d40_term_all(struct d40_chan *d40c)
  495. {
  496. struct d40_desc *d40d;
  497. unsigned long flags;
  498. /* Release active descriptors */
  499. while ((d40d = d40_first_active_get(d40c))) {
  500. d40_desc_remove(d40d);
  501. /* Return desc to free-list */
  502. d40_desc_free(d40c, d40d);
  503. }
  504. /* Release queued descriptors waiting for transfer */
  505. while ((d40d = d40_first_queued(d40c))) {
  506. d40_desc_remove(d40d);
  507. /* Return desc to free-list */
  508. d40_desc_free(d40c, d40d);
  509. }
  510. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  511. d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &=
  512. (~(0x1 << d40c->lcla.dst_id));
  513. d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &=
  514. (~(0x1 << d40c->lcla.src_id));
  515. d40c->lcla.src_id = -1;
  516. d40c->lcla.dst_id = -1;
  517. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  518. d40c->pending_tx = 0;
  519. d40c->busy = false;
  520. }
  521. static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
  522. {
  523. u32 val;
  524. unsigned long flags;
  525. /* Notice, that disable requires the physical channel to be stopped */
  526. if (do_enable)
  527. val = D40_ACTIVATE_EVENTLINE;
  528. else
  529. val = D40_DEACTIVATE_EVENTLINE;
  530. spin_lock_irqsave(&d40c->phy_chan->lock, flags);
  531. /* Enable event line connected to device (or memcpy) */
  532. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  533. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
  534. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  535. writel((val << D40_EVENTLINE_POS(event)) |
  536. ~D40_EVENTLINE_MASK(event),
  537. d40c->base->virtbase + D40_DREG_PCBASE +
  538. d40c->phy_chan->num * D40_DREG_PCDELTA +
  539. D40_CHAN_REG_SSLNK);
  540. }
  541. if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
  542. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  543. writel((val << D40_EVENTLINE_POS(event)) |
  544. ~D40_EVENTLINE_MASK(event),
  545. d40c->base->virtbase + D40_DREG_PCBASE +
  546. d40c->phy_chan->num * D40_DREG_PCDELTA +
  547. D40_CHAN_REG_SDLNK);
  548. }
  549. spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
  550. }
  551. static u32 d40_chan_has_events(struct d40_chan *d40c)
  552. {
  553. u32 val = 0;
  554. /* If SSLNK or SDLNK is zero all events are disabled */
  555. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  556. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  557. val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  558. d40c->phy_chan->num * D40_DREG_PCDELTA +
  559. D40_CHAN_REG_SSLNK);
  560. if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM)
  561. val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  562. d40c->phy_chan->num * D40_DREG_PCDELTA +
  563. D40_CHAN_REG_SDLNK);
  564. return val;
  565. }
  566. static void d40_config_enable_lidx(struct d40_chan *d40c)
  567. {
  568. /* Set LIDX for lcla */
  569. writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
  570. D40_SREG_ELEM_LOG_LIDX_MASK,
  571. d40c->base->virtbase + D40_DREG_PCBASE +
  572. d40c->phy_chan->num * D40_DREG_PCDELTA + D40_CHAN_REG_SDELT);
  573. writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
  574. D40_SREG_ELEM_LOG_LIDX_MASK,
  575. d40c->base->virtbase + D40_DREG_PCBASE +
  576. d40c->phy_chan->num * D40_DREG_PCDELTA + D40_CHAN_REG_SSELT);
  577. }
  578. static int d40_config_write(struct d40_chan *d40c)
  579. {
  580. u32 addr_base;
  581. u32 var;
  582. int res;
  583. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  584. if (res)
  585. return res;
  586. /* Odd addresses are even addresses + 4 */
  587. addr_base = (d40c->phy_chan->num % 2) * 4;
  588. /* Setup channel mode to logical or physical */
  589. var = ((u32)(d40c->log_num != D40_PHY_CHAN) + 1) <<
  590. D40_CHAN_POS(d40c->phy_chan->num);
  591. writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
  592. /* Setup operational mode option register */
  593. var = ((d40c->dma_cfg.channel_type >> STEDMA40_INFO_CH_MODE_OPT_POS) &
  594. 0x3) << D40_CHAN_POS(d40c->phy_chan->num);
  595. writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
  596. if (d40c->log_num != D40_PHY_CHAN) {
  597. /* Set default config for CFG reg */
  598. writel(d40c->src_def_cfg,
  599. d40c->base->virtbase + D40_DREG_PCBASE +
  600. d40c->phy_chan->num * D40_DREG_PCDELTA +
  601. D40_CHAN_REG_SSCFG);
  602. writel(d40c->dst_def_cfg,
  603. d40c->base->virtbase + D40_DREG_PCBASE +
  604. d40c->phy_chan->num * D40_DREG_PCDELTA +
  605. D40_CHAN_REG_SDCFG);
  606. d40_config_enable_lidx(d40c);
  607. }
  608. return res;
  609. }
  610. static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
  611. {
  612. if (d40d->lli_phy.dst && d40d->lli_phy.src) {
  613. d40_phy_lli_write(d40c->base->virtbase,
  614. d40c->phy_chan->num,
  615. d40d->lli_phy.dst,
  616. d40d->lli_phy.src);
  617. } else if (d40d->lli_log.dst && d40d->lli_log.src) {
  618. struct d40_log_lli *src = d40d->lli_log.src;
  619. struct d40_log_lli *dst = d40d->lli_log.dst;
  620. int s;
  621. src += d40d->lli_count;
  622. dst += d40d->lli_count;
  623. s = d40_log_lli_write(d40c->lcpa,
  624. d40c->lcla.src, d40c->lcla.dst,
  625. dst, src,
  626. d40c->base->plat_data->llis_per_log);
  627. /* If s equals to zero, the job is not linked */
  628. if (s > 0) {
  629. (void) dma_map_single(d40c->base->dev, d40c->lcla.src,
  630. s * sizeof(struct d40_log_lli),
  631. DMA_TO_DEVICE);
  632. (void) dma_map_single(d40c->base->dev, d40c->lcla.dst,
  633. s * sizeof(struct d40_log_lli),
  634. DMA_TO_DEVICE);
  635. }
  636. }
  637. d40d->lli_count += d40d->lli_tx_len;
  638. }
  639. static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
  640. {
  641. struct d40_chan *d40c = container_of(tx->chan,
  642. struct d40_chan,
  643. chan);
  644. struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
  645. unsigned long flags;
  646. spin_lock_irqsave(&d40c->lock, flags);
  647. tx->cookie = d40_assign_cookie(d40c, d40d);
  648. d40_desc_queue(d40c, d40d);
  649. spin_unlock_irqrestore(&d40c->lock, flags);
  650. return tx->cookie;
  651. }
  652. static int d40_start(struct d40_chan *d40c)
  653. {
  654. if (d40c->base->rev == 0) {
  655. int err;
  656. if (d40c->log_num != D40_PHY_CHAN) {
  657. err = d40_channel_execute_command(d40c,
  658. D40_DMA_SUSPEND_REQ);
  659. if (err)
  660. return err;
  661. }
  662. }
  663. if (d40c->log_num != D40_PHY_CHAN)
  664. d40_config_set_event(d40c, true);
  665. return d40_channel_execute_command(d40c, D40_DMA_RUN);
  666. }
  667. static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
  668. {
  669. struct d40_desc *d40d;
  670. int err;
  671. /* Start queued jobs, if any */
  672. d40d = d40_first_queued(d40c);
  673. if (d40d != NULL) {
  674. d40c->busy = true;
  675. /* Remove from queue */
  676. d40_desc_remove(d40d);
  677. /* Add to active queue */
  678. d40_desc_submit(d40c, d40d);
  679. /* Initiate DMA job */
  680. d40_desc_load(d40c, d40d);
  681. /* Start dma job */
  682. err = d40_start(d40c);
  683. if (err)
  684. return NULL;
  685. }
  686. return d40d;
  687. }
  688. /* called from interrupt context */
  689. static void dma_tc_handle(struct d40_chan *d40c)
  690. {
  691. struct d40_desc *d40d;
  692. if (!d40c->phy_chan)
  693. return;
  694. /* Get first active entry from list */
  695. d40d = d40_first_active_get(d40c);
  696. if (d40d == NULL)
  697. return;
  698. if (d40d->lli_count < d40d->lli_len) {
  699. d40_desc_load(d40c, d40d);
  700. /* Start dma job */
  701. (void) d40_start(d40c);
  702. return;
  703. }
  704. if (d40_queue_start(d40c) == NULL)
  705. d40c->busy = false;
  706. d40c->pending_tx++;
  707. tasklet_schedule(&d40c->tasklet);
  708. }
  709. static void dma_tasklet(unsigned long data)
  710. {
  711. struct d40_chan *d40c = (struct d40_chan *) data;
  712. struct d40_desc *d40d_fin;
  713. unsigned long flags;
  714. dma_async_tx_callback callback;
  715. void *callback_param;
  716. spin_lock_irqsave(&d40c->lock, flags);
  717. /* Get first active entry from list */
  718. d40d_fin = d40_first_active_get(d40c);
  719. if (d40d_fin == NULL)
  720. goto err;
  721. d40c->completed = d40d_fin->txd.cookie;
  722. /*
  723. * If terminating a channel pending_tx is set to zero.
  724. * This prevents any finished active jobs to return to the client.
  725. */
  726. if (d40c->pending_tx == 0) {
  727. spin_unlock_irqrestore(&d40c->lock, flags);
  728. return;
  729. }
  730. /* Callback to client */
  731. callback = d40d_fin->txd.callback;
  732. callback_param = d40d_fin->txd.callback_param;
  733. if (async_tx_test_ack(&d40d_fin->txd)) {
  734. d40_pool_lli_free(d40d_fin);
  735. d40_desc_remove(d40d_fin);
  736. /* Return desc to free-list */
  737. d40_desc_free(d40c, d40d_fin);
  738. } else {
  739. if (!d40d_fin->is_in_client_list) {
  740. d40_desc_remove(d40d_fin);
  741. list_add_tail(&d40d_fin->node, &d40c->client);
  742. d40d_fin->is_in_client_list = true;
  743. }
  744. }
  745. d40c->pending_tx--;
  746. if (d40c->pending_tx)
  747. tasklet_schedule(&d40c->tasklet);
  748. spin_unlock_irqrestore(&d40c->lock, flags);
  749. if (callback)
  750. callback(callback_param);
  751. return;
  752. err:
  753. /* Rescue manouver if receiving double interrupts */
  754. if (d40c->pending_tx > 0)
  755. d40c->pending_tx--;
  756. spin_unlock_irqrestore(&d40c->lock, flags);
  757. }
  758. static irqreturn_t d40_handle_interrupt(int irq, void *data)
  759. {
  760. static const struct d40_interrupt_lookup il[] = {
  761. {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
  762. {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
  763. {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
  764. {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
  765. {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
  766. {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
  767. {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
  768. {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
  769. {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
  770. {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
  771. };
  772. int i;
  773. u32 regs[ARRAY_SIZE(il)];
  774. u32 tmp;
  775. u32 idx;
  776. u32 row;
  777. long chan = -1;
  778. struct d40_chan *d40c;
  779. unsigned long flags;
  780. struct d40_base *base = data;
  781. spin_lock_irqsave(&base->interrupt_lock, flags);
  782. /* Read interrupt status of both logical and physical channels */
  783. for (i = 0; i < ARRAY_SIZE(il); i++)
  784. regs[i] = readl(base->virtbase + il[i].src);
  785. for (;;) {
  786. chan = find_next_bit((unsigned long *)regs,
  787. BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
  788. /* No more set bits found? */
  789. if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
  790. break;
  791. row = chan / BITS_PER_LONG;
  792. idx = chan & (BITS_PER_LONG - 1);
  793. /* ACK interrupt */
  794. tmp = readl(base->virtbase + il[row].clr);
  795. tmp |= 1 << idx;
  796. writel(tmp, base->virtbase + il[row].clr);
  797. if (il[row].offset == D40_PHY_CHAN)
  798. d40c = base->lookup_phy_chans[idx];
  799. else
  800. d40c = base->lookup_log_chans[il[row].offset + idx];
  801. spin_lock(&d40c->lock);
  802. if (!il[row].is_error)
  803. dma_tc_handle(d40c);
  804. else
  805. dev_err(base->dev,
  806. "[%s] IRQ chan: %ld offset %d idx %d\n",
  807. __func__, chan, il[row].offset, idx);
  808. spin_unlock(&d40c->lock);
  809. }
  810. spin_unlock_irqrestore(&base->interrupt_lock, flags);
  811. return IRQ_HANDLED;
  812. }
  813. static int d40_validate_conf(struct d40_chan *d40c,
  814. struct stedma40_chan_cfg *conf)
  815. {
  816. int res = 0;
  817. u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
  818. u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
  819. bool is_log = (conf->channel_type & STEDMA40_CHANNEL_IN_OPER_MODE)
  820. == STEDMA40_CHANNEL_IN_LOG_MODE;
  821. if (!conf->dir) {
  822. dev_err(&d40c->chan.dev->device, "[%s] Invalid direction.\n",
  823. __func__);
  824. res = -EINVAL;
  825. }
  826. if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
  827. d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
  828. d40c->runtime_addr == 0) {
  829. dev_err(&d40c->chan.dev->device,
  830. "[%s] Invalid TX channel address (%d)\n",
  831. __func__, conf->dst_dev_type);
  832. res = -EINVAL;
  833. }
  834. if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
  835. d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
  836. d40c->runtime_addr == 0) {
  837. dev_err(&d40c->chan.dev->device,
  838. "[%s] Invalid RX channel address (%d)\n",
  839. __func__, conf->src_dev_type);
  840. res = -EINVAL;
  841. }
  842. if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
  843. dst_event_group == STEDMA40_DEV_DST_MEMORY) {
  844. dev_err(&d40c->chan.dev->device, "[%s] Invalid dst\n",
  845. __func__);
  846. res = -EINVAL;
  847. }
  848. if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
  849. src_event_group == STEDMA40_DEV_SRC_MEMORY) {
  850. dev_err(&d40c->chan.dev->device, "[%s] Invalid src\n",
  851. __func__);
  852. res = -EINVAL;
  853. }
  854. if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
  855. dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
  856. dev_err(&d40c->chan.dev->device,
  857. "[%s] No event line\n", __func__);
  858. res = -EINVAL;
  859. }
  860. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
  861. (src_event_group != dst_event_group)) {
  862. dev_err(&d40c->chan.dev->device,
  863. "[%s] Invalid event group\n", __func__);
  864. res = -EINVAL;
  865. }
  866. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
  867. /*
  868. * DMAC HW supports it. Will be added to this driver,
  869. * in case any dma client requires it.
  870. */
  871. dev_err(&d40c->chan.dev->device,
  872. "[%s] periph to periph not supported\n",
  873. __func__);
  874. res = -EINVAL;
  875. }
  876. return res;
  877. }
  878. static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
  879. int log_event_line, bool is_log)
  880. {
  881. unsigned long flags;
  882. spin_lock_irqsave(&phy->lock, flags);
  883. if (!is_log) {
  884. /* Physical interrupts are masked per physical full channel */
  885. if (phy->allocated_src == D40_ALLOC_FREE &&
  886. phy->allocated_dst == D40_ALLOC_FREE) {
  887. phy->allocated_dst = D40_ALLOC_PHY;
  888. phy->allocated_src = D40_ALLOC_PHY;
  889. goto found;
  890. } else
  891. goto not_found;
  892. }
  893. /* Logical channel */
  894. if (is_src) {
  895. if (phy->allocated_src == D40_ALLOC_PHY)
  896. goto not_found;
  897. if (phy->allocated_src == D40_ALLOC_FREE)
  898. phy->allocated_src = D40_ALLOC_LOG_FREE;
  899. if (!(phy->allocated_src & (1 << log_event_line))) {
  900. phy->allocated_src |= 1 << log_event_line;
  901. goto found;
  902. } else
  903. goto not_found;
  904. } else {
  905. if (phy->allocated_dst == D40_ALLOC_PHY)
  906. goto not_found;
  907. if (phy->allocated_dst == D40_ALLOC_FREE)
  908. phy->allocated_dst = D40_ALLOC_LOG_FREE;
  909. if (!(phy->allocated_dst & (1 << log_event_line))) {
  910. phy->allocated_dst |= 1 << log_event_line;
  911. goto found;
  912. } else
  913. goto not_found;
  914. }
  915. not_found:
  916. spin_unlock_irqrestore(&phy->lock, flags);
  917. return false;
  918. found:
  919. spin_unlock_irqrestore(&phy->lock, flags);
  920. return true;
  921. }
  922. static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
  923. int log_event_line)
  924. {
  925. unsigned long flags;
  926. bool is_free = false;
  927. spin_lock_irqsave(&phy->lock, flags);
  928. if (!log_event_line) {
  929. /* Physical interrupts are masked per physical full channel */
  930. phy->allocated_dst = D40_ALLOC_FREE;
  931. phy->allocated_src = D40_ALLOC_FREE;
  932. is_free = true;
  933. goto out;
  934. }
  935. /* Logical channel */
  936. if (is_src) {
  937. phy->allocated_src &= ~(1 << log_event_line);
  938. if (phy->allocated_src == D40_ALLOC_LOG_FREE)
  939. phy->allocated_src = D40_ALLOC_FREE;
  940. } else {
  941. phy->allocated_dst &= ~(1 << log_event_line);
  942. if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
  943. phy->allocated_dst = D40_ALLOC_FREE;
  944. }
  945. is_free = ((phy->allocated_src | phy->allocated_dst) ==
  946. D40_ALLOC_FREE);
  947. out:
  948. spin_unlock_irqrestore(&phy->lock, flags);
  949. return is_free;
  950. }
  951. static int d40_allocate_channel(struct d40_chan *d40c)
  952. {
  953. int dev_type;
  954. int event_group;
  955. int event_line;
  956. struct d40_phy_res *phys;
  957. int i;
  958. int j;
  959. int log_num;
  960. bool is_src;
  961. bool is_log = (d40c->dma_cfg.channel_type &
  962. STEDMA40_CHANNEL_IN_OPER_MODE)
  963. == STEDMA40_CHANNEL_IN_LOG_MODE;
  964. phys = d40c->base->phy_res;
  965. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  966. dev_type = d40c->dma_cfg.src_dev_type;
  967. log_num = 2 * dev_type;
  968. is_src = true;
  969. } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  970. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  971. /* dst event lines are used for logical memcpy */
  972. dev_type = d40c->dma_cfg.dst_dev_type;
  973. log_num = 2 * dev_type + 1;
  974. is_src = false;
  975. } else
  976. return -EINVAL;
  977. event_group = D40_TYPE_TO_GROUP(dev_type);
  978. event_line = D40_TYPE_TO_EVENT(dev_type);
  979. if (!is_log) {
  980. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  981. /* Find physical half channel */
  982. for (i = 0; i < d40c->base->num_phy_chans; i++) {
  983. if (d40_alloc_mask_set(&phys[i], is_src,
  984. 0, is_log))
  985. goto found_phy;
  986. }
  987. } else
  988. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  989. int phy_num = j + event_group * 2;
  990. for (i = phy_num; i < phy_num + 2; i++) {
  991. if (d40_alloc_mask_set(&phys[i],
  992. is_src,
  993. 0,
  994. is_log))
  995. goto found_phy;
  996. }
  997. }
  998. return -EINVAL;
  999. found_phy:
  1000. d40c->phy_chan = &phys[i];
  1001. d40c->log_num = D40_PHY_CHAN;
  1002. goto out;
  1003. }
  1004. if (dev_type == -1)
  1005. return -EINVAL;
  1006. /* Find logical channel */
  1007. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1008. int phy_num = j + event_group * 2;
  1009. /*
  1010. * Spread logical channels across all available physical rather
  1011. * than pack every logical channel at the first available phy
  1012. * channels.
  1013. */
  1014. if (is_src) {
  1015. for (i = phy_num; i < phy_num + 2; i++) {
  1016. if (d40_alloc_mask_set(&phys[i], is_src,
  1017. event_line, is_log))
  1018. goto found_log;
  1019. }
  1020. } else {
  1021. for (i = phy_num + 1; i >= phy_num; i--) {
  1022. if (d40_alloc_mask_set(&phys[i], is_src,
  1023. event_line, is_log))
  1024. goto found_log;
  1025. }
  1026. }
  1027. }
  1028. return -EINVAL;
  1029. found_log:
  1030. d40c->phy_chan = &phys[i];
  1031. d40c->log_num = log_num;
  1032. out:
  1033. if (is_log)
  1034. d40c->base->lookup_log_chans[d40c->log_num] = d40c;
  1035. else
  1036. d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
  1037. return 0;
  1038. }
  1039. static int d40_config_memcpy(struct d40_chan *d40c)
  1040. {
  1041. dma_cap_mask_t cap = d40c->chan.device->cap_mask;
  1042. if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
  1043. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
  1044. d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
  1045. d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
  1046. memcpy[d40c->chan.chan_id];
  1047. } else if (dma_has_cap(DMA_MEMCPY, cap) &&
  1048. dma_has_cap(DMA_SLAVE, cap)) {
  1049. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
  1050. } else {
  1051. dev_err(&d40c->chan.dev->device, "[%s] No memcpy\n",
  1052. __func__);
  1053. return -EINVAL;
  1054. }
  1055. return 0;
  1056. }
  1057. static int d40_free_dma(struct d40_chan *d40c)
  1058. {
  1059. int res = 0;
  1060. u32 event;
  1061. struct d40_phy_res *phy = d40c->phy_chan;
  1062. bool is_src;
  1063. struct d40_desc *d;
  1064. struct d40_desc *_d;
  1065. /* Terminate all queued and active transfers */
  1066. d40_term_all(d40c);
  1067. /* Release client owned descriptors */
  1068. if (!list_empty(&d40c->client))
  1069. list_for_each_entry_safe(d, _d, &d40c->client, node) {
  1070. d40_pool_lli_free(d);
  1071. d40_desc_remove(d);
  1072. /* Return desc to free-list */
  1073. d40_desc_free(d40c, d);
  1074. }
  1075. if (phy == NULL) {
  1076. dev_err(&d40c->chan.dev->device, "[%s] phy == null\n",
  1077. __func__);
  1078. return -EINVAL;
  1079. }
  1080. if (phy->allocated_src == D40_ALLOC_FREE &&
  1081. phy->allocated_dst == D40_ALLOC_FREE) {
  1082. dev_err(&d40c->chan.dev->device, "[%s] channel already free\n",
  1083. __func__);
  1084. return -EINVAL;
  1085. }
  1086. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1087. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1088. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1089. is_src = false;
  1090. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1091. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1092. is_src = true;
  1093. } else {
  1094. dev_err(&d40c->chan.dev->device,
  1095. "[%s] Unknown direction\n", __func__);
  1096. return -EINVAL;
  1097. }
  1098. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  1099. if (res) {
  1100. dev_err(&d40c->chan.dev->device, "[%s] suspend failed\n",
  1101. __func__);
  1102. return res;
  1103. }
  1104. if (d40c->log_num != D40_PHY_CHAN) {
  1105. /* Release logical channel, deactivate the event line */
  1106. d40_config_set_event(d40c, false);
  1107. d40c->base->lookup_log_chans[d40c->log_num] = NULL;
  1108. /*
  1109. * Check if there are more logical allocation
  1110. * on this phy channel.
  1111. */
  1112. if (!d40_alloc_mask_free(phy, is_src, event)) {
  1113. /* Resume the other logical channels if any */
  1114. if (d40_chan_has_events(d40c)) {
  1115. res = d40_channel_execute_command(d40c,
  1116. D40_DMA_RUN);
  1117. if (res) {
  1118. dev_err(&d40c->chan.dev->device,
  1119. "[%s] Executing RUN command\n",
  1120. __func__);
  1121. return res;
  1122. }
  1123. }
  1124. return 0;
  1125. }
  1126. } else {
  1127. (void) d40_alloc_mask_free(phy, is_src, 0);
  1128. }
  1129. /* Release physical channel */
  1130. res = d40_channel_execute_command(d40c, D40_DMA_STOP);
  1131. if (res) {
  1132. dev_err(&d40c->chan.dev->device,
  1133. "[%s] Failed to stop channel\n", __func__);
  1134. return res;
  1135. }
  1136. d40c->phy_chan = NULL;
  1137. /* Invalidate channel type */
  1138. d40c->dma_cfg.channel_type = 0;
  1139. d40c->base->lookup_phy_chans[phy->num] = NULL;
  1140. return 0;
  1141. }
  1142. static int d40_pause(struct dma_chan *chan)
  1143. {
  1144. struct d40_chan *d40c =
  1145. container_of(chan, struct d40_chan, chan);
  1146. int res;
  1147. unsigned long flags;
  1148. spin_lock_irqsave(&d40c->lock, flags);
  1149. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  1150. if (res == 0) {
  1151. if (d40c->log_num != D40_PHY_CHAN) {
  1152. d40_config_set_event(d40c, false);
  1153. /* Resume the other logical channels if any */
  1154. if (d40_chan_has_events(d40c))
  1155. res = d40_channel_execute_command(d40c,
  1156. D40_DMA_RUN);
  1157. }
  1158. }
  1159. spin_unlock_irqrestore(&d40c->lock, flags);
  1160. return res;
  1161. }
  1162. static bool d40_is_paused(struct d40_chan *d40c)
  1163. {
  1164. bool is_paused = false;
  1165. unsigned long flags;
  1166. void __iomem *active_reg;
  1167. u32 status;
  1168. u32 event;
  1169. spin_lock_irqsave(&d40c->lock, flags);
  1170. if (d40c->log_num == D40_PHY_CHAN) {
  1171. if (d40c->phy_chan->num % 2 == 0)
  1172. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  1173. else
  1174. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  1175. status = (readl(active_reg) &
  1176. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  1177. D40_CHAN_POS(d40c->phy_chan->num);
  1178. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  1179. is_paused = true;
  1180. goto _exit;
  1181. }
  1182. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1183. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM)
  1184. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1185. else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
  1186. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1187. else {
  1188. dev_err(&d40c->chan.dev->device,
  1189. "[%s] Unknown direction\n", __func__);
  1190. goto _exit;
  1191. }
  1192. status = d40_chan_has_events(d40c);
  1193. status = (status & D40_EVENTLINE_MASK(event)) >>
  1194. D40_EVENTLINE_POS(event);
  1195. if (status != D40_DMA_RUN)
  1196. is_paused = true;
  1197. _exit:
  1198. spin_unlock_irqrestore(&d40c->lock, flags);
  1199. return is_paused;
  1200. }
  1201. static bool d40_tx_is_linked(struct d40_chan *d40c)
  1202. {
  1203. bool is_link;
  1204. if (d40c->log_num != D40_PHY_CHAN)
  1205. is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
  1206. else
  1207. is_link = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  1208. d40c->phy_chan->num * D40_DREG_PCDELTA +
  1209. D40_CHAN_REG_SDLNK) &
  1210. D40_SREG_LNK_PHYS_LNK_MASK;
  1211. return is_link;
  1212. }
  1213. static u32 d40_residue(struct d40_chan *d40c)
  1214. {
  1215. u32 num_elt;
  1216. if (d40c->log_num != D40_PHY_CHAN)
  1217. num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
  1218. >> D40_MEM_LCSP2_ECNT_POS;
  1219. else
  1220. num_elt = (readl(d40c->base->virtbase + D40_DREG_PCBASE +
  1221. d40c->phy_chan->num * D40_DREG_PCDELTA +
  1222. D40_CHAN_REG_SDELT) &
  1223. D40_SREG_ELEM_PHY_ECNT_MASK) >>
  1224. D40_SREG_ELEM_PHY_ECNT_POS;
  1225. return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
  1226. }
  1227. static int d40_resume(struct dma_chan *chan)
  1228. {
  1229. struct d40_chan *d40c =
  1230. container_of(chan, struct d40_chan, chan);
  1231. int res = 0;
  1232. unsigned long flags;
  1233. spin_lock_irqsave(&d40c->lock, flags);
  1234. if (d40c->base->rev == 0)
  1235. if (d40c->log_num != D40_PHY_CHAN) {
  1236. res = d40_channel_execute_command(d40c,
  1237. D40_DMA_SUSPEND_REQ);
  1238. goto no_suspend;
  1239. }
  1240. /* If bytes left to transfer or linked tx resume job */
  1241. if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
  1242. if (d40c->log_num != D40_PHY_CHAN)
  1243. d40_config_set_event(d40c, true);
  1244. res = d40_channel_execute_command(d40c, D40_DMA_RUN);
  1245. }
  1246. no_suspend:
  1247. spin_unlock_irqrestore(&d40c->lock, flags);
  1248. return res;
  1249. }
  1250. static u32 stedma40_residue(struct dma_chan *chan)
  1251. {
  1252. struct d40_chan *d40c =
  1253. container_of(chan, struct d40_chan, chan);
  1254. u32 bytes_left;
  1255. unsigned long flags;
  1256. spin_lock_irqsave(&d40c->lock, flags);
  1257. bytes_left = d40_residue(d40c);
  1258. spin_unlock_irqrestore(&d40c->lock, flags);
  1259. return bytes_left;
  1260. }
  1261. /* Public DMA functions in addition to the DMA engine framework */
  1262. int stedma40_set_psize(struct dma_chan *chan,
  1263. int src_psize,
  1264. int dst_psize)
  1265. {
  1266. struct d40_chan *d40c =
  1267. container_of(chan, struct d40_chan, chan);
  1268. unsigned long flags;
  1269. spin_lock_irqsave(&d40c->lock, flags);
  1270. if (d40c->log_num != D40_PHY_CHAN) {
  1271. d40c->log_def.lcsp1 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK;
  1272. d40c->log_def.lcsp3 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK;
  1273. d40c->log_def.lcsp1 |= src_psize <<
  1274. D40_MEM_LCSP1_SCFG_PSIZE_POS;
  1275. d40c->log_def.lcsp3 |= dst_psize <<
  1276. D40_MEM_LCSP1_SCFG_PSIZE_POS;
  1277. goto out;
  1278. }
  1279. if (src_psize == STEDMA40_PSIZE_PHY_1)
  1280. d40c->src_def_cfg &= ~(1 << D40_SREG_CFG_PHY_PEN_POS);
  1281. else {
  1282. d40c->src_def_cfg |= 1 << D40_SREG_CFG_PHY_PEN_POS;
  1283. d40c->src_def_cfg &= ~(STEDMA40_PSIZE_PHY_16 <<
  1284. D40_SREG_CFG_PSIZE_POS);
  1285. d40c->src_def_cfg |= src_psize << D40_SREG_CFG_PSIZE_POS;
  1286. }
  1287. if (dst_psize == STEDMA40_PSIZE_PHY_1)
  1288. d40c->dst_def_cfg &= ~(1 << D40_SREG_CFG_PHY_PEN_POS);
  1289. else {
  1290. d40c->dst_def_cfg |= 1 << D40_SREG_CFG_PHY_PEN_POS;
  1291. d40c->dst_def_cfg &= ~(STEDMA40_PSIZE_PHY_16 <<
  1292. D40_SREG_CFG_PSIZE_POS);
  1293. d40c->dst_def_cfg |= dst_psize << D40_SREG_CFG_PSIZE_POS;
  1294. }
  1295. out:
  1296. spin_unlock_irqrestore(&d40c->lock, flags);
  1297. return 0;
  1298. }
  1299. EXPORT_SYMBOL(stedma40_set_psize);
  1300. struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan,
  1301. struct scatterlist *sgl_dst,
  1302. struct scatterlist *sgl_src,
  1303. unsigned int sgl_len,
  1304. unsigned long dma_flags)
  1305. {
  1306. int res;
  1307. struct d40_desc *d40d;
  1308. struct d40_chan *d40c = container_of(chan, struct d40_chan,
  1309. chan);
  1310. unsigned long flags;
  1311. if (d40c->phy_chan == NULL) {
  1312. dev_err(&d40c->chan.dev->device,
  1313. "[%s] Unallocated channel.\n", __func__);
  1314. return ERR_PTR(-EINVAL);
  1315. }
  1316. spin_lock_irqsave(&d40c->lock, flags);
  1317. d40d = d40_desc_get(d40c);
  1318. if (d40d == NULL)
  1319. goto err;
  1320. d40d->lli_len = sgl_len;
  1321. d40d->lli_tx_len = d40d->lli_len;
  1322. d40d->txd.flags = dma_flags;
  1323. if (d40c->log_num != D40_PHY_CHAN) {
  1324. if (d40d->lli_len > d40c->base->plat_data->llis_per_log)
  1325. d40d->lli_tx_len = d40c->base->plat_data->llis_per_log;
  1326. if (sgl_len > 1)
  1327. /*
  1328. * Check if there is space available in lcla. If not,
  1329. * split list into 1-length and run only in lcpa
  1330. * space.
  1331. */
  1332. if (d40_lcla_id_get(d40c) != 0)
  1333. d40d->lli_tx_len = 1;
  1334. if (d40_pool_lli_alloc(d40d, sgl_len, true) < 0) {
  1335. dev_err(&d40c->chan.dev->device,
  1336. "[%s] Out of memory\n", __func__);
  1337. goto err;
  1338. }
  1339. (void) d40_log_sg_to_lli(d40c->lcla.src_id,
  1340. sgl_src,
  1341. sgl_len,
  1342. d40d->lli_log.src,
  1343. d40c->log_def.lcsp1,
  1344. d40c->dma_cfg.src_info.data_width,
  1345. dma_flags & DMA_PREP_INTERRUPT,
  1346. d40d->lli_tx_len,
  1347. d40c->base->plat_data->llis_per_log);
  1348. (void) d40_log_sg_to_lli(d40c->lcla.dst_id,
  1349. sgl_dst,
  1350. sgl_len,
  1351. d40d->lli_log.dst,
  1352. d40c->log_def.lcsp3,
  1353. d40c->dma_cfg.dst_info.data_width,
  1354. dma_flags & DMA_PREP_INTERRUPT,
  1355. d40d->lli_tx_len,
  1356. d40c->base->plat_data->llis_per_log);
  1357. } else {
  1358. if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
  1359. dev_err(&d40c->chan.dev->device,
  1360. "[%s] Out of memory\n", __func__);
  1361. goto err;
  1362. }
  1363. res = d40_phy_sg_to_lli(sgl_src,
  1364. sgl_len,
  1365. 0,
  1366. d40d->lli_phy.src,
  1367. d40d->lli_phy.src_addr,
  1368. d40c->src_def_cfg,
  1369. d40c->dma_cfg.src_info.data_width,
  1370. d40c->dma_cfg.src_info.psize,
  1371. true);
  1372. if (res < 0)
  1373. goto err;
  1374. res = d40_phy_sg_to_lli(sgl_dst,
  1375. sgl_len,
  1376. 0,
  1377. d40d->lli_phy.dst,
  1378. d40d->lli_phy.dst_addr,
  1379. d40c->dst_def_cfg,
  1380. d40c->dma_cfg.dst_info.data_width,
  1381. d40c->dma_cfg.dst_info.psize,
  1382. true);
  1383. if (res < 0)
  1384. goto err;
  1385. (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
  1386. d40d->lli_pool.size, DMA_TO_DEVICE);
  1387. }
  1388. dma_async_tx_descriptor_init(&d40d->txd, chan);
  1389. d40d->txd.tx_submit = d40_tx_submit;
  1390. spin_unlock_irqrestore(&d40c->lock, flags);
  1391. return &d40d->txd;
  1392. err:
  1393. spin_unlock_irqrestore(&d40c->lock, flags);
  1394. return NULL;
  1395. }
  1396. EXPORT_SYMBOL(stedma40_memcpy_sg);
  1397. bool stedma40_filter(struct dma_chan *chan, void *data)
  1398. {
  1399. struct stedma40_chan_cfg *info = data;
  1400. struct d40_chan *d40c =
  1401. container_of(chan, struct d40_chan, chan);
  1402. int err;
  1403. if (data) {
  1404. err = d40_validate_conf(d40c, info);
  1405. if (!err)
  1406. d40c->dma_cfg = *info;
  1407. } else
  1408. err = d40_config_memcpy(d40c);
  1409. return err == 0;
  1410. }
  1411. EXPORT_SYMBOL(stedma40_filter);
  1412. /* DMA ENGINE functions */
  1413. static int d40_alloc_chan_resources(struct dma_chan *chan)
  1414. {
  1415. int err;
  1416. unsigned long flags;
  1417. struct d40_chan *d40c =
  1418. container_of(chan, struct d40_chan, chan);
  1419. bool is_free_phy;
  1420. spin_lock_irqsave(&d40c->lock, flags);
  1421. d40c->completed = chan->cookie = 1;
  1422. /*
  1423. * If no dma configuration is set (channel_type == 0)
  1424. * use default configuration (memcpy)
  1425. */
  1426. if (d40c->dma_cfg.channel_type == 0) {
  1427. err = d40_config_memcpy(d40c);
  1428. if (err) {
  1429. dev_err(&d40c->chan.dev->device,
  1430. "[%s] Failed to configure memcpy channel\n",
  1431. __func__);
  1432. goto fail;
  1433. }
  1434. }
  1435. is_free_phy = (d40c->phy_chan == NULL);
  1436. err = d40_allocate_channel(d40c);
  1437. if (err) {
  1438. dev_err(&d40c->chan.dev->device,
  1439. "[%s] Failed to allocate channel\n", __func__);
  1440. goto fail;
  1441. }
  1442. /* Fill in basic CFG register values */
  1443. d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
  1444. &d40c->dst_def_cfg, d40c->log_num != D40_PHY_CHAN);
  1445. if (d40c->log_num != D40_PHY_CHAN) {
  1446. d40_log_cfg(&d40c->dma_cfg,
  1447. &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  1448. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
  1449. d40c->lcpa = d40c->base->lcpa_base +
  1450. d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
  1451. else
  1452. d40c->lcpa = d40c->base->lcpa_base +
  1453. d40c->dma_cfg.dst_dev_type *
  1454. D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
  1455. }
  1456. /*
  1457. * Only write channel configuration to the DMA if the physical
  1458. * resource is free. In case of multiple logical channels
  1459. * on the same physical resource, only the first write is necessary.
  1460. */
  1461. if (is_free_phy) {
  1462. err = d40_config_write(d40c);
  1463. if (err) {
  1464. dev_err(&d40c->chan.dev->device,
  1465. "[%s] Failed to configure channel\n",
  1466. __func__);
  1467. }
  1468. }
  1469. fail:
  1470. spin_unlock_irqrestore(&d40c->lock, flags);
  1471. return err;
  1472. }
  1473. static void d40_free_chan_resources(struct dma_chan *chan)
  1474. {
  1475. struct d40_chan *d40c =
  1476. container_of(chan, struct d40_chan, chan);
  1477. int err;
  1478. unsigned long flags;
  1479. if (d40c->phy_chan == NULL) {
  1480. dev_err(&d40c->chan.dev->device,
  1481. "[%s] Cannot free unallocated channel\n", __func__);
  1482. return;
  1483. }
  1484. spin_lock_irqsave(&d40c->lock, flags);
  1485. err = d40_free_dma(d40c);
  1486. if (err)
  1487. dev_err(&d40c->chan.dev->device,
  1488. "[%s] Failed to free channel\n", __func__);
  1489. spin_unlock_irqrestore(&d40c->lock, flags);
  1490. }
  1491. static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
  1492. dma_addr_t dst,
  1493. dma_addr_t src,
  1494. size_t size,
  1495. unsigned long dma_flags)
  1496. {
  1497. struct d40_desc *d40d;
  1498. struct d40_chan *d40c = container_of(chan, struct d40_chan,
  1499. chan);
  1500. unsigned long flags;
  1501. int err = 0;
  1502. if (d40c->phy_chan == NULL) {
  1503. dev_err(&d40c->chan.dev->device,
  1504. "[%s] Channel is not allocated.\n", __func__);
  1505. return ERR_PTR(-EINVAL);
  1506. }
  1507. spin_lock_irqsave(&d40c->lock, flags);
  1508. d40d = d40_desc_get(d40c);
  1509. if (d40d == NULL) {
  1510. dev_err(&d40c->chan.dev->device,
  1511. "[%s] Descriptor is NULL\n", __func__);
  1512. goto err;
  1513. }
  1514. d40d->txd.flags = dma_flags;
  1515. dma_async_tx_descriptor_init(&d40d->txd, chan);
  1516. d40d->txd.tx_submit = d40_tx_submit;
  1517. if (d40c->log_num != D40_PHY_CHAN) {
  1518. if (d40_pool_lli_alloc(d40d, 1, true) < 0) {
  1519. dev_err(&d40c->chan.dev->device,
  1520. "[%s] Out of memory\n", __func__);
  1521. goto err;
  1522. }
  1523. d40d->lli_len = 1;
  1524. d40d->lli_tx_len = 1;
  1525. d40_log_fill_lli(d40d->lli_log.src,
  1526. src,
  1527. size,
  1528. 0,
  1529. d40c->log_def.lcsp1,
  1530. d40c->dma_cfg.src_info.data_width,
  1531. false, true);
  1532. d40_log_fill_lli(d40d->lli_log.dst,
  1533. dst,
  1534. size,
  1535. 0,
  1536. d40c->log_def.lcsp3,
  1537. d40c->dma_cfg.dst_info.data_width,
  1538. true, true);
  1539. } else {
  1540. if (d40_pool_lli_alloc(d40d, 1, false) < 0) {
  1541. dev_err(&d40c->chan.dev->device,
  1542. "[%s] Out of memory\n", __func__);
  1543. goto err;
  1544. }
  1545. err = d40_phy_fill_lli(d40d->lli_phy.src,
  1546. src,
  1547. size,
  1548. d40c->dma_cfg.src_info.psize,
  1549. 0,
  1550. d40c->src_def_cfg,
  1551. true,
  1552. d40c->dma_cfg.src_info.data_width,
  1553. false);
  1554. if (err)
  1555. goto err_fill_lli;
  1556. err = d40_phy_fill_lli(d40d->lli_phy.dst,
  1557. dst,
  1558. size,
  1559. d40c->dma_cfg.dst_info.psize,
  1560. 0,
  1561. d40c->dst_def_cfg,
  1562. true,
  1563. d40c->dma_cfg.dst_info.data_width,
  1564. false);
  1565. if (err)
  1566. goto err_fill_lli;
  1567. (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
  1568. d40d->lli_pool.size, DMA_TO_DEVICE);
  1569. }
  1570. spin_unlock_irqrestore(&d40c->lock, flags);
  1571. return &d40d->txd;
  1572. err_fill_lli:
  1573. dev_err(&d40c->chan.dev->device,
  1574. "[%s] Failed filling in PHY LLI\n", __func__);
  1575. d40_pool_lli_free(d40d);
  1576. err:
  1577. spin_unlock_irqrestore(&d40c->lock, flags);
  1578. return NULL;
  1579. }
  1580. static int d40_prep_slave_sg_log(struct d40_desc *d40d,
  1581. struct d40_chan *d40c,
  1582. struct scatterlist *sgl,
  1583. unsigned int sg_len,
  1584. enum dma_data_direction direction,
  1585. unsigned long dma_flags)
  1586. {
  1587. dma_addr_t dev_addr = 0;
  1588. int total_size;
  1589. if (d40_pool_lli_alloc(d40d, sg_len, true) < 0) {
  1590. dev_err(&d40c->chan.dev->device,
  1591. "[%s] Out of memory\n", __func__);
  1592. return -ENOMEM;
  1593. }
  1594. d40d->lli_len = sg_len;
  1595. if (d40d->lli_len <= d40c->base->plat_data->llis_per_log)
  1596. d40d->lli_tx_len = d40d->lli_len;
  1597. else
  1598. d40d->lli_tx_len = d40c->base->plat_data->llis_per_log;
  1599. if (sg_len > 1)
  1600. /*
  1601. * Check if there is space available in lcla.
  1602. * If not, split list into 1-length and run only
  1603. * in lcpa space.
  1604. */
  1605. if (d40_lcla_id_get(d40c) != 0)
  1606. d40d->lli_tx_len = 1;
  1607. if (direction == DMA_FROM_DEVICE)
  1608. if (d40c->runtime_addr)
  1609. dev_addr = d40c->runtime_addr;
  1610. else
  1611. dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
  1612. else if (direction == DMA_TO_DEVICE)
  1613. if (d40c->runtime_addr)
  1614. dev_addr = d40c->runtime_addr;
  1615. else
  1616. dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
  1617. else
  1618. return -EINVAL;
  1619. total_size = d40_log_sg_to_dev(&d40c->lcla,
  1620. sgl, sg_len,
  1621. &d40d->lli_log,
  1622. &d40c->log_def,
  1623. d40c->dma_cfg.src_info.data_width,
  1624. d40c->dma_cfg.dst_info.data_width,
  1625. direction,
  1626. dma_flags & DMA_PREP_INTERRUPT,
  1627. dev_addr, d40d->lli_tx_len,
  1628. d40c->base->plat_data->llis_per_log);
  1629. if (total_size < 0)
  1630. return -EINVAL;
  1631. return 0;
  1632. }
  1633. static int d40_prep_slave_sg_phy(struct d40_desc *d40d,
  1634. struct d40_chan *d40c,
  1635. struct scatterlist *sgl,
  1636. unsigned int sgl_len,
  1637. enum dma_data_direction direction,
  1638. unsigned long dma_flags)
  1639. {
  1640. dma_addr_t src_dev_addr;
  1641. dma_addr_t dst_dev_addr;
  1642. int res;
  1643. if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
  1644. dev_err(&d40c->chan.dev->device,
  1645. "[%s] Out of memory\n", __func__);
  1646. return -ENOMEM;
  1647. }
  1648. d40d->lli_len = sgl_len;
  1649. d40d->lli_tx_len = sgl_len;
  1650. if (direction == DMA_FROM_DEVICE) {
  1651. dst_dev_addr = 0;
  1652. if (d40c->runtime_addr)
  1653. src_dev_addr = d40c->runtime_addr;
  1654. else
  1655. src_dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
  1656. } else if (direction == DMA_TO_DEVICE) {
  1657. if (d40c->runtime_addr)
  1658. dst_dev_addr = d40c->runtime_addr;
  1659. else
  1660. dst_dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
  1661. src_dev_addr = 0;
  1662. } else
  1663. return -EINVAL;
  1664. res = d40_phy_sg_to_lli(sgl,
  1665. sgl_len,
  1666. src_dev_addr,
  1667. d40d->lli_phy.src,
  1668. d40d->lli_phy.src_addr,
  1669. d40c->src_def_cfg,
  1670. d40c->dma_cfg.src_info.data_width,
  1671. d40c->dma_cfg.src_info.psize,
  1672. true);
  1673. if (res < 0)
  1674. return res;
  1675. res = d40_phy_sg_to_lli(sgl,
  1676. sgl_len,
  1677. dst_dev_addr,
  1678. d40d->lli_phy.dst,
  1679. d40d->lli_phy.dst_addr,
  1680. d40c->dst_def_cfg,
  1681. d40c->dma_cfg.dst_info.data_width,
  1682. d40c->dma_cfg.dst_info.psize,
  1683. true);
  1684. if (res < 0)
  1685. return res;
  1686. (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
  1687. d40d->lli_pool.size, DMA_TO_DEVICE);
  1688. return 0;
  1689. }
  1690. static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
  1691. struct scatterlist *sgl,
  1692. unsigned int sg_len,
  1693. enum dma_data_direction direction,
  1694. unsigned long dma_flags)
  1695. {
  1696. struct d40_desc *d40d;
  1697. struct d40_chan *d40c = container_of(chan, struct d40_chan,
  1698. chan);
  1699. unsigned long flags;
  1700. int err;
  1701. if (d40c->phy_chan == NULL) {
  1702. dev_err(&d40c->chan.dev->device,
  1703. "[%s] Cannot prepare unallocated channel\n", __func__);
  1704. return ERR_PTR(-EINVAL);
  1705. }
  1706. if (d40c->dma_cfg.pre_transfer)
  1707. d40c->dma_cfg.pre_transfer(chan,
  1708. d40c->dma_cfg.pre_transfer_data,
  1709. sg_dma_len(sgl));
  1710. spin_lock_irqsave(&d40c->lock, flags);
  1711. d40d = d40_desc_get(d40c);
  1712. spin_unlock_irqrestore(&d40c->lock, flags);
  1713. if (d40d == NULL)
  1714. return NULL;
  1715. if (d40c->log_num != D40_PHY_CHAN)
  1716. err = d40_prep_slave_sg_log(d40d, d40c, sgl, sg_len,
  1717. direction, dma_flags);
  1718. else
  1719. err = d40_prep_slave_sg_phy(d40d, d40c, sgl, sg_len,
  1720. direction, dma_flags);
  1721. if (err) {
  1722. dev_err(&d40c->chan.dev->device,
  1723. "[%s] Failed to prepare %s slave sg job: %d\n",
  1724. __func__,
  1725. d40c->log_num != D40_PHY_CHAN ? "log" : "phy", err);
  1726. return NULL;
  1727. }
  1728. d40d->txd.flags = dma_flags;
  1729. dma_async_tx_descriptor_init(&d40d->txd, chan);
  1730. d40d->txd.tx_submit = d40_tx_submit;
  1731. return &d40d->txd;
  1732. }
  1733. static enum dma_status d40_tx_status(struct dma_chan *chan,
  1734. dma_cookie_t cookie,
  1735. struct dma_tx_state *txstate)
  1736. {
  1737. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1738. dma_cookie_t last_used;
  1739. dma_cookie_t last_complete;
  1740. int ret;
  1741. if (d40c->phy_chan == NULL) {
  1742. dev_err(&d40c->chan.dev->device,
  1743. "[%s] Cannot read status of unallocated channel\n",
  1744. __func__);
  1745. return -EINVAL;
  1746. }
  1747. last_complete = d40c->completed;
  1748. last_used = chan->cookie;
  1749. if (d40_is_paused(d40c))
  1750. ret = DMA_PAUSED;
  1751. else
  1752. ret = dma_async_is_complete(cookie, last_complete, last_used);
  1753. dma_set_tx_state(txstate, last_complete, last_used,
  1754. stedma40_residue(chan));
  1755. return ret;
  1756. }
  1757. static void d40_issue_pending(struct dma_chan *chan)
  1758. {
  1759. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1760. unsigned long flags;
  1761. if (d40c->phy_chan == NULL) {
  1762. dev_err(&d40c->chan.dev->device,
  1763. "[%s] Channel is not allocated!\n", __func__);
  1764. return;
  1765. }
  1766. spin_lock_irqsave(&d40c->lock, flags);
  1767. /* Busy means that pending jobs are already being processed */
  1768. if (!d40c->busy)
  1769. (void) d40_queue_start(d40c);
  1770. spin_unlock_irqrestore(&d40c->lock, flags);
  1771. }
  1772. /* Runtime reconfiguration extension */
  1773. static void d40_set_runtime_config(struct dma_chan *chan,
  1774. struct dma_slave_config *config)
  1775. {
  1776. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1777. struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
  1778. enum dma_slave_buswidth config_addr_width;
  1779. dma_addr_t config_addr;
  1780. u32 config_maxburst;
  1781. enum stedma40_periph_data_width addr_width;
  1782. int psize;
  1783. if (config->direction == DMA_FROM_DEVICE) {
  1784. dma_addr_t dev_addr_rx =
  1785. d40c->base->plat_data->dev_rx[cfg->src_dev_type];
  1786. config_addr = config->src_addr;
  1787. if (dev_addr_rx)
  1788. dev_dbg(d40c->base->dev,
  1789. "channel has a pre-wired RX address %08x "
  1790. "overriding with %08x\n",
  1791. dev_addr_rx, config_addr);
  1792. if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
  1793. dev_dbg(d40c->base->dev,
  1794. "channel was not configured for peripheral "
  1795. "to memory transfer (%d) overriding\n",
  1796. cfg->dir);
  1797. cfg->dir = STEDMA40_PERIPH_TO_MEM;
  1798. config_addr_width = config->src_addr_width;
  1799. config_maxburst = config->src_maxburst;
  1800. } else if (config->direction == DMA_TO_DEVICE) {
  1801. dma_addr_t dev_addr_tx =
  1802. d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
  1803. config_addr = config->dst_addr;
  1804. if (dev_addr_tx)
  1805. dev_dbg(d40c->base->dev,
  1806. "channel has a pre-wired TX address %08x "
  1807. "overriding with %08x\n",
  1808. dev_addr_tx, config_addr);
  1809. if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
  1810. dev_dbg(d40c->base->dev,
  1811. "channel was not configured for memory "
  1812. "to peripheral transfer (%d) overriding\n",
  1813. cfg->dir);
  1814. cfg->dir = STEDMA40_MEM_TO_PERIPH;
  1815. config_addr_width = config->dst_addr_width;
  1816. config_maxburst = config->dst_maxburst;
  1817. } else {
  1818. dev_err(d40c->base->dev,
  1819. "unrecognized channel direction %d\n",
  1820. config->direction);
  1821. return;
  1822. }
  1823. switch (config_addr_width) {
  1824. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  1825. addr_width = STEDMA40_BYTE_WIDTH;
  1826. break;
  1827. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  1828. addr_width = STEDMA40_HALFWORD_WIDTH;
  1829. break;
  1830. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  1831. addr_width = STEDMA40_WORD_WIDTH;
  1832. break;
  1833. case DMA_SLAVE_BUSWIDTH_8_BYTES:
  1834. addr_width = STEDMA40_DOUBLEWORD_WIDTH;
  1835. break;
  1836. default:
  1837. dev_err(d40c->base->dev,
  1838. "illegal peripheral address width "
  1839. "requested (%d)\n",
  1840. config->src_addr_width);
  1841. return;
  1842. }
  1843. if (config_maxburst >= 16)
  1844. psize = STEDMA40_PSIZE_LOG_16;
  1845. else if (config_maxburst >= 8)
  1846. psize = STEDMA40_PSIZE_LOG_8;
  1847. else if (config_maxburst >= 4)
  1848. psize = STEDMA40_PSIZE_LOG_4;
  1849. else
  1850. psize = STEDMA40_PSIZE_LOG_1;
  1851. /* Set up all the endpoint configs */
  1852. cfg->src_info.data_width = addr_width;
  1853. cfg->src_info.psize = psize;
  1854. cfg->src_info.endianess = STEDMA40_LITTLE_ENDIAN;
  1855. cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  1856. cfg->dst_info.data_width = addr_width;
  1857. cfg->dst_info.psize = psize;
  1858. cfg->dst_info.endianess = STEDMA40_LITTLE_ENDIAN;
  1859. cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  1860. /* These settings will take precedence later */
  1861. d40c->runtime_addr = config_addr;
  1862. d40c->runtime_direction = config->direction;
  1863. dev_dbg(d40c->base->dev,
  1864. "configured channel %s for %s, data width %d, "
  1865. "maxburst %d bytes, LE, no flow control\n",
  1866. dma_chan_name(chan),
  1867. (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
  1868. config_addr_width,
  1869. config_maxburst);
  1870. }
  1871. static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  1872. unsigned long arg)
  1873. {
  1874. unsigned long flags;
  1875. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1876. if (d40c->phy_chan == NULL) {
  1877. dev_err(&d40c->chan.dev->device,
  1878. "[%s] Channel is not allocated!\n", __func__);
  1879. return -EINVAL;
  1880. }
  1881. switch (cmd) {
  1882. case DMA_TERMINATE_ALL:
  1883. spin_lock_irqsave(&d40c->lock, flags);
  1884. d40_term_all(d40c);
  1885. spin_unlock_irqrestore(&d40c->lock, flags);
  1886. return 0;
  1887. case DMA_PAUSE:
  1888. return d40_pause(chan);
  1889. case DMA_RESUME:
  1890. return d40_resume(chan);
  1891. case DMA_SLAVE_CONFIG:
  1892. d40_set_runtime_config(chan,
  1893. (struct dma_slave_config *) arg);
  1894. return 0;
  1895. default:
  1896. break;
  1897. }
  1898. /* Other commands are unimplemented */
  1899. return -ENXIO;
  1900. }
  1901. /* Initialization functions */
  1902. static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
  1903. struct d40_chan *chans, int offset,
  1904. int num_chans)
  1905. {
  1906. int i = 0;
  1907. struct d40_chan *d40c;
  1908. INIT_LIST_HEAD(&dma->channels);
  1909. for (i = offset; i < offset + num_chans; i++) {
  1910. d40c = &chans[i];
  1911. d40c->base = base;
  1912. d40c->chan.device = dma;
  1913. /* Invalidate lcla element */
  1914. d40c->lcla.src_id = -1;
  1915. d40c->lcla.dst_id = -1;
  1916. spin_lock_init(&d40c->lock);
  1917. d40c->log_num = D40_PHY_CHAN;
  1918. INIT_LIST_HEAD(&d40c->active);
  1919. INIT_LIST_HEAD(&d40c->queue);
  1920. INIT_LIST_HEAD(&d40c->client);
  1921. tasklet_init(&d40c->tasklet, dma_tasklet,
  1922. (unsigned long) d40c);
  1923. list_add_tail(&d40c->chan.device_node,
  1924. &dma->channels);
  1925. }
  1926. }
  1927. static int __init d40_dmaengine_init(struct d40_base *base,
  1928. int num_reserved_chans)
  1929. {
  1930. int err ;
  1931. d40_chan_init(base, &base->dma_slave, base->log_chans,
  1932. 0, base->num_log_chans);
  1933. dma_cap_zero(base->dma_slave.cap_mask);
  1934. dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
  1935. base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources;
  1936. base->dma_slave.device_free_chan_resources = d40_free_chan_resources;
  1937. base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy;
  1938. base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg;
  1939. base->dma_slave.device_tx_status = d40_tx_status;
  1940. base->dma_slave.device_issue_pending = d40_issue_pending;
  1941. base->dma_slave.device_control = d40_control;
  1942. base->dma_slave.dev = base->dev;
  1943. err = dma_async_device_register(&base->dma_slave);
  1944. if (err) {
  1945. dev_err(base->dev,
  1946. "[%s] Failed to register slave channels\n",
  1947. __func__);
  1948. goto failure1;
  1949. }
  1950. d40_chan_init(base, &base->dma_memcpy, base->log_chans,
  1951. base->num_log_chans, base->plat_data->memcpy_len);
  1952. dma_cap_zero(base->dma_memcpy.cap_mask);
  1953. dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
  1954. base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources;
  1955. base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources;
  1956. base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy;
  1957. base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg;
  1958. base->dma_memcpy.device_tx_status = d40_tx_status;
  1959. base->dma_memcpy.device_issue_pending = d40_issue_pending;
  1960. base->dma_memcpy.device_control = d40_control;
  1961. base->dma_memcpy.dev = base->dev;
  1962. /*
  1963. * This controller can only access address at even
  1964. * 32bit boundaries, i.e. 2^2
  1965. */
  1966. base->dma_memcpy.copy_align = 2;
  1967. err = dma_async_device_register(&base->dma_memcpy);
  1968. if (err) {
  1969. dev_err(base->dev,
  1970. "[%s] Failed to regsiter memcpy only channels\n",
  1971. __func__);
  1972. goto failure2;
  1973. }
  1974. d40_chan_init(base, &base->dma_both, base->phy_chans,
  1975. 0, num_reserved_chans);
  1976. dma_cap_zero(base->dma_both.cap_mask);
  1977. dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
  1978. dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
  1979. base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources;
  1980. base->dma_both.device_free_chan_resources = d40_free_chan_resources;
  1981. base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy;
  1982. base->dma_both.device_prep_slave_sg = d40_prep_slave_sg;
  1983. base->dma_both.device_tx_status = d40_tx_status;
  1984. base->dma_both.device_issue_pending = d40_issue_pending;
  1985. base->dma_both.device_control = d40_control;
  1986. base->dma_both.dev = base->dev;
  1987. base->dma_both.copy_align = 2;
  1988. err = dma_async_device_register(&base->dma_both);
  1989. if (err) {
  1990. dev_err(base->dev,
  1991. "[%s] Failed to register logical and physical capable channels\n",
  1992. __func__);
  1993. goto failure3;
  1994. }
  1995. return 0;
  1996. failure3:
  1997. dma_async_device_unregister(&base->dma_memcpy);
  1998. failure2:
  1999. dma_async_device_unregister(&base->dma_slave);
  2000. failure1:
  2001. return err;
  2002. }
  2003. /* Initialization functions. */
  2004. static int __init d40_phy_res_init(struct d40_base *base)
  2005. {
  2006. int i;
  2007. int num_phy_chans_avail = 0;
  2008. u32 val[2];
  2009. int odd_even_bit = -2;
  2010. val[0] = readl(base->virtbase + D40_DREG_PRSME);
  2011. val[1] = readl(base->virtbase + D40_DREG_PRSMO);
  2012. for (i = 0; i < base->num_phy_chans; i++) {
  2013. base->phy_res[i].num = i;
  2014. odd_even_bit += 2 * ((i % 2) == 0);
  2015. if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
  2016. /* Mark security only channels as occupied */
  2017. base->phy_res[i].allocated_src = D40_ALLOC_PHY;
  2018. base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
  2019. } else {
  2020. base->phy_res[i].allocated_src = D40_ALLOC_FREE;
  2021. base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
  2022. num_phy_chans_avail++;
  2023. }
  2024. spin_lock_init(&base->phy_res[i].lock);
  2025. }
  2026. /* Mark disabled channels as occupied */
  2027. for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
  2028. base->phy_res[i].allocated_src = D40_ALLOC_PHY;
  2029. base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
  2030. num_phy_chans_avail--;
  2031. }
  2032. dev_info(base->dev, "%d of %d physical DMA channels available\n",
  2033. num_phy_chans_avail, base->num_phy_chans);
  2034. /* Verify settings extended vs standard */
  2035. val[0] = readl(base->virtbase + D40_DREG_PRTYP);
  2036. for (i = 0; i < base->num_phy_chans; i++) {
  2037. if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
  2038. (val[0] & 0x3) != 1)
  2039. dev_info(base->dev,
  2040. "[%s] INFO: channel %d is misconfigured (%d)\n",
  2041. __func__, i, val[0] & 0x3);
  2042. val[0] = val[0] >> 2;
  2043. }
  2044. return num_phy_chans_avail;
  2045. }
  2046. static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
  2047. {
  2048. static const struct d40_reg_val dma_id_regs[] = {
  2049. /* Peripheral Id */
  2050. { .reg = D40_DREG_PERIPHID0, .val = 0x0040},
  2051. { .reg = D40_DREG_PERIPHID1, .val = 0x0000},
  2052. /*
  2053. * D40_DREG_PERIPHID2 Depends on HW revision:
  2054. * MOP500/HREF ED has 0x0008,
  2055. * ? has 0x0018,
  2056. * HREF V1 has 0x0028
  2057. */
  2058. { .reg = D40_DREG_PERIPHID3, .val = 0x0000},
  2059. /* PCell Id */
  2060. { .reg = D40_DREG_CELLID0, .val = 0x000d},
  2061. { .reg = D40_DREG_CELLID1, .val = 0x00f0},
  2062. { .reg = D40_DREG_CELLID2, .val = 0x0005},
  2063. { .reg = D40_DREG_CELLID3, .val = 0x00b1}
  2064. };
  2065. struct stedma40_platform_data *plat_data;
  2066. struct clk *clk = NULL;
  2067. void __iomem *virtbase = NULL;
  2068. struct resource *res = NULL;
  2069. struct d40_base *base = NULL;
  2070. int num_log_chans = 0;
  2071. int num_phy_chans;
  2072. int i;
  2073. u32 val;
  2074. clk = clk_get(&pdev->dev, NULL);
  2075. if (IS_ERR(clk)) {
  2076. dev_err(&pdev->dev, "[%s] No matching clock found\n",
  2077. __func__);
  2078. goto failure;
  2079. }
  2080. clk_enable(clk);
  2081. /* Get IO for DMAC base address */
  2082. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
  2083. if (!res)
  2084. goto failure;
  2085. if (request_mem_region(res->start, resource_size(res),
  2086. D40_NAME " I/O base") == NULL)
  2087. goto failure;
  2088. virtbase = ioremap(res->start, resource_size(res));
  2089. if (!virtbase)
  2090. goto failure;
  2091. /* HW version check */
  2092. for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
  2093. if (dma_id_regs[i].val !=
  2094. readl(virtbase + dma_id_regs[i].reg)) {
  2095. dev_err(&pdev->dev,
  2096. "[%s] Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
  2097. __func__,
  2098. dma_id_regs[i].val,
  2099. dma_id_regs[i].reg,
  2100. readl(virtbase + dma_id_regs[i].reg));
  2101. goto failure;
  2102. }
  2103. }
  2104. /* Get silicon revision */
  2105. val = readl(virtbase + D40_DREG_PERIPHID2);
  2106. if ((val & 0xf) != D40_PERIPHID2_DESIGNER) {
  2107. dev_err(&pdev->dev,
  2108. "[%s] Unknown designer! Got %x wanted %x\n",
  2109. __func__, val & 0xf, D40_PERIPHID2_DESIGNER);
  2110. goto failure;
  2111. }
  2112. /* The number of physical channels on this HW */
  2113. num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
  2114. dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
  2115. (val >> 4) & 0xf, res->start);
  2116. plat_data = pdev->dev.platform_data;
  2117. /* Count the number of logical channels in use */
  2118. for (i = 0; i < plat_data->dev_len; i++)
  2119. if (plat_data->dev_rx[i] != 0)
  2120. num_log_chans++;
  2121. for (i = 0; i < plat_data->dev_len; i++)
  2122. if (plat_data->dev_tx[i] != 0)
  2123. num_log_chans++;
  2124. base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
  2125. (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
  2126. sizeof(struct d40_chan), GFP_KERNEL);
  2127. if (base == NULL) {
  2128. dev_err(&pdev->dev, "[%s] Out of memory\n", __func__);
  2129. goto failure;
  2130. }
  2131. base->rev = (val >> 4) & 0xf;
  2132. base->clk = clk;
  2133. base->num_phy_chans = num_phy_chans;
  2134. base->num_log_chans = num_log_chans;
  2135. base->phy_start = res->start;
  2136. base->phy_size = resource_size(res);
  2137. base->virtbase = virtbase;
  2138. base->plat_data = plat_data;
  2139. base->dev = &pdev->dev;
  2140. base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
  2141. base->log_chans = &base->phy_chans[num_phy_chans];
  2142. base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
  2143. GFP_KERNEL);
  2144. if (!base->phy_res)
  2145. goto failure;
  2146. base->lookup_phy_chans = kzalloc(num_phy_chans *
  2147. sizeof(struct d40_chan *),
  2148. GFP_KERNEL);
  2149. if (!base->lookup_phy_chans)
  2150. goto failure;
  2151. if (num_log_chans + plat_data->memcpy_len) {
  2152. /*
  2153. * The max number of logical channels are event lines for all
  2154. * src devices and dst devices
  2155. */
  2156. base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
  2157. sizeof(struct d40_chan *),
  2158. GFP_KERNEL);
  2159. if (!base->lookup_log_chans)
  2160. goto failure;
  2161. }
  2162. base->lcla_pool.alloc_map = kzalloc(num_phy_chans * sizeof(u32),
  2163. GFP_KERNEL);
  2164. if (!base->lcla_pool.alloc_map)
  2165. goto failure;
  2166. base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
  2167. 0, SLAB_HWCACHE_ALIGN,
  2168. NULL);
  2169. if (base->desc_slab == NULL)
  2170. goto failure;
  2171. return base;
  2172. failure:
  2173. if (clk) {
  2174. clk_disable(clk);
  2175. clk_put(clk);
  2176. }
  2177. if (virtbase)
  2178. iounmap(virtbase);
  2179. if (res)
  2180. release_mem_region(res->start,
  2181. resource_size(res));
  2182. if (virtbase)
  2183. iounmap(virtbase);
  2184. if (base) {
  2185. kfree(base->lcla_pool.alloc_map);
  2186. kfree(base->lookup_log_chans);
  2187. kfree(base->lookup_phy_chans);
  2188. kfree(base->phy_res);
  2189. kfree(base);
  2190. }
  2191. return NULL;
  2192. }
  2193. static void __init d40_hw_init(struct d40_base *base)
  2194. {
  2195. static const struct d40_reg_val dma_init_reg[] = {
  2196. /* Clock every part of the DMA block from start */
  2197. { .reg = D40_DREG_GCC, .val = 0x0000ff01},
  2198. /* Interrupts on all logical channels */
  2199. { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
  2200. { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
  2201. { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
  2202. { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
  2203. { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
  2204. { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
  2205. { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
  2206. { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
  2207. { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
  2208. { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
  2209. { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
  2210. { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
  2211. };
  2212. int i;
  2213. u32 prmseo[2] = {0, 0};
  2214. u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
  2215. u32 pcmis = 0;
  2216. u32 pcicr = 0;
  2217. for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
  2218. writel(dma_init_reg[i].val,
  2219. base->virtbase + dma_init_reg[i].reg);
  2220. /* Configure all our dma channels to default settings */
  2221. for (i = 0; i < base->num_phy_chans; i++) {
  2222. activeo[i % 2] = activeo[i % 2] << 2;
  2223. if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
  2224. == D40_ALLOC_PHY) {
  2225. activeo[i % 2] |= 3;
  2226. continue;
  2227. }
  2228. /* Enable interrupt # */
  2229. pcmis = (pcmis << 1) | 1;
  2230. /* Clear interrupt # */
  2231. pcicr = (pcicr << 1) | 1;
  2232. /* Set channel to physical mode */
  2233. prmseo[i % 2] = prmseo[i % 2] << 2;
  2234. prmseo[i % 2] |= 1;
  2235. }
  2236. writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
  2237. writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
  2238. writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
  2239. writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
  2240. /* Write which interrupt to enable */
  2241. writel(pcmis, base->virtbase + D40_DREG_PCMIS);
  2242. /* Write which interrupt to clear */
  2243. writel(pcicr, base->virtbase + D40_DREG_PCICR);
  2244. }
  2245. static int __init d40_lcla_allocate(struct d40_base *base)
  2246. {
  2247. unsigned long *page_list;
  2248. int i, j;
  2249. int ret = 0;
  2250. /*
  2251. * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
  2252. * To full fill this hardware requirement without wasting 256 kb
  2253. * we allocate pages until we get an aligned one.
  2254. */
  2255. page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
  2256. GFP_KERNEL);
  2257. if (!page_list) {
  2258. ret = -ENOMEM;
  2259. goto failure;
  2260. }
  2261. /* Calculating how many pages that are required */
  2262. base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
  2263. for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
  2264. page_list[i] = __get_free_pages(GFP_KERNEL,
  2265. base->lcla_pool.pages);
  2266. if (!page_list[i]) {
  2267. dev_err(base->dev,
  2268. "[%s] Failed to allocate %d pages.\n",
  2269. __func__, base->lcla_pool.pages);
  2270. for (j = 0; j < i; j++)
  2271. free_pages(page_list[j], base->lcla_pool.pages);
  2272. goto failure;
  2273. }
  2274. if ((virt_to_phys((void *)page_list[i]) &
  2275. (LCLA_ALIGNMENT - 1)) == 0)
  2276. break;
  2277. }
  2278. for (j = 0; j < i; j++)
  2279. free_pages(page_list[j], base->lcla_pool.pages);
  2280. if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
  2281. base->lcla_pool.base = (void *)page_list[i];
  2282. } else {
  2283. /* After many attempts, no succees with finding the correct
  2284. * alignment try with allocating a big buffer */
  2285. dev_warn(base->dev,
  2286. "[%s] Failed to get %d pages @ 18 bit align.\n",
  2287. __func__, base->lcla_pool.pages);
  2288. base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
  2289. base->num_phy_chans +
  2290. LCLA_ALIGNMENT,
  2291. GFP_KERNEL);
  2292. if (!base->lcla_pool.base_unaligned) {
  2293. ret = -ENOMEM;
  2294. goto failure;
  2295. }
  2296. base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
  2297. LCLA_ALIGNMENT);
  2298. }
  2299. writel(virt_to_phys(base->lcla_pool.base),
  2300. base->virtbase + D40_DREG_LCLA);
  2301. failure:
  2302. kfree(page_list);
  2303. return ret;
  2304. }
  2305. static int __init d40_probe(struct platform_device *pdev)
  2306. {
  2307. int err;
  2308. int ret = -ENOENT;
  2309. struct d40_base *base;
  2310. struct resource *res = NULL;
  2311. int num_reserved_chans;
  2312. u32 val;
  2313. base = d40_hw_detect_init(pdev);
  2314. if (!base)
  2315. goto failure;
  2316. num_reserved_chans = d40_phy_res_init(base);
  2317. platform_set_drvdata(pdev, base);
  2318. spin_lock_init(&base->interrupt_lock);
  2319. spin_lock_init(&base->execmd_lock);
  2320. /* Get IO for logical channel parameter address */
  2321. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
  2322. if (!res) {
  2323. ret = -ENOENT;
  2324. dev_err(&pdev->dev,
  2325. "[%s] No \"lcpa\" memory resource\n",
  2326. __func__);
  2327. goto failure;
  2328. }
  2329. base->lcpa_size = resource_size(res);
  2330. base->phy_lcpa = res->start;
  2331. if (request_mem_region(res->start, resource_size(res),
  2332. D40_NAME " I/O lcpa") == NULL) {
  2333. ret = -EBUSY;
  2334. dev_err(&pdev->dev,
  2335. "[%s] Failed to request LCPA region 0x%x-0x%x\n",
  2336. __func__, res->start, res->end);
  2337. goto failure;
  2338. }
  2339. /* We make use of ESRAM memory for this. */
  2340. val = readl(base->virtbase + D40_DREG_LCPA);
  2341. if (res->start != val && val != 0) {
  2342. dev_warn(&pdev->dev,
  2343. "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
  2344. __func__, val, res->start);
  2345. } else
  2346. writel(res->start, base->virtbase + D40_DREG_LCPA);
  2347. base->lcpa_base = ioremap(res->start, resource_size(res));
  2348. if (!base->lcpa_base) {
  2349. ret = -ENOMEM;
  2350. dev_err(&pdev->dev,
  2351. "[%s] Failed to ioremap LCPA region\n",
  2352. __func__);
  2353. goto failure;
  2354. }
  2355. ret = d40_lcla_allocate(base);
  2356. if (ret) {
  2357. dev_err(&pdev->dev, "[%s] Failed to allocate LCLA area\n",
  2358. __func__);
  2359. goto failure;
  2360. }
  2361. spin_lock_init(&base->lcla_pool.lock);
  2362. base->lcla_pool.num_blocks = base->num_phy_chans;
  2363. base->irq = platform_get_irq(pdev, 0);
  2364. ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
  2365. if (ret) {
  2366. dev_err(&pdev->dev, "[%s] No IRQ defined\n", __func__);
  2367. goto failure;
  2368. }
  2369. err = d40_dmaengine_init(base, num_reserved_chans);
  2370. if (err)
  2371. goto failure;
  2372. d40_hw_init(base);
  2373. dev_info(base->dev, "initialized\n");
  2374. return 0;
  2375. failure:
  2376. if (base) {
  2377. if (base->desc_slab)
  2378. kmem_cache_destroy(base->desc_slab);
  2379. if (base->virtbase)
  2380. iounmap(base->virtbase);
  2381. if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
  2382. free_pages((unsigned long)base->lcla_pool.base,
  2383. base->lcla_pool.pages);
  2384. if (base->lcla_pool.base_unaligned)
  2385. kfree(base->lcla_pool.base_unaligned);
  2386. if (base->phy_lcpa)
  2387. release_mem_region(base->phy_lcpa,
  2388. base->lcpa_size);
  2389. if (base->phy_start)
  2390. release_mem_region(base->phy_start,
  2391. base->phy_size);
  2392. if (base->clk) {
  2393. clk_disable(base->clk);
  2394. clk_put(base->clk);
  2395. }
  2396. kfree(base->lcla_pool.alloc_map);
  2397. kfree(base->lookup_log_chans);
  2398. kfree(base->lookup_phy_chans);
  2399. kfree(base->phy_res);
  2400. kfree(base);
  2401. }
  2402. dev_err(&pdev->dev, "[%s] probe failed\n", __func__);
  2403. return ret;
  2404. }
  2405. static struct platform_driver d40_driver = {
  2406. .driver = {
  2407. .owner = THIS_MODULE,
  2408. .name = D40_NAME,
  2409. },
  2410. };
  2411. int __init stedma40_init(void)
  2412. {
  2413. return platform_driver_probe(&d40_driver, d40_probe);
  2414. }
  2415. arch_initcall(stedma40_init);