mm.h 41 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234
  1. #ifndef _LINUX_MM_H
  2. #define _LINUX_MM_H
  3. #include <linux/errno.h>
  4. #ifdef __KERNEL__
  5. #include <linux/gfp.h>
  6. #include <linux/list.h>
  7. #include <linux/mmzone.h>
  8. #include <linux/rbtree.h>
  9. #include <linux/prio_tree.h>
  10. #include <linux/debug_locks.h>
  11. #include <linux/mm_types.h>
  12. struct mempolicy;
  13. struct anon_vma;
  14. struct file_ra_state;
  15. struct user_struct;
  16. struct writeback_control;
  17. #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
  18. extern unsigned long max_mapnr;
  19. #endif
  20. extern unsigned long num_physpages;
  21. extern void * high_memory;
  22. extern int page_cluster;
  23. #ifdef CONFIG_SYSCTL
  24. extern int sysctl_legacy_va_layout;
  25. #else
  26. #define sysctl_legacy_va_layout 0
  27. #endif
  28. extern unsigned long mmap_min_addr;
  29. #include <asm/page.h>
  30. #include <asm/pgtable.h>
  31. #include <asm/processor.h>
  32. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  33. /*
  34. * Linux kernel virtual memory manager primitives.
  35. * The idea being to have a "virtual" mm in the same way
  36. * we have a virtual fs - giving a cleaner interface to the
  37. * mm details, and allowing different kinds of memory mappings
  38. * (from shared memory to executable loading to arbitrary
  39. * mmap() functions).
  40. */
  41. extern struct kmem_cache *vm_area_cachep;
  42. /*
  43. * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
  44. * disabled, then there's a single shared list of VMAs maintained by the
  45. * system, and mm's subscribe to these individually
  46. */
  47. struct vm_list_struct {
  48. struct vm_list_struct *next;
  49. struct vm_area_struct *vma;
  50. };
  51. #ifndef CONFIG_MMU
  52. extern struct rb_root nommu_vma_tree;
  53. extern struct rw_semaphore nommu_vma_sem;
  54. extern unsigned int kobjsize(const void *objp);
  55. #endif
  56. /*
  57. * vm_flags..
  58. */
  59. #define VM_READ 0x00000001 /* currently active flags */
  60. #define VM_WRITE 0x00000002
  61. #define VM_EXEC 0x00000004
  62. #define VM_SHARED 0x00000008
  63. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  64. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  65. #define VM_MAYWRITE 0x00000020
  66. #define VM_MAYEXEC 0x00000040
  67. #define VM_MAYSHARE 0x00000080
  68. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  69. #define VM_GROWSUP 0x00000200
  70. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  71. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  72. #define VM_EXECUTABLE 0x00001000
  73. #define VM_LOCKED 0x00002000
  74. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  75. /* Used by sys_madvise() */
  76. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  77. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  78. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  79. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  80. #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
  81. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  82. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  83. #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
  84. #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
  85. #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
  86. #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
  87. #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
  88. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  89. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  90. #endif
  91. #ifdef CONFIG_STACK_GROWSUP
  92. #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  93. #else
  94. #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  95. #endif
  96. #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
  97. #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
  98. #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
  99. #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
  100. #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
  101. /*
  102. * mapping from the currently active vm_flags protection bits (the
  103. * low four bits) to a page protection mask..
  104. */
  105. extern pgprot_t protection_map[16];
  106. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  107. #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
  108. /*
  109. * vm_fault is filled by the the pagefault handler and passed to the vma's
  110. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  111. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  112. *
  113. * pgoff should be used in favour of virtual_address, if possible. If pgoff
  114. * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
  115. * mapping support.
  116. */
  117. struct vm_fault {
  118. unsigned int flags; /* FAULT_FLAG_xxx flags */
  119. pgoff_t pgoff; /* Logical page offset based on vma */
  120. void __user *virtual_address; /* Faulting virtual address */
  121. struct page *page; /* ->fault handlers should return a
  122. * page here, unless VM_FAULT_NOPAGE
  123. * is set (which is also implied by
  124. * VM_FAULT_ERROR).
  125. */
  126. };
  127. /*
  128. * These are the virtual MM functions - opening of an area, closing and
  129. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  130. * to the functions called when a no-page or a wp-page exception occurs.
  131. */
  132. struct vm_operations_struct {
  133. void (*open)(struct vm_area_struct * area);
  134. void (*close)(struct vm_area_struct * area);
  135. int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
  136. struct page *(*nopage)(struct vm_area_struct *area,
  137. unsigned long address, int *type);
  138. unsigned long (*nopfn)(struct vm_area_struct *area,
  139. unsigned long address);
  140. /* notification that a previously read-only page is about to become
  141. * writable, if an error is returned it will cause a SIGBUS */
  142. int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
  143. #ifdef CONFIG_NUMA
  144. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  145. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  146. unsigned long addr);
  147. int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
  148. const nodemask_t *to, unsigned long flags);
  149. #endif
  150. };
  151. struct mmu_gather;
  152. struct inode;
  153. #define page_private(page) ((page)->private)
  154. #define set_page_private(page, v) ((page)->private = (v))
  155. /*
  156. * FIXME: take this include out, include page-flags.h in
  157. * files which need it (119 of them)
  158. */
  159. #include <linux/page-flags.h>
  160. #ifdef CONFIG_DEBUG_VM
  161. #define VM_BUG_ON(cond) BUG_ON(cond)
  162. #else
  163. #define VM_BUG_ON(condition) do { } while(0)
  164. #endif
  165. /*
  166. * Methods to modify the page usage count.
  167. *
  168. * What counts for a page usage:
  169. * - cache mapping (page->mapping)
  170. * - private data (page->private)
  171. * - page mapped in a task's page tables, each mapping
  172. * is counted separately
  173. *
  174. * Also, many kernel routines increase the page count before a critical
  175. * routine so they can be sure the page doesn't go away from under them.
  176. */
  177. /*
  178. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  179. */
  180. static inline int put_page_testzero(struct page *page)
  181. {
  182. VM_BUG_ON(atomic_read(&page->_count) == 0);
  183. return atomic_dec_and_test(&page->_count);
  184. }
  185. /*
  186. * Try to grab a ref unless the page has a refcount of zero, return false if
  187. * that is the case.
  188. */
  189. static inline int get_page_unless_zero(struct page *page)
  190. {
  191. VM_BUG_ON(PageTail(page));
  192. return atomic_inc_not_zero(&page->_count);
  193. }
  194. /* Support for virtually mapped pages */
  195. struct page *vmalloc_to_page(const void *addr);
  196. unsigned long vmalloc_to_pfn(const void *addr);
  197. /*
  198. * Determine if an address is within the vmalloc range
  199. *
  200. * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
  201. * is no special casing required.
  202. */
  203. static inline int is_vmalloc_addr(const void *x)
  204. {
  205. #ifdef CONFIG_MMU
  206. unsigned long addr = (unsigned long)x;
  207. return addr >= VMALLOC_START && addr < VMALLOC_END;
  208. #else
  209. return 0;
  210. #endif
  211. }
  212. static inline struct page *compound_head(struct page *page)
  213. {
  214. if (unlikely(PageTail(page)))
  215. return page->first_page;
  216. return page;
  217. }
  218. static inline int page_count(struct page *page)
  219. {
  220. return atomic_read(&compound_head(page)->_count);
  221. }
  222. static inline void get_page(struct page *page)
  223. {
  224. page = compound_head(page);
  225. VM_BUG_ON(atomic_read(&page->_count) == 0);
  226. atomic_inc(&page->_count);
  227. }
  228. static inline struct page *virt_to_head_page(const void *x)
  229. {
  230. struct page *page = virt_to_page(x);
  231. return compound_head(page);
  232. }
  233. /*
  234. * Setup the page count before being freed into the page allocator for
  235. * the first time (boot or memory hotplug)
  236. */
  237. static inline void init_page_count(struct page *page)
  238. {
  239. atomic_set(&page->_count, 1);
  240. }
  241. void put_page(struct page *page);
  242. void put_pages_list(struct list_head *pages);
  243. void split_page(struct page *page, unsigned int order);
  244. /*
  245. * Compound pages have a destructor function. Provide a
  246. * prototype for that function and accessor functions.
  247. * These are _only_ valid on the head of a PG_compound page.
  248. */
  249. typedef void compound_page_dtor(struct page *);
  250. static inline void set_compound_page_dtor(struct page *page,
  251. compound_page_dtor *dtor)
  252. {
  253. page[1].lru.next = (void *)dtor;
  254. }
  255. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  256. {
  257. return (compound_page_dtor *)page[1].lru.next;
  258. }
  259. static inline int compound_order(struct page *page)
  260. {
  261. if (!PageHead(page))
  262. return 0;
  263. return (unsigned long)page[1].lru.prev;
  264. }
  265. static inline void set_compound_order(struct page *page, unsigned long order)
  266. {
  267. page[1].lru.prev = (void *)order;
  268. }
  269. /*
  270. * Multiple processes may "see" the same page. E.g. for untouched
  271. * mappings of /dev/null, all processes see the same page full of
  272. * zeroes, and text pages of executables and shared libraries have
  273. * only one copy in memory, at most, normally.
  274. *
  275. * For the non-reserved pages, page_count(page) denotes a reference count.
  276. * page_count() == 0 means the page is free. page->lru is then used for
  277. * freelist management in the buddy allocator.
  278. * page_count() > 0 means the page has been allocated.
  279. *
  280. * Pages are allocated by the slab allocator in order to provide memory
  281. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  282. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  283. * unless a particular usage is carefully commented. (the responsibility of
  284. * freeing the kmalloc memory is the caller's, of course).
  285. *
  286. * A page may be used by anyone else who does a __get_free_page().
  287. * In this case, page_count still tracks the references, and should only
  288. * be used through the normal accessor functions. The top bits of page->flags
  289. * and page->virtual store page management information, but all other fields
  290. * are unused and could be used privately, carefully. The management of this
  291. * page is the responsibility of the one who allocated it, and those who have
  292. * subsequently been given references to it.
  293. *
  294. * The other pages (we may call them "pagecache pages") are completely
  295. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  296. * The following discussion applies only to them.
  297. *
  298. * A pagecache page contains an opaque `private' member, which belongs to the
  299. * page's address_space. Usually, this is the address of a circular list of
  300. * the page's disk buffers. PG_private must be set to tell the VM to call
  301. * into the filesystem to release these pages.
  302. *
  303. * A page may belong to an inode's memory mapping. In this case, page->mapping
  304. * is the pointer to the inode, and page->index is the file offset of the page,
  305. * in units of PAGE_CACHE_SIZE.
  306. *
  307. * If pagecache pages are not associated with an inode, they are said to be
  308. * anonymous pages. These may become associated with the swapcache, and in that
  309. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  310. *
  311. * In either case (swapcache or inode backed), the pagecache itself holds one
  312. * reference to the page. Setting PG_private should also increment the
  313. * refcount. The each user mapping also has a reference to the page.
  314. *
  315. * The pagecache pages are stored in a per-mapping radix tree, which is
  316. * rooted at mapping->page_tree, and indexed by offset.
  317. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  318. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  319. *
  320. * All pagecache pages may be subject to I/O:
  321. * - inode pages may need to be read from disk,
  322. * - inode pages which have been modified and are MAP_SHARED may need
  323. * to be written back to the inode on disk,
  324. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  325. * modified may need to be swapped out to swap space and (later) to be read
  326. * back into memory.
  327. */
  328. /*
  329. * The zone field is never updated after free_area_init_core()
  330. * sets it, so none of the operations on it need to be atomic.
  331. */
  332. /*
  333. * page->flags layout:
  334. *
  335. * There are three possibilities for how page->flags get
  336. * laid out. The first is for the normal case, without
  337. * sparsemem. The second is for sparsemem when there is
  338. * plenty of space for node and section. The last is when
  339. * we have run out of space and have to fall back to an
  340. * alternate (slower) way of determining the node.
  341. *
  342. * No sparsemem: | NODE | ZONE | ... | FLAGS |
  343. * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
  344. * no space for node: | SECTION | ZONE | ... | FLAGS |
  345. */
  346. #ifdef CONFIG_SPARSEMEM
  347. #define SECTIONS_WIDTH SECTIONS_SHIFT
  348. #else
  349. #define SECTIONS_WIDTH 0
  350. #endif
  351. #define ZONES_WIDTH ZONES_SHIFT
  352. #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
  353. #define NODES_WIDTH NODES_SHIFT
  354. #else
  355. #define NODES_WIDTH 0
  356. #endif
  357. /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
  358. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  359. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  360. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  361. /*
  362. * We are going to use the flags for the page to node mapping if its in
  363. * there. This includes the case where there is no node, so it is implicit.
  364. */
  365. #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
  366. #define NODE_NOT_IN_PAGE_FLAGS
  367. #endif
  368. #ifndef PFN_SECTION_SHIFT
  369. #define PFN_SECTION_SHIFT 0
  370. #endif
  371. /*
  372. * Define the bit shifts to access each section. For non-existant
  373. * sections we define the shift as 0; that plus a 0 mask ensures
  374. * the compiler will optimise away reference to them.
  375. */
  376. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  377. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  378. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  379. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
  380. #ifdef NODE_NOT_IN_PAGEFLAGS
  381. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  382. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  383. SECTIONS_PGOFF : ZONES_PGOFF)
  384. #else
  385. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  386. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  387. NODES_PGOFF : ZONES_PGOFF)
  388. #endif
  389. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  390. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
  391. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
  392. #endif
  393. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  394. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  395. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  396. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  397. static inline enum zone_type page_zonenum(struct page *page)
  398. {
  399. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  400. }
  401. /*
  402. * The identification function is only used by the buddy allocator for
  403. * determining if two pages could be buddies. We are not really
  404. * identifying a zone since we could be using a the section number
  405. * id if we have not node id available in page flags.
  406. * We guarantee only that it will return the same value for two
  407. * combinable pages in a zone.
  408. */
  409. static inline int page_zone_id(struct page *page)
  410. {
  411. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  412. }
  413. static inline int zone_to_nid(struct zone *zone)
  414. {
  415. #ifdef CONFIG_NUMA
  416. return zone->node;
  417. #else
  418. return 0;
  419. #endif
  420. }
  421. #ifdef NODE_NOT_IN_PAGE_FLAGS
  422. extern int page_to_nid(struct page *page);
  423. #else
  424. static inline int page_to_nid(struct page *page)
  425. {
  426. return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
  427. }
  428. #endif
  429. static inline struct zone *page_zone(struct page *page)
  430. {
  431. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  432. }
  433. static inline unsigned long page_to_section(struct page *page)
  434. {
  435. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  436. }
  437. static inline void set_page_zone(struct page *page, enum zone_type zone)
  438. {
  439. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  440. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  441. }
  442. static inline void set_page_node(struct page *page, unsigned long node)
  443. {
  444. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  445. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  446. }
  447. static inline void set_page_section(struct page *page, unsigned long section)
  448. {
  449. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  450. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  451. }
  452. static inline void set_page_links(struct page *page, enum zone_type zone,
  453. unsigned long node, unsigned long pfn)
  454. {
  455. set_page_zone(page, zone);
  456. set_page_node(page, node);
  457. set_page_section(page, pfn_to_section_nr(pfn));
  458. }
  459. /*
  460. * If a hint addr is less than mmap_min_addr change hint to be as
  461. * low as possible but still greater than mmap_min_addr
  462. */
  463. static inline unsigned long round_hint_to_min(unsigned long hint)
  464. {
  465. #ifdef CONFIG_SECURITY
  466. hint &= PAGE_MASK;
  467. if (((void *)hint != NULL) &&
  468. (hint < mmap_min_addr))
  469. return PAGE_ALIGN(mmap_min_addr);
  470. #endif
  471. return hint;
  472. }
  473. /*
  474. * Some inline functions in vmstat.h depend on page_zone()
  475. */
  476. #include <linux/vmstat.h>
  477. static __always_inline void *lowmem_page_address(struct page *page)
  478. {
  479. return __va(page_to_pfn(page) << PAGE_SHIFT);
  480. }
  481. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  482. #define HASHED_PAGE_VIRTUAL
  483. #endif
  484. #if defined(WANT_PAGE_VIRTUAL)
  485. #define page_address(page) ((page)->virtual)
  486. #define set_page_address(page, address) \
  487. do { \
  488. (page)->virtual = (address); \
  489. } while(0)
  490. #define page_address_init() do { } while(0)
  491. #endif
  492. #if defined(HASHED_PAGE_VIRTUAL)
  493. void *page_address(struct page *page);
  494. void set_page_address(struct page *page, void *virtual);
  495. void page_address_init(void);
  496. #endif
  497. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  498. #define page_address(page) lowmem_page_address(page)
  499. #define set_page_address(page, address) do { } while(0)
  500. #define page_address_init() do { } while(0)
  501. #endif
  502. /*
  503. * On an anonymous page mapped into a user virtual memory area,
  504. * page->mapping points to its anon_vma, not to a struct address_space;
  505. * with the PAGE_MAPPING_ANON bit set to distinguish it.
  506. *
  507. * Please note that, confusingly, "page_mapping" refers to the inode
  508. * address_space which maps the page from disk; whereas "page_mapped"
  509. * refers to user virtual address space into which the page is mapped.
  510. */
  511. #define PAGE_MAPPING_ANON 1
  512. extern struct address_space swapper_space;
  513. static inline struct address_space *page_mapping(struct page *page)
  514. {
  515. struct address_space *mapping = page->mapping;
  516. VM_BUG_ON(PageSlab(page));
  517. if (unlikely(PageSwapCache(page)))
  518. mapping = &swapper_space;
  519. else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
  520. mapping = NULL;
  521. return mapping;
  522. }
  523. static inline int PageAnon(struct page *page)
  524. {
  525. return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
  526. }
  527. /*
  528. * Return the pagecache index of the passed page. Regular pagecache pages
  529. * use ->index whereas swapcache pages use ->private
  530. */
  531. static inline pgoff_t page_index(struct page *page)
  532. {
  533. if (unlikely(PageSwapCache(page)))
  534. return page_private(page);
  535. return page->index;
  536. }
  537. /*
  538. * The atomic page->_mapcount, like _count, starts from -1:
  539. * so that transitions both from it and to it can be tracked,
  540. * using atomic_inc_and_test and atomic_add_negative(-1).
  541. */
  542. static inline void reset_page_mapcount(struct page *page)
  543. {
  544. atomic_set(&(page)->_mapcount, -1);
  545. }
  546. static inline int page_mapcount(struct page *page)
  547. {
  548. return atomic_read(&(page)->_mapcount) + 1;
  549. }
  550. /*
  551. * Return true if this page is mapped into pagetables.
  552. */
  553. static inline int page_mapped(struct page *page)
  554. {
  555. return atomic_read(&(page)->_mapcount) >= 0;
  556. }
  557. /*
  558. * Error return values for the *_nopage functions
  559. */
  560. #define NOPAGE_SIGBUS (NULL)
  561. #define NOPAGE_OOM ((struct page *) (-1))
  562. /*
  563. * Error return values for the *_nopfn functions
  564. */
  565. #define NOPFN_SIGBUS ((unsigned long) -1)
  566. #define NOPFN_OOM ((unsigned long) -2)
  567. #define NOPFN_REFAULT ((unsigned long) -3)
  568. /*
  569. * Different kinds of faults, as returned by handle_mm_fault().
  570. * Used to decide whether a process gets delivered SIGBUS or
  571. * just gets major/minor fault counters bumped up.
  572. */
  573. #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
  574. #define VM_FAULT_OOM 0x0001
  575. #define VM_FAULT_SIGBUS 0x0002
  576. #define VM_FAULT_MAJOR 0x0004
  577. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  578. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  579. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  580. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS)
  581. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  582. extern void show_free_areas(void);
  583. #ifdef CONFIG_SHMEM
  584. int shmem_lock(struct file *file, int lock, struct user_struct *user);
  585. #else
  586. static inline int shmem_lock(struct file *file, int lock,
  587. struct user_struct *user)
  588. {
  589. return 0;
  590. }
  591. #endif
  592. struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
  593. int shmem_zero_setup(struct vm_area_struct *);
  594. #ifndef CONFIG_MMU
  595. extern unsigned long shmem_get_unmapped_area(struct file *file,
  596. unsigned long addr,
  597. unsigned long len,
  598. unsigned long pgoff,
  599. unsigned long flags);
  600. #endif
  601. extern int can_do_mlock(void);
  602. extern int user_shm_lock(size_t, struct user_struct *);
  603. extern void user_shm_unlock(size_t, struct user_struct *);
  604. /*
  605. * Parameter block passed down to zap_pte_range in exceptional cases.
  606. */
  607. struct zap_details {
  608. struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
  609. struct address_space *check_mapping; /* Check page->mapping if set */
  610. pgoff_t first_index; /* Lowest page->index to unmap */
  611. pgoff_t last_index; /* Highest page->index to unmap */
  612. spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
  613. unsigned long truncate_count; /* Compare vm_truncate_count */
  614. };
  615. struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
  616. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  617. unsigned long size, struct zap_details *);
  618. unsigned long unmap_vmas(struct mmu_gather **tlb,
  619. struct vm_area_struct *start_vma, unsigned long start_addr,
  620. unsigned long end_addr, unsigned long *nr_accounted,
  621. struct zap_details *);
  622. /**
  623. * mm_walk - callbacks for walk_page_range
  624. * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
  625. * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
  626. * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
  627. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
  628. * @pte_hole: if set, called for each hole at all levels
  629. *
  630. * (see walk_page_range for more details)
  631. */
  632. struct mm_walk {
  633. int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, void *);
  634. int (*pud_entry)(pud_t *, unsigned long, unsigned long, void *);
  635. int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, void *);
  636. int (*pte_entry)(pte_t *, unsigned long, unsigned long, void *);
  637. int (*pte_hole)(unsigned long, unsigned long, void *);
  638. };
  639. int walk_page_range(const struct mm_struct *, unsigned long addr,
  640. unsigned long end, const struct mm_walk *walk,
  641. void *private);
  642. void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
  643. unsigned long end, unsigned long floor, unsigned long ceiling);
  644. void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
  645. unsigned long floor, unsigned long ceiling);
  646. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  647. struct vm_area_struct *vma);
  648. void unmap_mapping_range(struct address_space *mapping,
  649. loff_t const holebegin, loff_t const holelen, int even_cows);
  650. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  651. loff_t const holebegin, loff_t const holelen)
  652. {
  653. unmap_mapping_range(mapping, holebegin, holelen, 0);
  654. }
  655. extern int vmtruncate(struct inode * inode, loff_t offset);
  656. extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
  657. #ifdef CONFIG_MMU
  658. extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  659. unsigned long address, int write_access);
  660. #else
  661. static inline int handle_mm_fault(struct mm_struct *mm,
  662. struct vm_area_struct *vma, unsigned long address,
  663. int write_access)
  664. {
  665. /* should never happen if there's no MMU */
  666. BUG();
  667. return VM_FAULT_SIGBUS;
  668. }
  669. #endif
  670. extern int make_pages_present(unsigned long addr, unsigned long end);
  671. extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
  672. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
  673. int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
  674. void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
  675. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  676. extern void do_invalidatepage(struct page *page, unsigned long offset);
  677. int __set_page_dirty_nobuffers(struct page *page);
  678. int __set_page_dirty_no_writeback(struct page *page);
  679. int redirty_page_for_writepage(struct writeback_control *wbc,
  680. struct page *page);
  681. int set_page_dirty(struct page *page);
  682. int set_page_dirty_lock(struct page *page);
  683. int clear_page_dirty_for_io(struct page *page);
  684. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  685. unsigned long old_addr, struct vm_area_struct *new_vma,
  686. unsigned long new_addr, unsigned long len);
  687. extern unsigned long do_mremap(unsigned long addr,
  688. unsigned long old_len, unsigned long new_len,
  689. unsigned long flags, unsigned long new_addr);
  690. extern int mprotect_fixup(struct vm_area_struct *vma,
  691. struct vm_area_struct **pprev, unsigned long start,
  692. unsigned long end, unsigned long newflags);
  693. /*
  694. * A callback you can register to apply pressure to ageable caches.
  695. *
  696. * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
  697. * look through the least-recently-used 'nr_to_scan' entries and
  698. * attempt to free them up. It should return the number of objects
  699. * which remain in the cache. If it returns -1, it means it cannot do
  700. * any scanning at this time (eg. there is a risk of deadlock).
  701. *
  702. * The 'gfpmask' refers to the allocation we are currently trying to
  703. * fulfil.
  704. *
  705. * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
  706. * querying the cache size, so a fastpath for that case is appropriate.
  707. */
  708. struct shrinker {
  709. int (*shrink)(int nr_to_scan, gfp_t gfp_mask);
  710. int seeks; /* seeks to recreate an obj */
  711. /* These are for internal use */
  712. struct list_head list;
  713. long nr; /* objs pending delete */
  714. };
  715. #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
  716. extern void register_shrinker(struct shrinker *);
  717. extern void unregister_shrinker(struct shrinker *);
  718. int vma_wants_writenotify(struct vm_area_struct *vma);
  719. extern pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl);
  720. #ifdef __PAGETABLE_PUD_FOLDED
  721. static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
  722. unsigned long address)
  723. {
  724. return 0;
  725. }
  726. #else
  727. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  728. #endif
  729. #ifdef __PAGETABLE_PMD_FOLDED
  730. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  731. unsigned long address)
  732. {
  733. return 0;
  734. }
  735. #else
  736. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  737. #endif
  738. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
  739. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  740. /*
  741. * The following ifdef needed to get the 4level-fixup.h header to work.
  742. * Remove it when 4level-fixup.h has been removed.
  743. */
  744. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  745. static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  746. {
  747. return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
  748. NULL: pud_offset(pgd, address);
  749. }
  750. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  751. {
  752. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  753. NULL: pmd_offset(pud, address);
  754. }
  755. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  756. #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
  757. /*
  758. * We tuck a spinlock to guard each pagetable page into its struct page,
  759. * at page->private, with BUILD_BUG_ON to make sure that this will not
  760. * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
  761. * When freeing, reset page->mapping so free_pages_check won't complain.
  762. */
  763. #define __pte_lockptr(page) &((page)->ptl)
  764. #define pte_lock_init(_page) do { \
  765. spin_lock_init(__pte_lockptr(_page)); \
  766. } while (0)
  767. #define pte_lock_deinit(page) ((page)->mapping = NULL)
  768. #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
  769. #else
  770. /*
  771. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  772. */
  773. #define pte_lock_init(page) do {} while (0)
  774. #define pte_lock_deinit(page) do {} while (0)
  775. #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
  776. #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
  777. static inline void pgtable_page_ctor(struct page *page)
  778. {
  779. pte_lock_init(page);
  780. inc_zone_page_state(page, NR_PAGETABLE);
  781. }
  782. static inline void pgtable_page_dtor(struct page *page)
  783. {
  784. pte_lock_deinit(page);
  785. dec_zone_page_state(page, NR_PAGETABLE);
  786. }
  787. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  788. ({ \
  789. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  790. pte_t *__pte = pte_offset_map(pmd, address); \
  791. *(ptlp) = __ptl; \
  792. spin_lock(__ptl); \
  793. __pte; \
  794. })
  795. #define pte_unmap_unlock(pte, ptl) do { \
  796. spin_unlock(ptl); \
  797. pte_unmap(pte); \
  798. } while (0)
  799. #define pte_alloc_map(mm, pmd, address) \
  800. ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
  801. NULL: pte_offset_map(pmd, address))
  802. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  803. ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
  804. NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
  805. #define pte_alloc_kernel(pmd, address) \
  806. ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  807. NULL: pte_offset_kernel(pmd, address))
  808. extern void free_area_init(unsigned long * zones_size);
  809. extern void free_area_init_node(int nid, pg_data_t *pgdat,
  810. unsigned long * zones_size, unsigned long zone_start_pfn,
  811. unsigned long *zholes_size);
  812. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  813. /*
  814. * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
  815. * zones, allocate the backing mem_map and account for memory holes in a more
  816. * architecture independent manner. This is a substitute for creating the
  817. * zone_sizes[] and zholes_size[] arrays and passing them to
  818. * free_area_init_node()
  819. *
  820. * An architecture is expected to register range of page frames backed by
  821. * physical memory with add_active_range() before calling
  822. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  823. * usage, an architecture is expected to do something like
  824. *
  825. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  826. * max_highmem_pfn};
  827. * for_each_valid_physical_page_range()
  828. * add_active_range(node_id, start_pfn, end_pfn)
  829. * free_area_init_nodes(max_zone_pfns);
  830. *
  831. * If the architecture guarantees that there are no holes in the ranges
  832. * registered with add_active_range(), free_bootmem_active_regions()
  833. * will call free_bootmem_node() for each registered physical page range.
  834. * Similarly sparse_memory_present_with_active_regions() calls
  835. * memory_present() for each range when SPARSEMEM is enabled.
  836. *
  837. * See mm/page_alloc.c for more information on each function exposed by
  838. * CONFIG_ARCH_POPULATES_NODE_MAP
  839. */
  840. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  841. extern void add_active_range(unsigned int nid, unsigned long start_pfn,
  842. unsigned long end_pfn);
  843. extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
  844. unsigned long new_end_pfn);
  845. extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,
  846. unsigned long end_pfn);
  847. extern void remove_all_active_ranges(void);
  848. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  849. unsigned long end_pfn);
  850. extern void get_pfn_range_for_nid(unsigned int nid,
  851. unsigned long *start_pfn, unsigned long *end_pfn);
  852. extern unsigned long find_min_pfn_with_active_regions(void);
  853. extern unsigned long find_max_pfn_with_active_regions(void);
  854. extern void free_bootmem_with_active_regions(int nid,
  855. unsigned long max_low_pfn);
  856. extern void sparse_memory_present_with_active_regions(int nid);
  857. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  858. extern int early_pfn_to_nid(unsigned long pfn);
  859. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  860. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  861. extern void set_dma_reserve(unsigned long new_dma_reserve);
  862. extern void memmap_init_zone(unsigned long, int, unsigned long,
  863. unsigned long, enum memmap_context);
  864. extern void setup_per_zone_pages_min(void);
  865. extern void mem_init(void);
  866. extern void show_mem(void);
  867. extern void si_meminfo(struct sysinfo * val);
  868. extern void si_meminfo_node(struct sysinfo *val, int nid);
  869. #ifdef CONFIG_NUMA
  870. extern void setup_per_cpu_pageset(void);
  871. #else
  872. static inline void setup_per_cpu_pageset(void) {}
  873. #endif
  874. /* prio_tree.c */
  875. void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
  876. void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
  877. void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
  878. struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
  879. struct prio_tree_iter *iter);
  880. #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
  881. for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
  882. (vma = vma_prio_tree_next(vma, iter)); )
  883. static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
  884. struct list_head *list)
  885. {
  886. vma->shared.vm_set.parent = NULL;
  887. list_add_tail(&vma->shared.vm_set.list, list);
  888. }
  889. /* mmap.c */
  890. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  891. extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
  892. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
  893. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  894. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  895. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  896. struct mempolicy *);
  897. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  898. extern int split_vma(struct mm_struct *,
  899. struct vm_area_struct *, unsigned long addr, int new_below);
  900. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  901. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  902. struct rb_node **, struct rb_node *);
  903. extern void unlink_file_vma(struct vm_area_struct *);
  904. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  905. unsigned long addr, unsigned long len, pgoff_t pgoff);
  906. extern void exit_mmap(struct mm_struct *);
  907. extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
  908. extern int install_special_mapping(struct mm_struct *mm,
  909. unsigned long addr, unsigned long len,
  910. unsigned long flags, struct page **pages);
  911. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  912. extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
  913. unsigned long len, unsigned long prot,
  914. unsigned long flag, unsigned long pgoff);
  915. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  916. unsigned long len, unsigned long flags,
  917. unsigned int vm_flags, unsigned long pgoff,
  918. int accountable);
  919. static inline unsigned long do_mmap(struct file *file, unsigned long addr,
  920. unsigned long len, unsigned long prot,
  921. unsigned long flag, unsigned long offset)
  922. {
  923. unsigned long ret = -EINVAL;
  924. if ((offset + PAGE_ALIGN(len)) < offset)
  925. goto out;
  926. if (!(offset & ~PAGE_MASK))
  927. ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
  928. out:
  929. return ret;
  930. }
  931. extern int do_munmap(struct mm_struct *, unsigned long, size_t);
  932. extern unsigned long do_brk(unsigned long, unsigned long);
  933. /* filemap.c */
  934. extern unsigned long page_unuse(struct page *);
  935. extern void truncate_inode_pages(struct address_space *, loff_t);
  936. extern void truncate_inode_pages_range(struct address_space *,
  937. loff_t lstart, loff_t lend);
  938. /* generic vm_area_ops exported for stackable file systems */
  939. extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
  940. /* mm/page-writeback.c */
  941. int write_one_page(struct page *page, int wait);
  942. /* readahead.c */
  943. #define VM_MAX_READAHEAD 128 /* kbytes */
  944. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  945. int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
  946. pgoff_t offset, unsigned long nr_to_read);
  947. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  948. pgoff_t offset, unsigned long nr_to_read);
  949. void page_cache_sync_readahead(struct address_space *mapping,
  950. struct file_ra_state *ra,
  951. struct file *filp,
  952. pgoff_t offset,
  953. unsigned long size);
  954. void page_cache_async_readahead(struct address_space *mapping,
  955. struct file_ra_state *ra,
  956. struct file *filp,
  957. struct page *pg,
  958. pgoff_t offset,
  959. unsigned long size);
  960. unsigned long max_sane_readahead(unsigned long nr);
  961. /* Do stack extension */
  962. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  963. #ifdef CONFIG_IA64
  964. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  965. #endif
  966. extern int expand_stack_downwards(struct vm_area_struct *vma,
  967. unsigned long address);
  968. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  969. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  970. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  971. struct vm_area_struct **pprev);
  972. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  973. NULL if none. Assume start_addr < end_addr. */
  974. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  975. {
  976. struct vm_area_struct * vma = find_vma(mm,start_addr);
  977. if (vma && end_addr <= vma->vm_start)
  978. vma = NULL;
  979. return vma;
  980. }
  981. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  982. {
  983. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  984. }
  985. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  986. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  987. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  988. unsigned long pfn, unsigned long size, pgprot_t);
  989. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  990. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  991. unsigned long pfn);
  992. struct page *follow_page(struct vm_area_struct *, unsigned long address,
  993. unsigned int foll_flags);
  994. #define FOLL_WRITE 0x01 /* check pte is writable */
  995. #define FOLL_TOUCH 0x02 /* mark page accessed */
  996. #define FOLL_GET 0x04 /* do get_page on page */
  997. #define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
  998. typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
  999. void *data);
  1000. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  1001. unsigned long size, pte_fn_t fn, void *data);
  1002. #ifdef CONFIG_PROC_FS
  1003. void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
  1004. #else
  1005. static inline void vm_stat_account(struct mm_struct *mm,
  1006. unsigned long flags, struct file *file, long pages)
  1007. {
  1008. }
  1009. #endif /* CONFIG_PROC_FS */
  1010. #ifdef CONFIG_DEBUG_PAGEALLOC
  1011. extern int debug_pagealloc_enabled;
  1012. extern void kernel_map_pages(struct page *page, int numpages, int enable);
  1013. static inline void enable_debug_pagealloc(void)
  1014. {
  1015. debug_pagealloc_enabled = 1;
  1016. }
  1017. #ifdef CONFIG_HIBERNATION
  1018. extern bool kernel_page_present(struct page *page);
  1019. #endif /* CONFIG_HIBERNATION */
  1020. #else
  1021. static inline void
  1022. kernel_map_pages(struct page *page, int numpages, int enable) {}
  1023. static inline void enable_debug_pagealloc(void)
  1024. {
  1025. }
  1026. #ifdef CONFIG_HIBERNATION
  1027. static inline bool kernel_page_present(struct page *page) { return true; }
  1028. #endif /* CONFIG_HIBERNATION */
  1029. #endif
  1030. extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
  1031. #ifdef __HAVE_ARCH_GATE_AREA
  1032. int in_gate_area_no_task(unsigned long addr);
  1033. int in_gate_area(struct task_struct *task, unsigned long addr);
  1034. #else
  1035. int in_gate_area_no_task(unsigned long addr);
  1036. #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
  1037. #endif /* __HAVE_ARCH_GATE_AREA */
  1038. int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
  1039. void __user *, size_t *, loff_t *);
  1040. unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
  1041. unsigned long lru_pages);
  1042. void drop_pagecache(void);
  1043. void drop_slab(void);
  1044. #ifndef CONFIG_MMU
  1045. #define randomize_va_space 0
  1046. #else
  1047. extern int randomize_va_space;
  1048. #endif
  1049. const char * arch_vma_name(struct vm_area_struct *vma);
  1050. void print_vma_addr(char *prefix, unsigned long rip);
  1051. struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
  1052. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  1053. pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
  1054. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  1055. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  1056. void *vmemmap_alloc_block(unsigned long size, int node);
  1057. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  1058. int vmemmap_populate_basepages(struct page *start_page,
  1059. unsigned long pages, int node);
  1060. int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
  1061. #endif /* __KERNEL__ */
  1062. #endif /* _LINUX_MM_H */