mmu.c 62 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "vmx.h"
  20. #include "mmu.h"
  21. #include <linux/kvm_host.h>
  22. #include <linux/types.h>
  23. #include <linux/string.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/module.h>
  27. #include <linux/swap.h>
  28. #include <linux/hugetlb.h>
  29. #include <linux/compiler.h>
  30. #include <asm/page.h>
  31. #include <asm/cmpxchg.h>
  32. #include <asm/io.h>
  33. /*
  34. * When setting this variable to true it enables Two-Dimensional-Paging
  35. * where the hardware walks 2 page tables:
  36. * 1. the guest-virtual to guest-physical
  37. * 2. while doing 1. it walks guest-physical to host-physical
  38. * If the hardware supports that we don't need to do shadow paging.
  39. */
  40. bool tdp_enabled = false;
  41. #undef MMU_DEBUG
  42. #undef AUDIT
  43. #ifdef AUDIT
  44. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  45. #else
  46. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  47. #endif
  48. #ifdef MMU_DEBUG
  49. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  50. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  51. #else
  52. #define pgprintk(x...) do { } while (0)
  53. #define rmap_printk(x...) do { } while (0)
  54. #endif
  55. #if defined(MMU_DEBUG) || defined(AUDIT)
  56. static int dbg = 0;
  57. module_param(dbg, bool, 0644);
  58. #endif
  59. #ifndef MMU_DEBUG
  60. #define ASSERT(x) do { } while (0)
  61. #else
  62. #define ASSERT(x) \
  63. if (!(x)) { \
  64. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  65. __FILE__, __LINE__, #x); \
  66. }
  67. #endif
  68. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  69. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  70. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  71. #define PT64_LEVEL_BITS 9
  72. #define PT64_LEVEL_SHIFT(level) \
  73. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  74. #define PT64_LEVEL_MASK(level) \
  75. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  76. #define PT64_INDEX(address, level)\
  77. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  78. #define PT32_LEVEL_BITS 10
  79. #define PT32_LEVEL_SHIFT(level) \
  80. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  81. #define PT32_LEVEL_MASK(level) \
  82. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  83. #define PT32_INDEX(address, level)\
  84. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  85. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  86. #define PT64_DIR_BASE_ADDR_MASK \
  87. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  88. #define PT32_BASE_ADDR_MASK PAGE_MASK
  89. #define PT32_DIR_BASE_ADDR_MASK \
  90. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  91. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  92. | PT64_NX_MASK)
  93. #define PFERR_PRESENT_MASK (1U << 0)
  94. #define PFERR_WRITE_MASK (1U << 1)
  95. #define PFERR_USER_MASK (1U << 2)
  96. #define PFERR_FETCH_MASK (1U << 4)
  97. #define PT_DIRECTORY_LEVEL 2
  98. #define PT_PAGE_TABLE_LEVEL 1
  99. #define RMAP_EXT 4
  100. #define ACC_EXEC_MASK 1
  101. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  102. #define ACC_USER_MASK PT_USER_MASK
  103. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  104. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  105. struct kvm_rmap_desc {
  106. u64 *shadow_ptes[RMAP_EXT];
  107. struct kvm_rmap_desc *more;
  108. };
  109. struct kvm_shadow_walk {
  110. int (*entry)(struct kvm_shadow_walk *walk, struct kvm_vcpu *vcpu,
  111. u64 addr, u64 *spte, int level);
  112. };
  113. typedef int (*mmu_parent_walk_fn) (struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp);
  114. static struct kmem_cache *pte_chain_cache;
  115. static struct kmem_cache *rmap_desc_cache;
  116. static struct kmem_cache *mmu_page_header_cache;
  117. static u64 __read_mostly shadow_trap_nonpresent_pte;
  118. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  119. static u64 __read_mostly shadow_base_present_pte;
  120. static u64 __read_mostly shadow_nx_mask;
  121. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  122. static u64 __read_mostly shadow_user_mask;
  123. static u64 __read_mostly shadow_accessed_mask;
  124. static u64 __read_mostly shadow_dirty_mask;
  125. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  126. {
  127. shadow_trap_nonpresent_pte = trap_pte;
  128. shadow_notrap_nonpresent_pte = notrap_pte;
  129. }
  130. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  131. void kvm_mmu_set_base_ptes(u64 base_pte)
  132. {
  133. shadow_base_present_pte = base_pte;
  134. }
  135. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  136. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  137. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  138. {
  139. shadow_user_mask = user_mask;
  140. shadow_accessed_mask = accessed_mask;
  141. shadow_dirty_mask = dirty_mask;
  142. shadow_nx_mask = nx_mask;
  143. shadow_x_mask = x_mask;
  144. }
  145. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  146. static int is_write_protection(struct kvm_vcpu *vcpu)
  147. {
  148. return vcpu->arch.cr0 & X86_CR0_WP;
  149. }
  150. static int is_cpuid_PSE36(void)
  151. {
  152. return 1;
  153. }
  154. static int is_nx(struct kvm_vcpu *vcpu)
  155. {
  156. return vcpu->arch.shadow_efer & EFER_NX;
  157. }
  158. static int is_present_pte(unsigned long pte)
  159. {
  160. return pte & PT_PRESENT_MASK;
  161. }
  162. static int is_shadow_present_pte(u64 pte)
  163. {
  164. return pte != shadow_trap_nonpresent_pte
  165. && pte != shadow_notrap_nonpresent_pte;
  166. }
  167. static int is_large_pte(u64 pte)
  168. {
  169. return pte & PT_PAGE_SIZE_MASK;
  170. }
  171. static int is_writeble_pte(unsigned long pte)
  172. {
  173. return pte & PT_WRITABLE_MASK;
  174. }
  175. static int is_dirty_pte(unsigned long pte)
  176. {
  177. return pte & shadow_dirty_mask;
  178. }
  179. static int is_rmap_pte(u64 pte)
  180. {
  181. return is_shadow_present_pte(pte);
  182. }
  183. static pfn_t spte_to_pfn(u64 pte)
  184. {
  185. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  186. }
  187. static gfn_t pse36_gfn_delta(u32 gpte)
  188. {
  189. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  190. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  191. }
  192. static void set_shadow_pte(u64 *sptep, u64 spte)
  193. {
  194. #ifdef CONFIG_X86_64
  195. set_64bit((unsigned long *)sptep, spte);
  196. #else
  197. set_64bit((unsigned long long *)sptep, spte);
  198. #endif
  199. }
  200. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  201. struct kmem_cache *base_cache, int min)
  202. {
  203. void *obj;
  204. if (cache->nobjs >= min)
  205. return 0;
  206. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  207. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  208. if (!obj)
  209. return -ENOMEM;
  210. cache->objects[cache->nobjs++] = obj;
  211. }
  212. return 0;
  213. }
  214. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  215. {
  216. while (mc->nobjs)
  217. kfree(mc->objects[--mc->nobjs]);
  218. }
  219. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  220. int min)
  221. {
  222. struct page *page;
  223. if (cache->nobjs >= min)
  224. return 0;
  225. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  226. page = alloc_page(GFP_KERNEL);
  227. if (!page)
  228. return -ENOMEM;
  229. set_page_private(page, 0);
  230. cache->objects[cache->nobjs++] = page_address(page);
  231. }
  232. return 0;
  233. }
  234. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  235. {
  236. while (mc->nobjs)
  237. free_page((unsigned long)mc->objects[--mc->nobjs]);
  238. }
  239. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  240. {
  241. int r;
  242. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  243. pte_chain_cache, 4);
  244. if (r)
  245. goto out;
  246. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  247. rmap_desc_cache, 1);
  248. if (r)
  249. goto out;
  250. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  251. if (r)
  252. goto out;
  253. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  254. mmu_page_header_cache, 4);
  255. out:
  256. return r;
  257. }
  258. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  259. {
  260. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
  261. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
  262. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  263. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
  264. }
  265. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  266. size_t size)
  267. {
  268. void *p;
  269. BUG_ON(!mc->nobjs);
  270. p = mc->objects[--mc->nobjs];
  271. memset(p, 0, size);
  272. return p;
  273. }
  274. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  275. {
  276. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  277. sizeof(struct kvm_pte_chain));
  278. }
  279. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  280. {
  281. kfree(pc);
  282. }
  283. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  284. {
  285. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  286. sizeof(struct kvm_rmap_desc));
  287. }
  288. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  289. {
  290. kfree(rd);
  291. }
  292. /*
  293. * Return the pointer to the largepage write count for a given
  294. * gfn, handling slots that are not large page aligned.
  295. */
  296. static int *slot_largepage_idx(gfn_t gfn, struct kvm_memory_slot *slot)
  297. {
  298. unsigned long idx;
  299. idx = (gfn / KVM_PAGES_PER_HPAGE) -
  300. (slot->base_gfn / KVM_PAGES_PER_HPAGE);
  301. return &slot->lpage_info[idx].write_count;
  302. }
  303. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  304. {
  305. int *write_count;
  306. write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
  307. *write_count += 1;
  308. }
  309. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  310. {
  311. int *write_count;
  312. write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
  313. *write_count -= 1;
  314. WARN_ON(*write_count < 0);
  315. }
  316. static int has_wrprotected_page(struct kvm *kvm, gfn_t gfn)
  317. {
  318. struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
  319. int *largepage_idx;
  320. if (slot) {
  321. largepage_idx = slot_largepage_idx(gfn, slot);
  322. return *largepage_idx;
  323. }
  324. return 1;
  325. }
  326. static int host_largepage_backed(struct kvm *kvm, gfn_t gfn)
  327. {
  328. struct vm_area_struct *vma;
  329. unsigned long addr;
  330. int ret = 0;
  331. addr = gfn_to_hva(kvm, gfn);
  332. if (kvm_is_error_hva(addr))
  333. return ret;
  334. down_read(&current->mm->mmap_sem);
  335. vma = find_vma(current->mm, addr);
  336. if (vma && is_vm_hugetlb_page(vma))
  337. ret = 1;
  338. up_read(&current->mm->mmap_sem);
  339. return ret;
  340. }
  341. static int is_largepage_backed(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  342. {
  343. struct kvm_memory_slot *slot;
  344. if (has_wrprotected_page(vcpu->kvm, large_gfn))
  345. return 0;
  346. if (!host_largepage_backed(vcpu->kvm, large_gfn))
  347. return 0;
  348. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  349. if (slot && slot->dirty_bitmap)
  350. return 0;
  351. return 1;
  352. }
  353. /*
  354. * Take gfn and return the reverse mapping to it.
  355. * Note: gfn must be unaliased before this function get called
  356. */
  357. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int lpage)
  358. {
  359. struct kvm_memory_slot *slot;
  360. unsigned long idx;
  361. slot = gfn_to_memslot(kvm, gfn);
  362. if (!lpage)
  363. return &slot->rmap[gfn - slot->base_gfn];
  364. idx = (gfn / KVM_PAGES_PER_HPAGE) -
  365. (slot->base_gfn / KVM_PAGES_PER_HPAGE);
  366. return &slot->lpage_info[idx].rmap_pde;
  367. }
  368. /*
  369. * Reverse mapping data structures:
  370. *
  371. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  372. * that points to page_address(page).
  373. *
  374. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  375. * containing more mappings.
  376. */
  377. static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn, int lpage)
  378. {
  379. struct kvm_mmu_page *sp;
  380. struct kvm_rmap_desc *desc;
  381. unsigned long *rmapp;
  382. int i;
  383. if (!is_rmap_pte(*spte))
  384. return;
  385. gfn = unalias_gfn(vcpu->kvm, gfn);
  386. sp = page_header(__pa(spte));
  387. sp->gfns[spte - sp->spt] = gfn;
  388. rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
  389. if (!*rmapp) {
  390. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  391. *rmapp = (unsigned long)spte;
  392. } else if (!(*rmapp & 1)) {
  393. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  394. desc = mmu_alloc_rmap_desc(vcpu);
  395. desc->shadow_ptes[0] = (u64 *)*rmapp;
  396. desc->shadow_ptes[1] = spte;
  397. *rmapp = (unsigned long)desc | 1;
  398. } else {
  399. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  400. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  401. while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
  402. desc = desc->more;
  403. if (desc->shadow_ptes[RMAP_EXT-1]) {
  404. desc->more = mmu_alloc_rmap_desc(vcpu);
  405. desc = desc->more;
  406. }
  407. for (i = 0; desc->shadow_ptes[i]; ++i)
  408. ;
  409. desc->shadow_ptes[i] = spte;
  410. }
  411. }
  412. static void rmap_desc_remove_entry(unsigned long *rmapp,
  413. struct kvm_rmap_desc *desc,
  414. int i,
  415. struct kvm_rmap_desc *prev_desc)
  416. {
  417. int j;
  418. for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
  419. ;
  420. desc->shadow_ptes[i] = desc->shadow_ptes[j];
  421. desc->shadow_ptes[j] = NULL;
  422. if (j != 0)
  423. return;
  424. if (!prev_desc && !desc->more)
  425. *rmapp = (unsigned long)desc->shadow_ptes[0];
  426. else
  427. if (prev_desc)
  428. prev_desc->more = desc->more;
  429. else
  430. *rmapp = (unsigned long)desc->more | 1;
  431. mmu_free_rmap_desc(desc);
  432. }
  433. static void rmap_remove(struct kvm *kvm, u64 *spte)
  434. {
  435. struct kvm_rmap_desc *desc;
  436. struct kvm_rmap_desc *prev_desc;
  437. struct kvm_mmu_page *sp;
  438. pfn_t pfn;
  439. unsigned long *rmapp;
  440. int i;
  441. if (!is_rmap_pte(*spte))
  442. return;
  443. sp = page_header(__pa(spte));
  444. pfn = spte_to_pfn(*spte);
  445. if (*spte & shadow_accessed_mask)
  446. kvm_set_pfn_accessed(pfn);
  447. if (is_writeble_pte(*spte))
  448. kvm_release_pfn_dirty(pfn);
  449. else
  450. kvm_release_pfn_clean(pfn);
  451. rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], is_large_pte(*spte));
  452. if (!*rmapp) {
  453. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  454. BUG();
  455. } else if (!(*rmapp & 1)) {
  456. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  457. if ((u64 *)*rmapp != spte) {
  458. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  459. spte, *spte);
  460. BUG();
  461. }
  462. *rmapp = 0;
  463. } else {
  464. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  465. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  466. prev_desc = NULL;
  467. while (desc) {
  468. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
  469. if (desc->shadow_ptes[i] == spte) {
  470. rmap_desc_remove_entry(rmapp,
  471. desc, i,
  472. prev_desc);
  473. return;
  474. }
  475. prev_desc = desc;
  476. desc = desc->more;
  477. }
  478. BUG();
  479. }
  480. }
  481. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  482. {
  483. struct kvm_rmap_desc *desc;
  484. struct kvm_rmap_desc *prev_desc;
  485. u64 *prev_spte;
  486. int i;
  487. if (!*rmapp)
  488. return NULL;
  489. else if (!(*rmapp & 1)) {
  490. if (!spte)
  491. return (u64 *)*rmapp;
  492. return NULL;
  493. }
  494. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  495. prev_desc = NULL;
  496. prev_spte = NULL;
  497. while (desc) {
  498. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
  499. if (prev_spte == spte)
  500. return desc->shadow_ptes[i];
  501. prev_spte = desc->shadow_ptes[i];
  502. }
  503. desc = desc->more;
  504. }
  505. return NULL;
  506. }
  507. static void rmap_write_protect(struct kvm *kvm, u64 gfn)
  508. {
  509. unsigned long *rmapp;
  510. u64 *spte;
  511. int write_protected = 0;
  512. gfn = unalias_gfn(kvm, gfn);
  513. rmapp = gfn_to_rmap(kvm, gfn, 0);
  514. spte = rmap_next(kvm, rmapp, NULL);
  515. while (spte) {
  516. BUG_ON(!spte);
  517. BUG_ON(!(*spte & PT_PRESENT_MASK));
  518. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  519. if (is_writeble_pte(*spte)) {
  520. set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
  521. write_protected = 1;
  522. }
  523. spte = rmap_next(kvm, rmapp, spte);
  524. }
  525. if (write_protected) {
  526. pfn_t pfn;
  527. spte = rmap_next(kvm, rmapp, NULL);
  528. pfn = spte_to_pfn(*spte);
  529. kvm_set_pfn_dirty(pfn);
  530. }
  531. /* check for huge page mappings */
  532. rmapp = gfn_to_rmap(kvm, gfn, 1);
  533. spte = rmap_next(kvm, rmapp, NULL);
  534. while (spte) {
  535. BUG_ON(!spte);
  536. BUG_ON(!(*spte & PT_PRESENT_MASK));
  537. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  538. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  539. if (is_writeble_pte(*spte)) {
  540. rmap_remove(kvm, spte);
  541. --kvm->stat.lpages;
  542. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  543. spte = NULL;
  544. write_protected = 1;
  545. }
  546. spte = rmap_next(kvm, rmapp, spte);
  547. }
  548. if (write_protected)
  549. kvm_flush_remote_tlbs(kvm);
  550. account_shadowed(kvm, gfn);
  551. }
  552. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp)
  553. {
  554. u64 *spte;
  555. int need_tlb_flush = 0;
  556. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  557. BUG_ON(!(*spte & PT_PRESENT_MASK));
  558. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  559. rmap_remove(kvm, spte);
  560. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  561. need_tlb_flush = 1;
  562. }
  563. return need_tlb_flush;
  564. }
  565. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  566. int (*handler)(struct kvm *kvm, unsigned long *rmapp))
  567. {
  568. int i;
  569. int retval = 0;
  570. /*
  571. * If mmap_sem isn't taken, we can look the memslots with only
  572. * the mmu_lock by skipping over the slots with userspace_addr == 0.
  573. */
  574. for (i = 0; i < kvm->nmemslots; i++) {
  575. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  576. unsigned long start = memslot->userspace_addr;
  577. unsigned long end;
  578. /* mmu_lock protects userspace_addr */
  579. if (!start)
  580. continue;
  581. end = start + (memslot->npages << PAGE_SHIFT);
  582. if (hva >= start && hva < end) {
  583. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  584. retval |= handler(kvm, &memslot->rmap[gfn_offset]);
  585. retval |= handler(kvm,
  586. &memslot->lpage_info[
  587. gfn_offset /
  588. KVM_PAGES_PER_HPAGE].rmap_pde);
  589. }
  590. }
  591. return retval;
  592. }
  593. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  594. {
  595. return kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
  596. }
  597. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp)
  598. {
  599. u64 *spte;
  600. int young = 0;
  601. /* always return old for EPT */
  602. if (!shadow_accessed_mask)
  603. return 0;
  604. spte = rmap_next(kvm, rmapp, NULL);
  605. while (spte) {
  606. int _young;
  607. u64 _spte = *spte;
  608. BUG_ON(!(_spte & PT_PRESENT_MASK));
  609. _young = _spte & PT_ACCESSED_MASK;
  610. if (_young) {
  611. young = 1;
  612. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  613. }
  614. spte = rmap_next(kvm, rmapp, spte);
  615. }
  616. return young;
  617. }
  618. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  619. {
  620. return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
  621. }
  622. #ifdef MMU_DEBUG
  623. static int is_empty_shadow_page(u64 *spt)
  624. {
  625. u64 *pos;
  626. u64 *end;
  627. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  628. if (is_shadow_present_pte(*pos)) {
  629. printk(KERN_ERR "%s: %p %llx\n", __func__,
  630. pos, *pos);
  631. return 0;
  632. }
  633. return 1;
  634. }
  635. #endif
  636. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  637. {
  638. ASSERT(is_empty_shadow_page(sp->spt));
  639. list_del(&sp->link);
  640. __free_page(virt_to_page(sp->spt));
  641. __free_page(virt_to_page(sp->gfns));
  642. kfree(sp);
  643. ++kvm->arch.n_free_mmu_pages;
  644. }
  645. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  646. {
  647. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  648. }
  649. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  650. u64 *parent_pte)
  651. {
  652. struct kvm_mmu_page *sp;
  653. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  654. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  655. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  656. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  657. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  658. ASSERT(is_empty_shadow_page(sp->spt));
  659. sp->slot_bitmap = 0;
  660. sp->multimapped = 0;
  661. sp->parent_pte = parent_pte;
  662. --vcpu->kvm->arch.n_free_mmu_pages;
  663. return sp;
  664. }
  665. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  666. struct kvm_mmu_page *sp, u64 *parent_pte)
  667. {
  668. struct kvm_pte_chain *pte_chain;
  669. struct hlist_node *node;
  670. int i;
  671. if (!parent_pte)
  672. return;
  673. if (!sp->multimapped) {
  674. u64 *old = sp->parent_pte;
  675. if (!old) {
  676. sp->parent_pte = parent_pte;
  677. return;
  678. }
  679. sp->multimapped = 1;
  680. pte_chain = mmu_alloc_pte_chain(vcpu);
  681. INIT_HLIST_HEAD(&sp->parent_ptes);
  682. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  683. pte_chain->parent_ptes[0] = old;
  684. }
  685. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  686. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  687. continue;
  688. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  689. if (!pte_chain->parent_ptes[i]) {
  690. pte_chain->parent_ptes[i] = parent_pte;
  691. return;
  692. }
  693. }
  694. pte_chain = mmu_alloc_pte_chain(vcpu);
  695. BUG_ON(!pte_chain);
  696. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  697. pte_chain->parent_ptes[0] = parent_pte;
  698. }
  699. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  700. u64 *parent_pte)
  701. {
  702. struct kvm_pte_chain *pte_chain;
  703. struct hlist_node *node;
  704. int i;
  705. if (!sp->multimapped) {
  706. BUG_ON(sp->parent_pte != parent_pte);
  707. sp->parent_pte = NULL;
  708. return;
  709. }
  710. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  711. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  712. if (!pte_chain->parent_ptes[i])
  713. break;
  714. if (pte_chain->parent_ptes[i] != parent_pte)
  715. continue;
  716. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  717. && pte_chain->parent_ptes[i + 1]) {
  718. pte_chain->parent_ptes[i]
  719. = pte_chain->parent_ptes[i + 1];
  720. ++i;
  721. }
  722. pte_chain->parent_ptes[i] = NULL;
  723. if (i == 0) {
  724. hlist_del(&pte_chain->link);
  725. mmu_free_pte_chain(pte_chain);
  726. if (hlist_empty(&sp->parent_ptes)) {
  727. sp->multimapped = 0;
  728. sp->parent_pte = NULL;
  729. }
  730. }
  731. return;
  732. }
  733. BUG();
  734. }
  735. static void mmu_parent_walk(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  736. mmu_parent_walk_fn fn)
  737. {
  738. struct kvm_pte_chain *pte_chain;
  739. struct hlist_node *node;
  740. struct kvm_mmu_page *parent_sp;
  741. int i;
  742. if (!sp->multimapped && sp->parent_pte) {
  743. parent_sp = page_header(__pa(sp->parent_pte));
  744. fn(vcpu, parent_sp);
  745. mmu_parent_walk(vcpu, parent_sp, fn);
  746. return;
  747. }
  748. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  749. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  750. if (!pte_chain->parent_ptes[i])
  751. break;
  752. parent_sp = page_header(__pa(pte_chain->parent_ptes[i]));
  753. fn(vcpu, parent_sp);
  754. mmu_parent_walk(vcpu, parent_sp, fn);
  755. }
  756. }
  757. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  758. struct kvm_mmu_page *sp)
  759. {
  760. int i;
  761. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  762. sp->spt[i] = shadow_trap_nonpresent_pte;
  763. }
  764. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  765. struct kvm_mmu_page *sp)
  766. {
  767. return 1;
  768. }
  769. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  770. {
  771. }
  772. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
  773. {
  774. unsigned index;
  775. struct hlist_head *bucket;
  776. struct kvm_mmu_page *sp;
  777. struct hlist_node *node;
  778. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  779. index = kvm_page_table_hashfn(gfn);
  780. bucket = &kvm->arch.mmu_page_hash[index];
  781. hlist_for_each_entry(sp, node, bucket, hash_link)
  782. if (sp->gfn == gfn && !sp->role.metaphysical
  783. && !sp->role.invalid) {
  784. pgprintk("%s: found role %x\n",
  785. __func__, sp->role.word);
  786. return sp;
  787. }
  788. return NULL;
  789. }
  790. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  791. gfn_t gfn,
  792. gva_t gaddr,
  793. unsigned level,
  794. int metaphysical,
  795. unsigned access,
  796. u64 *parent_pte)
  797. {
  798. union kvm_mmu_page_role role;
  799. unsigned index;
  800. unsigned quadrant;
  801. struct hlist_head *bucket;
  802. struct kvm_mmu_page *sp;
  803. struct hlist_node *node;
  804. role.word = 0;
  805. role.glevels = vcpu->arch.mmu.root_level;
  806. role.level = level;
  807. role.metaphysical = metaphysical;
  808. role.access = access;
  809. if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  810. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  811. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  812. role.quadrant = quadrant;
  813. }
  814. pgprintk("%s: looking gfn %lx role %x\n", __func__,
  815. gfn, role.word);
  816. index = kvm_page_table_hashfn(gfn);
  817. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  818. hlist_for_each_entry(sp, node, bucket, hash_link)
  819. if (sp->gfn == gfn && sp->role.word == role.word) {
  820. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  821. pgprintk("%s: found\n", __func__);
  822. return sp;
  823. }
  824. ++vcpu->kvm->stat.mmu_cache_miss;
  825. sp = kvm_mmu_alloc_page(vcpu, parent_pte);
  826. if (!sp)
  827. return sp;
  828. pgprintk("%s: adding gfn %lx role %x\n", __func__, gfn, role.word);
  829. sp->gfn = gfn;
  830. sp->role = role;
  831. hlist_add_head(&sp->hash_link, bucket);
  832. if (!metaphysical)
  833. rmap_write_protect(vcpu->kvm, gfn);
  834. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  835. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  836. else
  837. nonpaging_prefetch_page(vcpu, sp);
  838. return sp;
  839. }
  840. static int walk_shadow(struct kvm_shadow_walk *walker,
  841. struct kvm_vcpu *vcpu, u64 addr)
  842. {
  843. hpa_t shadow_addr;
  844. int level;
  845. int r;
  846. u64 *sptep;
  847. unsigned index;
  848. shadow_addr = vcpu->arch.mmu.root_hpa;
  849. level = vcpu->arch.mmu.shadow_root_level;
  850. if (level == PT32E_ROOT_LEVEL) {
  851. shadow_addr = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  852. shadow_addr &= PT64_BASE_ADDR_MASK;
  853. --level;
  854. }
  855. while (level >= PT_PAGE_TABLE_LEVEL) {
  856. index = SHADOW_PT_INDEX(addr, level);
  857. sptep = ((u64 *)__va(shadow_addr)) + index;
  858. r = walker->entry(walker, vcpu, addr, sptep, level);
  859. if (r)
  860. return r;
  861. shadow_addr = *sptep & PT64_BASE_ADDR_MASK;
  862. --level;
  863. }
  864. return 0;
  865. }
  866. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  867. struct kvm_mmu_page *sp)
  868. {
  869. unsigned i;
  870. u64 *pt;
  871. u64 ent;
  872. pt = sp->spt;
  873. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  874. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  875. if (is_shadow_present_pte(pt[i]))
  876. rmap_remove(kvm, &pt[i]);
  877. pt[i] = shadow_trap_nonpresent_pte;
  878. }
  879. return;
  880. }
  881. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  882. ent = pt[i];
  883. if (is_shadow_present_pte(ent)) {
  884. if (!is_large_pte(ent)) {
  885. ent &= PT64_BASE_ADDR_MASK;
  886. mmu_page_remove_parent_pte(page_header(ent),
  887. &pt[i]);
  888. } else {
  889. --kvm->stat.lpages;
  890. rmap_remove(kvm, &pt[i]);
  891. }
  892. }
  893. pt[i] = shadow_trap_nonpresent_pte;
  894. }
  895. }
  896. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  897. {
  898. mmu_page_remove_parent_pte(sp, parent_pte);
  899. }
  900. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  901. {
  902. int i;
  903. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  904. if (kvm->vcpus[i])
  905. kvm->vcpus[i]->arch.last_pte_updated = NULL;
  906. }
  907. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  908. {
  909. u64 *parent_pte;
  910. while (sp->multimapped || sp->parent_pte) {
  911. if (!sp->multimapped)
  912. parent_pte = sp->parent_pte;
  913. else {
  914. struct kvm_pte_chain *chain;
  915. chain = container_of(sp->parent_ptes.first,
  916. struct kvm_pte_chain, link);
  917. parent_pte = chain->parent_ptes[0];
  918. }
  919. BUG_ON(!parent_pte);
  920. kvm_mmu_put_page(sp, parent_pte);
  921. set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
  922. }
  923. }
  924. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  925. {
  926. ++kvm->stat.mmu_shadow_zapped;
  927. kvm_mmu_page_unlink_children(kvm, sp);
  928. kvm_mmu_unlink_parents(kvm, sp);
  929. kvm_flush_remote_tlbs(kvm);
  930. if (!sp->role.invalid && !sp->role.metaphysical)
  931. unaccount_shadowed(kvm, sp->gfn);
  932. if (!sp->root_count) {
  933. hlist_del(&sp->hash_link);
  934. kvm_mmu_free_page(kvm, sp);
  935. } else {
  936. sp->role.invalid = 1;
  937. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  938. kvm_reload_remote_mmus(kvm);
  939. }
  940. kvm_mmu_reset_last_pte_updated(kvm);
  941. return 0;
  942. }
  943. /*
  944. * Changing the number of mmu pages allocated to the vm
  945. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  946. */
  947. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  948. {
  949. /*
  950. * If we set the number of mmu pages to be smaller be than the
  951. * number of actived pages , we must to free some mmu pages before we
  952. * change the value
  953. */
  954. if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
  955. kvm_nr_mmu_pages) {
  956. int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
  957. - kvm->arch.n_free_mmu_pages;
  958. while (n_used_mmu_pages > kvm_nr_mmu_pages) {
  959. struct kvm_mmu_page *page;
  960. page = container_of(kvm->arch.active_mmu_pages.prev,
  961. struct kvm_mmu_page, link);
  962. kvm_mmu_zap_page(kvm, page);
  963. n_used_mmu_pages--;
  964. }
  965. kvm->arch.n_free_mmu_pages = 0;
  966. }
  967. else
  968. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  969. - kvm->arch.n_alloc_mmu_pages;
  970. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  971. }
  972. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  973. {
  974. unsigned index;
  975. struct hlist_head *bucket;
  976. struct kvm_mmu_page *sp;
  977. struct hlist_node *node, *n;
  978. int r;
  979. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  980. r = 0;
  981. index = kvm_page_table_hashfn(gfn);
  982. bucket = &kvm->arch.mmu_page_hash[index];
  983. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
  984. if (sp->gfn == gfn && !sp->role.metaphysical) {
  985. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  986. sp->role.word);
  987. r = 1;
  988. if (kvm_mmu_zap_page(kvm, sp))
  989. n = bucket->first;
  990. }
  991. return r;
  992. }
  993. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  994. {
  995. struct kvm_mmu_page *sp;
  996. while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
  997. pgprintk("%s: zap %lx %x\n", __func__, gfn, sp->role.word);
  998. kvm_mmu_zap_page(kvm, sp);
  999. }
  1000. }
  1001. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1002. {
  1003. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
  1004. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1005. __set_bit(slot, &sp->slot_bitmap);
  1006. }
  1007. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  1008. {
  1009. struct page *page;
  1010. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  1011. if (gpa == UNMAPPED_GVA)
  1012. return NULL;
  1013. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1014. return page;
  1015. }
  1016. static int set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
  1017. unsigned pte_access, int user_fault,
  1018. int write_fault, int dirty, int largepage,
  1019. gfn_t gfn, pfn_t pfn, bool speculative)
  1020. {
  1021. u64 spte;
  1022. int ret = 0;
  1023. /*
  1024. * We don't set the accessed bit, since we sometimes want to see
  1025. * whether the guest actually used the pte (in order to detect
  1026. * demand paging).
  1027. */
  1028. spte = shadow_base_present_pte | shadow_dirty_mask;
  1029. if (!speculative)
  1030. spte |= shadow_accessed_mask;
  1031. if (!dirty)
  1032. pte_access &= ~ACC_WRITE_MASK;
  1033. if (pte_access & ACC_EXEC_MASK)
  1034. spte |= shadow_x_mask;
  1035. else
  1036. spte |= shadow_nx_mask;
  1037. if (pte_access & ACC_USER_MASK)
  1038. spte |= shadow_user_mask;
  1039. if (largepage)
  1040. spte |= PT_PAGE_SIZE_MASK;
  1041. spte |= (u64)pfn << PAGE_SHIFT;
  1042. if ((pte_access & ACC_WRITE_MASK)
  1043. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  1044. struct kvm_mmu_page *shadow;
  1045. if (largepage && has_wrprotected_page(vcpu->kvm, gfn)) {
  1046. ret = 1;
  1047. spte = shadow_trap_nonpresent_pte;
  1048. goto set_pte;
  1049. }
  1050. spte |= PT_WRITABLE_MASK;
  1051. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  1052. if (shadow) {
  1053. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1054. __func__, gfn);
  1055. ret = 1;
  1056. pte_access &= ~ACC_WRITE_MASK;
  1057. if (is_writeble_pte(spte))
  1058. spte &= ~PT_WRITABLE_MASK;
  1059. }
  1060. }
  1061. if (pte_access & ACC_WRITE_MASK)
  1062. mark_page_dirty(vcpu->kvm, gfn);
  1063. set_pte:
  1064. set_shadow_pte(shadow_pte, spte);
  1065. return ret;
  1066. }
  1067. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
  1068. unsigned pt_access, unsigned pte_access,
  1069. int user_fault, int write_fault, int dirty,
  1070. int *ptwrite, int largepage, gfn_t gfn,
  1071. pfn_t pfn, bool speculative)
  1072. {
  1073. int was_rmapped = 0;
  1074. int was_writeble = is_writeble_pte(*shadow_pte);
  1075. pgprintk("%s: spte %llx access %x write_fault %d"
  1076. " user_fault %d gfn %lx\n",
  1077. __func__, *shadow_pte, pt_access,
  1078. write_fault, user_fault, gfn);
  1079. if (is_rmap_pte(*shadow_pte)) {
  1080. /*
  1081. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1082. * the parent of the now unreachable PTE.
  1083. */
  1084. if (largepage && !is_large_pte(*shadow_pte)) {
  1085. struct kvm_mmu_page *child;
  1086. u64 pte = *shadow_pte;
  1087. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1088. mmu_page_remove_parent_pte(child, shadow_pte);
  1089. } else if (pfn != spte_to_pfn(*shadow_pte)) {
  1090. pgprintk("hfn old %lx new %lx\n",
  1091. spte_to_pfn(*shadow_pte), pfn);
  1092. rmap_remove(vcpu->kvm, shadow_pte);
  1093. } else {
  1094. if (largepage)
  1095. was_rmapped = is_large_pte(*shadow_pte);
  1096. else
  1097. was_rmapped = 1;
  1098. }
  1099. }
  1100. if (set_spte(vcpu, shadow_pte, pte_access, user_fault, write_fault,
  1101. dirty, largepage, gfn, pfn, speculative)) {
  1102. if (write_fault)
  1103. *ptwrite = 1;
  1104. kvm_x86_ops->tlb_flush(vcpu);
  1105. }
  1106. pgprintk("%s: setting spte %llx\n", __func__, *shadow_pte);
  1107. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1108. is_large_pte(*shadow_pte)? "2MB" : "4kB",
  1109. is_present_pte(*shadow_pte)?"RW":"R", gfn,
  1110. *shadow_pte, shadow_pte);
  1111. if (!was_rmapped && is_large_pte(*shadow_pte))
  1112. ++vcpu->kvm->stat.lpages;
  1113. page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
  1114. if (!was_rmapped) {
  1115. rmap_add(vcpu, shadow_pte, gfn, largepage);
  1116. if (!is_rmap_pte(*shadow_pte))
  1117. kvm_release_pfn_clean(pfn);
  1118. } else {
  1119. if (was_writeble)
  1120. kvm_release_pfn_dirty(pfn);
  1121. else
  1122. kvm_release_pfn_clean(pfn);
  1123. }
  1124. if (speculative) {
  1125. vcpu->arch.last_pte_updated = shadow_pte;
  1126. vcpu->arch.last_pte_gfn = gfn;
  1127. }
  1128. }
  1129. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1130. {
  1131. }
  1132. struct direct_shadow_walk {
  1133. struct kvm_shadow_walk walker;
  1134. pfn_t pfn;
  1135. int write;
  1136. int largepage;
  1137. int pt_write;
  1138. };
  1139. static int direct_map_entry(struct kvm_shadow_walk *_walk,
  1140. struct kvm_vcpu *vcpu,
  1141. u64 addr, u64 *sptep, int level)
  1142. {
  1143. struct direct_shadow_walk *walk =
  1144. container_of(_walk, struct direct_shadow_walk, walker);
  1145. struct kvm_mmu_page *sp;
  1146. gfn_t pseudo_gfn;
  1147. gfn_t gfn = addr >> PAGE_SHIFT;
  1148. if (level == PT_PAGE_TABLE_LEVEL
  1149. || (walk->largepage && level == PT_DIRECTORY_LEVEL)) {
  1150. mmu_set_spte(vcpu, sptep, ACC_ALL, ACC_ALL,
  1151. 0, walk->write, 1, &walk->pt_write,
  1152. walk->largepage, gfn, walk->pfn, false);
  1153. ++vcpu->stat.pf_fixed;
  1154. return 1;
  1155. }
  1156. if (*sptep == shadow_trap_nonpresent_pte) {
  1157. pseudo_gfn = (addr & PT64_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1158. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, (gva_t)addr, level - 1,
  1159. 1, ACC_ALL, sptep);
  1160. if (!sp) {
  1161. pgprintk("nonpaging_map: ENOMEM\n");
  1162. kvm_release_pfn_clean(walk->pfn);
  1163. return -ENOMEM;
  1164. }
  1165. set_shadow_pte(sptep,
  1166. __pa(sp->spt)
  1167. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1168. | shadow_user_mask | shadow_x_mask);
  1169. }
  1170. return 0;
  1171. }
  1172. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1173. int largepage, gfn_t gfn, pfn_t pfn)
  1174. {
  1175. int r;
  1176. struct direct_shadow_walk walker = {
  1177. .walker = { .entry = direct_map_entry, },
  1178. .pfn = pfn,
  1179. .largepage = largepage,
  1180. .write = write,
  1181. .pt_write = 0,
  1182. };
  1183. r = walk_shadow(&walker.walker, vcpu, gfn << PAGE_SHIFT);
  1184. if (r < 0)
  1185. return r;
  1186. return walker.pt_write;
  1187. }
  1188. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1189. {
  1190. int r;
  1191. int largepage = 0;
  1192. pfn_t pfn;
  1193. unsigned long mmu_seq;
  1194. if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
  1195. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1196. largepage = 1;
  1197. }
  1198. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1199. smp_rmb();
  1200. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1201. /* mmio */
  1202. if (is_error_pfn(pfn)) {
  1203. kvm_release_pfn_clean(pfn);
  1204. return 1;
  1205. }
  1206. spin_lock(&vcpu->kvm->mmu_lock);
  1207. if (mmu_notifier_retry(vcpu, mmu_seq))
  1208. goto out_unlock;
  1209. kvm_mmu_free_some_pages(vcpu);
  1210. r = __direct_map(vcpu, v, write, largepage, gfn, pfn);
  1211. spin_unlock(&vcpu->kvm->mmu_lock);
  1212. return r;
  1213. out_unlock:
  1214. spin_unlock(&vcpu->kvm->mmu_lock);
  1215. kvm_release_pfn_clean(pfn);
  1216. return 0;
  1217. }
  1218. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1219. {
  1220. int i;
  1221. struct kvm_mmu_page *sp;
  1222. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1223. return;
  1224. spin_lock(&vcpu->kvm->mmu_lock);
  1225. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1226. hpa_t root = vcpu->arch.mmu.root_hpa;
  1227. sp = page_header(root);
  1228. --sp->root_count;
  1229. if (!sp->root_count && sp->role.invalid)
  1230. kvm_mmu_zap_page(vcpu->kvm, sp);
  1231. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1232. spin_unlock(&vcpu->kvm->mmu_lock);
  1233. return;
  1234. }
  1235. for (i = 0; i < 4; ++i) {
  1236. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1237. if (root) {
  1238. root &= PT64_BASE_ADDR_MASK;
  1239. sp = page_header(root);
  1240. --sp->root_count;
  1241. if (!sp->root_count && sp->role.invalid)
  1242. kvm_mmu_zap_page(vcpu->kvm, sp);
  1243. }
  1244. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1245. }
  1246. spin_unlock(&vcpu->kvm->mmu_lock);
  1247. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1248. }
  1249. static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1250. {
  1251. int i;
  1252. gfn_t root_gfn;
  1253. struct kvm_mmu_page *sp;
  1254. int metaphysical = 0;
  1255. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1256. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1257. hpa_t root = vcpu->arch.mmu.root_hpa;
  1258. ASSERT(!VALID_PAGE(root));
  1259. if (tdp_enabled)
  1260. metaphysical = 1;
  1261. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1262. PT64_ROOT_LEVEL, metaphysical,
  1263. ACC_ALL, NULL);
  1264. root = __pa(sp->spt);
  1265. ++sp->root_count;
  1266. vcpu->arch.mmu.root_hpa = root;
  1267. return;
  1268. }
  1269. metaphysical = !is_paging(vcpu);
  1270. if (tdp_enabled)
  1271. metaphysical = 1;
  1272. for (i = 0; i < 4; ++i) {
  1273. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1274. ASSERT(!VALID_PAGE(root));
  1275. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1276. if (!is_present_pte(vcpu->arch.pdptrs[i])) {
  1277. vcpu->arch.mmu.pae_root[i] = 0;
  1278. continue;
  1279. }
  1280. root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
  1281. } else if (vcpu->arch.mmu.root_level == 0)
  1282. root_gfn = 0;
  1283. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1284. PT32_ROOT_LEVEL, metaphysical,
  1285. ACC_ALL, NULL);
  1286. root = __pa(sp->spt);
  1287. ++sp->root_count;
  1288. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1289. }
  1290. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1291. }
  1292. static void mmu_sync_children(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1293. {
  1294. }
  1295. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  1296. {
  1297. int i;
  1298. struct kvm_mmu_page *sp;
  1299. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1300. return;
  1301. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1302. hpa_t root = vcpu->arch.mmu.root_hpa;
  1303. sp = page_header(root);
  1304. mmu_sync_children(vcpu, sp);
  1305. return;
  1306. }
  1307. for (i = 0; i < 4; ++i) {
  1308. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1309. if (root) {
  1310. root &= PT64_BASE_ADDR_MASK;
  1311. sp = page_header(root);
  1312. mmu_sync_children(vcpu, sp);
  1313. }
  1314. }
  1315. }
  1316. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  1317. {
  1318. spin_lock(&vcpu->kvm->mmu_lock);
  1319. mmu_sync_roots(vcpu);
  1320. spin_unlock(&vcpu->kvm->mmu_lock);
  1321. }
  1322. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  1323. {
  1324. return vaddr;
  1325. }
  1326. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1327. u32 error_code)
  1328. {
  1329. gfn_t gfn;
  1330. int r;
  1331. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1332. r = mmu_topup_memory_caches(vcpu);
  1333. if (r)
  1334. return r;
  1335. ASSERT(vcpu);
  1336. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1337. gfn = gva >> PAGE_SHIFT;
  1338. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1339. error_code & PFERR_WRITE_MASK, gfn);
  1340. }
  1341. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1342. u32 error_code)
  1343. {
  1344. pfn_t pfn;
  1345. int r;
  1346. int largepage = 0;
  1347. gfn_t gfn = gpa >> PAGE_SHIFT;
  1348. unsigned long mmu_seq;
  1349. ASSERT(vcpu);
  1350. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1351. r = mmu_topup_memory_caches(vcpu);
  1352. if (r)
  1353. return r;
  1354. if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
  1355. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1356. largepage = 1;
  1357. }
  1358. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1359. smp_rmb();
  1360. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1361. if (is_error_pfn(pfn)) {
  1362. kvm_release_pfn_clean(pfn);
  1363. return 1;
  1364. }
  1365. spin_lock(&vcpu->kvm->mmu_lock);
  1366. if (mmu_notifier_retry(vcpu, mmu_seq))
  1367. goto out_unlock;
  1368. kvm_mmu_free_some_pages(vcpu);
  1369. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  1370. largepage, gfn, pfn);
  1371. spin_unlock(&vcpu->kvm->mmu_lock);
  1372. return r;
  1373. out_unlock:
  1374. spin_unlock(&vcpu->kvm->mmu_lock);
  1375. kvm_release_pfn_clean(pfn);
  1376. return 0;
  1377. }
  1378. static void nonpaging_free(struct kvm_vcpu *vcpu)
  1379. {
  1380. mmu_free_roots(vcpu);
  1381. }
  1382. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  1383. {
  1384. struct kvm_mmu *context = &vcpu->arch.mmu;
  1385. context->new_cr3 = nonpaging_new_cr3;
  1386. context->page_fault = nonpaging_page_fault;
  1387. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1388. context->free = nonpaging_free;
  1389. context->prefetch_page = nonpaging_prefetch_page;
  1390. context->sync_page = nonpaging_sync_page;
  1391. context->invlpg = nonpaging_invlpg;
  1392. context->root_level = 0;
  1393. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1394. context->root_hpa = INVALID_PAGE;
  1395. return 0;
  1396. }
  1397. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1398. {
  1399. ++vcpu->stat.tlb_flush;
  1400. kvm_x86_ops->tlb_flush(vcpu);
  1401. }
  1402. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  1403. {
  1404. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  1405. mmu_free_roots(vcpu);
  1406. }
  1407. static void inject_page_fault(struct kvm_vcpu *vcpu,
  1408. u64 addr,
  1409. u32 err_code)
  1410. {
  1411. kvm_inject_page_fault(vcpu, addr, err_code);
  1412. }
  1413. static void paging_free(struct kvm_vcpu *vcpu)
  1414. {
  1415. nonpaging_free(vcpu);
  1416. }
  1417. #define PTTYPE 64
  1418. #include "paging_tmpl.h"
  1419. #undef PTTYPE
  1420. #define PTTYPE 32
  1421. #include "paging_tmpl.h"
  1422. #undef PTTYPE
  1423. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  1424. {
  1425. struct kvm_mmu *context = &vcpu->arch.mmu;
  1426. ASSERT(is_pae(vcpu));
  1427. context->new_cr3 = paging_new_cr3;
  1428. context->page_fault = paging64_page_fault;
  1429. context->gva_to_gpa = paging64_gva_to_gpa;
  1430. context->prefetch_page = paging64_prefetch_page;
  1431. context->sync_page = paging64_sync_page;
  1432. context->invlpg = paging64_invlpg;
  1433. context->free = paging_free;
  1434. context->root_level = level;
  1435. context->shadow_root_level = level;
  1436. context->root_hpa = INVALID_PAGE;
  1437. return 0;
  1438. }
  1439. static int paging64_init_context(struct kvm_vcpu *vcpu)
  1440. {
  1441. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  1442. }
  1443. static int paging32_init_context(struct kvm_vcpu *vcpu)
  1444. {
  1445. struct kvm_mmu *context = &vcpu->arch.mmu;
  1446. context->new_cr3 = paging_new_cr3;
  1447. context->page_fault = paging32_page_fault;
  1448. context->gva_to_gpa = paging32_gva_to_gpa;
  1449. context->free = paging_free;
  1450. context->prefetch_page = paging32_prefetch_page;
  1451. context->sync_page = paging32_sync_page;
  1452. context->invlpg = paging32_invlpg;
  1453. context->root_level = PT32_ROOT_LEVEL;
  1454. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1455. context->root_hpa = INVALID_PAGE;
  1456. return 0;
  1457. }
  1458. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  1459. {
  1460. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  1461. }
  1462. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  1463. {
  1464. struct kvm_mmu *context = &vcpu->arch.mmu;
  1465. context->new_cr3 = nonpaging_new_cr3;
  1466. context->page_fault = tdp_page_fault;
  1467. context->free = nonpaging_free;
  1468. context->prefetch_page = nonpaging_prefetch_page;
  1469. context->sync_page = nonpaging_sync_page;
  1470. context->invlpg = nonpaging_invlpg;
  1471. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  1472. context->root_hpa = INVALID_PAGE;
  1473. if (!is_paging(vcpu)) {
  1474. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1475. context->root_level = 0;
  1476. } else if (is_long_mode(vcpu)) {
  1477. context->gva_to_gpa = paging64_gva_to_gpa;
  1478. context->root_level = PT64_ROOT_LEVEL;
  1479. } else if (is_pae(vcpu)) {
  1480. context->gva_to_gpa = paging64_gva_to_gpa;
  1481. context->root_level = PT32E_ROOT_LEVEL;
  1482. } else {
  1483. context->gva_to_gpa = paging32_gva_to_gpa;
  1484. context->root_level = PT32_ROOT_LEVEL;
  1485. }
  1486. return 0;
  1487. }
  1488. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  1489. {
  1490. ASSERT(vcpu);
  1491. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1492. if (!is_paging(vcpu))
  1493. return nonpaging_init_context(vcpu);
  1494. else if (is_long_mode(vcpu))
  1495. return paging64_init_context(vcpu);
  1496. else if (is_pae(vcpu))
  1497. return paging32E_init_context(vcpu);
  1498. else
  1499. return paging32_init_context(vcpu);
  1500. }
  1501. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  1502. {
  1503. vcpu->arch.update_pte.pfn = bad_pfn;
  1504. if (tdp_enabled)
  1505. return init_kvm_tdp_mmu(vcpu);
  1506. else
  1507. return init_kvm_softmmu(vcpu);
  1508. }
  1509. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  1510. {
  1511. ASSERT(vcpu);
  1512. if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
  1513. vcpu->arch.mmu.free(vcpu);
  1514. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1515. }
  1516. }
  1517. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  1518. {
  1519. destroy_kvm_mmu(vcpu);
  1520. return init_kvm_mmu(vcpu);
  1521. }
  1522. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  1523. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  1524. {
  1525. int r;
  1526. r = mmu_topup_memory_caches(vcpu);
  1527. if (r)
  1528. goto out;
  1529. spin_lock(&vcpu->kvm->mmu_lock);
  1530. kvm_mmu_free_some_pages(vcpu);
  1531. mmu_alloc_roots(vcpu);
  1532. mmu_sync_roots(vcpu);
  1533. spin_unlock(&vcpu->kvm->mmu_lock);
  1534. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  1535. kvm_mmu_flush_tlb(vcpu);
  1536. out:
  1537. return r;
  1538. }
  1539. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  1540. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  1541. {
  1542. mmu_free_roots(vcpu);
  1543. }
  1544. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  1545. struct kvm_mmu_page *sp,
  1546. u64 *spte)
  1547. {
  1548. u64 pte;
  1549. struct kvm_mmu_page *child;
  1550. pte = *spte;
  1551. if (is_shadow_present_pte(pte)) {
  1552. if (sp->role.level == PT_PAGE_TABLE_LEVEL ||
  1553. is_large_pte(pte))
  1554. rmap_remove(vcpu->kvm, spte);
  1555. else {
  1556. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1557. mmu_page_remove_parent_pte(child, spte);
  1558. }
  1559. }
  1560. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  1561. if (is_large_pte(pte))
  1562. --vcpu->kvm->stat.lpages;
  1563. }
  1564. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  1565. struct kvm_mmu_page *sp,
  1566. u64 *spte,
  1567. const void *new)
  1568. {
  1569. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  1570. if (!vcpu->arch.update_pte.largepage ||
  1571. sp->role.glevels == PT32_ROOT_LEVEL) {
  1572. ++vcpu->kvm->stat.mmu_pde_zapped;
  1573. return;
  1574. }
  1575. }
  1576. ++vcpu->kvm->stat.mmu_pte_updated;
  1577. if (sp->role.glevels == PT32_ROOT_LEVEL)
  1578. paging32_update_pte(vcpu, sp, spte, new);
  1579. else
  1580. paging64_update_pte(vcpu, sp, spte, new);
  1581. }
  1582. static bool need_remote_flush(u64 old, u64 new)
  1583. {
  1584. if (!is_shadow_present_pte(old))
  1585. return false;
  1586. if (!is_shadow_present_pte(new))
  1587. return true;
  1588. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  1589. return true;
  1590. old ^= PT64_NX_MASK;
  1591. new ^= PT64_NX_MASK;
  1592. return (old & ~new & PT64_PERM_MASK) != 0;
  1593. }
  1594. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
  1595. {
  1596. if (need_remote_flush(old, new))
  1597. kvm_flush_remote_tlbs(vcpu->kvm);
  1598. else
  1599. kvm_mmu_flush_tlb(vcpu);
  1600. }
  1601. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  1602. {
  1603. u64 *spte = vcpu->arch.last_pte_updated;
  1604. return !!(spte && (*spte & shadow_accessed_mask));
  1605. }
  1606. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  1607. const u8 *new, int bytes)
  1608. {
  1609. gfn_t gfn;
  1610. int r;
  1611. u64 gpte = 0;
  1612. pfn_t pfn;
  1613. vcpu->arch.update_pte.largepage = 0;
  1614. if (bytes != 4 && bytes != 8)
  1615. return;
  1616. /*
  1617. * Assume that the pte write on a page table of the same type
  1618. * as the current vcpu paging mode. This is nearly always true
  1619. * (might be false while changing modes). Note it is verified later
  1620. * by update_pte().
  1621. */
  1622. if (is_pae(vcpu)) {
  1623. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  1624. if ((bytes == 4) && (gpa % 4 == 0)) {
  1625. r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
  1626. if (r)
  1627. return;
  1628. memcpy((void *)&gpte + (gpa % 8), new, 4);
  1629. } else if ((bytes == 8) && (gpa % 8 == 0)) {
  1630. memcpy((void *)&gpte, new, 8);
  1631. }
  1632. } else {
  1633. if ((bytes == 4) && (gpa % 4 == 0))
  1634. memcpy((void *)&gpte, new, 4);
  1635. }
  1636. if (!is_present_pte(gpte))
  1637. return;
  1638. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1639. if (is_large_pte(gpte) && is_largepage_backed(vcpu, gfn)) {
  1640. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1641. vcpu->arch.update_pte.largepage = 1;
  1642. }
  1643. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1644. smp_rmb();
  1645. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1646. if (is_error_pfn(pfn)) {
  1647. kvm_release_pfn_clean(pfn);
  1648. return;
  1649. }
  1650. vcpu->arch.update_pte.gfn = gfn;
  1651. vcpu->arch.update_pte.pfn = pfn;
  1652. }
  1653. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  1654. {
  1655. u64 *spte = vcpu->arch.last_pte_updated;
  1656. if (spte
  1657. && vcpu->arch.last_pte_gfn == gfn
  1658. && shadow_accessed_mask
  1659. && !(*spte & shadow_accessed_mask)
  1660. && is_shadow_present_pte(*spte))
  1661. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  1662. }
  1663. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  1664. const u8 *new, int bytes)
  1665. {
  1666. gfn_t gfn = gpa >> PAGE_SHIFT;
  1667. struct kvm_mmu_page *sp;
  1668. struct hlist_node *node, *n;
  1669. struct hlist_head *bucket;
  1670. unsigned index;
  1671. u64 entry, gentry;
  1672. u64 *spte;
  1673. unsigned offset = offset_in_page(gpa);
  1674. unsigned pte_size;
  1675. unsigned page_offset;
  1676. unsigned misaligned;
  1677. unsigned quadrant;
  1678. int level;
  1679. int flooded = 0;
  1680. int npte;
  1681. int r;
  1682. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  1683. mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
  1684. spin_lock(&vcpu->kvm->mmu_lock);
  1685. kvm_mmu_access_page(vcpu, gfn);
  1686. kvm_mmu_free_some_pages(vcpu);
  1687. ++vcpu->kvm->stat.mmu_pte_write;
  1688. kvm_mmu_audit(vcpu, "pre pte write");
  1689. if (gfn == vcpu->arch.last_pt_write_gfn
  1690. && !last_updated_pte_accessed(vcpu)) {
  1691. ++vcpu->arch.last_pt_write_count;
  1692. if (vcpu->arch.last_pt_write_count >= 3)
  1693. flooded = 1;
  1694. } else {
  1695. vcpu->arch.last_pt_write_gfn = gfn;
  1696. vcpu->arch.last_pt_write_count = 1;
  1697. vcpu->arch.last_pte_updated = NULL;
  1698. }
  1699. index = kvm_page_table_hashfn(gfn);
  1700. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1701. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
  1702. if (sp->gfn != gfn || sp->role.metaphysical || sp->role.invalid)
  1703. continue;
  1704. pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  1705. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  1706. misaligned |= bytes < 4;
  1707. if (misaligned || flooded) {
  1708. /*
  1709. * Misaligned accesses are too much trouble to fix
  1710. * up; also, they usually indicate a page is not used
  1711. * as a page table.
  1712. *
  1713. * If we're seeing too many writes to a page,
  1714. * it may no longer be a page table, or we may be
  1715. * forking, in which case it is better to unmap the
  1716. * page.
  1717. */
  1718. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  1719. gpa, bytes, sp->role.word);
  1720. if (kvm_mmu_zap_page(vcpu->kvm, sp))
  1721. n = bucket->first;
  1722. ++vcpu->kvm->stat.mmu_flooded;
  1723. continue;
  1724. }
  1725. page_offset = offset;
  1726. level = sp->role.level;
  1727. npte = 1;
  1728. if (sp->role.glevels == PT32_ROOT_LEVEL) {
  1729. page_offset <<= 1; /* 32->64 */
  1730. /*
  1731. * A 32-bit pde maps 4MB while the shadow pdes map
  1732. * only 2MB. So we need to double the offset again
  1733. * and zap two pdes instead of one.
  1734. */
  1735. if (level == PT32_ROOT_LEVEL) {
  1736. page_offset &= ~7; /* kill rounding error */
  1737. page_offset <<= 1;
  1738. npte = 2;
  1739. }
  1740. quadrant = page_offset >> PAGE_SHIFT;
  1741. page_offset &= ~PAGE_MASK;
  1742. if (quadrant != sp->role.quadrant)
  1743. continue;
  1744. }
  1745. spte = &sp->spt[page_offset / sizeof(*spte)];
  1746. if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
  1747. gentry = 0;
  1748. r = kvm_read_guest_atomic(vcpu->kvm,
  1749. gpa & ~(u64)(pte_size - 1),
  1750. &gentry, pte_size);
  1751. new = (const void *)&gentry;
  1752. if (r < 0)
  1753. new = NULL;
  1754. }
  1755. while (npte--) {
  1756. entry = *spte;
  1757. mmu_pte_write_zap_pte(vcpu, sp, spte);
  1758. if (new)
  1759. mmu_pte_write_new_pte(vcpu, sp, spte, new);
  1760. mmu_pte_write_flush_tlb(vcpu, entry, *spte);
  1761. ++spte;
  1762. }
  1763. }
  1764. kvm_mmu_audit(vcpu, "post pte write");
  1765. spin_unlock(&vcpu->kvm->mmu_lock);
  1766. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  1767. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  1768. vcpu->arch.update_pte.pfn = bad_pfn;
  1769. }
  1770. }
  1771. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  1772. {
  1773. gpa_t gpa;
  1774. int r;
  1775. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  1776. spin_lock(&vcpu->kvm->mmu_lock);
  1777. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1778. spin_unlock(&vcpu->kvm->mmu_lock);
  1779. return r;
  1780. }
  1781. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  1782. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  1783. {
  1784. while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
  1785. struct kvm_mmu_page *sp;
  1786. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  1787. struct kvm_mmu_page, link);
  1788. kvm_mmu_zap_page(vcpu->kvm, sp);
  1789. ++vcpu->kvm->stat.mmu_recycled;
  1790. }
  1791. }
  1792. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  1793. {
  1794. int r;
  1795. enum emulation_result er;
  1796. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  1797. if (r < 0)
  1798. goto out;
  1799. if (!r) {
  1800. r = 1;
  1801. goto out;
  1802. }
  1803. r = mmu_topup_memory_caches(vcpu);
  1804. if (r)
  1805. goto out;
  1806. er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
  1807. switch (er) {
  1808. case EMULATE_DONE:
  1809. return 1;
  1810. case EMULATE_DO_MMIO:
  1811. ++vcpu->stat.mmio_exits;
  1812. return 0;
  1813. case EMULATE_FAIL:
  1814. kvm_report_emulation_failure(vcpu, "pagetable");
  1815. return 1;
  1816. default:
  1817. BUG();
  1818. }
  1819. out:
  1820. return r;
  1821. }
  1822. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  1823. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  1824. {
  1825. spin_lock(&vcpu->kvm->mmu_lock);
  1826. vcpu->arch.mmu.invlpg(vcpu, gva);
  1827. spin_unlock(&vcpu->kvm->mmu_lock);
  1828. kvm_mmu_flush_tlb(vcpu);
  1829. ++vcpu->stat.invlpg;
  1830. }
  1831. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  1832. void kvm_enable_tdp(void)
  1833. {
  1834. tdp_enabled = true;
  1835. }
  1836. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  1837. void kvm_disable_tdp(void)
  1838. {
  1839. tdp_enabled = false;
  1840. }
  1841. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  1842. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  1843. {
  1844. struct kvm_mmu_page *sp;
  1845. while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  1846. sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
  1847. struct kvm_mmu_page, link);
  1848. kvm_mmu_zap_page(vcpu->kvm, sp);
  1849. cond_resched();
  1850. }
  1851. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  1852. }
  1853. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  1854. {
  1855. struct page *page;
  1856. int i;
  1857. ASSERT(vcpu);
  1858. if (vcpu->kvm->arch.n_requested_mmu_pages)
  1859. vcpu->kvm->arch.n_free_mmu_pages =
  1860. vcpu->kvm->arch.n_requested_mmu_pages;
  1861. else
  1862. vcpu->kvm->arch.n_free_mmu_pages =
  1863. vcpu->kvm->arch.n_alloc_mmu_pages;
  1864. /*
  1865. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  1866. * Therefore we need to allocate shadow page tables in the first
  1867. * 4GB of memory, which happens to fit the DMA32 zone.
  1868. */
  1869. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  1870. if (!page)
  1871. goto error_1;
  1872. vcpu->arch.mmu.pae_root = page_address(page);
  1873. for (i = 0; i < 4; ++i)
  1874. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1875. return 0;
  1876. error_1:
  1877. free_mmu_pages(vcpu);
  1878. return -ENOMEM;
  1879. }
  1880. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  1881. {
  1882. ASSERT(vcpu);
  1883. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1884. return alloc_mmu_pages(vcpu);
  1885. }
  1886. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  1887. {
  1888. ASSERT(vcpu);
  1889. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1890. return init_kvm_mmu(vcpu);
  1891. }
  1892. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  1893. {
  1894. ASSERT(vcpu);
  1895. destroy_kvm_mmu(vcpu);
  1896. free_mmu_pages(vcpu);
  1897. mmu_free_memory_caches(vcpu);
  1898. }
  1899. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  1900. {
  1901. struct kvm_mmu_page *sp;
  1902. spin_lock(&kvm->mmu_lock);
  1903. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  1904. int i;
  1905. u64 *pt;
  1906. if (!test_bit(slot, &sp->slot_bitmap))
  1907. continue;
  1908. pt = sp->spt;
  1909. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1910. /* avoid RMW */
  1911. if (pt[i] & PT_WRITABLE_MASK)
  1912. pt[i] &= ~PT_WRITABLE_MASK;
  1913. }
  1914. kvm_flush_remote_tlbs(kvm);
  1915. spin_unlock(&kvm->mmu_lock);
  1916. }
  1917. void kvm_mmu_zap_all(struct kvm *kvm)
  1918. {
  1919. struct kvm_mmu_page *sp, *node;
  1920. spin_lock(&kvm->mmu_lock);
  1921. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  1922. if (kvm_mmu_zap_page(kvm, sp))
  1923. node = container_of(kvm->arch.active_mmu_pages.next,
  1924. struct kvm_mmu_page, link);
  1925. spin_unlock(&kvm->mmu_lock);
  1926. kvm_flush_remote_tlbs(kvm);
  1927. }
  1928. static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
  1929. {
  1930. struct kvm_mmu_page *page;
  1931. page = container_of(kvm->arch.active_mmu_pages.prev,
  1932. struct kvm_mmu_page, link);
  1933. kvm_mmu_zap_page(kvm, page);
  1934. }
  1935. static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
  1936. {
  1937. struct kvm *kvm;
  1938. struct kvm *kvm_freed = NULL;
  1939. int cache_count = 0;
  1940. spin_lock(&kvm_lock);
  1941. list_for_each_entry(kvm, &vm_list, vm_list) {
  1942. int npages;
  1943. if (!down_read_trylock(&kvm->slots_lock))
  1944. continue;
  1945. spin_lock(&kvm->mmu_lock);
  1946. npages = kvm->arch.n_alloc_mmu_pages -
  1947. kvm->arch.n_free_mmu_pages;
  1948. cache_count += npages;
  1949. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  1950. kvm_mmu_remove_one_alloc_mmu_page(kvm);
  1951. cache_count--;
  1952. kvm_freed = kvm;
  1953. }
  1954. nr_to_scan--;
  1955. spin_unlock(&kvm->mmu_lock);
  1956. up_read(&kvm->slots_lock);
  1957. }
  1958. if (kvm_freed)
  1959. list_move_tail(&kvm_freed->vm_list, &vm_list);
  1960. spin_unlock(&kvm_lock);
  1961. return cache_count;
  1962. }
  1963. static struct shrinker mmu_shrinker = {
  1964. .shrink = mmu_shrink,
  1965. .seeks = DEFAULT_SEEKS * 10,
  1966. };
  1967. static void mmu_destroy_caches(void)
  1968. {
  1969. if (pte_chain_cache)
  1970. kmem_cache_destroy(pte_chain_cache);
  1971. if (rmap_desc_cache)
  1972. kmem_cache_destroy(rmap_desc_cache);
  1973. if (mmu_page_header_cache)
  1974. kmem_cache_destroy(mmu_page_header_cache);
  1975. }
  1976. void kvm_mmu_module_exit(void)
  1977. {
  1978. mmu_destroy_caches();
  1979. unregister_shrinker(&mmu_shrinker);
  1980. }
  1981. int kvm_mmu_module_init(void)
  1982. {
  1983. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  1984. sizeof(struct kvm_pte_chain),
  1985. 0, 0, NULL);
  1986. if (!pte_chain_cache)
  1987. goto nomem;
  1988. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  1989. sizeof(struct kvm_rmap_desc),
  1990. 0, 0, NULL);
  1991. if (!rmap_desc_cache)
  1992. goto nomem;
  1993. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  1994. sizeof(struct kvm_mmu_page),
  1995. 0, 0, NULL);
  1996. if (!mmu_page_header_cache)
  1997. goto nomem;
  1998. register_shrinker(&mmu_shrinker);
  1999. return 0;
  2000. nomem:
  2001. mmu_destroy_caches();
  2002. return -ENOMEM;
  2003. }
  2004. /*
  2005. * Caculate mmu pages needed for kvm.
  2006. */
  2007. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2008. {
  2009. int i;
  2010. unsigned int nr_mmu_pages;
  2011. unsigned int nr_pages = 0;
  2012. for (i = 0; i < kvm->nmemslots; i++)
  2013. nr_pages += kvm->memslots[i].npages;
  2014. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  2015. nr_mmu_pages = max(nr_mmu_pages,
  2016. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  2017. return nr_mmu_pages;
  2018. }
  2019. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2020. unsigned len)
  2021. {
  2022. if (len > buffer->len)
  2023. return NULL;
  2024. return buffer->ptr;
  2025. }
  2026. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2027. unsigned len)
  2028. {
  2029. void *ret;
  2030. ret = pv_mmu_peek_buffer(buffer, len);
  2031. if (!ret)
  2032. return ret;
  2033. buffer->ptr += len;
  2034. buffer->len -= len;
  2035. buffer->processed += len;
  2036. return ret;
  2037. }
  2038. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  2039. gpa_t addr, gpa_t value)
  2040. {
  2041. int bytes = 8;
  2042. int r;
  2043. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  2044. bytes = 4;
  2045. r = mmu_topup_memory_caches(vcpu);
  2046. if (r)
  2047. return r;
  2048. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  2049. return -EFAULT;
  2050. return 1;
  2051. }
  2052. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2053. {
  2054. kvm_x86_ops->tlb_flush(vcpu);
  2055. return 1;
  2056. }
  2057. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  2058. {
  2059. spin_lock(&vcpu->kvm->mmu_lock);
  2060. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  2061. spin_unlock(&vcpu->kvm->mmu_lock);
  2062. return 1;
  2063. }
  2064. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  2065. struct kvm_pv_mmu_op_buffer *buffer)
  2066. {
  2067. struct kvm_mmu_op_header *header;
  2068. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  2069. if (!header)
  2070. return 0;
  2071. switch (header->op) {
  2072. case KVM_MMU_OP_WRITE_PTE: {
  2073. struct kvm_mmu_op_write_pte *wpte;
  2074. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  2075. if (!wpte)
  2076. return 0;
  2077. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  2078. wpte->pte_val);
  2079. }
  2080. case KVM_MMU_OP_FLUSH_TLB: {
  2081. struct kvm_mmu_op_flush_tlb *ftlb;
  2082. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  2083. if (!ftlb)
  2084. return 0;
  2085. return kvm_pv_mmu_flush_tlb(vcpu);
  2086. }
  2087. case KVM_MMU_OP_RELEASE_PT: {
  2088. struct kvm_mmu_op_release_pt *rpt;
  2089. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2090. if (!rpt)
  2091. return 0;
  2092. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2093. }
  2094. default: return 0;
  2095. }
  2096. }
  2097. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2098. gpa_t addr, unsigned long *ret)
  2099. {
  2100. int r;
  2101. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2102. buffer->ptr = buffer->buf;
  2103. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2104. buffer->processed = 0;
  2105. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2106. if (r)
  2107. goto out;
  2108. while (buffer->len) {
  2109. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2110. if (r < 0)
  2111. goto out;
  2112. if (r == 0)
  2113. break;
  2114. }
  2115. r = 1;
  2116. out:
  2117. *ret = buffer->processed;
  2118. return r;
  2119. }
  2120. #ifdef AUDIT
  2121. static const char *audit_msg;
  2122. static gva_t canonicalize(gva_t gva)
  2123. {
  2124. #ifdef CONFIG_X86_64
  2125. gva = (long long)(gva << 16) >> 16;
  2126. #endif
  2127. return gva;
  2128. }
  2129. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  2130. gva_t va, int level)
  2131. {
  2132. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  2133. int i;
  2134. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  2135. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2136. u64 ent = pt[i];
  2137. if (ent == shadow_trap_nonpresent_pte)
  2138. continue;
  2139. va = canonicalize(va);
  2140. if (level > 1) {
  2141. if (ent == shadow_notrap_nonpresent_pte)
  2142. printk(KERN_ERR "audit: (%s) nontrapping pte"
  2143. " in nonleaf level: levels %d gva %lx"
  2144. " level %d pte %llx\n", audit_msg,
  2145. vcpu->arch.mmu.root_level, va, level, ent);
  2146. audit_mappings_page(vcpu, ent, va, level - 1);
  2147. } else {
  2148. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
  2149. hpa_t hpa = (hpa_t)gpa_to_pfn(vcpu, gpa) << PAGE_SHIFT;
  2150. if (is_shadow_present_pte(ent)
  2151. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2152. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2153. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2154. audit_msg, vcpu->arch.mmu.root_level,
  2155. va, gpa, hpa, ent,
  2156. is_shadow_present_pte(ent));
  2157. else if (ent == shadow_notrap_nonpresent_pte
  2158. && !is_error_hpa(hpa))
  2159. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2160. " valid guest gva %lx\n", audit_msg, va);
  2161. kvm_release_pfn_clean(pfn);
  2162. }
  2163. }
  2164. }
  2165. static void audit_mappings(struct kvm_vcpu *vcpu)
  2166. {
  2167. unsigned i;
  2168. if (vcpu->arch.mmu.root_level == 4)
  2169. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2170. else
  2171. for (i = 0; i < 4; ++i)
  2172. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2173. audit_mappings_page(vcpu,
  2174. vcpu->arch.mmu.pae_root[i],
  2175. i << 30,
  2176. 2);
  2177. }
  2178. static int count_rmaps(struct kvm_vcpu *vcpu)
  2179. {
  2180. int nmaps = 0;
  2181. int i, j, k;
  2182. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2183. struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
  2184. struct kvm_rmap_desc *d;
  2185. for (j = 0; j < m->npages; ++j) {
  2186. unsigned long *rmapp = &m->rmap[j];
  2187. if (!*rmapp)
  2188. continue;
  2189. if (!(*rmapp & 1)) {
  2190. ++nmaps;
  2191. continue;
  2192. }
  2193. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2194. while (d) {
  2195. for (k = 0; k < RMAP_EXT; ++k)
  2196. if (d->shadow_ptes[k])
  2197. ++nmaps;
  2198. else
  2199. break;
  2200. d = d->more;
  2201. }
  2202. }
  2203. }
  2204. return nmaps;
  2205. }
  2206. static int count_writable_mappings(struct kvm_vcpu *vcpu)
  2207. {
  2208. int nmaps = 0;
  2209. struct kvm_mmu_page *sp;
  2210. int i;
  2211. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2212. u64 *pt = sp->spt;
  2213. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  2214. continue;
  2215. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2216. u64 ent = pt[i];
  2217. if (!(ent & PT_PRESENT_MASK))
  2218. continue;
  2219. if (!(ent & PT_WRITABLE_MASK))
  2220. continue;
  2221. ++nmaps;
  2222. }
  2223. }
  2224. return nmaps;
  2225. }
  2226. static void audit_rmap(struct kvm_vcpu *vcpu)
  2227. {
  2228. int n_rmap = count_rmaps(vcpu);
  2229. int n_actual = count_writable_mappings(vcpu);
  2230. if (n_rmap != n_actual)
  2231. printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
  2232. __func__, audit_msg, n_rmap, n_actual);
  2233. }
  2234. static void audit_write_protection(struct kvm_vcpu *vcpu)
  2235. {
  2236. struct kvm_mmu_page *sp;
  2237. struct kvm_memory_slot *slot;
  2238. unsigned long *rmapp;
  2239. gfn_t gfn;
  2240. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2241. if (sp->role.metaphysical)
  2242. continue;
  2243. slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
  2244. gfn = unalias_gfn(vcpu->kvm, sp->gfn);
  2245. rmapp = &slot->rmap[gfn - slot->base_gfn];
  2246. if (*rmapp)
  2247. printk(KERN_ERR "%s: (%s) shadow page has writable"
  2248. " mappings: gfn %lx role %x\n",
  2249. __func__, audit_msg, sp->gfn,
  2250. sp->role.word);
  2251. }
  2252. }
  2253. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  2254. {
  2255. int olddbg = dbg;
  2256. dbg = 0;
  2257. audit_msg = msg;
  2258. audit_rmap(vcpu);
  2259. audit_write_protection(vcpu);
  2260. audit_mappings(vcpu);
  2261. dbg = olddbg;
  2262. }
  2263. #endif