rx.c 62 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230
  1. /*
  2. * Copyright 2002-2005, Instant802 Networks, Inc.
  3. * Copyright 2005-2006, Devicescape Software, Inc.
  4. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
  5. * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/jiffies.h>
  12. #include <linux/kernel.h>
  13. #include <linux/skbuff.h>
  14. #include <linux/netdevice.h>
  15. #include <linux/etherdevice.h>
  16. #include <linux/rcupdate.h>
  17. #include <net/mac80211.h>
  18. #include <net/ieee80211_radiotap.h>
  19. #include "ieee80211_i.h"
  20. #include "led.h"
  21. #include "mesh.h"
  22. #include "wep.h"
  23. #include "wpa.h"
  24. #include "tkip.h"
  25. #include "wme.h"
  26. u8 ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
  27. struct tid_ampdu_rx *tid_agg_rx,
  28. struct sk_buff *skb, u16 mpdu_seq_num,
  29. int bar_req);
  30. /*
  31. * monitor mode reception
  32. *
  33. * This function cleans up the SKB, i.e. it removes all the stuff
  34. * only useful for monitoring.
  35. */
  36. static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
  37. struct sk_buff *skb,
  38. int rtap_len)
  39. {
  40. skb_pull(skb, rtap_len);
  41. if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
  42. if (likely(skb->len > FCS_LEN))
  43. skb_trim(skb, skb->len - FCS_LEN);
  44. else {
  45. /* driver bug */
  46. WARN_ON(1);
  47. dev_kfree_skb(skb);
  48. skb = NULL;
  49. }
  50. }
  51. return skb;
  52. }
  53. static inline int should_drop_frame(struct ieee80211_rx_status *status,
  54. struct sk_buff *skb,
  55. int present_fcs_len,
  56. int radiotap_len)
  57. {
  58. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  59. if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
  60. return 1;
  61. if (unlikely(skb->len < 16 + present_fcs_len + radiotap_len))
  62. return 1;
  63. if (((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
  64. cpu_to_le16(IEEE80211_FTYPE_CTL)) &&
  65. ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE)) !=
  66. cpu_to_le16(IEEE80211_STYPE_PSPOLL)) &&
  67. ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE)) !=
  68. cpu_to_le16(IEEE80211_STYPE_BACK_REQ)))
  69. return 1;
  70. return 0;
  71. }
  72. /*
  73. * This function copies a received frame to all monitor interfaces and
  74. * returns a cleaned-up SKB that no longer includes the FCS nor the
  75. * radiotap header the driver might have added.
  76. */
  77. static struct sk_buff *
  78. ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
  79. struct ieee80211_rx_status *status,
  80. struct ieee80211_rate *rate)
  81. {
  82. struct ieee80211_sub_if_data *sdata;
  83. int needed_headroom = 0;
  84. struct ieee80211_radiotap_header *rthdr;
  85. __le64 *rttsft = NULL;
  86. struct ieee80211_rtap_fixed_data {
  87. u8 flags;
  88. u8 rate;
  89. __le16 chan_freq;
  90. __le16 chan_flags;
  91. u8 antsignal;
  92. u8 padding_for_rxflags;
  93. __le16 rx_flags;
  94. } __attribute__ ((packed)) *rtfixed;
  95. struct sk_buff *skb, *skb2;
  96. struct net_device *prev_dev = NULL;
  97. int present_fcs_len = 0;
  98. int rtap_len = 0;
  99. /*
  100. * First, we may need to make a copy of the skb because
  101. * (1) we need to modify it for radiotap (if not present), and
  102. * (2) the other RX handlers will modify the skb we got.
  103. *
  104. * We don't need to, of course, if we aren't going to return
  105. * the SKB because it has a bad FCS/PLCP checksum.
  106. */
  107. if (status->flag & RX_FLAG_RADIOTAP)
  108. rtap_len = ieee80211_get_radiotap_len(origskb->data);
  109. else
  110. /* room for radiotap header, always present fields and TSFT */
  111. needed_headroom = sizeof(*rthdr) + sizeof(*rtfixed) + 8;
  112. if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
  113. present_fcs_len = FCS_LEN;
  114. if (!local->monitors) {
  115. if (should_drop_frame(status, origskb, present_fcs_len,
  116. rtap_len)) {
  117. dev_kfree_skb(origskb);
  118. return NULL;
  119. }
  120. return remove_monitor_info(local, origskb, rtap_len);
  121. }
  122. if (should_drop_frame(status, origskb, present_fcs_len, rtap_len)) {
  123. /* only need to expand headroom if necessary */
  124. skb = origskb;
  125. origskb = NULL;
  126. /*
  127. * This shouldn't trigger often because most devices have an
  128. * RX header they pull before we get here, and that should
  129. * be big enough for our radiotap information. We should
  130. * probably export the length to drivers so that we can have
  131. * them allocate enough headroom to start with.
  132. */
  133. if (skb_headroom(skb) < needed_headroom &&
  134. pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
  135. dev_kfree_skb(skb);
  136. return NULL;
  137. }
  138. } else {
  139. /*
  140. * Need to make a copy and possibly remove radiotap header
  141. * and FCS from the original.
  142. */
  143. skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
  144. origskb = remove_monitor_info(local, origskb, rtap_len);
  145. if (!skb)
  146. return origskb;
  147. }
  148. /* if necessary, prepend radiotap information */
  149. if (!(status->flag & RX_FLAG_RADIOTAP)) {
  150. rtfixed = (void *) skb_push(skb, sizeof(*rtfixed));
  151. rtap_len = sizeof(*rthdr) + sizeof(*rtfixed);
  152. if (status->flag & RX_FLAG_TSFT) {
  153. rttsft = (void *) skb_push(skb, sizeof(*rttsft));
  154. rtap_len += 8;
  155. }
  156. rthdr = (void *) skb_push(skb, sizeof(*rthdr));
  157. memset(rthdr, 0, sizeof(*rthdr));
  158. memset(rtfixed, 0, sizeof(*rtfixed));
  159. rthdr->it_present =
  160. cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
  161. (1 << IEEE80211_RADIOTAP_RATE) |
  162. (1 << IEEE80211_RADIOTAP_CHANNEL) |
  163. (1 << IEEE80211_RADIOTAP_DB_ANTSIGNAL) |
  164. (1 << IEEE80211_RADIOTAP_RX_FLAGS));
  165. rtfixed->flags = 0;
  166. if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
  167. rtfixed->flags |= IEEE80211_RADIOTAP_F_FCS;
  168. if (rttsft) {
  169. *rttsft = cpu_to_le64(status->mactime);
  170. rthdr->it_present |=
  171. cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
  172. }
  173. /* FIXME: when radiotap gets a 'bad PLCP' flag use it here */
  174. rtfixed->rx_flags = 0;
  175. if (status->flag &
  176. (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
  177. rtfixed->rx_flags |=
  178. cpu_to_le16(IEEE80211_RADIOTAP_F_RX_BADFCS);
  179. rtfixed->rate = rate->bitrate / 5;
  180. rtfixed->chan_freq = cpu_to_le16(status->freq);
  181. if (status->band == IEEE80211_BAND_5GHZ)
  182. rtfixed->chan_flags =
  183. cpu_to_le16(IEEE80211_CHAN_OFDM |
  184. IEEE80211_CHAN_5GHZ);
  185. else
  186. rtfixed->chan_flags =
  187. cpu_to_le16(IEEE80211_CHAN_DYN |
  188. IEEE80211_CHAN_2GHZ);
  189. rtfixed->antsignal = status->ssi;
  190. rthdr->it_len = cpu_to_le16(rtap_len);
  191. }
  192. skb_reset_mac_header(skb);
  193. skb->ip_summed = CHECKSUM_UNNECESSARY;
  194. skb->pkt_type = PACKET_OTHERHOST;
  195. skb->protocol = htons(ETH_P_802_2);
  196. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  197. if (!netif_running(sdata->dev))
  198. continue;
  199. if (sdata->vif.type != IEEE80211_IF_TYPE_MNTR)
  200. continue;
  201. if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
  202. continue;
  203. if (prev_dev) {
  204. skb2 = skb_clone(skb, GFP_ATOMIC);
  205. if (skb2) {
  206. skb2->dev = prev_dev;
  207. netif_rx(skb2);
  208. }
  209. }
  210. prev_dev = sdata->dev;
  211. sdata->dev->stats.rx_packets++;
  212. sdata->dev->stats.rx_bytes += skb->len;
  213. }
  214. if (prev_dev) {
  215. skb->dev = prev_dev;
  216. netif_rx(skb);
  217. } else
  218. dev_kfree_skb(skb);
  219. return origskb;
  220. }
  221. static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
  222. {
  223. u8 *data = rx->skb->data;
  224. int tid;
  225. /* does the frame have a qos control field? */
  226. if (WLAN_FC_IS_QOS_DATA(rx->fc)) {
  227. u8 *qc = data + ieee80211_get_hdrlen(rx->fc) - QOS_CONTROL_LEN;
  228. /* frame has qos control */
  229. tid = qc[0] & QOS_CONTROL_TID_MASK;
  230. if (qc[0] & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT)
  231. rx->flags |= IEEE80211_RX_AMSDU;
  232. else
  233. rx->flags &= ~IEEE80211_RX_AMSDU;
  234. } else {
  235. if (unlikely((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)) {
  236. /* Separate TID for management frames */
  237. tid = NUM_RX_DATA_QUEUES - 1;
  238. } else {
  239. /* no qos control present */
  240. tid = 0; /* 802.1d - Best Effort */
  241. }
  242. }
  243. rx->queue = tid;
  244. /* Set skb->priority to 1d tag if highest order bit of TID is not set.
  245. * For now, set skb->priority to 0 for other cases. */
  246. rx->skb->priority = (tid > 7) ? 0 : tid;
  247. }
  248. static void ieee80211_verify_ip_alignment(struct ieee80211_rx_data *rx)
  249. {
  250. #ifdef CONFIG_MAC80211_DEBUG_PACKET_ALIGNMENT
  251. int hdrlen;
  252. if (!WLAN_FC_DATA_PRESENT(rx->fc))
  253. return;
  254. /*
  255. * Drivers are required to align the payload data in a way that
  256. * guarantees that the contained IP header is aligned to a four-
  257. * byte boundary. In the case of regular frames, this simply means
  258. * aligning the payload to a four-byte boundary (because either
  259. * the IP header is directly contained, or IV/RFC1042 headers that
  260. * have a length divisible by four are in front of it.
  261. *
  262. * With A-MSDU frames, however, the payload data address must
  263. * yield two modulo four because there are 14-byte 802.3 headers
  264. * within the A-MSDU frames that push the IP header further back
  265. * to a multiple of four again. Thankfully, the specs were sane
  266. * enough this time around to require padding each A-MSDU subframe
  267. * to a length that is a multiple of four.
  268. *
  269. * Padding like atheros hardware adds which is inbetween the 802.11
  270. * header and the payload is not supported, the driver is required
  271. * to move the 802.11 header further back in that case.
  272. */
  273. hdrlen = ieee80211_get_hdrlen(rx->fc);
  274. if (rx->flags & IEEE80211_RX_AMSDU)
  275. hdrlen += ETH_HLEN;
  276. WARN_ON_ONCE(((unsigned long)(rx->skb->data + hdrlen)) & 3);
  277. #endif
  278. }
  279. static u32 ieee80211_rx_load_stats(struct ieee80211_local *local,
  280. struct sk_buff *skb,
  281. struct ieee80211_rx_status *status,
  282. struct ieee80211_rate *rate)
  283. {
  284. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  285. u32 load = 0, hdrtime;
  286. /* Estimate total channel use caused by this frame */
  287. /* 1 bit at 1 Mbit/s takes 1 usec; in channel_use values,
  288. * 1 usec = 1/8 * (1080 / 10) = 13.5 */
  289. if (status->band == IEEE80211_BAND_5GHZ ||
  290. (status->band == IEEE80211_BAND_5GHZ &&
  291. rate->flags & IEEE80211_RATE_ERP_G))
  292. hdrtime = CHAN_UTIL_HDR_SHORT;
  293. else
  294. hdrtime = CHAN_UTIL_HDR_LONG;
  295. load = hdrtime;
  296. if (!is_multicast_ether_addr(hdr->addr1))
  297. load += hdrtime;
  298. /* TODO: optimise again */
  299. load += skb->len * CHAN_UTIL_RATE_LCM / rate->bitrate;
  300. /* Divide channel_use by 8 to avoid wrapping around the counter */
  301. load >>= CHAN_UTIL_SHIFT;
  302. return load;
  303. }
  304. /* rx handlers */
  305. static ieee80211_rx_result
  306. ieee80211_rx_h_if_stats(struct ieee80211_rx_data *rx)
  307. {
  308. if (rx->sta)
  309. rx->sta->channel_use_raw += rx->load;
  310. rx->sdata->channel_use_raw += rx->load;
  311. return RX_CONTINUE;
  312. }
  313. static ieee80211_rx_result
  314. ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
  315. {
  316. struct ieee80211_local *local = rx->local;
  317. struct sk_buff *skb = rx->skb;
  318. if (unlikely(local->sta_hw_scanning))
  319. return ieee80211_sta_rx_scan(rx->dev, skb, rx->status);
  320. if (unlikely(local->sta_sw_scanning)) {
  321. /* drop all the other packets during a software scan anyway */
  322. if (ieee80211_sta_rx_scan(rx->dev, skb, rx->status)
  323. != RX_QUEUED)
  324. dev_kfree_skb(skb);
  325. return RX_QUEUED;
  326. }
  327. if (unlikely(rx->flags & IEEE80211_RX_IN_SCAN)) {
  328. /* scanning finished during invoking of handlers */
  329. I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
  330. return RX_DROP_UNUSABLE;
  331. }
  332. return RX_CONTINUE;
  333. }
  334. static ieee80211_rx_result
  335. ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
  336. {
  337. int hdrlen = ieee80211_get_hdrlen(rx->fc);
  338. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
  339. #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l))
  340. if ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA) {
  341. if (!((rx->fc & IEEE80211_FCTL_FROMDS) &&
  342. (rx->fc & IEEE80211_FCTL_TODS)))
  343. return RX_DROP_MONITOR;
  344. if (memcmp(hdr->addr4, rx->dev->dev_addr, ETH_ALEN) == 0)
  345. return RX_DROP_MONITOR;
  346. }
  347. /* If there is not an established peer link and this is not a peer link
  348. * establisment frame, beacon or probe, drop the frame.
  349. */
  350. if (!rx->sta || sta_plink_state(rx->sta) != PLINK_ESTAB) {
  351. struct ieee80211_mgmt *mgmt;
  352. if ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT)
  353. return RX_DROP_MONITOR;
  354. switch (rx->fc & IEEE80211_FCTL_STYPE) {
  355. case IEEE80211_STYPE_ACTION:
  356. mgmt = (struct ieee80211_mgmt *)hdr;
  357. if (mgmt->u.action.category != PLINK_CATEGORY)
  358. return RX_DROP_MONITOR;
  359. /* fall through on else */
  360. case IEEE80211_STYPE_PROBE_REQ:
  361. case IEEE80211_STYPE_PROBE_RESP:
  362. case IEEE80211_STYPE_BEACON:
  363. return RX_CONTINUE;
  364. break;
  365. default:
  366. return RX_DROP_MONITOR;
  367. }
  368. } else if ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
  369. is_multicast_ether_addr(hdr->addr1) &&
  370. mesh_rmc_check(hdr->addr4, msh_h_get(hdr, hdrlen), rx->dev))
  371. return RX_DROP_MONITOR;
  372. #undef msh_h_get
  373. return RX_CONTINUE;
  374. }
  375. static ieee80211_rx_result
  376. ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
  377. {
  378. struct ieee80211_hdr *hdr;
  379. hdr = (struct ieee80211_hdr *) rx->skb->data;
  380. /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
  381. if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
  382. if (unlikely(rx->fc & IEEE80211_FCTL_RETRY &&
  383. rx->sta->last_seq_ctrl[rx->queue] ==
  384. hdr->seq_ctrl)) {
  385. if (rx->flags & IEEE80211_RX_RA_MATCH) {
  386. rx->local->dot11FrameDuplicateCount++;
  387. rx->sta->num_duplicates++;
  388. }
  389. return RX_DROP_MONITOR;
  390. } else
  391. rx->sta->last_seq_ctrl[rx->queue] = hdr->seq_ctrl;
  392. }
  393. if (unlikely(rx->skb->len < 16)) {
  394. I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
  395. return RX_DROP_MONITOR;
  396. }
  397. /* Drop disallowed frame classes based on STA auth/assoc state;
  398. * IEEE 802.11, Chap 5.5.
  399. *
  400. * 80211.o does filtering only based on association state, i.e., it
  401. * drops Class 3 frames from not associated stations. hostapd sends
  402. * deauth/disassoc frames when needed. In addition, hostapd is
  403. * responsible for filtering on both auth and assoc states.
  404. */
  405. if (ieee80211_vif_is_mesh(&rx->sdata->vif))
  406. return ieee80211_rx_mesh_check(rx);
  407. if (unlikely(((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA ||
  408. ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL &&
  409. (rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PSPOLL)) &&
  410. rx->sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  411. (!rx->sta || !test_sta_flags(rx->sta, WLAN_STA_ASSOC)))) {
  412. if ((!(rx->fc & IEEE80211_FCTL_FROMDS) &&
  413. !(rx->fc & IEEE80211_FCTL_TODS) &&
  414. (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
  415. || !(rx->flags & IEEE80211_RX_RA_MATCH)) {
  416. /* Drop IBSS frames and frames for other hosts
  417. * silently. */
  418. return RX_DROP_MONITOR;
  419. }
  420. return RX_DROP_MONITOR;
  421. }
  422. return RX_CONTINUE;
  423. }
  424. static ieee80211_rx_result
  425. ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
  426. {
  427. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
  428. int keyidx;
  429. int hdrlen;
  430. ieee80211_rx_result result = RX_DROP_UNUSABLE;
  431. struct ieee80211_key *stakey = NULL;
  432. /*
  433. * Key selection 101
  434. *
  435. * There are three types of keys:
  436. * - GTK (group keys)
  437. * - PTK (pairwise keys)
  438. * - STK (station-to-station pairwise keys)
  439. *
  440. * When selecting a key, we have to distinguish between multicast
  441. * (including broadcast) and unicast frames, the latter can only
  442. * use PTKs and STKs while the former always use GTKs. Unless, of
  443. * course, actual WEP keys ("pre-RSNA") are used, then unicast
  444. * frames can also use key indizes like GTKs. Hence, if we don't
  445. * have a PTK/STK we check the key index for a WEP key.
  446. *
  447. * Note that in a regular BSS, multicast frames are sent by the
  448. * AP only, associated stations unicast the frame to the AP first
  449. * which then multicasts it on their behalf.
  450. *
  451. * There is also a slight problem in IBSS mode: GTKs are negotiated
  452. * with each station, that is something we don't currently handle.
  453. * The spec seems to expect that one negotiates the same key with
  454. * every station but there's no such requirement; VLANs could be
  455. * possible.
  456. */
  457. if (!(rx->fc & IEEE80211_FCTL_PROTECTED))
  458. return RX_CONTINUE;
  459. /*
  460. * No point in finding a key and decrypting if the frame is neither
  461. * addressed to us nor a multicast frame.
  462. */
  463. if (!(rx->flags & IEEE80211_RX_RA_MATCH))
  464. return RX_CONTINUE;
  465. if (rx->sta)
  466. stakey = rcu_dereference(rx->sta->key);
  467. if (!is_multicast_ether_addr(hdr->addr1) && stakey) {
  468. rx->key = stakey;
  469. } else {
  470. /*
  471. * The device doesn't give us the IV so we won't be
  472. * able to look up the key. That's ok though, we
  473. * don't need to decrypt the frame, we just won't
  474. * be able to keep statistics accurate.
  475. * Except for key threshold notifications, should
  476. * we somehow allow the driver to tell us which key
  477. * the hardware used if this flag is set?
  478. */
  479. if ((rx->status->flag & RX_FLAG_DECRYPTED) &&
  480. (rx->status->flag & RX_FLAG_IV_STRIPPED))
  481. return RX_CONTINUE;
  482. hdrlen = ieee80211_get_hdrlen(rx->fc);
  483. if (rx->skb->len < 8 + hdrlen)
  484. return RX_DROP_UNUSABLE; /* TODO: count this? */
  485. /*
  486. * no need to call ieee80211_wep_get_keyidx,
  487. * it verifies a bunch of things we've done already
  488. */
  489. keyidx = rx->skb->data[hdrlen + 3] >> 6;
  490. rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
  491. /*
  492. * RSNA-protected unicast frames should always be sent with
  493. * pairwise or station-to-station keys, but for WEP we allow
  494. * using a key index as well.
  495. */
  496. if (rx->key && rx->key->conf.alg != ALG_WEP &&
  497. !is_multicast_ether_addr(hdr->addr1))
  498. rx->key = NULL;
  499. }
  500. if (rx->key) {
  501. rx->key->tx_rx_count++;
  502. /* TODO: add threshold stuff again */
  503. } else {
  504. #ifdef CONFIG_MAC80211_DEBUG
  505. if (net_ratelimit())
  506. printk(KERN_DEBUG "%s: RX protected frame,"
  507. " but have no key\n", rx->dev->name);
  508. #endif /* CONFIG_MAC80211_DEBUG */
  509. return RX_DROP_MONITOR;
  510. }
  511. /* Check for weak IVs if possible */
  512. if (rx->sta && rx->key->conf.alg == ALG_WEP &&
  513. ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA) &&
  514. (!(rx->status->flag & RX_FLAG_IV_STRIPPED) ||
  515. !(rx->status->flag & RX_FLAG_DECRYPTED)) &&
  516. ieee80211_wep_is_weak_iv(rx->skb, rx->key))
  517. rx->sta->wep_weak_iv_count++;
  518. switch (rx->key->conf.alg) {
  519. case ALG_WEP:
  520. result = ieee80211_crypto_wep_decrypt(rx);
  521. break;
  522. case ALG_TKIP:
  523. result = ieee80211_crypto_tkip_decrypt(rx);
  524. break;
  525. case ALG_CCMP:
  526. result = ieee80211_crypto_ccmp_decrypt(rx);
  527. break;
  528. }
  529. /* either the frame has been decrypted or will be dropped */
  530. rx->status->flag |= RX_FLAG_DECRYPTED;
  531. return result;
  532. }
  533. static void ap_sta_ps_start(struct net_device *dev, struct sta_info *sta)
  534. {
  535. struct ieee80211_sub_if_data *sdata;
  536. DECLARE_MAC_BUF(mac);
  537. sdata = sta->sdata;
  538. if (sdata->bss)
  539. atomic_inc(&sdata->bss->num_sta_ps);
  540. set_and_clear_sta_flags(sta, WLAN_STA_PS, WLAN_STA_PSPOLL);
  541. #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
  542. printk(KERN_DEBUG "%s: STA %s aid %d enters power save mode\n",
  543. dev->name, print_mac(mac, sta->addr), sta->aid);
  544. #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
  545. }
  546. static int ap_sta_ps_end(struct net_device *dev, struct sta_info *sta)
  547. {
  548. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  549. struct sk_buff *skb;
  550. int sent = 0;
  551. struct ieee80211_sub_if_data *sdata;
  552. struct ieee80211_tx_packet_data *pkt_data;
  553. DECLARE_MAC_BUF(mac);
  554. sdata = sta->sdata;
  555. if (sdata->bss)
  556. atomic_dec(&sdata->bss->num_sta_ps);
  557. clear_sta_flags(sta, WLAN_STA_PS | WLAN_STA_PSPOLL);
  558. if (!skb_queue_empty(&sta->ps_tx_buf))
  559. sta_info_clear_tim_bit(sta);
  560. #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
  561. printk(KERN_DEBUG "%s: STA %s aid %d exits power save mode\n",
  562. dev->name, print_mac(mac, sta->addr), sta->aid);
  563. #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
  564. /* Send all buffered frames to the station */
  565. while ((skb = skb_dequeue(&sta->tx_filtered)) != NULL) {
  566. pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
  567. sent++;
  568. pkt_data->flags |= IEEE80211_TXPD_REQUEUE;
  569. dev_queue_xmit(skb);
  570. }
  571. while ((skb = skb_dequeue(&sta->ps_tx_buf)) != NULL) {
  572. pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
  573. local->total_ps_buffered--;
  574. sent++;
  575. #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
  576. printk(KERN_DEBUG "%s: STA %s aid %d send PS frame "
  577. "since STA not sleeping anymore\n", dev->name,
  578. print_mac(mac, sta->addr), sta->aid);
  579. #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
  580. pkt_data->flags |= IEEE80211_TXPD_REQUEUE;
  581. dev_queue_xmit(skb);
  582. }
  583. return sent;
  584. }
  585. static ieee80211_rx_result
  586. ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
  587. {
  588. struct sta_info *sta = rx->sta;
  589. struct net_device *dev = rx->dev;
  590. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
  591. if (!sta)
  592. return RX_CONTINUE;
  593. /* Update last_rx only for IBSS packets which are for the current
  594. * BSSID to avoid keeping the current IBSS network alive in cases where
  595. * other STAs are using different BSSID. */
  596. if (rx->sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  597. u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
  598. IEEE80211_IF_TYPE_IBSS);
  599. if (compare_ether_addr(bssid, rx->sdata->u.sta.bssid) == 0)
  600. sta->last_rx = jiffies;
  601. } else
  602. if (!is_multicast_ether_addr(hdr->addr1) ||
  603. rx->sdata->vif.type == IEEE80211_IF_TYPE_STA) {
  604. /* Update last_rx only for unicast frames in order to prevent
  605. * the Probe Request frames (the only broadcast frames from a
  606. * STA in infrastructure mode) from keeping a connection alive.
  607. * Mesh beacons will update last_rx when if they are found to
  608. * match the current local configuration when processed.
  609. */
  610. sta->last_rx = jiffies;
  611. }
  612. if (!(rx->flags & IEEE80211_RX_RA_MATCH))
  613. return RX_CONTINUE;
  614. sta->rx_fragments++;
  615. sta->rx_bytes += rx->skb->len;
  616. sta->last_rssi = rx->status->ssi;
  617. sta->last_signal = rx->status->signal;
  618. sta->last_noise = rx->status->noise;
  619. if (!(rx->fc & IEEE80211_FCTL_MOREFRAGS)) {
  620. /* Change STA power saving mode only in the end of a frame
  621. * exchange sequence */
  622. if (test_sta_flags(sta, WLAN_STA_PS) &&
  623. !(rx->fc & IEEE80211_FCTL_PM))
  624. rx->sent_ps_buffered += ap_sta_ps_end(dev, sta);
  625. else if (!test_sta_flags(sta, WLAN_STA_PS) &&
  626. (rx->fc & IEEE80211_FCTL_PM))
  627. ap_sta_ps_start(dev, sta);
  628. }
  629. /* Drop data::nullfunc frames silently, since they are used only to
  630. * control station power saving mode. */
  631. if ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
  632. (rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_NULLFUNC) {
  633. I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
  634. /* Update counter and free packet here to avoid counting this
  635. * as a dropped packed. */
  636. sta->rx_packets++;
  637. dev_kfree_skb(rx->skb);
  638. return RX_QUEUED;
  639. }
  640. return RX_CONTINUE;
  641. } /* ieee80211_rx_h_sta_process */
  642. static inline struct ieee80211_fragment_entry *
  643. ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
  644. unsigned int frag, unsigned int seq, int rx_queue,
  645. struct sk_buff **skb)
  646. {
  647. struct ieee80211_fragment_entry *entry;
  648. int idx;
  649. idx = sdata->fragment_next;
  650. entry = &sdata->fragments[sdata->fragment_next++];
  651. if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
  652. sdata->fragment_next = 0;
  653. if (!skb_queue_empty(&entry->skb_list)) {
  654. #ifdef CONFIG_MAC80211_DEBUG
  655. struct ieee80211_hdr *hdr =
  656. (struct ieee80211_hdr *) entry->skb_list.next->data;
  657. DECLARE_MAC_BUF(mac);
  658. DECLARE_MAC_BUF(mac2);
  659. printk(KERN_DEBUG "%s: RX reassembly removed oldest "
  660. "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
  661. "addr1=%s addr2=%s\n",
  662. sdata->dev->name, idx,
  663. jiffies - entry->first_frag_time, entry->seq,
  664. entry->last_frag, print_mac(mac, hdr->addr1),
  665. print_mac(mac2, hdr->addr2));
  666. #endif /* CONFIG_MAC80211_DEBUG */
  667. __skb_queue_purge(&entry->skb_list);
  668. }
  669. __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
  670. *skb = NULL;
  671. entry->first_frag_time = jiffies;
  672. entry->seq = seq;
  673. entry->rx_queue = rx_queue;
  674. entry->last_frag = frag;
  675. entry->ccmp = 0;
  676. entry->extra_len = 0;
  677. return entry;
  678. }
  679. static inline struct ieee80211_fragment_entry *
  680. ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
  681. u16 fc, unsigned int frag, unsigned int seq,
  682. int rx_queue, struct ieee80211_hdr *hdr)
  683. {
  684. struct ieee80211_fragment_entry *entry;
  685. int i, idx;
  686. idx = sdata->fragment_next;
  687. for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
  688. struct ieee80211_hdr *f_hdr;
  689. u16 f_fc;
  690. idx--;
  691. if (idx < 0)
  692. idx = IEEE80211_FRAGMENT_MAX - 1;
  693. entry = &sdata->fragments[idx];
  694. if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
  695. entry->rx_queue != rx_queue ||
  696. entry->last_frag + 1 != frag)
  697. continue;
  698. f_hdr = (struct ieee80211_hdr *) entry->skb_list.next->data;
  699. f_fc = le16_to_cpu(f_hdr->frame_control);
  700. if ((fc & IEEE80211_FCTL_FTYPE) != (f_fc & IEEE80211_FCTL_FTYPE) ||
  701. compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
  702. compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
  703. continue;
  704. if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
  705. __skb_queue_purge(&entry->skb_list);
  706. continue;
  707. }
  708. return entry;
  709. }
  710. return NULL;
  711. }
  712. static ieee80211_rx_result
  713. ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
  714. {
  715. struct ieee80211_hdr *hdr;
  716. u16 sc;
  717. unsigned int frag, seq;
  718. struct ieee80211_fragment_entry *entry;
  719. struct sk_buff *skb;
  720. DECLARE_MAC_BUF(mac);
  721. hdr = (struct ieee80211_hdr *) rx->skb->data;
  722. sc = le16_to_cpu(hdr->seq_ctrl);
  723. frag = sc & IEEE80211_SCTL_FRAG;
  724. if (likely((!(rx->fc & IEEE80211_FCTL_MOREFRAGS) && frag == 0) ||
  725. (rx->skb)->len < 24 ||
  726. is_multicast_ether_addr(hdr->addr1))) {
  727. /* not fragmented */
  728. goto out;
  729. }
  730. I802_DEBUG_INC(rx->local->rx_handlers_fragments);
  731. seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
  732. if (frag == 0) {
  733. /* This is the first fragment of a new frame. */
  734. entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
  735. rx->queue, &(rx->skb));
  736. if (rx->key && rx->key->conf.alg == ALG_CCMP &&
  737. (rx->fc & IEEE80211_FCTL_PROTECTED)) {
  738. /* Store CCMP PN so that we can verify that the next
  739. * fragment has a sequential PN value. */
  740. entry->ccmp = 1;
  741. memcpy(entry->last_pn,
  742. rx->key->u.ccmp.rx_pn[rx->queue],
  743. CCMP_PN_LEN);
  744. }
  745. return RX_QUEUED;
  746. }
  747. /* This is a fragment for a frame that should already be pending in
  748. * fragment cache. Add this fragment to the end of the pending entry.
  749. */
  750. entry = ieee80211_reassemble_find(rx->sdata, rx->fc, frag, seq,
  751. rx->queue, hdr);
  752. if (!entry) {
  753. I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
  754. return RX_DROP_MONITOR;
  755. }
  756. /* Verify that MPDUs within one MSDU have sequential PN values.
  757. * (IEEE 802.11i, 8.3.3.4.5) */
  758. if (entry->ccmp) {
  759. int i;
  760. u8 pn[CCMP_PN_LEN], *rpn;
  761. if (!rx->key || rx->key->conf.alg != ALG_CCMP)
  762. return RX_DROP_UNUSABLE;
  763. memcpy(pn, entry->last_pn, CCMP_PN_LEN);
  764. for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
  765. pn[i]++;
  766. if (pn[i])
  767. break;
  768. }
  769. rpn = rx->key->u.ccmp.rx_pn[rx->queue];
  770. if (memcmp(pn, rpn, CCMP_PN_LEN) != 0) {
  771. if (net_ratelimit())
  772. printk(KERN_DEBUG "%s: defrag: CCMP PN not "
  773. "sequential A2=%s"
  774. " PN=%02x%02x%02x%02x%02x%02x "
  775. "(expected %02x%02x%02x%02x%02x%02x)\n",
  776. rx->dev->name, print_mac(mac, hdr->addr2),
  777. rpn[0], rpn[1], rpn[2], rpn[3], rpn[4],
  778. rpn[5], pn[0], pn[1], pn[2], pn[3],
  779. pn[4], pn[5]);
  780. return RX_DROP_UNUSABLE;
  781. }
  782. memcpy(entry->last_pn, pn, CCMP_PN_LEN);
  783. }
  784. skb_pull(rx->skb, ieee80211_get_hdrlen(rx->fc));
  785. __skb_queue_tail(&entry->skb_list, rx->skb);
  786. entry->last_frag = frag;
  787. entry->extra_len += rx->skb->len;
  788. if (rx->fc & IEEE80211_FCTL_MOREFRAGS) {
  789. rx->skb = NULL;
  790. return RX_QUEUED;
  791. }
  792. rx->skb = __skb_dequeue(&entry->skb_list);
  793. if (skb_tailroom(rx->skb) < entry->extra_len) {
  794. I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
  795. if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
  796. GFP_ATOMIC))) {
  797. I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
  798. __skb_queue_purge(&entry->skb_list);
  799. return RX_DROP_UNUSABLE;
  800. }
  801. }
  802. while ((skb = __skb_dequeue(&entry->skb_list))) {
  803. memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
  804. dev_kfree_skb(skb);
  805. }
  806. /* Complete frame has been reassembled - process it now */
  807. rx->flags |= IEEE80211_RX_FRAGMENTED;
  808. out:
  809. if (rx->sta)
  810. rx->sta->rx_packets++;
  811. if (is_multicast_ether_addr(hdr->addr1))
  812. rx->local->dot11MulticastReceivedFrameCount++;
  813. else
  814. ieee80211_led_rx(rx->local);
  815. return RX_CONTINUE;
  816. }
  817. static ieee80211_rx_result
  818. ieee80211_rx_h_ps_poll(struct ieee80211_rx_data *rx)
  819. {
  820. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev);
  821. struct sk_buff *skb;
  822. int no_pending_pkts;
  823. DECLARE_MAC_BUF(mac);
  824. if (likely(!rx->sta ||
  825. (rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_CTL ||
  826. (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_PSPOLL ||
  827. !(rx->flags & IEEE80211_RX_RA_MATCH)))
  828. return RX_CONTINUE;
  829. if ((sdata->vif.type != IEEE80211_IF_TYPE_AP) &&
  830. (sdata->vif.type != IEEE80211_IF_TYPE_VLAN))
  831. return RX_DROP_UNUSABLE;
  832. skb = skb_dequeue(&rx->sta->tx_filtered);
  833. if (!skb) {
  834. skb = skb_dequeue(&rx->sta->ps_tx_buf);
  835. if (skb)
  836. rx->local->total_ps_buffered--;
  837. }
  838. no_pending_pkts = skb_queue_empty(&rx->sta->tx_filtered) &&
  839. skb_queue_empty(&rx->sta->ps_tx_buf);
  840. if (skb) {
  841. struct ieee80211_hdr *hdr =
  842. (struct ieee80211_hdr *) skb->data;
  843. /*
  844. * Tell TX path to send one frame even though the STA may
  845. * still remain is PS mode after this frame exchange.
  846. */
  847. set_sta_flags(rx->sta, WLAN_STA_PSPOLL);
  848. #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
  849. printk(KERN_DEBUG "STA %s aid %d: PS Poll (entries after %d)\n",
  850. print_mac(mac, rx->sta->addr), rx->sta->aid,
  851. skb_queue_len(&rx->sta->ps_tx_buf));
  852. #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
  853. /* Use MoreData flag to indicate whether there are more
  854. * buffered frames for this STA */
  855. if (no_pending_pkts)
  856. hdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
  857. else
  858. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA);
  859. dev_queue_xmit(skb);
  860. if (no_pending_pkts)
  861. sta_info_clear_tim_bit(rx->sta);
  862. #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
  863. } else if (!rx->sent_ps_buffered) {
  864. /*
  865. * FIXME: This can be the result of a race condition between
  866. * us expiring a frame and the station polling for it.
  867. * Should we send it a null-func frame indicating we
  868. * have nothing buffered for it?
  869. */
  870. printk(KERN_DEBUG "%s: STA %s sent PS Poll even "
  871. "though there is no buffered frames for it\n",
  872. rx->dev->name, print_mac(mac, rx->sta->addr));
  873. #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
  874. }
  875. /* Free PS Poll skb here instead of returning RX_DROP that would
  876. * count as an dropped frame. */
  877. dev_kfree_skb(rx->skb);
  878. return RX_QUEUED;
  879. }
  880. static ieee80211_rx_result
  881. ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx)
  882. {
  883. u16 fc = rx->fc;
  884. u8 *data = rx->skb->data;
  885. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) data;
  886. if (!WLAN_FC_IS_QOS_DATA(fc))
  887. return RX_CONTINUE;
  888. /* remove the qos control field, update frame type and meta-data */
  889. memmove(data + 2, data, ieee80211_get_hdrlen(fc) - 2);
  890. hdr = (struct ieee80211_hdr *) skb_pull(rx->skb, 2);
  891. /* change frame type to non QOS */
  892. rx->fc = fc &= ~IEEE80211_STYPE_QOS_DATA;
  893. hdr->frame_control = cpu_to_le16(fc);
  894. return RX_CONTINUE;
  895. }
  896. static int
  897. ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
  898. {
  899. if (unlikely(!rx->sta ||
  900. !test_sta_flags(rx->sta, WLAN_STA_AUTHORIZED))) {
  901. #ifdef CONFIG_MAC80211_DEBUG
  902. if (net_ratelimit())
  903. printk(KERN_DEBUG "%s: dropped frame "
  904. "(unauthorized port)\n", rx->dev->name);
  905. #endif /* CONFIG_MAC80211_DEBUG */
  906. return -EACCES;
  907. }
  908. return 0;
  909. }
  910. static int
  911. ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx)
  912. {
  913. /*
  914. * Pass through unencrypted frames if the hardware has
  915. * decrypted them already.
  916. */
  917. if (rx->status->flag & RX_FLAG_DECRYPTED)
  918. return 0;
  919. /* Drop unencrypted frames if key is set. */
  920. if (unlikely(!(rx->fc & IEEE80211_FCTL_PROTECTED) &&
  921. (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
  922. (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_NULLFUNC &&
  923. (rx->key || rx->sdata->drop_unencrypted)))
  924. return -EACCES;
  925. return 0;
  926. }
  927. static int
  928. ieee80211_data_to_8023(struct ieee80211_rx_data *rx)
  929. {
  930. struct net_device *dev = rx->dev;
  931. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
  932. u16 fc, hdrlen, ethertype;
  933. u8 *payload;
  934. u8 dst[ETH_ALEN];
  935. u8 src[ETH_ALEN];
  936. struct sk_buff *skb = rx->skb;
  937. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  938. DECLARE_MAC_BUF(mac);
  939. DECLARE_MAC_BUF(mac2);
  940. DECLARE_MAC_BUF(mac3);
  941. DECLARE_MAC_BUF(mac4);
  942. fc = rx->fc;
  943. if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
  944. return -1;
  945. hdrlen = ieee80211_get_hdrlen(fc);
  946. if (ieee80211_vif_is_mesh(&sdata->vif)) {
  947. int meshhdrlen = ieee80211_get_mesh_hdrlen(
  948. (struct ieee80211s_hdr *) (skb->data + hdrlen));
  949. /* Copy on cb:
  950. * - mesh header: to be used for mesh forwarding
  951. * decision. It will also be used as mesh header template at
  952. * tx.c:ieee80211_subif_start_xmit() if interface
  953. * type is mesh and skb->pkt_type == PACKET_OTHERHOST
  954. * - ta: to be used if a RERR needs to be sent.
  955. */
  956. memcpy(skb->cb, skb->data + hdrlen, meshhdrlen);
  957. memcpy(MESH_PREQ(skb), hdr->addr2, ETH_ALEN);
  958. hdrlen += meshhdrlen;
  959. }
  960. /* convert IEEE 802.11 header + possible LLC headers into Ethernet
  961. * header
  962. * IEEE 802.11 address fields:
  963. * ToDS FromDS Addr1 Addr2 Addr3 Addr4
  964. * 0 0 DA SA BSSID n/a
  965. * 0 1 DA BSSID SA n/a
  966. * 1 0 BSSID SA DA n/a
  967. * 1 1 RA TA DA SA
  968. */
  969. switch (fc & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
  970. case IEEE80211_FCTL_TODS:
  971. /* BSSID SA DA */
  972. memcpy(dst, hdr->addr3, ETH_ALEN);
  973. memcpy(src, hdr->addr2, ETH_ALEN);
  974. if (unlikely(sdata->vif.type != IEEE80211_IF_TYPE_AP &&
  975. sdata->vif.type != IEEE80211_IF_TYPE_VLAN)) {
  976. if (net_ratelimit())
  977. printk(KERN_DEBUG "%s: dropped ToDS frame "
  978. "(BSSID=%s SA=%s DA=%s)\n",
  979. dev->name,
  980. print_mac(mac, hdr->addr1),
  981. print_mac(mac2, hdr->addr2),
  982. print_mac(mac3, hdr->addr3));
  983. return -1;
  984. }
  985. break;
  986. case (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
  987. /* RA TA DA SA */
  988. memcpy(dst, hdr->addr3, ETH_ALEN);
  989. memcpy(src, hdr->addr4, ETH_ALEN);
  990. if (unlikely(sdata->vif.type != IEEE80211_IF_TYPE_WDS &&
  991. sdata->vif.type != IEEE80211_IF_TYPE_MESH_POINT)) {
  992. if (net_ratelimit())
  993. printk(KERN_DEBUG "%s: dropped FromDS&ToDS "
  994. "frame (RA=%s TA=%s DA=%s SA=%s)\n",
  995. rx->dev->name,
  996. print_mac(mac, hdr->addr1),
  997. print_mac(mac2, hdr->addr2),
  998. print_mac(mac3, hdr->addr3),
  999. print_mac(mac4, hdr->addr4));
  1000. return -1;
  1001. }
  1002. break;
  1003. case IEEE80211_FCTL_FROMDS:
  1004. /* DA BSSID SA */
  1005. memcpy(dst, hdr->addr1, ETH_ALEN);
  1006. memcpy(src, hdr->addr3, ETH_ALEN);
  1007. if (sdata->vif.type != IEEE80211_IF_TYPE_STA ||
  1008. (is_multicast_ether_addr(dst) &&
  1009. !compare_ether_addr(src, dev->dev_addr)))
  1010. return -1;
  1011. break;
  1012. case 0:
  1013. /* DA SA BSSID */
  1014. memcpy(dst, hdr->addr1, ETH_ALEN);
  1015. memcpy(src, hdr->addr2, ETH_ALEN);
  1016. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS) {
  1017. if (net_ratelimit()) {
  1018. printk(KERN_DEBUG "%s: dropped IBSS frame "
  1019. "(DA=%s SA=%s BSSID=%s)\n",
  1020. dev->name,
  1021. print_mac(mac, hdr->addr1),
  1022. print_mac(mac2, hdr->addr2),
  1023. print_mac(mac3, hdr->addr3));
  1024. }
  1025. return -1;
  1026. }
  1027. break;
  1028. }
  1029. if (unlikely(skb->len - hdrlen < 8)) {
  1030. if (net_ratelimit()) {
  1031. printk(KERN_DEBUG "%s: RX too short data frame "
  1032. "payload\n", dev->name);
  1033. }
  1034. return -1;
  1035. }
  1036. payload = skb->data + hdrlen;
  1037. ethertype = (payload[6] << 8) | payload[7];
  1038. if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
  1039. ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
  1040. compare_ether_addr(payload, bridge_tunnel_header) == 0)) {
  1041. /* remove RFC1042 or Bridge-Tunnel encapsulation and
  1042. * replace EtherType */
  1043. skb_pull(skb, hdrlen + 6);
  1044. memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
  1045. memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
  1046. } else {
  1047. struct ethhdr *ehdr;
  1048. __be16 len;
  1049. skb_pull(skb, hdrlen);
  1050. len = htons(skb->len);
  1051. ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
  1052. memcpy(ehdr->h_dest, dst, ETH_ALEN);
  1053. memcpy(ehdr->h_source, src, ETH_ALEN);
  1054. ehdr->h_proto = len;
  1055. }
  1056. return 0;
  1057. }
  1058. /*
  1059. * requires that rx->skb is a frame with ethernet header
  1060. */
  1061. static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx)
  1062. {
  1063. static const u8 pae_group_addr[ETH_ALEN]
  1064. = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
  1065. struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
  1066. /*
  1067. * Allow EAPOL frames to us/the PAE group address regardless
  1068. * of whether the frame was encrypted or not.
  1069. */
  1070. if (ehdr->h_proto == htons(ETH_P_PAE) &&
  1071. (compare_ether_addr(ehdr->h_dest, rx->dev->dev_addr) == 0 ||
  1072. compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
  1073. return true;
  1074. if (ieee80211_802_1x_port_control(rx) ||
  1075. ieee80211_drop_unencrypted(rx))
  1076. return false;
  1077. return true;
  1078. }
  1079. /*
  1080. * requires that rx->skb is a frame with ethernet header
  1081. */
  1082. static void
  1083. ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
  1084. {
  1085. struct net_device *dev = rx->dev;
  1086. struct ieee80211_local *local = rx->local;
  1087. struct sk_buff *skb, *xmit_skb;
  1088. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1089. struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
  1090. struct sta_info *dsta;
  1091. skb = rx->skb;
  1092. xmit_skb = NULL;
  1093. if (local->bridge_packets && (sdata->vif.type == IEEE80211_IF_TYPE_AP ||
  1094. sdata->vif.type == IEEE80211_IF_TYPE_VLAN) &&
  1095. (rx->flags & IEEE80211_RX_RA_MATCH)) {
  1096. if (is_multicast_ether_addr(ehdr->h_dest)) {
  1097. /*
  1098. * send multicast frames both to higher layers in
  1099. * local net stack and back to the wireless medium
  1100. */
  1101. xmit_skb = skb_copy(skb, GFP_ATOMIC);
  1102. if (!xmit_skb && net_ratelimit())
  1103. printk(KERN_DEBUG "%s: failed to clone "
  1104. "multicast frame\n", dev->name);
  1105. } else {
  1106. dsta = sta_info_get(local, skb->data);
  1107. if (dsta && dsta->sdata->dev == dev) {
  1108. /*
  1109. * The destination station is associated to
  1110. * this AP (in this VLAN), so send the frame
  1111. * directly to it and do not pass it to local
  1112. * net stack.
  1113. */
  1114. xmit_skb = skb;
  1115. skb = NULL;
  1116. }
  1117. }
  1118. }
  1119. /* Mesh forwarding */
  1120. if (ieee80211_vif_is_mesh(&sdata->vif)) {
  1121. u8 *mesh_ttl = &((struct ieee80211s_hdr *)skb->cb)->ttl;
  1122. (*mesh_ttl)--;
  1123. if (is_multicast_ether_addr(skb->data)) {
  1124. if (*mesh_ttl > 0) {
  1125. xmit_skb = skb_copy(skb, GFP_ATOMIC);
  1126. if (!xmit_skb && net_ratelimit())
  1127. printk(KERN_DEBUG "%s: failed to clone "
  1128. "multicast frame\n", dev->name);
  1129. else
  1130. xmit_skb->pkt_type = PACKET_OTHERHOST;
  1131. } else
  1132. IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.sta,
  1133. dropped_frames_ttl);
  1134. } else if (skb->pkt_type != PACKET_OTHERHOST &&
  1135. compare_ether_addr(dev->dev_addr, skb->data) != 0) {
  1136. if (*mesh_ttl == 0) {
  1137. IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.sta,
  1138. dropped_frames_ttl);
  1139. dev_kfree_skb(skb);
  1140. skb = NULL;
  1141. } else {
  1142. xmit_skb = skb;
  1143. xmit_skb->pkt_type = PACKET_OTHERHOST;
  1144. if (!(dev->flags & IFF_PROMISC))
  1145. skb = NULL;
  1146. }
  1147. }
  1148. }
  1149. if (skb) {
  1150. /* deliver to local stack */
  1151. skb->protocol = eth_type_trans(skb, dev);
  1152. memset(skb->cb, 0, sizeof(skb->cb));
  1153. netif_rx(skb);
  1154. }
  1155. if (xmit_skb) {
  1156. /* send to wireless media */
  1157. xmit_skb->protocol = htons(ETH_P_802_3);
  1158. skb_reset_network_header(xmit_skb);
  1159. skb_reset_mac_header(xmit_skb);
  1160. dev_queue_xmit(xmit_skb);
  1161. }
  1162. }
  1163. static ieee80211_rx_result
  1164. ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
  1165. {
  1166. struct net_device *dev = rx->dev;
  1167. struct ieee80211_local *local = rx->local;
  1168. u16 fc, ethertype;
  1169. u8 *payload;
  1170. struct sk_buff *skb = rx->skb, *frame = NULL;
  1171. const struct ethhdr *eth;
  1172. int remaining, err;
  1173. u8 dst[ETH_ALEN];
  1174. u8 src[ETH_ALEN];
  1175. DECLARE_MAC_BUF(mac);
  1176. fc = rx->fc;
  1177. if (unlikely((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA))
  1178. return RX_CONTINUE;
  1179. if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
  1180. return RX_DROP_MONITOR;
  1181. if (!(rx->flags & IEEE80211_RX_AMSDU))
  1182. return RX_CONTINUE;
  1183. err = ieee80211_data_to_8023(rx);
  1184. if (unlikely(err))
  1185. return RX_DROP_UNUSABLE;
  1186. skb->dev = dev;
  1187. dev->stats.rx_packets++;
  1188. dev->stats.rx_bytes += skb->len;
  1189. /* skip the wrapping header */
  1190. eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr));
  1191. if (!eth)
  1192. return RX_DROP_UNUSABLE;
  1193. while (skb != frame) {
  1194. u8 padding;
  1195. __be16 len = eth->h_proto;
  1196. unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len);
  1197. remaining = skb->len;
  1198. memcpy(dst, eth->h_dest, ETH_ALEN);
  1199. memcpy(src, eth->h_source, ETH_ALEN);
  1200. padding = ((4 - subframe_len) & 0x3);
  1201. /* the last MSDU has no padding */
  1202. if (subframe_len > remaining) {
  1203. printk(KERN_DEBUG "%s: wrong buffer size", dev->name);
  1204. return RX_DROP_UNUSABLE;
  1205. }
  1206. skb_pull(skb, sizeof(struct ethhdr));
  1207. /* if last subframe reuse skb */
  1208. if (remaining <= subframe_len + padding)
  1209. frame = skb;
  1210. else {
  1211. frame = dev_alloc_skb(local->hw.extra_tx_headroom +
  1212. subframe_len);
  1213. if (frame == NULL)
  1214. return RX_DROP_UNUSABLE;
  1215. skb_reserve(frame, local->hw.extra_tx_headroom +
  1216. sizeof(struct ethhdr));
  1217. memcpy(skb_put(frame, ntohs(len)), skb->data,
  1218. ntohs(len));
  1219. eth = (struct ethhdr *) skb_pull(skb, ntohs(len) +
  1220. padding);
  1221. if (!eth) {
  1222. printk(KERN_DEBUG "%s: wrong buffer size ",
  1223. dev->name);
  1224. dev_kfree_skb(frame);
  1225. return RX_DROP_UNUSABLE;
  1226. }
  1227. }
  1228. skb_reset_network_header(frame);
  1229. frame->dev = dev;
  1230. frame->priority = skb->priority;
  1231. rx->skb = frame;
  1232. payload = frame->data;
  1233. ethertype = (payload[6] << 8) | payload[7];
  1234. if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
  1235. ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
  1236. compare_ether_addr(payload,
  1237. bridge_tunnel_header) == 0)) {
  1238. /* remove RFC1042 or Bridge-Tunnel
  1239. * encapsulation and replace EtherType */
  1240. skb_pull(frame, 6);
  1241. memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
  1242. memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
  1243. } else {
  1244. memcpy(skb_push(frame, sizeof(__be16)),
  1245. &len, sizeof(__be16));
  1246. memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
  1247. memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
  1248. }
  1249. if (!ieee80211_frame_allowed(rx)) {
  1250. if (skb == frame) /* last frame */
  1251. return RX_DROP_UNUSABLE;
  1252. dev_kfree_skb(frame);
  1253. continue;
  1254. }
  1255. ieee80211_deliver_skb(rx);
  1256. }
  1257. return RX_QUEUED;
  1258. }
  1259. static ieee80211_rx_result
  1260. ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
  1261. {
  1262. struct net_device *dev = rx->dev;
  1263. u16 fc;
  1264. int err;
  1265. fc = rx->fc;
  1266. if (unlikely((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA))
  1267. return RX_CONTINUE;
  1268. if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
  1269. return RX_DROP_MONITOR;
  1270. err = ieee80211_data_to_8023(rx);
  1271. if (unlikely(err))
  1272. return RX_DROP_UNUSABLE;
  1273. if (!ieee80211_frame_allowed(rx))
  1274. return RX_DROP_MONITOR;
  1275. rx->skb->dev = dev;
  1276. dev->stats.rx_packets++;
  1277. dev->stats.rx_bytes += rx->skb->len;
  1278. ieee80211_deliver_skb(rx);
  1279. return RX_QUEUED;
  1280. }
  1281. static ieee80211_rx_result
  1282. ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx)
  1283. {
  1284. struct ieee80211_local *local = rx->local;
  1285. struct ieee80211_hw *hw = &local->hw;
  1286. struct sk_buff *skb = rx->skb;
  1287. struct ieee80211_bar *bar = (struct ieee80211_bar *) skb->data;
  1288. struct tid_ampdu_rx *tid_agg_rx;
  1289. u16 start_seq_num;
  1290. u16 tid;
  1291. if (likely((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_CTL))
  1292. return RX_CONTINUE;
  1293. if ((rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_BACK_REQ) {
  1294. if (!rx->sta)
  1295. return RX_CONTINUE;
  1296. tid = le16_to_cpu(bar->control) >> 12;
  1297. if (rx->sta->ampdu_mlme.tid_state_rx[tid]
  1298. != HT_AGG_STATE_OPERATIONAL)
  1299. return RX_CONTINUE;
  1300. tid_agg_rx = rx->sta->ampdu_mlme.tid_rx[tid];
  1301. start_seq_num = le16_to_cpu(bar->start_seq_num) >> 4;
  1302. /* reset session timer */
  1303. if (tid_agg_rx->timeout) {
  1304. unsigned long expires =
  1305. jiffies + (tid_agg_rx->timeout / 1000) * HZ;
  1306. mod_timer(&tid_agg_rx->session_timer, expires);
  1307. }
  1308. /* manage reordering buffer according to requested */
  1309. /* sequence number */
  1310. rcu_read_lock();
  1311. ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, NULL,
  1312. start_seq_num, 1);
  1313. rcu_read_unlock();
  1314. return RX_DROP_UNUSABLE;
  1315. }
  1316. return RX_CONTINUE;
  1317. }
  1318. static ieee80211_rx_result
  1319. ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
  1320. {
  1321. struct ieee80211_sub_if_data *sdata;
  1322. if (!(rx->flags & IEEE80211_RX_RA_MATCH))
  1323. return RX_DROP_MONITOR;
  1324. sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev);
  1325. if ((sdata->vif.type == IEEE80211_IF_TYPE_STA ||
  1326. sdata->vif.type == IEEE80211_IF_TYPE_IBSS ||
  1327. sdata->vif.type == IEEE80211_IF_TYPE_MESH_POINT) &&
  1328. !(sdata->flags & IEEE80211_SDATA_USERSPACE_MLME))
  1329. ieee80211_sta_rx_mgmt(rx->dev, rx->skb, rx->status);
  1330. else
  1331. return RX_DROP_MONITOR;
  1332. return RX_QUEUED;
  1333. }
  1334. static void ieee80211_rx_michael_mic_report(struct net_device *dev,
  1335. struct ieee80211_hdr *hdr,
  1336. struct ieee80211_rx_data *rx)
  1337. {
  1338. int keyidx, hdrlen;
  1339. DECLARE_MAC_BUF(mac);
  1340. DECLARE_MAC_BUF(mac2);
  1341. hdrlen = ieee80211_get_hdrlen_from_skb(rx->skb);
  1342. if (rx->skb->len >= hdrlen + 4)
  1343. keyidx = rx->skb->data[hdrlen + 3] >> 6;
  1344. else
  1345. keyidx = -1;
  1346. if (net_ratelimit())
  1347. printk(KERN_DEBUG "%s: TKIP hwaccel reported Michael MIC "
  1348. "failure from %s to %s keyidx=%d\n",
  1349. dev->name, print_mac(mac, hdr->addr2),
  1350. print_mac(mac2, hdr->addr1), keyidx);
  1351. if (!rx->sta) {
  1352. /*
  1353. * Some hardware seem to generate incorrect Michael MIC
  1354. * reports; ignore them to avoid triggering countermeasures.
  1355. */
  1356. if (net_ratelimit())
  1357. printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
  1358. "error for unknown address %s\n",
  1359. dev->name, print_mac(mac, hdr->addr2));
  1360. goto ignore;
  1361. }
  1362. if (!(rx->fc & IEEE80211_FCTL_PROTECTED)) {
  1363. if (net_ratelimit())
  1364. printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
  1365. "error for a frame with no PROTECTED flag (src "
  1366. "%s)\n", dev->name, print_mac(mac, hdr->addr2));
  1367. goto ignore;
  1368. }
  1369. if (rx->sdata->vif.type == IEEE80211_IF_TYPE_AP && keyidx) {
  1370. /*
  1371. * APs with pairwise keys should never receive Michael MIC
  1372. * errors for non-zero keyidx because these are reserved for
  1373. * group keys and only the AP is sending real multicast
  1374. * frames in the BSS.
  1375. */
  1376. if (net_ratelimit())
  1377. printk(KERN_DEBUG "%s: ignored Michael MIC error for "
  1378. "a frame with non-zero keyidx (%d)"
  1379. " (src %s)\n", dev->name, keyidx,
  1380. print_mac(mac, hdr->addr2));
  1381. goto ignore;
  1382. }
  1383. if ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA &&
  1384. ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT ||
  1385. (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_AUTH)) {
  1386. if (net_ratelimit())
  1387. printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
  1388. "error for a frame that cannot be encrypted "
  1389. "(fc=0x%04x) (src %s)\n",
  1390. dev->name, rx->fc, print_mac(mac, hdr->addr2));
  1391. goto ignore;
  1392. }
  1393. mac80211_ev_michael_mic_failure(rx->dev, keyidx, hdr);
  1394. ignore:
  1395. dev_kfree_skb(rx->skb);
  1396. rx->skb = NULL;
  1397. }
  1398. /* TODO: use IEEE80211_RX_FRAGMENTED */
  1399. static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx)
  1400. {
  1401. struct ieee80211_sub_if_data *sdata;
  1402. struct ieee80211_local *local = rx->local;
  1403. struct ieee80211_rtap_hdr {
  1404. struct ieee80211_radiotap_header hdr;
  1405. u8 flags;
  1406. u8 rate;
  1407. __le16 chan_freq;
  1408. __le16 chan_flags;
  1409. } __attribute__ ((packed)) *rthdr;
  1410. struct sk_buff *skb = rx->skb, *skb2;
  1411. struct net_device *prev_dev = NULL;
  1412. struct ieee80211_rx_status *status = rx->status;
  1413. if (rx->flags & IEEE80211_RX_CMNTR_REPORTED)
  1414. goto out_free_skb;
  1415. if (skb_headroom(skb) < sizeof(*rthdr) &&
  1416. pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
  1417. goto out_free_skb;
  1418. rthdr = (void *)skb_push(skb, sizeof(*rthdr));
  1419. memset(rthdr, 0, sizeof(*rthdr));
  1420. rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
  1421. rthdr->hdr.it_present =
  1422. cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
  1423. (1 << IEEE80211_RADIOTAP_RATE) |
  1424. (1 << IEEE80211_RADIOTAP_CHANNEL));
  1425. rthdr->rate = rx->rate->bitrate / 5;
  1426. rthdr->chan_freq = cpu_to_le16(status->freq);
  1427. if (status->band == IEEE80211_BAND_5GHZ)
  1428. rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
  1429. IEEE80211_CHAN_5GHZ);
  1430. else
  1431. rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
  1432. IEEE80211_CHAN_2GHZ);
  1433. skb_set_mac_header(skb, 0);
  1434. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1435. skb->pkt_type = PACKET_OTHERHOST;
  1436. skb->protocol = htons(ETH_P_802_2);
  1437. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  1438. if (!netif_running(sdata->dev))
  1439. continue;
  1440. if (sdata->vif.type != IEEE80211_IF_TYPE_MNTR ||
  1441. !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
  1442. continue;
  1443. if (prev_dev) {
  1444. skb2 = skb_clone(skb, GFP_ATOMIC);
  1445. if (skb2) {
  1446. skb2->dev = prev_dev;
  1447. netif_rx(skb2);
  1448. }
  1449. }
  1450. prev_dev = sdata->dev;
  1451. sdata->dev->stats.rx_packets++;
  1452. sdata->dev->stats.rx_bytes += skb->len;
  1453. }
  1454. if (prev_dev) {
  1455. skb->dev = prev_dev;
  1456. netif_rx(skb);
  1457. skb = NULL;
  1458. } else
  1459. goto out_free_skb;
  1460. rx->flags |= IEEE80211_RX_CMNTR_REPORTED;
  1461. return;
  1462. out_free_skb:
  1463. dev_kfree_skb(skb);
  1464. }
  1465. typedef ieee80211_rx_result (*ieee80211_rx_handler)(struct ieee80211_rx_data *);
  1466. static ieee80211_rx_handler ieee80211_rx_handlers[] =
  1467. {
  1468. ieee80211_rx_h_if_stats,
  1469. ieee80211_rx_h_passive_scan,
  1470. ieee80211_rx_h_check,
  1471. ieee80211_rx_h_decrypt,
  1472. ieee80211_rx_h_sta_process,
  1473. ieee80211_rx_h_defragment,
  1474. ieee80211_rx_h_ps_poll,
  1475. ieee80211_rx_h_michael_mic_verify,
  1476. /* this must be after decryption - so header is counted in MPDU mic
  1477. * must be before pae and data, so QOS_DATA format frames
  1478. * are not passed to user space by these functions
  1479. */
  1480. ieee80211_rx_h_remove_qos_control,
  1481. ieee80211_rx_h_amsdu,
  1482. ieee80211_rx_h_data,
  1483. ieee80211_rx_h_ctrl,
  1484. ieee80211_rx_h_mgmt,
  1485. NULL
  1486. };
  1487. static void ieee80211_invoke_rx_handlers(struct ieee80211_sub_if_data *sdata,
  1488. struct ieee80211_rx_data *rx,
  1489. struct sk_buff *skb)
  1490. {
  1491. ieee80211_rx_handler *handler;
  1492. ieee80211_rx_result res = RX_DROP_MONITOR;
  1493. rx->skb = skb;
  1494. rx->sdata = sdata;
  1495. rx->dev = sdata->dev;
  1496. for (handler = ieee80211_rx_handlers; *handler != NULL; handler++) {
  1497. res = (*handler)(rx);
  1498. switch (res) {
  1499. case RX_CONTINUE:
  1500. continue;
  1501. case RX_DROP_UNUSABLE:
  1502. case RX_DROP_MONITOR:
  1503. I802_DEBUG_INC(sdata->local->rx_handlers_drop);
  1504. if (rx->sta)
  1505. rx->sta->rx_dropped++;
  1506. break;
  1507. case RX_QUEUED:
  1508. I802_DEBUG_INC(sdata->local->rx_handlers_queued);
  1509. break;
  1510. }
  1511. break;
  1512. }
  1513. switch (res) {
  1514. case RX_CONTINUE:
  1515. case RX_DROP_MONITOR:
  1516. ieee80211_rx_cooked_monitor(rx);
  1517. break;
  1518. case RX_DROP_UNUSABLE:
  1519. dev_kfree_skb(rx->skb);
  1520. break;
  1521. }
  1522. }
  1523. /* main receive path */
  1524. static int prepare_for_handlers(struct ieee80211_sub_if_data *sdata,
  1525. u8 *bssid, struct ieee80211_rx_data *rx,
  1526. struct ieee80211_hdr *hdr)
  1527. {
  1528. int multicast = is_multicast_ether_addr(hdr->addr1);
  1529. switch (sdata->vif.type) {
  1530. case IEEE80211_IF_TYPE_STA:
  1531. if (!bssid)
  1532. return 0;
  1533. if (!ieee80211_bssid_match(bssid, sdata->u.sta.bssid)) {
  1534. if (!(rx->flags & IEEE80211_RX_IN_SCAN))
  1535. return 0;
  1536. rx->flags &= ~IEEE80211_RX_RA_MATCH;
  1537. } else if (!multicast &&
  1538. compare_ether_addr(sdata->dev->dev_addr,
  1539. hdr->addr1) != 0) {
  1540. if (!(sdata->dev->flags & IFF_PROMISC))
  1541. return 0;
  1542. rx->flags &= ~IEEE80211_RX_RA_MATCH;
  1543. }
  1544. break;
  1545. case IEEE80211_IF_TYPE_IBSS:
  1546. if (!bssid)
  1547. return 0;
  1548. if ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT &&
  1549. (rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_BEACON)
  1550. return 1;
  1551. else if (!ieee80211_bssid_match(bssid, sdata->u.sta.bssid)) {
  1552. if (!(rx->flags & IEEE80211_RX_IN_SCAN))
  1553. return 0;
  1554. rx->flags &= ~IEEE80211_RX_RA_MATCH;
  1555. } else if (!multicast &&
  1556. compare_ether_addr(sdata->dev->dev_addr,
  1557. hdr->addr1) != 0) {
  1558. if (!(sdata->dev->flags & IFF_PROMISC))
  1559. return 0;
  1560. rx->flags &= ~IEEE80211_RX_RA_MATCH;
  1561. } else if (!rx->sta)
  1562. rx->sta = ieee80211_ibss_add_sta(sdata->dev, rx->skb,
  1563. bssid, hdr->addr2);
  1564. break;
  1565. case IEEE80211_IF_TYPE_MESH_POINT:
  1566. if (!multicast &&
  1567. compare_ether_addr(sdata->dev->dev_addr,
  1568. hdr->addr1) != 0) {
  1569. if (!(sdata->dev->flags & IFF_PROMISC))
  1570. return 0;
  1571. rx->flags &= ~IEEE80211_RX_RA_MATCH;
  1572. }
  1573. break;
  1574. case IEEE80211_IF_TYPE_VLAN:
  1575. case IEEE80211_IF_TYPE_AP:
  1576. if (!bssid) {
  1577. if (compare_ether_addr(sdata->dev->dev_addr,
  1578. hdr->addr1))
  1579. return 0;
  1580. } else if (!ieee80211_bssid_match(bssid,
  1581. sdata->dev->dev_addr)) {
  1582. if (!(rx->flags & IEEE80211_RX_IN_SCAN))
  1583. return 0;
  1584. rx->flags &= ~IEEE80211_RX_RA_MATCH;
  1585. }
  1586. if (sdata->dev == sdata->local->mdev &&
  1587. !(rx->flags & IEEE80211_RX_IN_SCAN))
  1588. /* do not receive anything via
  1589. * master device when not scanning */
  1590. return 0;
  1591. break;
  1592. case IEEE80211_IF_TYPE_WDS:
  1593. if (bssid ||
  1594. (rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA)
  1595. return 0;
  1596. if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
  1597. return 0;
  1598. break;
  1599. case IEEE80211_IF_TYPE_MNTR:
  1600. /* take everything */
  1601. break;
  1602. case IEEE80211_IF_TYPE_INVALID:
  1603. /* should never get here */
  1604. WARN_ON(1);
  1605. break;
  1606. }
  1607. return 1;
  1608. }
  1609. /*
  1610. * This is the actual Rx frames handler. as it blongs to Rx path it must
  1611. * be called with rcu_read_lock protection.
  1612. */
  1613. static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
  1614. struct sk_buff *skb,
  1615. struct ieee80211_rx_status *status,
  1616. u32 load,
  1617. struct ieee80211_rate *rate)
  1618. {
  1619. struct ieee80211_local *local = hw_to_local(hw);
  1620. struct ieee80211_sub_if_data *sdata;
  1621. struct ieee80211_hdr *hdr;
  1622. struct ieee80211_rx_data rx;
  1623. u16 type;
  1624. int prepares;
  1625. struct ieee80211_sub_if_data *prev = NULL;
  1626. struct sk_buff *skb_new;
  1627. u8 *bssid;
  1628. hdr = (struct ieee80211_hdr *) skb->data;
  1629. memset(&rx, 0, sizeof(rx));
  1630. rx.skb = skb;
  1631. rx.local = local;
  1632. rx.status = status;
  1633. rx.load = load;
  1634. rx.rate = rate;
  1635. rx.fc = le16_to_cpu(hdr->frame_control);
  1636. type = rx.fc & IEEE80211_FCTL_FTYPE;
  1637. if (type == IEEE80211_FTYPE_DATA || type == IEEE80211_FTYPE_MGMT)
  1638. local->dot11ReceivedFragmentCount++;
  1639. rx.sta = sta_info_get(local, hdr->addr2);
  1640. if (rx.sta) {
  1641. rx.sdata = rx.sta->sdata;
  1642. rx.dev = rx.sta->sdata->dev;
  1643. }
  1644. if ((status->flag & RX_FLAG_MMIC_ERROR)) {
  1645. ieee80211_rx_michael_mic_report(local->mdev, hdr, &rx);
  1646. return;
  1647. }
  1648. if (unlikely(local->sta_sw_scanning || local->sta_hw_scanning))
  1649. rx.flags |= IEEE80211_RX_IN_SCAN;
  1650. ieee80211_parse_qos(&rx);
  1651. ieee80211_verify_ip_alignment(&rx);
  1652. skb = rx.skb;
  1653. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  1654. if (!netif_running(sdata->dev))
  1655. continue;
  1656. if (sdata->vif.type == IEEE80211_IF_TYPE_MNTR)
  1657. continue;
  1658. bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
  1659. rx.flags |= IEEE80211_RX_RA_MATCH;
  1660. prepares = prepare_for_handlers(sdata, bssid, &rx, hdr);
  1661. if (!prepares)
  1662. continue;
  1663. /*
  1664. * frame is destined for this interface, but if it's not
  1665. * also for the previous one we handle that after the
  1666. * loop to avoid copying the SKB once too much
  1667. */
  1668. if (!prev) {
  1669. prev = sdata;
  1670. continue;
  1671. }
  1672. /*
  1673. * frame was destined for the previous interface
  1674. * so invoke RX handlers for it
  1675. */
  1676. skb_new = skb_copy(skb, GFP_ATOMIC);
  1677. if (!skb_new) {
  1678. if (net_ratelimit())
  1679. printk(KERN_DEBUG "%s: failed to copy "
  1680. "multicast frame for %s",
  1681. wiphy_name(local->hw.wiphy),
  1682. prev->dev->name);
  1683. continue;
  1684. }
  1685. rx.fc = le16_to_cpu(hdr->frame_control);
  1686. ieee80211_invoke_rx_handlers(prev, &rx, skb_new);
  1687. prev = sdata;
  1688. }
  1689. if (prev) {
  1690. rx.fc = le16_to_cpu(hdr->frame_control);
  1691. ieee80211_invoke_rx_handlers(prev, &rx, skb);
  1692. } else
  1693. dev_kfree_skb(skb);
  1694. }
  1695. #define SEQ_MODULO 0x1000
  1696. #define SEQ_MASK 0xfff
  1697. static inline int seq_less(u16 sq1, u16 sq2)
  1698. {
  1699. return (((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1));
  1700. }
  1701. static inline u16 seq_inc(u16 sq)
  1702. {
  1703. return ((sq + 1) & SEQ_MASK);
  1704. }
  1705. static inline u16 seq_sub(u16 sq1, u16 sq2)
  1706. {
  1707. return ((sq1 - sq2) & SEQ_MASK);
  1708. }
  1709. /*
  1710. * As it function blongs to Rx path it must be called with
  1711. * the proper rcu_read_lock protection for its flow.
  1712. */
  1713. u8 ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
  1714. struct tid_ampdu_rx *tid_agg_rx,
  1715. struct sk_buff *skb, u16 mpdu_seq_num,
  1716. int bar_req)
  1717. {
  1718. struct ieee80211_local *local = hw_to_local(hw);
  1719. struct ieee80211_rx_status status;
  1720. u16 head_seq_num, buf_size;
  1721. int index;
  1722. u32 pkt_load;
  1723. struct ieee80211_supported_band *sband;
  1724. struct ieee80211_rate *rate;
  1725. buf_size = tid_agg_rx->buf_size;
  1726. head_seq_num = tid_agg_rx->head_seq_num;
  1727. /* frame with out of date sequence number */
  1728. if (seq_less(mpdu_seq_num, head_seq_num)) {
  1729. dev_kfree_skb(skb);
  1730. return 1;
  1731. }
  1732. /* if frame sequence number exceeds our buffering window size or
  1733. * block Ack Request arrived - release stored frames */
  1734. if ((!seq_less(mpdu_seq_num, head_seq_num + buf_size)) || (bar_req)) {
  1735. /* new head to the ordering buffer */
  1736. if (bar_req)
  1737. head_seq_num = mpdu_seq_num;
  1738. else
  1739. head_seq_num =
  1740. seq_inc(seq_sub(mpdu_seq_num, buf_size));
  1741. /* release stored frames up to new head to stack */
  1742. while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
  1743. index = seq_sub(tid_agg_rx->head_seq_num,
  1744. tid_agg_rx->ssn)
  1745. % tid_agg_rx->buf_size;
  1746. if (tid_agg_rx->reorder_buf[index]) {
  1747. /* release the reordered frames to stack */
  1748. memcpy(&status,
  1749. tid_agg_rx->reorder_buf[index]->cb,
  1750. sizeof(status));
  1751. sband = local->hw.wiphy->bands[status.band];
  1752. rate = &sband->bitrates[status.rate_idx];
  1753. pkt_load = ieee80211_rx_load_stats(local,
  1754. tid_agg_rx->reorder_buf[index],
  1755. &status, rate);
  1756. __ieee80211_rx_handle_packet(hw,
  1757. tid_agg_rx->reorder_buf[index],
  1758. &status, pkt_load, rate);
  1759. tid_agg_rx->stored_mpdu_num--;
  1760. tid_agg_rx->reorder_buf[index] = NULL;
  1761. }
  1762. tid_agg_rx->head_seq_num =
  1763. seq_inc(tid_agg_rx->head_seq_num);
  1764. }
  1765. if (bar_req)
  1766. return 1;
  1767. }
  1768. /* now the new frame is always in the range of the reordering */
  1769. /* buffer window */
  1770. index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn)
  1771. % tid_agg_rx->buf_size;
  1772. /* check if we already stored this frame */
  1773. if (tid_agg_rx->reorder_buf[index]) {
  1774. dev_kfree_skb(skb);
  1775. return 1;
  1776. }
  1777. /* if arrived mpdu is in the right order and nothing else stored */
  1778. /* release it immediately */
  1779. if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
  1780. tid_agg_rx->stored_mpdu_num == 0) {
  1781. tid_agg_rx->head_seq_num =
  1782. seq_inc(tid_agg_rx->head_seq_num);
  1783. return 0;
  1784. }
  1785. /* put the frame in the reordering buffer */
  1786. tid_agg_rx->reorder_buf[index] = skb;
  1787. tid_agg_rx->stored_mpdu_num++;
  1788. /* release the buffer until next missing frame */
  1789. index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn)
  1790. % tid_agg_rx->buf_size;
  1791. while (tid_agg_rx->reorder_buf[index]) {
  1792. /* release the reordered frame back to stack */
  1793. memcpy(&status, tid_agg_rx->reorder_buf[index]->cb,
  1794. sizeof(status));
  1795. sband = local->hw.wiphy->bands[status.band];
  1796. rate = &sband->bitrates[status.rate_idx];
  1797. pkt_load = ieee80211_rx_load_stats(local,
  1798. tid_agg_rx->reorder_buf[index],
  1799. &status, rate);
  1800. __ieee80211_rx_handle_packet(hw, tid_agg_rx->reorder_buf[index],
  1801. &status, pkt_load, rate);
  1802. tid_agg_rx->stored_mpdu_num--;
  1803. tid_agg_rx->reorder_buf[index] = NULL;
  1804. tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
  1805. index = seq_sub(tid_agg_rx->head_seq_num,
  1806. tid_agg_rx->ssn) % tid_agg_rx->buf_size;
  1807. }
  1808. return 1;
  1809. }
  1810. static u8 ieee80211_rx_reorder_ampdu(struct ieee80211_local *local,
  1811. struct sk_buff *skb)
  1812. {
  1813. struct ieee80211_hw *hw = &local->hw;
  1814. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  1815. struct sta_info *sta;
  1816. struct tid_ampdu_rx *tid_agg_rx;
  1817. u16 fc, sc;
  1818. u16 mpdu_seq_num;
  1819. u8 ret = 0, *qc;
  1820. int tid;
  1821. sta = sta_info_get(local, hdr->addr2);
  1822. if (!sta)
  1823. return ret;
  1824. fc = le16_to_cpu(hdr->frame_control);
  1825. /* filter the QoS data rx stream according to
  1826. * STA/TID and check if this STA/TID is on aggregation */
  1827. if (!WLAN_FC_IS_QOS_DATA(fc))
  1828. goto end_reorder;
  1829. qc = skb->data + ieee80211_get_hdrlen(fc) - QOS_CONTROL_LEN;
  1830. tid = qc[0] & QOS_CONTROL_TID_MASK;
  1831. if (sta->ampdu_mlme.tid_state_rx[tid] != HT_AGG_STATE_OPERATIONAL)
  1832. goto end_reorder;
  1833. tid_agg_rx = sta->ampdu_mlme.tid_rx[tid];
  1834. /* null data frames are excluded */
  1835. if (unlikely(fc & IEEE80211_STYPE_NULLFUNC))
  1836. goto end_reorder;
  1837. /* new un-ordered ampdu frame - process it */
  1838. /* reset session timer */
  1839. if (tid_agg_rx->timeout) {
  1840. unsigned long expires =
  1841. jiffies + (tid_agg_rx->timeout / 1000) * HZ;
  1842. mod_timer(&tid_agg_rx->session_timer, expires);
  1843. }
  1844. /* if this mpdu is fragmented - terminate rx aggregation session */
  1845. sc = le16_to_cpu(hdr->seq_ctrl);
  1846. if (sc & IEEE80211_SCTL_FRAG) {
  1847. ieee80211_sta_stop_rx_ba_session(sta->sdata->dev, sta->addr,
  1848. tid, 0, WLAN_REASON_QSTA_REQUIRE_SETUP);
  1849. ret = 1;
  1850. goto end_reorder;
  1851. }
  1852. /* according to mpdu sequence number deal with reordering buffer */
  1853. mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
  1854. ret = ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb,
  1855. mpdu_seq_num, 0);
  1856. end_reorder:
  1857. return ret;
  1858. }
  1859. /*
  1860. * This is the receive path handler. It is called by a low level driver when an
  1861. * 802.11 MPDU is received from the hardware.
  1862. */
  1863. void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
  1864. struct ieee80211_rx_status *status)
  1865. {
  1866. struct ieee80211_local *local = hw_to_local(hw);
  1867. u32 pkt_load;
  1868. struct ieee80211_rate *rate = NULL;
  1869. struct ieee80211_supported_band *sband;
  1870. if (status->band < 0 ||
  1871. status->band >= IEEE80211_NUM_BANDS) {
  1872. WARN_ON(1);
  1873. return;
  1874. }
  1875. sband = local->hw.wiphy->bands[status->band];
  1876. if (!sband ||
  1877. status->rate_idx < 0 ||
  1878. status->rate_idx >= sband->n_bitrates) {
  1879. WARN_ON(1);
  1880. return;
  1881. }
  1882. rate = &sband->bitrates[status->rate_idx];
  1883. /*
  1884. * key references and virtual interfaces are protected using RCU
  1885. * and this requires that we are in a read-side RCU section during
  1886. * receive processing
  1887. */
  1888. rcu_read_lock();
  1889. /*
  1890. * Frames with failed FCS/PLCP checksum are not returned,
  1891. * all other frames are returned without radiotap header
  1892. * if it was previously present.
  1893. * Also, frames with less than 16 bytes are dropped.
  1894. */
  1895. skb = ieee80211_rx_monitor(local, skb, status, rate);
  1896. if (!skb) {
  1897. rcu_read_unlock();
  1898. return;
  1899. }
  1900. pkt_load = ieee80211_rx_load_stats(local, skb, status, rate);
  1901. local->channel_use_raw += pkt_load;
  1902. if (!ieee80211_rx_reorder_ampdu(local, skb))
  1903. __ieee80211_rx_handle_packet(hw, skb, status, pkt_load, rate);
  1904. rcu_read_unlock();
  1905. }
  1906. EXPORT_SYMBOL(__ieee80211_rx);
  1907. /* This is a version of the rx handler that can be called from hard irq
  1908. * context. Post the skb on the queue and schedule the tasklet */
  1909. void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb,
  1910. struct ieee80211_rx_status *status)
  1911. {
  1912. struct ieee80211_local *local = hw_to_local(hw);
  1913. BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
  1914. skb->dev = local->mdev;
  1915. /* copy status into skb->cb for use by tasklet */
  1916. memcpy(skb->cb, status, sizeof(*status));
  1917. skb->pkt_type = IEEE80211_RX_MSG;
  1918. skb_queue_tail(&local->skb_queue, skb);
  1919. tasklet_schedule(&local->tasklet);
  1920. }
  1921. EXPORT_SYMBOL(ieee80211_rx_irqsafe);