spi-s3c64xx.c 43 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643
  1. /*
  2. * Copyright (C) 2009 Samsung Electronics Ltd.
  3. * Jaswinder Singh <jassi.brar@samsung.com>
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. */
  19. #include <linux/init.h>
  20. #include <linux/module.h>
  21. #include <linux/workqueue.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/delay.h>
  24. #include <linux/clk.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/dmaengine.h>
  27. #include <linux/platform_device.h>
  28. #include <linux/pm_runtime.h>
  29. #include <linux/spi/spi.h>
  30. #include <linux/gpio.h>
  31. #include <linux/of.h>
  32. #include <linux/of_gpio.h>
  33. #include <linux/platform_data/spi-s3c64xx.h>
  34. #ifdef CONFIG_S3C_DMA
  35. #include <mach/dma.h>
  36. #endif
  37. #define MAX_SPI_PORTS 3
  38. #define S3C64XX_SPI_QUIRK_POLL (1 << 0)
  39. /* Registers and bit-fields */
  40. #define S3C64XX_SPI_CH_CFG 0x00
  41. #define S3C64XX_SPI_CLK_CFG 0x04
  42. #define S3C64XX_SPI_MODE_CFG 0x08
  43. #define S3C64XX_SPI_SLAVE_SEL 0x0C
  44. #define S3C64XX_SPI_INT_EN 0x10
  45. #define S3C64XX_SPI_STATUS 0x14
  46. #define S3C64XX_SPI_TX_DATA 0x18
  47. #define S3C64XX_SPI_RX_DATA 0x1C
  48. #define S3C64XX_SPI_PACKET_CNT 0x20
  49. #define S3C64XX_SPI_PENDING_CLR 0x24
  50. #define S3C64XX_SPI_SWAP_CFG 0x28
  51. #define S3C64XX_SPI_FB_CLK 0x2C
  52. #define S3C64XX_SPI_CH_HS_EN (1<<6) /* High Speed Enable */
  53. #define S3C64XX_SPI_CH_SW_RST (1<<5)
  54. #define S3C64XX_SPI_CH_SLAVE (1<<4)
  55. #define S3C64XX_SPI_CPOL_L (1<<3)
  56. #define S3C64XX_SPI_CPHA_B (1<<2)
  57. #define S3C64XX_SPI_CH_RXCH_ON (1<<1)
  58. #define S3C64XX_SPI_CH_TXCH_ON (1<<0)
  59. #define S3C64XX_SPI_CLKSEL_SRCMSK (3<<9)
  60. #define S3C64XX_SPI_CLKSEL_SRCSHFT 9
  61. #define S3C64XX_SPI_ENCLK_ENABLE (1<<8)
  62. #define S3C64XX_SPI_PSR_MASK 0xff
  63. #define S3C64XX_SPI_MODE_CH_TSZ_BYTE (0<<29)
  64. #define S3C64XX_SPI_MODE_CH_TSZ_HALFWORD (1<<29)
  65. #define S3C64XX_SPI_MODE_CH_TSZ_WORD (2<<29)
  66. #define S3C64XX_SPI_MODE_CH_TSZ_MASK (3<<29)
  67. #define S3C64XX_SPI_MODE_BUS_TSZ_BYTE (0<<17)
  68. #define S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD (1<<17)
  69. #define S3C64XX_SPI_MODE_BUS_TSZ_WORD (2<<17)
  70. #define S3C64XX_SPI_MODE_BUS_TSZ_MASK (3<<17)
  71. #define S3C64XX_SPI_MODE_RXDMA_ON (1<<2)
  72. #define S3C64XX_SPI_MODE_TXDMA_ON (1<<1)
  73. #define S3C64XX_SPI_MODE_4BURST (1<<0)
  74. #define S3C64XX_SPI_SLAVE_AUTO (1<<1)
  75. #define S3C64XX_SPI_SLAVE_SIG_INACT (1<<0)
  76. #define S3C64XX_SPI_INT_TRAILING_EN (1<<6)
  77. #define S3C64XX_SPI_INT_RX_OVERRUN_EN (1<<5)
  78. #define S3C64XX_SPI_INT_RX_UNDERRUN_EN (1<<4)
  79. #define S3C64XX_SPI_INT_TX_OVERRUN_EN (1<<3)
  80. #define S3C64XX_SPI_INT_TX_UNDERRUN_EN (1<<2)
  81. #define S3C64XX_SPI_INT_RX_FIFORDY_EN (1<<1)
  82. #define S3C64XX_SPI_INT_TX_FIFORDY_EN (1<<0)
  83. #define S3C64XX_SPI_ST_RX_OVERRUN_ERR (1<<5)
  84. #define S3C64XX_SPI_ST_RX_UNDERRUN_ERR (1<<4)
  85. #define S3C64XX_SPI_ST_TX_OVERRUN_ERR (1<<3)
  86. #define S3C64XX_SPI_ST_TX_UNDERRUN_ERR (1<<2)
  87. #define S3C64XX_SPI_ST_RX_FIFORDY (1<<1)
  88. #define S3C64XX_SPI_ST_TX_FIFORDY (1<<0)
  89. #define S3C64XX_SPI_PACKET_CNT_EN (1<<16)
  90. #define S3C64XX_SPI_PND_TX_UNDERRUN_CLR (1<<4)
  91. #define S3C64XX_SPI_PND_TX_OVERRUN_CLR (1<<3)
  92. #define S3C64XX_SPI_PND_RX_UNDERRUN_CLR (1<<2)
  93. #define S3C64XX_SPI_PND_RX_OVERRUN_CLR (1<<1)
  94. #define S3C64XX_SPI_PND_TRAILING_CLR (1<<0)
  95. #define S3C64XX_SPI_SWAP_RX_HALF_WORD (1<<7)
  96. #define S3C64XX_SPI_SWAP_RX_BYTE (1<<6)
  97. #define S3C64XX_SPI_SWAP_RX_BIT (1<<5)
  98. #define S3C64XX_SPI_SWAP_RX_EN (1<<4)
  99. #define S3C64XX_SPI_SWAP_TX_HALF_WORD (1<<3)
  100. #define S3C64XX_SPI_SWAP_TX_BYTE (1<<2)
  101. #define S3C64XX_SPI_SWAP_TX_BIT (1<<1)
  102. #define S3C64XX_SPI_SWAP_TX_EN (1<<0)
  103. #define S3C64XX_SPI_FBCLK_MSK (3<<0)
  104. #define FIFO_LVL_MASK(i) ((i)->port_conf->fifo_lvl_mask[i->port_id])
  105. #define S3C64XX_SPI_ST_TX_DONE(v, i) (((v) & \
  106. (1 << (i)->port_conf->tx_st_done)) ? 1 : 0)
  107. #define TX_FIFO_LVL(v, i) (((v) >> 6) & FIFO_LVL_MASK(i))
  108. #define RX_FIFO_LVL(v, i) (((v) >> (i)->port_conf->rx_lvl_offset) & \
  109. FIFO_LVL_MASK(i))
  110. #define S3C64XX_SPI_MAX_TRAILCNT 0x3ff
  111. #define S3C64XX_SPI_TRAILCNT_OFF 19
  112. #define S3C64XX_SPI_TRAILCNT S3C64XX_SPI_MAX_TRAILCNT
  113. #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
  114. #define is_polling(x) (x->port_conf->quirks & S3C64XX_SPI_QUIRK_POLL)
  115. #define RXBUSY (1<<2)
  116. #define TXBUSY (1<<3)
  117. struct s3c64xx_spi_dma_data {
  118. struct dma_chan *ch;
  119. enum dma_transfer_direction direction;
  120. unsigned int dmach;
  121. };
  122. /**
  123. * struct s3c64xx_spi_info - SPI Controller hardware info
  124. * @fifo_lvl_mask: Bit-mask for {TX|RX}_FIFO_LVL bits in SPI_STATUS register.
  125. * @rx_lvl_offset: Bit offset of RX_FIFO_LVL bits in SPI_STATUS regiter.
  126. * @tx_st_done: Bit offset of TX_DONE bit in SPI_STATUS regiter.
  127. * @high_speed: True, if the controller supports HIGH_SPEED_EN bit.
  128. * @clk_from_cmu: True, if the controller does not include a clock mux and
  129. * prescaler unit.
  130. *
  131. * The Samsung s3c64xx SPI controller are used on various Samsung SoC's but
  132. * differ in some aspects such as the size of the fifo and spi bus clock
  133. * setup. Such differences are specified to the driver using this structure
  134. * which is provided as driver data to the driver.
  135. */
  136. struct s3c64xx_spi_port_config {
  137. int fifo_lvl_mask[MAX_SPI_PORTS];
  138. int rx_lvl_offset;
  139. int tx_st_done;
  140. int quirks;
  141. bool high_speed;
  142. bool clk_from_cmu;
  143. };
  144. /**
  145. * struct s3c64xx_spi_driver_data - Runtime info holder for SPI driver.
  146. * @clk: Pointer to the spi clock.
  147. * @src_clk: Pointer to the clock used to generate SPI signals.
  148. * @master: Pointer to the SPI Protocol master.
  149. * @cntrlr_info: Platform specific data for the controller this driver manages.
  150. * @tgl_spi: Pointer to the last CS left untoggled by the cs_change hint.
  151. * @lock: Controller specific lock.
  152. * @state: Set of FLAGS to indicate status.
  153. * @rx_dmach: Controller's DMA channel for Rx.
  154. * @tx_dmach: Controller's DMA channel for Tx.
  155. * @sfr_start: BUS address of SPI controller regs.
  156. * @regs: Pointer to ioremap'ed controller registers.
  157. * @irq: interrupt
  158. * @xfer_completion: To indicate completion of xfer task.
  159. * @cur_mode: Stores the active configuration of the controller.
  160. * @cur_bpw: Stores the active bits per word settings.
  161. * @cur_speed: Stores the active xfer clock speed.
  162. */
  163. struct s3c64xx_spi_driver_data {
  164. void __iomem *regs;
  165. struct clk *clk;
  166. struct clk *src_clk;
  167. struct platform_device *pdev;
  168. struct spi_master *master;
  169. struct s3c64xx_spi_info *cntrlr_info;
  170. struct spi_device *tgl_spi;
  171. spinlock_t lock;
  172. unsigned long sfr_start;
  173. struct completion xfer_completion;
  174. unsigned state;
  175. unsigned cur_mode, cur_bpw;
  176. unsigned cur_speed;
  177. struct s3c64xx_spi_dma_data rx_dma;
  178. struct s3c64xx_spi_dma_data tx_dma;
  179. #ifdef CONFIG_S3C_DMA
  180. struct samsung_dma_ops *ops;
  181. #endif
  182. struct s3c64xx_spi_port_config *port_conf;
  183. unsigned int port_id;
  184. bool cs_gpio;
  185. };
  186. static void flush_fifo(struct s3c64xx_spi_driver_data *sdd)
  187. {
  188. void __iomem *regs = sdd->regs;
  189. unsigned long loops;
  190. u32 val;
  191. writel(0, regs + S3C64XX_SPI_PACKET_CNT);
  192. val = readl(regs + S3C64XX_SPI_CH_CFG);
  193. val &= ~(S3C64XX_SPI_CH_RXCH_ON | S3C64XX_SPI_CH_TXCH_ON);
  194. writel(val, regs + S3C64XX_SPI_CH_CFG);
  195. val = readl(regs + S3C64XX_SPI_CH_CFG);
  196. val |= S3C64XX_SPI_CH_SW_RST;
  197. val &= ~S3C64XX_SPI_CH_HS_EN;
  198. writel(val, regs + S3C64XX_SPI_CH_CFG);
  199. /* Flush TxFIFO*/
  200. loops = msecs_to_loops(1);
  201. do {
  202. val = readl(regs + S3C64XX_SPI_STATUS);
  203. } while (TX_FIFO_LVL(val, sdd) && loops--);
  204. if (loops == 0)
  205. dev_warn(&sdd->pdev->dev, "Timed out flushing TX FIFO\n");
  206. /* Flush RxFIFO*/
  207. loops = msecs_to_loops(1);
  208. do {
  209. val = readl(regs + S3C64XX_SPI_STATUS);
  210. if (RX_FIFO_LVL(val, sdd))
  211. readl(regs + S3C64XX_SPI_RX_DATA);
  212. else
  213. break;
  214. } while (loops--);
  215. if (loops == 0)
  216. dev_warn(&sdd->pdev->dev, "Timed out flushing RX FIFO\n");
  217. val = readl(regs + S3C64XX_SPI_CH_CFG);
  218. val &= ~S3C64XX_SPI_CH_SW_RST;
  219. writel(val, regs + S3C64XX_SPI_CH_CFG);
  220. val = readl(regs + S3C64XX_SPI_MODE_CFG);
  221. val &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
  222. writel(val, regs + S3C64XX_SPI_MODE_CFG);
  223. }
  224. static void s3c64xx_spi_dmacb(void *data)
  225. {
  226. struct s3c64xx_spi_driver_data *sdd;
  227. struct s3c64xx_spi_dma_data *dma = data;
  228. unsigned long flags;
  229. if (dma->direction == DMA_DEV_TO_MEM)
  230. sdd = container_of(data,
  231. struct s3c64xx_spi_driver_data, rx_dma);
  232. else
  233. sdd = container_of(data,
  234. struct s3c64xx_spi_driver_data, tx_dma);
  235. spin_lock_irqsave(&sdd->lock, flags);
  236. if (dma->direction == DMA_DEV_TO_MEM) {
  237. sdd->state &= ~RXBUSY;
  238. if (!(sdd->state & TXBUSY))
  239. complete(&sdd->xfer_completion);
  240. } else {
  241. sdd->state &= ~TXBUSY;
  242. if (!(sdd->state & RXBUSY))
  243. complete(&sdd->xfer_completion);
  244. }
  245. spin_unlock_irqrestore(&sdd->lock, flags);
  246. }
  247. #ifdef CONFIG_S3C_DMA
  248. /* FIXME: remove this section once arch/arm/mach-s3c64xx uses dmaengine */
  249. static struct s3c2410_dma_client s3c64xx_spi_dma_client = {
  250. .name = "samsung-spi-dma",
  251. };
  252. static void prepare_dma(struct s3c64xx_spi_dma_data *dma,
  253. unsigned len, dma_addr_t buf)
  254. {
  255. struct s3c64xx_spi_driver_data *sdd;
  256. struct samsung_dma_prep info;
  257. struct samsung_dma_config config;
  258. if (dma->direction == DMA_DEV_TO_MEM) {
  259. sdd = container_of((void *)dma,
  260. struct s3c64xx_spi_driver_data, rx_dma);
  261. config.direction = sdd->rx_dma.direction;
  262. config.fifo = sdd->sfr_start + S3C64XX_SPI_RX_DATA;
  263. config.width = sdd->cur_bpw / 8;
  264. sdd->ops->config((enum dma_ch)sdd->rx_dma.ch, &config);
  265. } else {
  266. sdd = container_of((void *)dma,
  267. struct s3c64xx_spi_driver_data, tx_dma);
  268. config.direction = sdd->tx_dma.direction;
  269. config.fifo = sdd->sfr_start + S3C64XX_SPI_TX_DATA;
  270. config.width = sdd->cur_bpw / 8;
  271. sdd->ops->config((enum dma_ch)sdd->tx_dma.ch, &config);
  272. }
  273. info.cap = DMA_SLAVE;
  274. info.len = len;
  275. info.fp = s3c64xx_spi_dmacb;
  276. info.fp_param = dma;
  277. info.direction = dma->direction;
  278. info.buf = buf;
  279. sdd->ops->prepare((enum dma_ch)dma->ch, &info);
  280. sdd->ops->trigger((enum dma_ch)dma->ch);
  281. }
  282. static int acquire_dma(struct s3c64xx_spi_driver_data *sdd)
  283. {
  284. struct samsung_dma_req req;
  285. struct device *dev = &sdd->pdev->dev;
  286. sdd->ops = samsung_dma_get_ops();
  287. req.cap = DMA_SLAVE;
  288. req.client = &s3c64xx_spi_dma_client;
  289. sdd->rx_dma.ch = (struct dma_chan *)(unsigned long)sdd->ops->request(
  290. sdd->rx_dma.dmach, &req, dev, "rx");
  291. sdd->tx_dma.ch = (struct dma_chan *)(unsigned long)sdd->ops->request(
  292. sdd->tx_dma.dmach, &req, dev, "tx");
  293. return 1;
  294. }
  295. static int s3c64xx_spi_prepare_transfer(struct spi_master *spi)
  296. {
  297. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
  298. /*
  299. * If DMA resource was not available during
  300. * probe, no need to continue with dma requests
  301. * else Acquire DMA channels
  302. */
  303. while (!is_polling(sdd) && !acquire_dma(sdd))
  304. usleep_range(10000, 11000);
  305. return 0;
  306. }
  307. static int s3c64xx_spi_unprepare_transfer(struct spi_master *spi)
  308. {
  309. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
  310. /* Free DMA channels */
  311. if (!is_polling(sdd)) {
  312. sdd->ops->release((enum dma_ch)sdd->rx_dma.ch,
  313. &s3c64xx_spi_dma_client);
  314. sdd->ops->release((enum dma_ch)sdd->tx_dma.ch,
  315. &s3c64xx_spi_dma_client);
  316. }
  317. return 0;
  318. }
  319. static void s3c64xx_spi_dma_stop(struct s3c64xx_spi_driver_data *sdd,
  320. struct s3c64xx_spi_dma_data *dma)
  321. {
  322. sdd->ops->stop((enum dma_ch)dma->ch);
  323. }
  324. #else
  325. static void prepare_dma(struct s3c64xx_spi_dma_data *dma,
  326. unsigned len, dma_addr_t buf)
  327. {
  328. struct s3c64xx_spi_driver_data *sdd;
  329. struct dma_slave_config config;
  330. struct dma_async_tx_descriptor *desc;
  331. memset(&config, 0, sizeof(config));
  332. if (dma->direction == DMA_DEV_TO_MEM) {
  333. sdd = container_of((void *)dma,
  334. struct s3c64xx_spi_driver_data, rx_dma);
  335. config.direction = dma->direction;
  336. config.src_addr = sdd->sfr_start + S3C64XX_SPI_RX_DATA;
  337. config.src_addr_width = sdd->cur_bpw / 8;
  338. config.src_maxburst = 1;
  339. dmaengine_slave_config(dma->ch, &config);
  340. } else {
  341. sdd = container_of((void *)dma,
  342. struct s3c64xx_spi_driver_data, tx_dma);
  343. config.direction = dma->direction;
  344. config.dst_addr = sdd->sfr_start + S3C64XX_SPI_TX_DATA;
  345. config.dst_addr_width = sdd->cur_bpw / 8;
  346. config.dst_maxburst = 1;
  347. dmaengine_slave_config(dma->ch, &config);
  348. }
  349. desc = dmaengine_prep_slave_single(dma->ch, buf, len,
  350. dma->direction, DMA_PREP_INTERRUPT);
  351. desc->callback = s3c64xx_spi_dmacb;
  352. desc->callback_param = dma;
  353. dmaengine_submit(desc);
  354. dma_async_issue_pending(dma->ch);
  355. }
  356. static int s3c64xx_spi_prepare_transfer(struct spi_master *spi)
  357. {
  358. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
  359. dma_filter_fn filter = sdd->cntrlr_info->filter;
  360. struct device *dev = &sdd->pdev->dev;
  361. dma_cap_mask_t mask;
  362. int ret;
  363. if (!is_polling(sdd)) {
  364. dma_cap_zero(mask);
  365. dma_cap_set(DMA_SLAVE, mask);
  366. /* Acquire DMA channels */
  367. sdd->rx_dma.ch = dma_request_slave_channel_compat(mask, filter,
  368. (void *)sdd->rx_dma.dmach, dev, "rx");
  369. if (!sdd->rx_dma.ch) {
  370. dev_err(dev, "Failed to get RX DMA channel\n");
  371. ret = -EBUSY;
  372. goto out;
  373. }
  374. sdd->tx_dma.ch = dma_request_slave_channel_compat(mask, filter,
  375. (void *)sdd->tx_dma.dmach, dev, "tx");
  376. if (!sdd->tx_dma.ch) {
  377. dev_err(dev, "Failed to get TX DMA channel\n");
  378. ret = -EBUSY;
  379. goto out_rx;
  380. }
  381. }
  382. ret = pm_runtime_get_sync(&sdd->pdev->dev);
  383. if (ret < 0) {
  384. dev_err(dev, "Failed to enable device: %d\n", ret);
  385. goto out_tx;
  386. }
  387. return 0;
  388. out_tx:
  389. dma_release_channel(sdd->tx_dma.ch);
  390. out_rx:
  391. dma_release_channel(sdd->rx_dma.ch);
  392. out:
  393. return ret;
  394. }
  395. static int s3c64xx_spi_unprepare_transfer(struct spi_master *spi)
  396. {
  397. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
  398. /* Free DMA channels */
  399. if (!is_polling(sdd)) {
  400. dma_release_channel(sdd->rx_dma.ch);
  401. dma_release_channel(sdd->tx_dma.ch);
  402. }
  403. pm_runtime_put(&sdd->pdev->dev);
  404. return 0;
  405. }
  406. static void s3c64xx_spi_dma_stop(struct s3c64xx_spi_driver_data *sdd,
  407. struct s3c64xx_spi_dma_data *dma)
  408. {
  409. dmaengine_terminate_all(dma->ch);
  410. }
  411. #endif
  412. static void enable_datapath(struct s3c64xx_spi_driver_data *sdd,
  413. struct spi_device *spi,
  414. struct spi_transfer *xfer, int dma_mode)
  415. {
  416. void __iomem *regs = sdd->regs;
  417. u32 modecfg, chcfg;
  418. modecfg = readl(regs + S3C64XX_SPI_MODE_CFG);
  419. modecfg &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
  420. chcfg = readl(regs + S3C64XX_SPI_CH_CFG);
  421. chcfg &= ~S3C64XX_SPI_CH_TXCH_ON;
  422. if (dma_mode) {
  423. chcfg &= ~S3C64XX_SPI_CH_RXCH_ON;
  424. } else {
  425. /* Always shift in data in FIFO, even if xfer is Tx only,
  426. * this helps setting PCKT_CNT value for generating clocks
  427. * as exactly needed.
  428. */
  429. chcfg |= S3C64XX_SPI_CH_RXCH_ON;
  430. writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
  431. | S3C64XX_SPI_PACKET_CNT_EN,
  432. regs + S3C64XX_SPI_PACKET_CNT);
  433. }
  434. if (xfer->tx_buf != NULL) {
  435. sdd->state |= TXBUSY;
  436. chcfg |= S3C64XX_SPI_CH_TXCH_ON;
  437. if (dma_mode) {
  438. modecfg |= S3C64XX_SPI_MODE_TXDMA_ON;
  439. prepare_dma(&sdd->tx_dma, xfer->len, xfer->tx_dma);
  440. } else {
  441. switch (sdd->cur_bpw) {
  442. case 32:
  443. iowrite32_rep(regs + S3C64XX_SPI_TX_DATA,
  444. xfer->tx_buf, xfer->len / 4);
  445. break;
  446. case 16:
  447. iowrite16_rep(regs + S3C64XX_SPI_TX_DATA,
  448. xfer->tx_buf, xfer->len / 2);
  449. break;
  450. default:
  451. iowrite8_rep(regs + S3C64XX_SPI_TX_DATA,
  452. xfer->tx_buf, xfer->len);
  453. break;
  454. }
  455. }
  456. }
  457. if (xfer->rx_buf != NULL) {
  458. sdd->state |= RXBUSY;
  459. if (sdd->port_conf->high_speed && sdd->cur_speed >= 30000000UL
  460. && !(sdd->cur_mode & SPI_CPHA))
  461. chcfg |= S3C64XX_SPI_CH_HS_EN;
  462. if (dma_mode) {
  463. modecfg |= S3C64XX_SPI_MODE_RXDMA_ON;
  464. chcfg |= S3C64XX_SPI_CH_RXCH_ON;
  465. writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
  466. | S3C64XX_SPI_PACKET_CNT_EN,
  467. regs + S3C64XX_SPI_PACKET_CNT);
  468. prepare_dma(&sdd->rx_dma, xfer->len, xfer->rx_dma);
  469. }
  470. }
  471. writel(modecfg, regs + S3C64XX_SPI_MODE_CFG);
  472. writel(chcfg, regs + S3C64XX_SPI_CH_CFG);
  473. }
  474. static inline void enable_cs(struct s3c64xx_spi_driver_data *sdd,
  475. struct spi_device *spi)
  476. {
  477. if (sdd->tgl_spi != NULL) { /* If last device toggled after mssg */
  478. if (sdd->tgl_spi != spi) { /* if last mssg on diff device */
  479. /* Deselect the last toggled device */
  480. if (spi->cs_gpio >= 0)
  481. gpio_set_value(spi->cs_gpio,
  482. spi->mode & SPI_CS_HIGH ? 0 : 1);
  483. }
  484. sdd->tgl_spi = NULL;
  485. }
  486. if (spi->cs_gpio >= 0)
  487. gpio_set_value(spi->cs_gpio, spi->mode & SPI_CS_HIGH ? 1 : 0);
  488. }
  489. static u32 s3c64xx_spi_wait_for_timeout(struct s3c64xx_spi_driver_data *sdd,
  490. int timeout_ms)
  491. {
  492. void __iomem *regs = sdd->regs;
  493. unsigned long val = 1;
  494. u32 status;
  495. /* max fifo depth available */
  496. u32 max_fifo = (FIFO_LVL_MASK(sdd) >> 1) + 1;
  497. if (timeout_ms)
  498. val = msecs_to_loops(timeout_ms);
  499. do {
  500. status = readl(regs + S3C64XX_SPI_STATUS);
  501. } while (RX_FIFO_LVL(status, sdd) < max_fifo && --val);
  502. /* return the actual received data length */
  503. return RX_FIFO_LVL(status, sdd);
  504. }
  505. static int wait_for_xfer(struct s3c64xx_spi_driver_data *sdd,
  506. struct spi_transfer *xfer, int dma_mode)
  507. {
  508. void __iomem *regs = sdd->regs;
  509. unsigned long val;
  510. int ms;
  511. /* millisecs to xfer 'len' bytes @ 'cur_speed' */
  512. ms = xfer->len * 8 * 1000 / sdd->cur_speed;
  513. ms += 10; /* some tolerance */
  514. if (dma_mode) {
  515. val = msecs_to_jiffies(ms) + 10;
  516. val = wait_for_completion_timeout(&sdd->xfer_completion, val);
  517. } else {
  518. u32 status;
  519. val = msecs_to_loops(ms);
  520. do {
  521. status = readl(regs + S3C64XX_SPI_STATUS);
  522. } while (RX_FIFO_LVL(status, sdd) < xfer->len && --val);
  523. }
  524. if (dma_mode) {
  525. u32 status;
  526. /*
  527. * If the previous xfer was completed within timeout, then
  528. * proceed further else return -EIO.
  529. * DmaTx returns after simply writing data in the FIFO,
  530. * w/o waiting for real transmission on the bus to finish.
  531. * DmaRx returns only after Dma read data from FIFO which
  532. * needs bus transmission to finish, so we don't worry if
  533. * Xfer involved Rx(with or without Tx).
  534. */
  535. if (val && !xfer->rx_buf) {
  536. val = msecs_to_loops(10);
  537. status = readl(regs + S3C64XX_SPI_STATUS);
  538. while ((TX_FIFO_LVL(status, sdd)
  539. || !S3C64XX_SPI_ST_TX_DONE(status, sdd))
  540. && --val) {
  541. cpu_relax();
  542. status = readl(regs + S3C64XX_SPI_STATUS);
  543. }
  544. }
  545. /* If timed out while checking rx/tx status return error */
  546. if (!val)
  547. return -EIO;
  548. } else {
  549. int loops;
  550. u32 cpy_len;
  551. u8 *buf;
  552. /* If it was only Tx */
  553. if (!xfer->rx_buf) {
  554. sdd->state &= ~TXBUSY;
  555. return 0;
  556. }
  557. /*
  558. * If the receive length is bigger than the controller fifo
  559. * size, calculate the loops and read the fifo as many times.
  560. * loops = length / max fifo size (calculated by using the
  561. * fifo mask).
  562. * For any size less than the fifo size the below code is
  563. * executed atleast once.
  564. */
  565. loops = xfer->len / ((FIFO_LVL_MASK(sdd) >> 1) + 1);
  566. buf = xfer->rx_buf;
  567. do {
  568. /* wait for data to be received in the fifo */
  569. cpy_len = s3c64xx_spi_wait_for_timeout(sdd,
  570. (loops ? ms : 0));
  571. switch (sdd->cur_bpw) {
  572. case 32:
  573. ioread32_rep(regs + S3C64XX_SPI_RX_DATA,
  574. buf, cpy_len / 4);
  575. break;
  576. case 16:
  577. ioread16_rep(regs + S3C64XX_SPI_RX_DATA,
  578. buf, cpy_len / 2);
  579. break;
  580. default:
  581. ioread8_rep(regs + S3C64XX_SPI_RX_DATA,
  582. buf, cpy_len);
  583. break;
  584. }
  585. buf = buf + cpy_len;
  586. } while (loops--);
  587. sdd->state &= ~RXBUSY;
  588. }
  589. return 0;
  590. }
  591. static inline void disable_cs(struct s3c64xx_spi_driver_data *sdd,
  592. struct spi_device *spi)
  593. {
  594. if (sdd->tgl_spi == spi)
  595. sdd->tgl_spi = NULL;
  596. if (spi->cs_gpio >= 0)
  597. gpio_set_value(spi->cs_gpio, spi->mode & SPI_CS_HIGH ? 0 : 1);
  598. }
  599. static void s3c64xx_spi_config(struct s3c64xx_spi_driver_data *sdd)
  600. {
  601. void __iomem *regs = sdd->regs;
  602. u32 val;
  603. /* Disable Clock */
  604. if (sdd->port_conf->clk_from_cmu) {
  605. clk_disable_unprepare(sdd->src_clk);
  606. } else {
  607. val = readl(regs + S3C64XX_SPI_CLK_CFG);
  608. val &= ~S3C64XX_SPI_ENCLK_ENABLE;
  609. writel(val, regs + S3C64XX_SPI_CLK_CFG);
  610. }
  611. /* Set Polarity and Phase */
  612. val = readl(regs + S3C64XX_SPI_CH_CFG);
  613. val &= ~(S3C64XX_SPI_CH_SLAVE |
  614. S3C64XX_SPI_CPOL_L |
  615. S3C64XX_SPI_CPHA_B);
  616. if (sdd->cur_mode & SPI_CPOL)
  617. val |= S3C64XX_SPI_CPOL_L;
  618. if (sdd->cur_mode & SPI_CPHA)
  619. val |= S3C64XX_SPI_CPHA_B;
  620. writel(val, regs + S3C64XX_SPI_CH_CFG);
  621. /* Set Channel & DMA Mode */
  622. val = readl(regs + S3C64XX_SPI_MODE_CFG);
  623. val &= ~(S3C64XX_SPI_MODE_BUS_TSZ_MASK
  624. | S3C64XX_SPI_MODE_CH_TSZ_MASK);
  625. switch (sdd->cur_bpw) {
  626. case 32:
  627. val |= S3C64XX_SPI_MODE_BUS_TSZ_WORD;
  628. val |= S3C64XX_SPI_MODE_CH_TSZ_WORD;
  629. break;
  630. case 16:
  631. val |= S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD;
  632. val |= S3C64XX_SPI_MODE_CH_TSZ_HALFWORD;
  633. break;
  634. default:
  635. val |= S3C64XX_SPI_MODE_BUS_TSZ_BYTE;
  636. val |= S3C64XX_SPI_MODE_CH_TSZ_BYTE;
  637. break;
  638. }
  639. writel(val, regs + S3C64XX_SPI_MODE_CFG);
  640. if (sdd->port_conf->clk_from_cmu) {
  641. /* Configure Clock */
  642. /* There is half-multiplier before the SPI */
  643. clk_set_rate(sdd->src_clk, sdd->cur_speed * 2);
  644. /* Enable Clock */
  645. clk_prepare_enable(sdd->src_clk);
  646. } else {
  647. /* Configure Clock */
  648. val = readl(regs + S3C64XX_SPI_CLK_CFG);
  649. val &= ~S3C64XX_SPI_PSR_MASK;
  650. val |= ((clk_get_rate(sdd->src_clk) / sdd->cur_speed / 2 - 1)
  651. & S3C64XX_SPI_PSR_MASK);
  652. writel(val, regs + S3C64XX_SPI_CLK_CFG);
  653. /* Enable Clock */
  654. val = readl(regs + S3C64XX_SPI_CLK_CFG);
  655. val |= S3C64XX_SPI_ENCLK_ENABLE;
  656. writel(val, regs + S3C64XX_SPI_CLK_CFG);
  657. }
  658. }
  659. #define XFER_DMAADDR_INVALID DMA_BIT_MASK(32)
  660. static int s3c64xx_spi_map_mssg(struct s3c64xx_spi_driver_data *sdd,
  661. struct spi_message *msg)
  662. {
  663. struct device *dev = &sdd->pdev->dev;
  664. struct spi_transfer *xfer;
  665. if (is_polling(sdd) || msg->is_dma_mapped)
  666. return 0;
  667. /* First mark all xfer unmapped */
  668. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  669. xfer->rx_dma = XFER_DMAADDR_INVALID;
  670. xfer->tx_dma = XFER_DMAADDR_INVALID;
  671. }
  672. /* Map until end or first fail */
  673. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  674. if (xfer->len <= ((FIFO_LVL_MASK(sdd) >> 1) + 1))
  675. continue;
  676. if (xfer->tx_buf != NULL) {
  677. xfer->tx_dma = dma_map_single(dev,
  678. (void *)xfer->tx_buf, xfer->len,
  679. DMA_TO_DEVICE);
  680. if (dma_mapping_error(dev, xfer->tx_dma)) {
  681. dev_err(dev, "dma_map_single Tx failed\n");
  682. xfer->tx_dma = XFER_DMAADDR_INVALID;
  683. return -ENOMEM;
  684. }
  685. }
  686. if (xfer->rx_buf != NULL) {
  687. xfer->rx_dma = dma_map_single(dev, xfer->rx_buf,
  688. xfer->len, DMA_FROM_DEVICE);
  689. if (dma_mapping_error(dev, xfer->rx_dma)) {
  690. dev_err(dev, "dma_map_single Rx failed\n");
  691. dma_unmap_single(dev, xfer->tx_dma,
  692. xfer->len, DMA_TO_DEVICE);
  693. xfer->tx_dma = XFER_DMAADDR_INVALID;
  694. xfer->rx_dma = XFER_DMAADDR_INVALID;
  695. return -ENOMEM;
  696. }
  697. }
  698. }
  699. return 0;
  700. }
  701. static void s3c64xx_spi_unmap_mssg(struct s3c64xx_spi_driver_data *sdd,
  702. struct spi_message *msg)
  703. {
  704. struct device *dev = &sdd->pdev->dev;
  705. struct spi_transfer *xfer;
  706. if (is_polling(sdd) || msg->is_dma_mapped)
  707. return;
  708. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  709. if (xfer->len <= ((FIFO_LVL_MASK(sdd) >> 1) + 1))
  710. continue;
  711. if (xfer->rx_buf != NULL
  712. && xfer->rx_dma != XFER_DMAADDR_INVALID)
  713. dma_unmap_single(dev, xfer->rx_dma,
  714. xfer->len, DMA_FROM_DEVICE);
  715. if (xfer->tx_buf != NULL
  716. && xfer->tx_dma != XFER_DMAADDR_INVALID)
  717. dma_unmap_single(dev, xfer->tx_dma,
  718. xfer->len, DMA_TO_DEVICE);
  719. }
  720. }
  721. static int s3c64xx_spi_prepare_message(struct spi_master *master,
  722. struct spi_message *msg)
  723. {
  724. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  725. struct spi_device *spi = msg->spi;
  726. struct s3c64xx_spi_csinfo *cs = spi->controller_data;
  727. /* If Master's(controller) state differs from that needed by Slave */
  728. if (sdd->cur_speed != spi->max_speed_hz
  729. || sdd->cur_mode != spi->mode
  730. || sdd->cur_bpw != spi->bits_per_word) {
  731. sdd->cur_bpw = spi->bits_per_word;
  732. sdd->cur_speed = spi->max_speed_hz;
  733. sdd->cur_mode = spi->mode;
  734. s3c64xx_spi_config(sdd);
  735. }
  736. /* Map all the transfers if needed */
  737. if (s3c64xx_spi_map_mssg(sdd, msg)) {
  738. dev_err(&spi->dev,
  739. "Xfer: Unable to map message buffers!\n");
  740. return -ENOMEM;
  741. }
  742. /* Configure feedback delay */
  743. writel(cs->fb_delay & 0x3, sdd->regs + S3C64XX_SPI_FB_CLK);
  744. return 0;
  745. }
  746. static int s3c64xx_spi_transfer_one(struct spi_master *master,
  747. struct spi_device *spi,
  748. struct spi_transfer *xfer)
  749. {
  750. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  751. int status;
  752. u32 speed;
  753. u8 bpw;
  754. unsigned long flags;
  755. int use_dma;
  756. INIT_COMPLETION(sdd->xfer_completion);
  757. /* Only BPW and Speed may change across transfers */
  758. bpw = xfer->bits_per_word;
  759. speed = xfer->speed_hz ? : spi->max_speed_hz;
  760. if (xfer->len % (bpw / 8)) {
  761. dev_err(&spi->dev,
  762. "Xfer length(%u) not a multiple of word size(%u)\n",
  763. xfer->len, bpw / 8);
  764. return -EIO;
  765. }
  766. if (bpw != sdd->cur_bpw || speed != sdd->cur_speed) {
  767. sdd->cur_bpw = bpw;
  768. sdd->cur_speed = speed;
  769. s3c64xx_spi_config(sdd);
  770. }
  771. /* Polling method for xfers not bigger than FIFO capacity */
  772. use_dma = 0;
  773. if (!is_polling(sdd) &&
  774. (sdd->rx_dma.ch && sdd->tx_dma.ch &&
  775. (xfer->len > ((FIFO_LVL_MASK(sdd) >> 1) + 1))))
  776. use_dma = 1;
  777. spin_lock_irqsave(&sdd->lock, flags);
  778. /* Pending only which is to be done */
  779. sdd->state &= ~RXBUSY;
  780. sdd->state &= ~TXBUSY;
  781. enable_datapath(sdd, spi, xfer, use_dma);
  782. /* Start the signals */
  783. writel(0, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
  784. /* Start the signals */
  785. writel(0, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
  786. spin_unlock_irqrestore(&sdd->lock, flags);
  787. status = wait_for_xfer(sdd, xfer, use_dma);
  788. if (status) {
  789. dev_err(&spi->dev, "I/O Error: rx-%d tx-%d res:rx-%c tx-%c len-%d\n",
  790. xfer->rx_buf ? 1 : 0, xfer->tx_buf ? 1 : 0,
  791. (sdd->state & RXBUSY) ? 'f' : 'p',
  792. (sdd->state & TXBUSY) ? 'f' : 'p',
  793. xfer->len);
  794. if (use_dma) {
  795. if (xfer->tx_buf != NULL
  796. && (sdd->state & TXBUSY))
  797. s3c64xx_spi_dma_stop(sdd, &sdd->tx_dma);
  798. if (xfer->rx_buf != NULL
  799. && (sdd->state & RXBUSY))
  800. s3c64xx_spi_dma_stop(sdd, &sdd->rx_dma);
  801. }
  802. } else {
  803. flush_fifo(sdd);
  804. }
  805. return status;
  806. }
  807. static int s3c64xx_spi_unprepare_message(struct spi_master *master,
  808. struct spi_message *msg)
  809. {
  810. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  811. s3c64xx_spi_unmap_mssg(sdd, msg);
  812. return 0;
  813. }
  814. static struct s3c64xx_spi_csinfo *s3c64xx_get_slave_ctrldata(
  815. struct spi_device *spi)
  816. {
  817. struct s3c64xx_spi_csinfo *cs;
  818. struct device_node *slave_np, *data_np = NULL;
  819. struct s3c64xx_spi_driver_data *sdd;
  820. u32 fb_delay = 0;
  821. sdd = spi_master_get_devdata(spi->master);
  822. slave_np = spi->dev.of_node;
  823. if (!slave_np) {
  824. dev_err(&spi->dev, "device node not found\n");
  825. return ERR_PTR(-EINVAL);
  826. }
  827. data_np = of_get_child_by_name(slave_np, "controller-data");
  828. if (!data_np) {
  829. dev_err(&spi->dev, "child node 'controller-data' not found\n");
  830. return ERR_PTR(-EINVAL);
  831. }
  832. cs = kzalloc(sizeof(*cs), GFP_KERNEL);
  833. if (!cs) {
  834. dev_err(&spi->dev, "could not allocate memory for controller data\n");
  835. of_node_put(data_np);
  836. return ERR_PTR(-ENOMEM);
  837. }
  838. /* The CS line is asserted/deasserted by the gpio pin */
  839. if (sdd->cs_gpio)
  840. cs->line = of_get_named_gpio(data_np, "cs-gpio", 0);
  841. if (!gpio_is_valid(cs->line)) {
  842. dev_err(&spi->dev, "chip select gpio is not specified or invalid\n");
  843. kfree(cs);
  844. of_node_put(data_np);
  845. return ERR_PTR(-EINVAL);
  846. }
  847. of_property_read_u32(data_np, "samsung,spi-feedback-delay", &fb_delay);
  848. cs->fb_delay = fb_delay;
  849. of_node_put(data_np);
  850. return cs;
  851. }
  852. /*
  853. * Here we only check the validity of requested configuration
  854. * and save the configuration in a local data-structure.
  855. * The controller is actually configured only just before we
  856. * get a message to transfer.
  857. */
  858. static int s3c64xx_spi_setup(struct spi_device *spi)
  859. {
  860. struct s3c64xx_spi_csinfo *cs = spi->controller_data;
  861. struct s3c64xx_spi_driver_data *sdd;
  862. struct s3c64xx_spi_info *sci;
  863. int err;
  864. sdd = spi_master_get_devdata(spi->master);
  865. if (!cs && spi->dev.of_node) {
  866. cs = s3c64xx_get_slave_ctrldata(spi);
  867. spi->controller_data = cs;
  868. }
  869. if (IS_ERR_OR_NULL(cs)) {
  870. dev_err(&spi->dev, "No CS for SPI(%d)\n", spi->chip_select);
  871. return -ENODEV;
  872. }
  873. if (!spi_get_ctldata(spi)) {
  874. /* Request gpio only if cs line is asserted by gpio pins */
  875. if (sdd->cs_gpio) {
  876. err = gpio_request_one(cs->line, GPIOF_OUT_INIT_HIGH,
  877. dev_name(&spi->dev));
  878. if (err) {
  879. dev_err(&spi->dev,
  880. "Failed to get /CS gpio [%d]: %d\n",
  881. cs->line, err);
  882. goto err_gpio_req;
  883. }
  884. spi->cs_gpio = cs->line;
  885. }
  886. spi_set_ctldata(spi, cs);
  887. }
  888. sci = sdd->cntrlr_info;
  889. pm_runtime_get_sync(&sdd->pdev->dev);
  890. /* Check if we can provide the requested rate */
  891. if (!sdd->port_conf->clk_from_cmu) {
  892. u32 psr, speed;
  893. /* Max possible */
  894. speed = clk_get_rate(sdd->src_clk) / 2 / (0 + 1);
  895. if (spi->max_speed_hz > speed)
  896. spi->max_speed_hz = speed;
  897. psr = clk_get_rate(sdd->src_clk) / 2 / spi->max_speed_hz - 1;
  898. psr &= S3C64XX_SPI_PSR_MASK;
  899. if (psr == S3C64XX_SPI_PSR_MASK)
  900. psr--;
  901. speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
  902. if (spi->max_speed_hz < speed) {
  903. if (psr+1 < S3C64XX_SPI_PSR_MASK) {
  904. psr++;
  905. } else {
  906. err = -EINVAL;
  907. goto setup_exit;
  908. }
  909. }
  910. speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
  911. if (spi->max_speed_hz >= speed) {
  912. spi->max_speed_hz = speed;
  913. } else {
  914. dev_err(&spi->dev, "Can't set %dHz transfer speed\n",
  915. spi->max_speed_hz);
  916. err = -EINVAL;
  917. goto setup_exit;
  918. }
  919. }
  920. pm_runtime_put(&sdd->pdev->dev);
  921. writel(S3C64XX_SPI_SLAVE_SIG_INACT, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
  922. disable_cs(sdd, spi);
  923. return 0;
  924. setup_exit:
  925. /* setup() returns with device de-selected */
  926. writel(S3C64XX_SPI_SLAVE_SIG_INACT, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
  927. disable_cs(sdd, spi);
  928. gpio_free(cs->line);
  929. spi_set_ctldata(spi, NULL);
  930. err_gpio_req:
  931. if (spi->dev.of_node)
  932. kfree(cs);
  933. return err;
  934. }
  935. static void s3c64xx_spi_cleanup(struct spi_device *spi)
  936. {
  937. struct s3c64xx_spi_csinfo *cs = spi_get_ctldata(spi);
  938. struct s3c64xx_spi_driver_data *sdd;
  939. sdd = spi_master_get_devdata(spi->master);
  940. if (spi->cs_gpio) {
  941. gpio_free(spi->cs_gpio);
  942. if (spi->dev.of_node)
  943. kfree(cs);
  944. }
  945. spi_set_ctldata(spi, NULL);
  946. }
  947. static irqreturn_t s3c64xx_spi_irq(int irq, void *data)
  948. {
  949. struct s3c64xx_spi_driver_data *sdd = data;
  950. struct spi_master *spi = sdd->master;
  951. unsigned int val, clr = 0;
  952. val = readl(sdd->regs + S3C64XX_SPI_STATUS);
  953. if (val & S3C64XX_SPI_ST_RX_OVERRUN_ERR) {
  954. clr = S3C64XX_SPI_PND_RX_OVERRUN_CLR;
  955. dev_err(&spi->dev, "RX overrun\n");
  956. }
  957. if (val & S3C64XX_SPI_ST_RX_UNDERRUN_ERR) {
  958. clr |= S3C64XX_SPI_PND_RX_UNDERRUN_CLR;
  959. dev_err(&spi->dev, "RX underrun\n");
  960. }
  961. if (val & S3C64XX_SPI_ST_TX_OVERRUN_ERR) {
  962. clr |= S3C64XX_SPI_PND_TX_OVERRUN_CLR;
  963. dev_err(&spi->dev, "TX overrun\n");
  964. }
  965. if (val & S3C64XX_SPI_ST_TX_UNDERRUN_ERR) {
  966. clr |= S3C64XX_SPI_PND_TX_UNDERRUN_CLR;
  967. dev_err(&spi->dev, "TX underrun\n");
  968. }
  969. /* Clear the pending irq by setting and then clearing it */
  970. writel(clr, sdd->regs + S3C64XX_SPI_PENDING_CLR);
  971. writel(0, sdd->regs + S3C64XX_SPI_PENDING_CLR);
  972. return IRQ_HANDLED;
  973. }
  974. static void s3c64xx_spi_hwinit(struct s3c64xx_spi_driver_data *sdd, int channel)
  975. {
  976. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  977. void __iomem *regs = sdd->regs;
  978. unsigned int val;
  979. sdd->cur_speed = 0;
  980. writel(S3C64XX_SPI_SLAVE_SIG_INACT, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
  981. /* Disable Interrupts - we use Polling if not DMA mode */
  982. writel(0, regs + S3C64XX_SPI_INT_EN);
  983. if (!sdd->port_conf->clk_from_cmu)
  984. writel(sci->src_clk_nr << S3C64XX_SPI_CLKSEL_SRCSHFT,
  985. regs + S3C64XX_SPI_CLK_CFG);
  986. writel(0, regs + S3C64XX_SPI_MODE_CFG);
  987. writel(0, regs + S3C64XX_SPI_PACKET_CNT);
  988. /* Clear any irq pending bits, should set and clear the bits */
  989. val = S3C64XX_SPI_PND_RX_OVERRUN_CLR |
  990. S3C64XX_SPI_PND_RX_UNDERRUN_CLR |
  991. S3C64XX_SPI_PND_TX_OVERRUN_CLR |
  992. S3C64XX_SPI_PND_TX_UNDERRUN_CLR;
  993. writel(val, regs + S3C64XX_SPI_PENDING_CLR);
  994. writel(0, regs + S3C64XX_SPI_PENDING_CLR);
  995. writel(0, regs + S3C64XX_SPI_SWAP_CFG);
  996. val = readl(regs + S3C64XX_SPI_MODE_CFG);
  997. val &= ~S3C64XX_SPI_MODE_4BURST;
  998. val &= ~(S3C64XX_SPI_MAX_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
  999. val |= (S3C64XX_SPI_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
  1000. writel(val, regs + S3C64XX_SPI_MODE_CFG);
  1001. flush_fifo(sdd);
  1002. }
  1003. #ifdef CONFIG_OF
  1004. static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev)
  1005. {
  1006. struct s3c64xx_spi_info *sci;
  1007. u32 temp;
  1008. sci = devm_kzalloc(dev, sizeof(*sci), GFP_KERNEL);
  1009. if (!sci) {
  1010. dev_err(dev, "memory allocation for spi_info failed\n");
  1011. return ERR_PTR(-ENOMEM);
  1012. }
  1013. if (of_property_read_u32(dev->of_node, "samsung,spi-src-clk", &temp)) {
  1014. dev_warn(dev, "spi bus clock parent not specified, using clock at index 0 as parent\n");
  1015. sci->src_clk_nr = 0;
  1016. } else {
  1017. sci->src_clk_nr = temp;
  1018. }
  1019. if (of_property_read_u32(dev->of_node, "num-cs", &temp)) {
  1020. dev_warn(dev, "number of chip select lines not specified, assuming 1 chip select line\n");
  1021. sci->num_cs = 1;
  1022. } else {
  1023. sci->num_cs = temp;
  1024. }
  1025. return sci;
  1026. }
  1027. #else
  1028. static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev)
  1029. {
  1030. return dev_get_platdata(dev);
  1031. }
  1032. #endif
  1033. static const struct of_device_id s3c64xx_spi_dt_match[];
  1034. static inline struct s3c64xx_spi_port_config *s3c64xx_spi_get_port_config(
  1035. struct platform_device *pdev)
  1036. {
  1037. #ifdef CONFIG_OF
  1038. if (pdev->dev.of_node) {
  1039. const struct of_device_id *match;
  1040. match = of_match_node(s3c64xx_spi_dt_match, pdev->dev.of_node);
  1041. return (struct s3c64xx_spi_port_config *)match->data;
  1042. }
  1043. #endif
  1044. return (struct s3c64xx_spi_port_config *)
  1045. platform_get_device_id(pdev)->driver_data;
  1046. }
  1047. static int s3c64xx_spi_probe(struct platform_device *pdev)
  1048. {
  1049. struct resource *mem_res;
  1050. struct resource *res;
  1051. struct s3c64xx_spi_driver_data *sdd;
  1052. struct s3c64xx_spi_info *sci = dev_get_platdata(&pdev->dev);
  1053. struct spi_master *master;
  1054. int ret, irq;
  1055. char clk_name[16];
  1056. if (!sci && pdev->dev.of_node) {
  1057. sci = s3c64xx_spi_parse_dt(&pdev->dev);
  1058. if (IS_ERR(sci))
  1059. return PTR_ERR(sci);
  1060. }
  1061. if (!sci) {
  1062. dev_err(&pdev->dev, "platform_data missing!\n");
  1063. return -ENODEV;
  1064. }
  1065. mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1066. if (mem_res == NULL) {
  1067. dev_err(&pdev->dev, "Unable to get SPI MEM resource\n");
  1068. return -ENXIO;
  1069. }
  1070. irq = platform_get_irq(pdev, 0);
  1071. if (irq < 0) {
  1072. dev_warn(&pdev->dev, "Failed to get IRQ: %d\n", irq);
  1073. return irq;
  1074. }
  1075. master = spi_alloc_master(&pdev->dev,
  1076. sizeof(struct s3c64xx_spi_driver_data));
  1077. if (master == NULL) {
  1078. dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
  1079. return -ENOMEM;
  1080. }
  1081. platform_set_drvdata(pdev, master);
  1082. sdd = spi_master_get_devdata(master);
  1083. sdd->port_conf = s3c64xx_spi_get_port_config(pdev);
  1084. sdd->master = master;
  1085. sdd->cntrlr_info = sci;
  1086. sdd->pdev = pdev;
  1087. sdd->sfr_start = mem_res->start;
  1088. sdd->cs_gpio = true;
  1089. if (pdev->dev.of_node) {
  1090. if (!of_find_property(pdev->dev.of_node, "cs-gpio", NULL))
  1091. sdd->cs_gpio = false;
  1092. ret = of_alias_get_id(pdev->dev.of_node, "spi");
  1093. if (ret < 0) {
  1094. dev_err(&pdev->dev, "failed to get alias id, errno %d\n",
  1095. ret);
  1096. goto err0;
  1097. }
  1098. sdd->port_id = ret;
  1099. } else {
  1100. sdd->port_id = pdev->id;
  1101. }
  1102. sdd->cur_bpw = 8;
  1103. if (!sdd->pdev->dev.of_node) {
  1104. res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
  1105. if (!res) {
  1106. dev_warn(&pdev->dev, "Unable to get SPI tx dma resource. Switching to poll mode\n");
  1107. sdd->port_conf->quirks = S3C64XX_SPI_QUIRK_POLL;
  1108. } else
  1109. sdd->tx_dma.dmach = res->start;
  1110. res = platform_get_resource(pdev, IORESOURCE_DMA, 1);
  1111. if (!res) {
  1112. dev_warn(&pdev->dev, "Unable to get SPI rx dma resource. Switching to poll mode\n");
  1113. sdd->port_conf->quirks = S3C64XX_SPI_QUIRK_POLL;
  1114. } else
  1115. sdd->rx_dma.dmach = res->start;
  1116. }
  1117. sdd->tx_dma.direction = DMA_MEM_TO_DEV;
  1118. sdd->rx_dma.direction = DMA_DEV_TO_MEM;
  1119. master->dev.of_node = pdev->dev.of_node;
  1120. master->bus_num = sdd->port_id;
  1121. master->setup = s3c64xx_spi_setup;
  1122. master->cleanup = s3c64xx_spi_cleanup;
  1123. master->prepare_transfer_hardware = s3c64xx_spi_prepare_transfer;
  1124. master->prepare_message = s3c64xx_spi_prepare_message;
  1125. master->transfer_one = s3c64xx_spi_transfer_one;
  1126. master->unprepare_message = s3c64xx_spi_unprepare_message;
  1127. master->unprepare_transfer_hardware = s3c64xx_spi_unprepare_transfer;
  1128. master->num_chipselect = sci->num_cs;
  1129. master->dma_alignment = 8;
  1130. master->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) |
  1131. SPI_BPW_MASK(8);
  1132. /* the spi->mode bits understood by this driver: */
  1133. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
  1134. master->auto_runtime_pm = true;
  1135. sdd->regs = devm_ioremap_resource(&pdev->dev, mem_res);
  1136. if (IS_ERR(sdd->regs)) {
  1137. ret = PTR_ERR(sdd->regs);
  1138. goto err0;
  1139. }
  1140. if (sci->cfg_gpio && sci->cfg_gpio()) {
  1141. dev_err(&pdev->dev, "Unable to config gpio\n");
  1142. ret = -EBUSY;
  1143. goto err0;
  1144. }
  1145. /* Setup clocks */
  1146. sdd->clk = devm_clk_get(&pdev->dev, "spi");
  1147. if (IS_ERR(sdd->clk)) {
  1148. dev_err(&pdev->dev, "Unable to acquire clock 'spi'\n");
  1149. ret = PTR_ERR(sdd->clk);
  1150. goto err0;
  1151. }
  1152. if (clk_prepare_enable(sdd->clk)) {
  1153. dev_err(&pdev->dev, "Couldn't enable clock 'spi'\n");
  1154. ret = -EBUSY;
  1155. goto err0;
  1156. }
  1157. sprintf(clk_name, "spi_busclk%d", sci->src_clk_nr);
  1158. sdd->src_clk = devm_clk_get(&pdev->dev, clk_name);
  1159. if (IS_ERR(sdd->src_clk)) {
  1160. dev_err(&pdev->dev,
  1161. "Unable to acquire clock '%s'\n", clk_name);
  1162. ret = PTR_ERR(sdd->src_clk);
  1163. goto err2;
  1164. }
  1165. if (clk_prepare_enable(sdd->src_clk)) {
  1166. dev_err(&pdev->dev, "Couldn't enable clock '%s'\n", clk_name);
  1167. ret = -EBUSY;
  1168. goto err2;
  1169. }
  1170. /* Setup Deufult Mode */
  1171. s3c64xx_spi_hwinit(sdd, sdd->port_id);
  1172. spin_lock_init(&sdd->lock);
  1173. init_completion(&sdd->xfer_completion);
  1174. ret = devm_request_irq(&pdev->dev, irq, s3c64xx_spi_irq, 0,
  1175. "spi-s3c64xx", sdd);
  1176. if (ret != 0) {
  1177. dev_err(&pdev->dev, "Failed to request IRQ %d: %d\n",
  1178. irq, ret);
  1179. goto err3;
  1180. }
  1181. writel(S3C64XX_SPI_INT_RX_OVERRUN_EN | S3C64XX_SPI_INT_RX_UNDERRUN_EN |
  1182. S3C64XX_SPI_INT_TX_OVERRUN_EN | S3C64XX_SPI_INT_TX_UNDERRUN_EN,
  1183. sdd->regs + S3C64XX_SPI_INT_EN);
  1184. pm_runtime_enable(&pdev->dev);
  1185. ret = devm_spi_register_master(&pdev->dev, master);
  1186. if (ret != 0) {
  1187. dev_err(&pdev->dev, "cannot register SPI master: %d\n", ret);
  1188. goto err3;
  1189. }
  1190. dev_dbg(&pdev->dev, "Samsung SoC SPI Driver loaded for Bus SPI-%d with %d Slaves attached\n",
  1191. sdd->port_id, master->num_chipselect);
  1192. dev_dbg(&pdev->dev, "\tIOmem=[%pR]\tDMA=[Rx-%d, Tx-%d]\n",
  1193. mem_res,
  1194. sdd->rx_dma.dmach, sdd->tx_dma.dmach);
  1195. return 0;
  1196. err3:
  1197. clk_disable_unprepare(sdd->src_clk);
  1198. err2:
  1199. clk_disable_unprepare(sdd->clk);
  1200. err0:
  1201. spi_master_put(master);
  1202. return ret;
  1203. }
  1204. static int s3c64xx_spi_remove(struct platform_device *pdev)
  1205. {
  1206. struct spi_master *master = spi_master_get(platform_get_drvdata(pdev));
  1207. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  1208. pm_runtime_disable(&pdev->dev);
  1209. writel(0, sdd->regs + S3C64XX_SPI_INT_EN);
  1210. clk_disable_unprepare(sdd->src_clk);
  1211. clk_disable_unprepare(sdd->clk);
  1212. return 0;
  1213. }
  1214. #ifdef CONFIG_PM_SLEEP
  1215. static int s3c64xx_spi_suspend(struct device *dev)
  1216. {
  1217. struct spi_master *master = dev_get_drvdata(dev);
  1218. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  1219. spi_master_suspend(master);
  1220. /* Disable the clock */
  1221. clk_disable_unprepare(sdd->src_clk);
  1222. clk_disable_unprepare(sdd->clk);
  1223. sdd->cur_speed = 0; /* Output Clock is stopped */
  1224. return 0;
  1225. }
  1226. static int s3c64xx_spi_resume(struct device *dev)
  1227. {
  1228. struct spi_master *master = dev_get_drvdata(dev);
  1229. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  1230. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  1231. if (sci->cfg_gpio)
  1232. sci->cfg_gpio();
  1233. /* Enable the clock */
  1234. clk_prepare_enable(sdd->src_clk);
  1235. clk_prepare_enable(sdd->clk);
  1236. s3c64xx_spi_hwinit(sdd, sdd->port_id);
  1237. spi_master_resume(master);
  1238. return 0;
  1239. }
  1240. #endif /* CONFIG_PM_SLEEP */
  1241. #ifdef CONFIG_PM_RUNTIME
  1242. static int s3c64xx_spi_runtime_suspend(struct device *dev)
  1243. {
  1244. struct spi_master *master = dev_get_drvdata(dev);
  1245. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  1246. clk_disable_unprepare(sdd->clk);
  1247. clk_disable_unprepare(sdd->src_clk);
  1248. return 0;
  1249. }
  1250. static int s3c64xx_spi_runtime_resume(struct device *dev)
  1251. {
  1252. struct spi_master *master = dev_get_drvdata(dev);
  1253. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  1254. int ret;
  1255. ret = clk_prepare_enable(sdd->src_clk);
  1256. if (ret != 0)
  1257. return ret;
  1258. ret = clk_prepare_enable(sdd->clk);
  1259. if (ret != 0) {
  1260. clk_disable_unprepare(sdd->src_clk);
  1261. return ret;
  1262. }
  1263. return 0;
  1264. }
  1265. #endif /* CONFIG_PM_RUNTIME */
  1266. static const struct dev_pm_ops s3c64xx_spi_pm = {
  1267. SET_SYSTEM_SLEEP_PM_OPS(s3c64xx_spi_suspend, s3c64xx_spi_resume)
  1268. SET_RUNTIME_PM_OPS(s3c64xx_spi_runtime_suspend,
  1269. s3c64xx_spi_runtime_resume, NULL)
  1270. };
  1271. static struct s3c64xx_spi_port_config s3c2443_spi_port_config = {
  1272. .fifo_lvl_mask = { 0x7f },
  1273. .rx_lvl_offset = 13,
  1274. .tx_st_done = 21,
  1275. .high_speed = true,
  1276. };
  1277. static struct s3c64xx_spi_port_config s3c6410_spi_port_config = {
  1278. .fifo_lvl_mask = { 0x7f, 0x7F },
  1279. .rx_lvl_offset = 13,
  1280. .tx_st_done = 21,
  1281. };
  1282. static struct s3c64xx_spi_port_config s5p64x0_spi_port_config = {
  1283. .fifo_lvl_mask = { 0x1ff, 0x7F },
  1284. .rx_lvl_offset = 15,
  1285. .tx_st_done = 25,
  1286. };
  1287. static struct s3c64xx_spi_port_config s5pc100_spi_port_config = {
  1288. .fifo_lvl_mask = { 0x7f, 0x7F },
  1289. .rx_lvl_offset = 13,
  1290. .tx_st_done = 21,
  1291. .high_speed = true,
  1292. };
  1293. static struct s3c64xx_spi_port_config s5pv210_spi_port_config = {
  1294. .fifo_lvl_mask = { 0x1ff, 0x7F },
  1295. .rx_lvl_offset = 15,
  1296. .tx_st_done = 25,
  1297. .high_speed = true,
  1298. };
  1299. static struct s3c64xx_spi_port_config exynos4_spi_port_config = {
  1300. .fifo_lvl_mask = { 0x1ff, 0x7F, 0x7F },
  1301. .rx_lvl_offset = 15,
  1302. .tx_st_done = 25,
  1303. .high_speed = true,
  1304. .clk_from_cmu = true,
  1305. };
  1306. static struct s3c64xx_spi_port_config exynos5440_spi_port_config = {
  1307. .fifo_lvl_mask = { 0x1ff },
  1308. .rx_lvl_offset = 15,
  1309. .tx_st_done = 25,
  1310. .high_speed = true,
  1311. .clk_from_cmu = true,
  1312. .quirks = S3C64XX_SPI_QUIRK_POLL,
  1313. };
  1314. static struct platform_device_id s3c64xx_spi_driver_ids[] = {
  1315. {
  1316. .name = "s3c2443-spi",
  1317. .driver_data = (kernel_ulong_t)&s3c2443_spi_port_config,
  1318. }, {
  1319. .name = "s3c6410-spi",
  1320. .driver_data = (kernel_ulong_t)&s3c6410_spi_port_config,
  1321. }, {
  1322. .name = "s5p64x0-spi",
  1323. .driver_data = (kernel_ulong_t)&s5p64x0_spi_port_config,
  1324. }, {
  1325. .name = "s5pc100-spi",
  1326. .driver_data = (kernel_ulong_t)&s5pc100_spi_port_config,
  1327. }, {
  1328. .name = "s5pv210-spi",
  1329. .driver_data = (kernel_ulong_t)&s5pv210_spi_port_config,
  1330. }, {
  1331. .name = "exynos4210-spi",
  1332. .driver_data = (kernel_ulong_t)&exynos4_spi_port_config,
  1333. },
  1334. { },
  1335. };
  1336. static const struct of_device_id s3c64xx_spi_dt_match[] = {
  1337. { .compatible = "samsung,s3c2443-spi",
  1338. .data = (void *)&s3c2443_spi_port_config,
  1339. },
  1340. { .compatible = "samsung,s3c6410-spi",
  1341. .data = (void *)&s3c6410_spi_port_config,
  1342. },
  1343. { .compatible = "samsung,s5pc100-spi",
  1344. .data = (void *)&s5pc100_spi_port_config,
  1345. },
  1346. { .compatible = "samsung,s5pv210-spi",
  1347. .data = (void *)&s5pv210_spi_port_config,
  1348. },
  1349. { .compatible = "samsung,exynos4210-spi",
  1350. .data = (void *)&exynos4_spi_port_config,
  1351. },
  1352. { .compatible = "samsung,exynos5440-spi",
  1353. .data = (void *)&exynos5440_spi_port_config,
  1354. },
  1355. { },
  1356. };
  1357. MODULE_DEVICE_TABLE(of, s3c64xx_spi_dt_match);
  1358. static struct platform_driver s3c64xx_spi_driver = {
  1359. .driver = {
  1360. .name = "s3c64xx-spi",
  1361. .owner = THIS_MODULE,
  1362. .pm = &s3c64xx_spi_pm,
  1363. .of_match_table = of_match_ptr(s3c64xx_spi_dt_match),
  1364. },
  1365. .probe = s3c64xx_spi_probe,
  1366. .remove = s3c64xx_spi_remove,
  1367. .id_table = s3c64xx_spi_driver_ids,
  1368. };
  1369. MODULE_ALIAS("platform:s3c64xx-spi");
  1370. module_platform_driver(s3c64xx_spi_driver);
  1371. MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>");
  1372. MODULE_DESCRIPTION("S3C64XX SPI Controller Driver");
  1373. MODULE_LICENSE("GPL");