slub.c 130 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks or atomic operatios
  6. * and only uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. * (C) 2011 Linux Foundation, Christoph Lameter
  10. */
  11. #include <linux/mm.h>
  12. #include <linux/swap.h> /* struct reclaim_state */
  13. #include <linux/module.h>
  14. #include <linux/bit_spinlock.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/bitops.h>
  17. #include <linux/slab.h>
  18. #include "slab.h"
  19. #include <linux/proc_fs.h>
  20. #include <linux/seq_file.h>
  21. #include <linux/kmemcheck.h>
  22. #include <linux/cpu.h>
  23. #include <linux/cpuset.h>
  24. #include <linux/mempolicy.h>
  25. #include <linux/ctype.h>
  26. #include <linux/debugobjects.h>
  27. #include <linux/kallsyms.h>
  28. #include <linux/memory.h>
  29. #include <linux/math64.h>
  30. #include <linux/fault-inject.h>
  31. #include <linux/stacktrace.h>
  32. #include <linux/prefetch.h>
  33. #include <trace/events/kmem.h>
  34. #include "internal.h"
  35. /*
  36. * Lock order:
  37. * 1. slab_mutex (Global Mutex)
  38. * 2. node->list_lock
  39. * 3. slab_lock(page) (Only on some arches and for debugging)
  40. *
  41. * slab_mutex
  42. *
  43. * The role of the slab_mutex is to protect the list of all the slabs
  44. * and to synchronize major metadata changes to slab cache structures.
  45. *
  46. * The slab_lock is only used for debugging and on arches that do not
  47. * have the ability to do a cmpxchg_double. It only protects the second
  48. * double word in the page struct. Meaning
  49. * A. page->freelist -> List of object free in a page
  50. * B. page->counters -> Counters of objects
  51. * C. page->frozen -> frozen state
  52. *
  53. * If a slab is frozen then it is exempt from list management. It is not
  54. * on any list. The processor that froze the slab is the one who can
  55. * perform list operations on the page. Other processors may put objects
  56. * onto the freelist but the processor that froze the slab is the only
  57. * one that can retrieve the objects from the page's freelist.
  58. *
  59. * The list_lock protects the partial and full list on each node and
  60. * the partial slab counter. If taken then no new slabs may be added or
  61. * removed from the lists nor make the number of partial slabs be modified.
  62. * (Note that the total number of slabs is an atomic value that may be
  63. * modified without taking the list lock).
  64. *
  65. * The list_lock is a centralized lock and thus we avoid taking it as
  66. * much as possible. As long as SLUB does not have to handle partial
  67. * slabs, operations can continue without any centralized lock. F.e.
  68. * allocating a long series of objects that fill up slabs does not require
  69. * the list lock.
  70. * Interrupts are disabled during allocation and deallocation in order to
  71. * make the slab allocator safe to use in the context of an irq. In addition
  72. * interrupts are disabled to ensure that the processor does not change
  73. * while handling per_cpu slabs, due to kernel preemption.
  74. *
  75. * SLUB assigns one slab for allocation to each processor.
  76. * Allocations only occur from these slabs called cpu slabs.
  77. *
  78. * Slabs with free elements are kept on a partial list and during regular
  79. * operations no list for full slabs is used. If an object in a full slab is
  80. * freed then the slab will show up again on the partial lists.
  81. * We track full slabs for debugging purposes though because otherwise we
  82. * cannot scan all objects.
  83. *
  84. * Slabs are freed when they become empty. Teardown and setup is
  85. * minimal so we rely on the page allocators per cpu caches for
  86. * fast frees and allocs.
  87. *
  88. * Overloading of page flags that are otherwise used for LRU management.
  89. *
  90. * PageActive The slab is frozen and exempt from list processing.
  91. * This means that the slab is dedicated to a purpose
  92. * such as satisfying allocations for a specific
  93. * processor. Objects may be freed in the slab while
  94. * it is frozen but slab_free will then skip the usual
  95. * list operations. It is up to the processor holding
  96. * the slab to integrate the slab into the slab lists
  97. * when the slab is no longer needed.
  98. *
  99. * One use of this flag is to mark slabs that are
  100. * used for allocations. Then such a slab becomes a cpu
  101. * slab. The cpu slab may be equipped with an additional
  102. * freelist that allows lockless access to
  103. * free objects in addition to the regular freelist
  104. * that requires the slab lock.
  105. *
  106. * PageError Slab requires special handling due to debug
  107. * options set. This moves slab handling out of
  108. * the fast path and disables lockless freelists.
  109. */
  110. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  111. SLAB_TRACE | SLAB_DEBUG_FREE)
  112. static inline int kmem_cache_debug(struct kmem_cache *s)
  113. {
  114. #ifdef CONFIG_SLUB_DEBUG
  115. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  116. #else
  117. return 0;
  118. #endif
  119. }
  120. /*
  121. * Issues still to be resolved:
  122. *
  123. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  124. *
  125. * - Variable sizing of the per node arrays
  126. */
  127. /* Enable to test recovery from slab corruption on boot */
  128. #undef SLUB_RESILIENCY_TEST
  129. /* Enable to log cmpxchg failures */
  130. #undef SLUB_DEBUG_CMPXCHG
  131. /*
  132. * Mininum number of partial slabs. These will be left on the partial
  133. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  134. */
  135. #define MIN_PARTIAL 5
  136. /*
  137. * Maximum number of desirable partial slabs.
  138. * The existence of more partial slabs makes kmem_cache_shrink
  139. * sort the partial list by the number of objects in the.
  140. */
  141. #define MAX_PARTIAL 10
  142. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  143. SLAB_POISON | SLAB_STORE_USER)
  144. /*
  145. * Debugging flags that require metadata to be stored in the slab. These get
  146. * disabled when slub_debug=O is used and a cache's min order increases with
  147. * metadata.
  148. */
  149. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  150. /*
  151. * Set of flags that will prevent slab merging
  152. */
  153. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  154. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  155. SLAB_FAILSLAB)
  156. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  157. SLAB_CACHE_DMA | SLAB_NOTRACK)
  158. #define OO_SHIFT 16
  159. #define OO_MASK ((1 << OO_SHIFT) - 1)
  160. #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
  161. /* Internal SLUB flags */
  162. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  163. #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
  164. static int kmem_size = sizeof(struct kmem_cache);
  165. #ifdef CONFIG_SMP
  166. static struct notifier_block slab_notifier;
  167. #endif
  168. /*
  169. * Tracking user of a slab.
  170. */
  171. #define TRACK_ADDRS_COUNT 16
  172. struct track {
  173. unsigned long addr; /* Called from address */
  174. #ifdef CONFIG_STACKTRACE
  175. unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
  176. #endif
  177. int cpu; /* Was running on cpu */
  178. int pid; /* Pid context */
  179. unsigned long when; /* When did the operation occur */
  180. };
  181. enum track_item { TRACK_ALLOC, TRACK_FREE };
  182. #ifdef CONFIG_SYSFS
  183. static int sysfs_slab_add(struct kmem_cache *);
  184. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  185. static void sysfs_slab_remove(struct kmem_cache *);
  186. #else
  187. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  188. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  189. { return 0; }
  190. static inline void sysfs_slab_remove(struct kmem_cache *s)
  191. {
  192. kfree(s->name);
  193. kfree(s);
  194. }
  195. #endif
  196. static inline void stat(const struct kmem_cache *s, enum stat_item si)
  197. {
  198. #ifdef CONFIG_SLUB_STATS
  199. __this_cpu_inc(s->cpu_slab->stat[si]);
  200. #endif
  201. }
  202. /********************************************************************
  203. * Core slab cache functions
  204. *******************************************************************/
  205. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  206. {
  207. return s->node[node];
  208. }
  209. /* Verify that a pointer has an address that is valid within a slab page */
  210. static inline int check_valid_pointer(struct kmem_cache *s,
  211. struct page *page, const void *object)
  212. {
  213. void *base;
  214. if (!object)
  215. return 1;
  216. base = page_address(page);
  217. if (object < base || object >= base + page->objects * s->size ||
  218. (object - base) % s->size) {
  219. return 0;
  220. }
  221. return 1;
  222. }
  223. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  224. {
  225. return *(void **)(object + s->offset);
  226. }
  227. static void prefetch_freepointer(const struct kmem_cache *s, void *object)
  228. {
  229. prefetch(object + s->offset);
  230. }
  231. static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
  232. {
  233. void *p;
  234. #ifdef CONFIG_DEBUG_PAGEALLOC
  235. probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
  236. #else
  237. p = get_freepointer(s, object);
  238. #endif
  239. return p;
  240. }
  241. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  242. {
  243. *(void **)(object + s->offset) = fp;
  244. }
  245. /* Loop over all objects in a slab */
  246. #define for_each_object(__p, __s, __addr, __objects) \
  247. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  248. __p += (__s)->size)
  249. /* Determine object index from a given position */
  250. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  251. {
  252. return (p - addr) / s->size;
  253. }
  254. static inline size_t slab_ksize(const struct kmem_cache *s)
  255. {
  256. #ifdef CONFIG_SLUB_DEBUG
  257. /*
  258. * Debugging requires use of the padding between object
  259. * and whatever may come after it.
  260. */
  261. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  262. return s->object_size;
  263. #endif
  264. /*
  265. * If we have the need to store the freelist pointer
  266. * back there or track user information then we can
  267. * only use the space before that information.
  268. */
  269. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  270. return s->inuse;
  271. /*
  272. * Else we can use all the padding etc for the allocation
  273. */
  274. return s->size;
  275. }
  276. static inline int order_objects(int order, unsigned long size, int reserved)
  277. {
  278. return ((PAGE_SIZE << order) - reserved) / size;
  279. }
  280. static inline struct kmem_cache_order_objects oo_make(int order,
  281. unsigned long size, int reserved)
  282. {
  283. struct kmem_cache_order_objects x = {
  284. (order << OO_SHIFT) + order_objects(order, size, reserved)
  285. };
  286. return x;
  287. }
  288. static inline int oo_order(struct kmem_cache_order_objects x)
  289. {
  290. return x.x >> OO_SHIFT;
  291. }
  292. static inline int oo_objects(struct kmem_cache_order_objects x)
  293. {
  294. return x.x & OO_MASK;
  295. }
  296. /*
  297. * Per slab locking using the pagelock
  298. */
  299. static __always_inline void slab_lock(struct page *page)
  300. {
  301. bit_spin_lock(PG_locked, &page->flags);
  302. }
  303. static __always_inline void slab_unlock(struct page *page)
  304. {
  305. __bit_spin_unlock(PG_locked, &page->flags);
  306. }
  307. /* Interrupts must be disabled (for the fallback code to work right) */
  308. static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  309. void *freelist_old, unsigned long counters_old,
  310. void *freelist_new, unsigned long counters_new,
  311. const char *n)
  312. {
  313. VM_BUG_ON(!irqs_disabled());
  314. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  315. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  316. if (s->flags & __CMPXCHG_DOUBLE) {
  317. if (cmpxchg_double(&page->freelist, &page->counters,
  318. freelist_old, counters_old,
  319. freelist_new, counters_new))
  320. return 1;
  321. } else
  322. #endif
  323. {
  324. slab_lock(page);
  325. if (page->freelist == freelist_old && page->counters == counters_old) {
  326. page->freelist = freelist_new;
  327. page->counters = counters_new;
  328. slab_unlock(page);
  329. return 1;
  330. }
  331. slab_unlock(page);
  332. }
  333. cpu_relax();
  334. stat(s, CMPXCHG_DOUBLE_FAIL);
  335. #ifdef SLUB_DEBUG_CMPXCHG
  336. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  337. #endif
  338. return 0;
  339. }
  340. static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  341. void *freelist_old, unsigned long counters_old,
  342. void *freelist_new, unsigned long counters_new,
  343. const char *n)
  344. {
  345. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  346. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  347. if (s->flags & __CMPXCHG_DOUBLE) {
  348. if (cmpxchg_double(&page->freelist, &page->counters,
  349. freelist_old, counters_old,
  350. freelist_new, counters_new))
  351. return 1;
  352. } else
  353. #endif
  354. {
  355. unsigned long flags;
  356. local_irq_save(flags);
  357. slab_lock(page);
  358. if (page->freelist == freelist_old && page->counters == counters_old) {
  359. page->freelist = freelist_new;
  360. page->counters = counters_new;
  361. slab_unlock(page);
  362. local_irq_restore(flags);
  363. return 1;
  364. }
  365. slab_unlock(page);
  366. local_irq_restore(flags);
  367. }
  368. cpu_relax();
  369. stat(s, CMPXCHG_DOUBLE_FAIL);
  370. #ifdef SLUB_DEBUG_CMPXCHG
  371. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  372. #endif
  373. return 0;
  374. }
  375. #ifdef CONFIG_SLUB_DEBUG
  376. /*
  377. * Determine a map of object in use on a page.
  378. *
  379. * Node listlock must be held to guarantee that the page does
  380. * not vanish from under us.
  381. */
  382. static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
  383. {
  384. void *p;
  385. void *addr = page_address(page);
  386. for (p = page->freelist; p; p = get_freepointer(s, p))
  387. set_bit(slab_index(p, s, addr), map);
  388. }
  389. /*
  390. * Debug settings:
  391. */
  392. #ifdef CONFIG_SLUB_DEBUG_ON
  393. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  394. #else
  395. static int slub_debug;
  396. #endif
  397. static char *slub_debug_slabs;
  398. static int disable_higher_order_debug;
  399. /*
  400. * Object debugging
  401. */
  402. static void print_section(char *text, u8 *addr, unsigned int length)
  403. {
  404. print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
  405. length, 1);
  406. }
  407. static struct track *get_track(struct kmem_cache *s, void *object,
  408. enum track_item alloc)
  409. {
  410. struct track *p;
  411. if (s->offset)
  412. p = object + s->offset + sizeof(void *);
  413. else
  414. p = object + s->inuse;
  415. return p + alloc;
  416. }
  417. static void set_track(struct kmem_cache *s, void *object,
  418. enum track_item alloc, unsigned long addr)
  419. {
  420. struct track *p = get_track(s, object, alloc);
  421. if (addr) {
  422. #ifdef CONFIG_STACKTRACE
  423. struct stack_trace trace;
  424. int i;
  425. trace.nr_entries = 0;
  426. trace.max_entries = TRACK_ADDRS_COUNT;
  427. trace.entries = p->addrs;
  428. trace.skip = 3;
  429. save_stack_trace(&trace);
  430. /* See rant in lockdep.c */
  431. if (trace.nr_entries != 0 &&
  432. trace.entries[trace.nr_entries - 1] == ULONG_MAX)
  433. trace.nr_entries--;
  434. for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
  435. p->addrs[i] = 0;
  436. #endif
  437. p->addr = addr;
  438. p->cpu = smp_processor_id();
  439. p->pid = current->pid;
  440. p->when = jiffies;
  441. } else
  442. memset(p, 0, sizeof(struct track));
  443. }
  444. static void init_tracking(struct kmem_cache *s, void *object)
  445. {
  446. if (!(s->flags & SLAB_STORE_USER))
  447. return;
  448. set_track(s, object, TRACK_FREE, 0UL);
  449. set_track(s, object, TRACK_ALLOC, 0UL);
  450. }
  451. static void print_track(const char *s, struct track *t)
  452. {
  453. if (!t->addr)
  454. return;
  455. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  456. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  457. #ifdef CONFIG_STACKTRACE
  458. {
  459. int i;
  460. for (i = 0; i < TRACK_ADDRS_COUNT; i++)
  461. if (t->addrs[i])
  462. printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
  463. else
  464. break;
  465. }
  466. #endif
  467. }
  468. static void print_tracking(struct kmem_cache *s, void *object)
  469. {
  470. if (!(s->flags & SLAB_STORE_USER))
  471. return;
  472. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  473. print_track("Freed", get_track(s, object, TRACK_FREE));
  474. }
  475. static void print_page_info(struct page *page)
  476. {
  477. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  478. page, page->objects, page->inuse, page->freelist, page->flags);
  479. }
  480. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  481. {
  482. va_list args;
  483. char buf[100];
  484. va_start(args, fmt);
  485. vsnprintf(buf, sizeof(buf), fmt, args);
  486. va_end(args);
  487. printk(KERN_ERR "========================================"
  488. "=====================================\n");
  489. printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
  490. printk(KERN_ERR "----------------------------------------"
  491. "-------------------------------------\n\n");
  492. }
  493. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  494. {
  495. va_list args;
  496. char buf[100];
  497. va_start(args, fmt);
  498. vsnprintf(buf, sizeof(buf), fmt, args);
  499. va_end(args);
  500. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  501. }
  502. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  503. {
  504. unsigned int off; /* Offset of last byte */
  505. u8 *addr = page_address(page);
  506. print_tracking(s, p);
  507. print_page_info(page);
  508. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  509. p, p - addr, get_freepointer(s, p));
  510. if (p > addr + 16)
  511. print_section("Bytes b4 ", p - 16, 16);
  512. print_section("Object ", p, min_t(unsigned long, s->object_size,
  513. PAGE_SIZE));
  514. if (s->flags & SLAB_RED_ZONE)
  515. print_section("Redzone ", p + s->object_size,
  516. s->inuse - s->object_size);
  517. if (s->offset)
  518. off = s->offset + sizeof(void *);
  519. else
  520. off = s->inuse;
  521. if (s->flags & SLAB_STORE_USER)
  522. off += 2 * sizeof(struct track);
  523. if (off != s->size)
  524. /* Beginning of the filler is the free pointer */
  525. print_section("Padding ", p + off, s->size - off);
  526. dump_stack();
  527. }
  528. static void object_err(struct kmem_cache *s, struct page *page,
  529. u8 *object, char *reason)
  530. {
  531. slab_bug(s, "%s", reason);
  532. print_trailer(s, page, object);
  533. }
  534. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  535. {
  536. va_list args;
  537. char buf[100];
  538. va_start(args, fmt);
  539. vsnprintf(buf, sizeof(buf), fmt, args);
  540. va_end(args);
  541. slab_bug(s, "%s", buf);
  542. print_page_info(page);
  543. dump_stack();
  544. }
  545. static void init_object(struct kmem_cache *s, void *object, u8 val)
  546. {
  547. u8 *p = object;
  548. if (s->flags & __OBJECT_POISON) {
  549. memset(p, POISON_FREE, s->object_size - 1);
  550. p[s->object_size - 1] = POISON_END;
  551. }
  552. if (s->flags & SLAB_RED_ZONE)
  553. memset(p + s->object_size, val, s->inuse - s->object_size);
  554. }
  555. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  556. void *from, void *to)
  557. {
  558. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  559. memset(from, data, to - from);
  560. }
  561. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  562. u8 *object, char *what,
  563. u8 *start, unsigned int value, unsigned int bytes)
  564. {
  565. u8 *fault;
  566. u8 *end;
  567. fault = memchr_inv(start, value, bytes);
  568. if (!fault)
  569. return 1;
  570. end = start + bytes;
  571. while (end > fault && end[-1] == value)
  572. end--;
  573. slab_bug(s, "%s overwritten", what);
  574. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  575. fault, end - 1, fault[0], value);
  576. print_trailer(s, page, object);
  577. restore_bytes(s, what, value, fault, end);
  578. return 0;
  579. }
  580. /*
  581. * Object layout:
  582. *
  583. * object address
  584. * Bytes of the object to be managed.
  585. * If the freepointer may overlay the object then the free
  586. * pointer is the first word of the object.
  587. *
  588. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  589. * 0xa5 (POISON_END)
  590. *
  591. * object + s->object_size
  592. * Padding to reach word boundary. This is also used for Redzoning.
  593. * Padding is extended by another word if Redzoning is enabled and
  594. * object_size == inuse.
  595. *
  596. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  597. * 0xcc (RED_ACTIVE) for objects in use.
  598. *
  599. * object + s->inuse
  600. * Meta data starts here.
  601. *
  602. * A. Free pointer (if we cannot overwrite object on free)
  603. * B. Tracking data for SLAB_STORE_USER
  604. * C. Padding to reach required alignment boundary or at mininum
  605. * one word if debugging is on to be able to detect writes
  606. * before the word boundary.
  607. *
  608. * Padding is done using 0x5a (POISON_INUSE)
  609. *
  610. * object + s->size
  611. * Nothing is used beyond s->size.
  612. *
  613. * If slabcaches are merged then the object_size and inuse boundaries are mostly
  614. * ignored. And therefore no slab options that rely on these boundaries
  615. * may be used with merged slabcaches.
  616. */
  617. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  618. {
  619. unsigned long off = s->inuse; /* The end of info */
  620. if (s->offset)
  621. /* Freepointer is placed after the object. */
  622. off += sizeof(void *);
  623. if (s->flags & SLAB_STORE_USER)
  624. /* We also have user information there */
  625. off += 2 * sizeof(struct track);
  626. if (s->size == off)
  627. return 1;
  628. return check_bytes_and_report(s, page, p, "Object padding",
  629. p + off, POISON_INUSE, s->size - off);
  630. }
  631. /* Check the pad bytes at the end of a slab page */
  632. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  633. {
  634. u8 *start;
  635. u8 *fault;
  636. u8 *end;
  637. int length;
  638. int remainder;
  639. if (!(s->flags & SLAB_POISON))
  640. return 1;
  641. start = page_address(page);
  642. length = (PAGE_SIZE << compound_order(page)) - s->reserved;
  643. end = start + length;
  644. remainder = length % s->size;
  645. if (!remainder)
  646. return 1;
  647. fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
  648. if (!fault)
  649. return 1;
  650. while (end > fault && end[-1] == POISON_INUSE)
  651. end--;
  652. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  653. print_section("Padding ", end - remainder, remainder);
  654. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  655. return 0;
  656. }
  657. static int check_object(struct kmem_cache *s, struct page *page,
  658. void *object, u8 val)
  659. {
  660. u8 *p = object;
  661. u8 *endobject = object + s->object_size;
  662. if (s->flags & SLAB_RED_ZONE) {
  663. if (!check_bytes_and_report(s, page, object, "Redzone",
  664. endobject, val, s->inuse - s->object_size))
  665. return 0;
  666. } else {
  667. if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
  668. check_bytes_and_report(s, page, p, "Alignment padding",
  669. endobject, POISON_INUSE, s->inuse - s->object_size);
  670. }
  671. }
  672. if (s->flags & SLAB_POISON) {
  673. if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
  674. (!check_bytes_and_report(s, page, p, "Poison", p,
  675. POISON_FREE, s->object_size - 1) ||
  676. !check_bytes_and_report(s, page, p, "Poison",
  677. p + s->object_size - 1, POISON_END, 1)))
  678. return 0;
  679. /*
  680. * check_pad_bytes cleans up on its own.
  681. */
  682. check_pad_bytes(s, page, p);
  683. }
  684. if (!s->offset && val == SLUB_RED_ACTIVE)
  685. /*
  686. * Object and freepointer overlap. Cannot check
  687. * freepointer while object is allocated.
  688. */
  689. return 1;
  690. /* Check free pointer validity */
  691. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  692. object_err(s, page, p, "Freepointer corrupt");
  693. /*
  694. * No choice but to zap it and thus lose the remainder
  695. * of the free objects in this slab. May cause
  696. * another error because the object count is now wrong.
  697. */
  698. set_freepointer(s, p, NULL);
  699. return 0;
  700. }
  701. return 1;
  702. }
  703. static int check_slab(struct kmem_cache *s, struct page *page)
  704. {
  705. int maxobj;
  706. VM_BUG_ON(!irqs_disabled());
  707. if (!PageSlab(page)) {
  708. slab_err(s, page, "Not a valid slab page");
  709. return 0;
  710. }
  711. maxobj = order_objects(compound_order(page), s->size, s->reserved);
  712. if (page->objects > maxobj) {
  713. slab_err(s, page, "objects %u > max %u",
  714. s->name, page->objects, maxobj);
  715. return 0;
  716. }
  717. if (page->inuse > page->objects) {
  718. slab_err(s, page, "inuse %u > max %u",
  719. s->name, page->inuse, page->objects);
  720. return 0;
  721. }
  722. /* Slab_pad_check fixes things up after itself */
  723. slab_pad_check(s, page);
  724. return 1;
  725. }
  726. /*
  727. * Determine if a certain object on a page is on the freelist. Must hold the
  728. * slab lock to guarantee that the chains are in a consistent state.
  729. */
  730. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  731. {
  732. int nr = 0;
  733. void *fp;
  734. void *object = NULL;
  735. unsigned long max_objects;
  736. fp = page->freelist;
  737. while (fp && nr <= page->objects) {
  738. if (fp == search)
  739. return 1;
  740. if (!check_valid_pointer(s, page, fp)) {
  741. if (object) {
  742. object_err(s, page, object,
  743. "Freechain corrupt");
  744. set_freepointer(s, object, NULL);
  745. break;
  746. } else {
  747. slab_err(s, page, "Freepointer corrupt");
  748. page->freelist = NULL;
  749. page->inuse = page->objects;
  750. slab_fix(s, "Freelist cleared");
  751. return 0;
  752. }
  753. break;
  754. }
  755. object = fp;
  756. fp = get_freepointer(s, object);
  757. nr++;
  758. }
  759. max_objects = order_objects(compound_order(page), s->size, s->reserved);
  760. if (max_objects > MAX_OBJS_PER_PAGE)
  761. max_objects = MAX_OBJS_PER_PAGE;
  762. if (page->objects != max_objects) {
  763. slab_err(s, page, "Wrong number of objects. Found %d but "
  764. "should be %d", page->objects, max_objects);
  765. page->objects = max_objects;
  766. slab_fix(s, "Number of objects adjusted.");
  767. }
  768. if (page->inuse != page->objects - nr) {
  769. slab_err(s, page, "Wrong object count. Counter is %d but "
  770. "counted were %d", page->inuse, page->objects - nr);
  771. page->inuse = page->objects - nr;
  772. slab_fix(s, "Object count adjusted.");
  773. }
  774. return search == NULL;
  775. }
  776. static void trace(struct kmem_cache *s, struct page *page, void *object,
  777. int alloc)
  778. {
  779. if (s->flags & SLAB_TRACE) {
  780. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  781. s->name,
  782. alloc ? "alloc" : "free",
  783. object, page->inuse,
  784. page->freelist);
  785. if (!alloc)
  786. print_section("Object ", (void *)object, s->object_size);
  787. dump_stack();
  788. }
  789. }
  790. /*
  791. * Hooks for other subsystems that check memory allocations. In a typical
  792. * production configuration these hooks all should produce no code at all.
  793. */
  794. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  795. {
  796. flags &= gfp_allowed_mask;
  797. lockdep_trace_alloc(flags);
  798. might_sleep_if(flags & __GFP_WAIT);
  799. return should_failslab(s->object_size, flags, s->flags);
  800. }
  801. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
  802. {
  803. flags &= gfp_allowed_mask;
  804. kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
  805. kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
  806. }
  807. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  808. {
  809. kmemleak_free_recursive(x, s->flags);
  810. /*
  811. * Trouble is that we may no longer disable interupts in the fast path
  812. * So in order to make the debug calls that expect irqs to be
  813. * disabled we need to disable interrupts temporarily.
  814. */
  815. #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
  816. {
  817. unsigned long flags;
  818. local_irq_save(flags);
  819. kmemcheck_slab_free(s, x, s->object_size);
  820. debug_check_no_locks_freed(x, s->object_size);
  821. local_irq_restore(flags);
  822. }
  823. #endif
  824. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  825. debug_check_no_obj_freed(x, s->object_size);
  826. }
  827. /*
  828. * Tracking of fully allocated slabs for debugging purposes.
  829. *
  830. * list_lock must be held.
  831. */
  832. static void add_full(struct kmem_cache *s,
  833. struct kmem_cache_node *n, struct page *page)
  834. {
  835. if (!(s->flags & SLAB_STORE_USER))
  836. return;
  837. list_add(&page->lru, &n->full);
  838. }
  839. /*
  840. * list_lock must be held.
  841. */
  842. static void remove_full(struct kmem_cache *s, struct page *page)
  843. {
  844. if (!(s->flags & SLAB_STORE_USER))
  845. return;
  846. list_del(&page->lru);
  847. }
  848. /* Tracking of the number of slabs for debugging purposes */
  849. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  850. {
  851. struct kmem_cache_node *n = get_node(s, node);
  852. return atomic_long_read(&n->nr_slabs);
  853. }
  854. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  855. {
  856. return atomic_long_read(&n->nr_slabs);
  857. }
  858. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  859. {
  860. struct kmem_cache_node *n = get_node(s, node);
  861. /*
  862. * May be called early in order to allocate a slab for the
  863. * kmem_cache_node structure. Solve the chicken-egg
  864. * dilemma by deferring the increment of the count during
  865. * bootstrap (see early_kmem_cache_node_alloc).
  866. */
  867. if (n) {
  868. atomic_long_inc(&n->nr_slabs);
  869. atomic_long_add(objects, &n->total_objects);
  870. }
  871. }
  872. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  873. {
  874. struct kmem_cache_node *n = get_node(s, node);
  875. atomic_long_dec(&n->nr_slabs);
  876. atomic_long_sub(objects, &n->total_objects);
  877. }
  878. /* Object debug checks for alloc/free paths */
  879. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  880. void *object)
  881. {
  882. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  883. return;
  884. init_object(s, object, SLUB_RED_INACTIVE);
  885. init_tracking(s, object);
  886. }
  887. static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  888. void *object, unsigned long addr)
  889. {
  890. if (!check_slab(s, page))
  891. goto bad;
  892. if (!check_valid_pointer(s, page, object)) {
  893. object_err(s, page, object, "Freelist Pointer check fails");
  894. goto bad;
  895. }
  896. if (!check_object(s, page, object, SLUB_RED_INACTIVE))
  897. goto bad;
  898. /* Success perform special debug activities for allocs */
  899. if (s->flags & SLAB_STORE_USER)
  900. set_track(s, object, TRACK_ALLOC, addr);
  901. trace(s, page, object, 1);
  902. init_object(s, object, SLUB_RED_ACTIVE);
  903. return 1;
  904. bad:
  905. if (PageSlab(page)) {
  906. /*
  907. * If this is a slab page then lets do the best we can
  908. * to avoid issues in the future. Marking all objects
  909. * as used avoids touching the remaining objects.
  910. */
  911. slab_fix(s, "Marking all objects used");
  912. page->inuse = page->objects;
  913. page->freelist = NULL;
  914. }
  915. return 0;
  916. }
  917. static noinline int free_debug_processing(struct kmem_cache *s,
  918. struct page *page, void *object, unsigned long addr)
  919. {
  920. unsigned long flags;
  921. int rc = 0;
  922. local_irq_save(flags);
  923. slab_lock(page);
  924. if (!check_slab(s, page))
  925. goto fail;
  926. if (!check_valid_pointer(s, page, object)) {
  927. slab_err(s, page, "Invalid object pointer 0x%p", object);
  928. goto fail;
  929. }
  930. if (on_freelist(s, page, object)) {
  931. object_err(s, page, object, "Object already free");
  932. goto fail;
  933. }
  934. if (!check_object(s, page, object, SLUB_RED_ACTIVE))
  935. goto out;
  936. if (unlikely(s != page->slab)) {
  937. if (!PageSlab(page)) {
  938. slab_err(s, page, "Attempt to free object(0x%p) "
  939. "outside of slab", object);
  940. } else if (!page->slab) {
  941. printk(KERN_ERR
  942. "SLUB <none>: no slab for object 0x%p.\n",
  943. object);
  944. dump_stack();
  945. } else
  946. object_err(s, page, object,
  947. "page slab pointer corrupt.");
  948. goto fail;
  949. }
  950. if (s->flags & SLAB_STORE_USER)
  951. set_track(s, object, TRACK_FREE, addr);
  952. trace(s, page, object, 0);
  953. init_object(s, object, SLUB_RED_INACTIVE);
  954. rc = 1;
  955. out:
  956. slab_unlock(page);
  957. local_irq_restore(flags);
  958. return rc;
  959. fail:
  960. slab_fix(s, "Object at 0x%p not freed", object);
  961. goto out;
  962. }
  963. static int __init setup_slub_debug(char *str)
  964. {
  965. slub_debug = DEBUG_DEFAULT_FLAGS;
  966. if (*str++ != '=' || !*str)
  967. /*
  968. * No options specified. Switch on full debugging.
  969. */
  970. goto out;
  971. if (*str == ',')
  972. /*
  973. * No options but restriction on slabs. This means full
  974. * debugging for slabs matching a pattern.
  975. */
  976. goto check_slabs;
  977. if (tolower(*str) == 'o') {
  978. /*
  979. * Avoid enabling debugging on caches if its minimum order
  980. * would increase as a result.
  981. */
  982. disable_higher_order_debug = 1;
  983. goto out;
  984. }
  985. slub_debug = 0;
  986. if (*str == '-')
  987. /*
  988. * Switch off all debugging measures.
  989. */
  990. goto out;
  991. /*
  992. * Determine which debug features should be switched on
  993. */
  994. for (; *str && *str != ','; str++) {
  995. switch (tolower(*str)) {
  996. case 'f':
  997. slub_debug |= SLAB_DEBUG_FREE;
  998. break;
  999. case 'z':
  1000. slub_debug |= SLAB_RED_ZONE;
  1001. break;
  1002. case 'p':
  1003. slub_debug |= SLAB_POISON;
  1004. break;
  1005. case 'u':
  1006. slub_debug |= SLAB_STORE_USER;
  1007. break;
  1008. case 't':
  1009. slub_debug |= SLAB_TRACE;
  1010. break;
  1011. case 'a':
  1012. slub_debug |= SLAB_FAILSLAB;
  1013. break;
  1014. default:
  1015. printk(KERN_ERR "slub_debug option '%c' "
  1016. "unknown. skipped\n", *str);
  1017. }
  1018. }
  1019. check_slabs:
  1020. if (*str == ',')
  1021. slub_debug_slabs = str + 1;
  1022. out:
  1023. return 1;
  1024. }
  1025. __setup("slub_debug", setup_slub_debug);
  1026. static unsigned long kmem_cache_flags(unsigned long object_size,
  1027. unsigned long flags, const char *name,
  1028. void (*ctor)(void *))
  1029. {
  1030. /*
  1031. * Enable debugging if selected on the kernel commandline.
  1032. */
  1033. if (slub_debug && (!slub_debug_slabs ||
  1034. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
  1035. flags |= slub_debug;
  1036. return flags;
  1037. }
  1038. #else
  1039. static inline void setup_object_debug(struct kmem_cache *s,
  1040. struct page *page, void *object) {}
  1041. static inline int alloc_debug_processing(struct kmem_cache *s,
  1042. struct page *page, void *object, unsigned long addr) { return 0; }
  1043. static inline int free_debug_processing(struct kmem_cache *s,
  1044. struct page *page, void *object, unsigned long addr) { return 0; }
  1045. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  1046. { return 1; }
  1047. static inline int check_object(struct kmem_cache *s, struct page *page,
  1048. void *object, u8 val) { return 1; }
  1049. static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1050. struct page *page) {}
  1051. static inline void remove_full(struct kmem_cache *s, struct page *page) {}
  1052. static inline unsigned long kmem_cache_flags(unsigned long object_size,
  1053. unsigned long flags, const char *name,
  1054. void (*ctor)(void *))
  1055. {
  1056. return flags;
  1057. }
  1058. #define slub_debug 0
  1059. #define disable_higher_order_debug 0
  1060. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  1061. { return 0; }
  1062. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  1063. { return 0; }
  1064. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  1065. int objects) {}
  1066. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  1067. int objects) {}
  1068. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  1069. { return 0; }
  1070. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
  1071. void *object) {}
  1072. static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
  1073. #endif /* CONFIG_SLUB_DEBUG */
  1074. /*
  1075. * Slab allocation and freeing
  1076. */
  1077. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  1078. struct kmem_cache_order_objects oo)
  1079. {
  1080. int order = oo_order(oo);
  1081. flags |= __GFP_NOTRACK;
  1082. if (node == NUMA_NO_NODE)
  1083. return alloc_pages(flags, order);
  1084. else
  1085. return alloc_pages_exact_node(node, flags, order);
  1086. }
  1087. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  1088. {
  1089. struct page *page;
  1090. struct kmem_cache_order_objects oo = s->oo;
  1091. gfp_t alloc_gfp;
  1092. flags &= gfp_allowed_mask;
  1093. if (flags & __GFP_WAIT)
  1094. local_irq_enable();
  1095. flags |= s->allocflags;
  1096. /*
  1097. * Let the initial higher-order allocation fail under memory pressure
  1098. * so we fall-back to the minimum order allocation.
  1099. */
  1100. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  1101. page = alloc_slab_page(alloc_gfp, node, oo);
  1102. if (unlikely(!page)) {
  1103. oo = s->min;
  1104. /*
  1105. * Allocation may have failed due to fragmentation.
  1106. * Try a lower order alloc if possible
  1107. */
  1108. page = alloc_slab_page(flags, node, oo);
  1109. if (page)
  1110. stat(s, ORDER_FALLBACK);
  1111. }
  1112. if (kmemcheck_enabled && page
  1113. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  1114. int pages = 1 << oo_order(oo);
  1115. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  1116. /*
  1117. * Objects from caches that have a constructor don't get
  1118. * cleared when they're allocated, so we need to do it here.
  1119. */
  1120. if (s->ctor)
  1121. kmemcheck_mark_uninitialized_pages(page, pages);
  1122. else
  1123. kmemcheck_mark_unallocated_pages(page, pages);
  1124. }
  1125. if (flags & __GFP_WAIT)
  1126. local_irq_disable();
  1127. if (!page)
  1128. return NULL;
  1129. page->objects = oo_objects(oo);
  1130. mod_zone_page_state(page_zone(page),
  1131. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1132. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1133. 1 << oo_order(oo));
  1134. return page;
  1135. }
  1136. static void setup_object(struct kmem_cache *s, struct page *page,
  1137. void *object)
  1138. {
  1139. setup_object_debug(s, page, object);
  1140. if (unlikely(s->ctor))
  1141. s->ctor(object);
  1142. }
  1143. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1144. {
  1145. struct page *page;
  1146. void *start;
  1147. void *last;
  1148. void *p;
  1149. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  1150. page = allocate_slab(s,
  1151. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1152. if (!page)
  1153. goto out;
  1154. inc_slabs_node(s, page_to_nid(page), page->objects);
  1155. page->slab = s;
  1156. __SetPageSlab(page);
  1157. if (page->pfmemalloc)
  1158. SetPageSlabPfmemalloc(page);
  1159. start = page_address(page);
  1160. if (unlikely(s->flags & SLAB_POISON))
  1161. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  1162. last = start;
  1163. for_each_object(p, s, start, page->objects) {
  1164. setup_object(s, page, last);
  1165. set_freepointer(s, last, p);
  1166. last = p;
  1167. }
  1168. setup_object(s, page, last);
  1169. set_freepointer(s, last, NULL);
  1170. page->freelist = start;
  1171. page->inuse = page->objects;
  1172. page->frozen = 1;
  1173. out:
  1174. return page;
  1175. }
  1176. static void __free_slab(struct kmem_cache *s, struct page *page)
  1177. {
  1178. int order = compound_order(page);
  1179. int pages = 1 << order;
  1180. if (kmem_cache_debug(s)) {
  1181. void *p;
  1182. slab_pad_check(s, page);
  1183. for_each_object(p, s, page_address(page),
  1184. page->objects)
  1185. check_object(s, page, p, SLUB_RED_INACTIVE);
  1186. }
  1187. kmemcheck_free_shadow(page, compound_order(page));
  1188. mod_zone_page_state(page_zone(page),
  1189. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1190. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1191. -pages);
  1192. __ClearPageSlabPfmemalloc(page);
  1193. __ClearPageSlab(page);
  1194. reset_page_mapcount(page);
  1195. if (current->reclaim_state)
  1196. current->reclaim_state->reclaimed_slab += pages;
  1197. __free_pages(page, order);
  1198. }
  1199. #define need_reserve_slab_rcu \
  1200. (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
  1201. static void rcu_free_slab(struct rcu_head *h)
  1202. {
  1203. struct page *page;
  1204. if (need_reserve_slab_rcu)
  1205. page = virt_to_head_page(h);
  1206. else
  1207. page = container_of((struct list_head *)h, struct page, lru);
  1208. __free_slab(page->slab, page);
  1209. }
  1210. static void free_slab(struct kmem_cache *s, struct page *page)
  1211. {
  1212. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1213. struct rcu_head *head;
  1214. if (need_reserve_slab_rcu) {
  1215. int order = compound_order(page);
  1216. int offset = (PAGE_SIZE << order) - s->reserved;
  1217. VM_BUG_ON(s->reserved != sizeof(*head));
  1218. head = page_address(page) + offset;
  1219. } else {
  1220. /*
  1221. * RCU free overloads the RCU head over the LRU
  1222. */
  1223. head = (void *)&page->lru;
  1224. }
  1225. call_rcu(head, rcu_free_slab);
  1226. } else
  1227. __free_slab(s, page);
  1228. }
  1229. static void discard_slab(struct kmem_cache *s, struct page *page)
  1230. {
  1231. dec_slabs_node(s, page_to_nid(page), page->objects);
  1232. free_slab(s, page);
  1233. }
  1234. /*
  1235. * Management of partially allocated slabs.
  1236. *
  1237. * list_lock must be held.
  1238. */
  1239. static inline void add_partial(struct kmem_cache_node *n,
  1240. struct page *page, int tail)
  1241. {
  1242. n->nr_partial++;
  1243. if (tail == DEACTIVATE_TO_TAIL)
  1244. list_add_tail(&page->lru, &n->partial);
  1245. else
  1246. list_add(&page->lru, &n->partial);
  1247. }
  1248. /*
  1249. * list_lock must be held.
  1250. */
  1251. static inline void remove_partial(struct kmem_cache_node *n,
  1252. struct page *page)
  1253. {
  1254. list_del(&page->lru);
  1255. n->nr_partial--;
  1256. }
  1257. /*
  1258. * Remove slab from the partial list, freeze it and
  1259. * return the pointer to the freelist.
  1260. *
  1261. * Returns a list of objects or NULL if it fails.
  1262. *
  1263. * Must hold list_lock since we modify the partial list.
  1264. */
  1265. static inline void *acquire_slab(struct kmem_cache *s,
  1266. struct kmem_cache_node *n, struct page *page,
  1267. int mode)
  1268. {
  1269. void *freelist;
  1270. unsigned long counters;
  1271. struct page new;
  1272. /*
  1273. * Zap the freelist and set the frozen bit.
  1274. * The old freelist is the list of objects for the
  1275. * per cpu allocation list.
  1276. */
  1277. freelist = page->freelist;
  1278. counters = page->counters;
  1279. new.counters = counters;
  1280. if (mode) {
  1281. new.inuse = page->objects;
  1282. new.freelist = NULL;
  1283. } else {
  1284. new.freelist = freelist;
  1285. }
  1286. VM_BUG_ON(new.frozen);
  1287. new.frozen = 1;
  1288. if (!__cmpxchg_double_slab(s, page,
  1289. freelist, counters,
  1290. new.freelist, new.counters,
  1291. "acquire_slab"))
  1292. return NULL;
  1293. remove_partial(n, page);
  1294. WARN_ON(!freelist);
  1295. return freelist;
  1296. }
  1297. static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
  1298. /*
  1299. * Try to allocate a partial slab from a specific node.
  1300. */
  1301. static void *get_partial_node(struct kmem_cache *s,
  1302. struct kmem_cache_node *n, struct kmem_cache_cpu *c)
  1303. {
  1304. struct page *page, *page2;
  1305. void *object = NULL;
  1306. /*
  1307. * Racy check. If we mistakenly see no partial slabs then we
  1308. * just allocate an empty slab. If we mistakenly try to get a
  1309. * partial slab and there is none available then get_partials()
  1310. * will return NULL.
  1311. */
  1312. if (!n || !n->nr_partial)
  1313. return NULL;
  1314. spin_lock(&n->list_lock);
  1315. list_for_each_entry_safe(page, page2, &n->partial, lru) {
  1316. void *t = acquire_slab(s, n, page, object == NULL);
  1317. int available;
  1318. if (!t)
  1319. break;
  1320. if (!object) {
  1321. c->page = page;
  1322. stat(s, ALLOC_FROM_PARTIAL);
  1323. object = t;
  1324. available = page->objects - page->inuse;
  1325. } else {
  1326. available = put_cpu_partial(s, page, 0);
  1327. stat(s, CPU_PARTIAL_NODE);
  1328. }
  1329. if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
  1330. break;
  1331. }
  1332. spin_unlock(&n->list_lock);
  1333. return object;
  1334. }
  1335. /*
  1336. * Get a page from somewhere. Search in increasing NUMA distances.
  1337. */
  1338. static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
  1339. struct kmem_cache_cpu *c)
  1340. {
  1341. #ifdef CONFIG_NUMA
  1342. struct zonelist *zonelist;
  1343. struct zoneref *z;
  1344. struct zone *zone;
  1345. enum zone_type high_zoneidx = gfp_zone(flags);
  1346. void *object;
  1347. unsigned int cpuset_mems_cookie;
  1348. /*
  1349. * The defrag ratio allows a configuration of the tradeoffs between
  1350. * inter node defragmentation and node local allocations. A lower
  1351. * defrag_ratio increases the tendency to do local allocations
  1352. * instead of attempting to obtain partial slabs from other nodes.
  1353. *
  1354. * If the defrag_ratio is set to 0 then kmalloc() always
  1355. * returns node local objects. If the ratio is higher then kmalloc()
  1356. * may return off node objects because partial slabs are obtained
  1357. * from other nodes and filled up.
  1358. *
  1359. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1360. * defrag_ratio = 1000) then every (well almost) allocation will
  1361. * first attempt to defrag slab caches on other nodes. This means
  1362. * scanning over all nodes to look for partial slabs which may be
  1363. * expensive if we do it every time we are trying to find a slab
  1364. * with available objects.
  1365. */
  1366. if (!s->remote_node_defrag_ratio ||
  1367. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1368. return NULL;
  1369. do {
  1370. cpuset_mems_cookie = get_mems_allowed();
  1371. zonelist = node_zonelist(slab_node(), flags);
  1372. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1373. struct kmem_cache_node *n;
  1374. n = get_node(s, zone_to_nid(zone));
  1375. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1376. n->nr_partial > s->min_partial) {
  1377. object = get_partial_node(s, n, c);
  1378. if (object) {
  1379. /*
  1380. * Return the object even if
  1381. * put_mems_allowed indicated that
  1382. * the cpuset mems_allowed was
  1383. * updated in parallel. It's a
  1384. * harmless race between the alloc
  1385. * and the cpuset update.
  1386. */
  1387. put_mems_allowed(cpuset_mems_cookie);
  1388. return object;
  1389. }
  1390. }
  1391. }
  1392. } while (!put_mems_allowed(cpuset_mems_cookie));
  1393. #endif
  1394. return NULL;
  1395. }
  1396. /*
  1397. * Get a partial page, lock it and return it.
  1398. */
  1399. static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
  1400. struct kmem_cache_cpu *c)
  1401. {
  1402. void *object;
  1403. int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
  1404. object = get_partial_node(s, get_node(s, searchnode), c);
  1405. if (object || node != NUMA_NO_NODE)
  1406. return object;
  1407. return get_any_partial(s, flags, c);
  1408. }
  1409. #ifdef CONFIG_PREEMPT
  1410. /*
  1411. * Calculate the next globally unique transaction for disambiguiation
  1412. * during cmpxchg. The transactions start with the cpu number and are then
  1413. * incremented by CONFIG_NR_CPUS.
  1414. */
  1415. #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
  1416. #else
  1417. /*
  1418. * No preemption supported therefore also no need to check for
  1419. * different cpus.
  1420. */
  1421. #define TID_STEP 1
  1422. #endif
  1423. static inline unsigned long next_tid(unsigned long tid)
  1424. {
  1425. return tid + TID_STEP;
  1426. }
  1427. static inline unsigned int tid_to_cpu(unsigned long tid)
  1428. {
  1429. return tid % TID_STEP;
  1430. }
  1431. static inline unsigned long tid_to_event(unsigned long tid)
  1432. {
  1433. return tid / TID_STEP;
  1434. }
  1435. static inline unsigned int init_tid(int cpu)
  1436. {
  1437. return cpu;
  1438. }
  1439. static inline void note_cmpxchg_failure(const char *n,
  1440. const struct kmem_cache *s, unsigned long tid)
  1441. {
  1442. #ifdef SLUB_DEBUG_CMPXCHG
  1443. unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
  1444. printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
  1445. #ifdef CONFIG_PREEMPT
  1446. if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
  1447. printk("due to cpu change %d -> %d\n",
  1448. tid_to_cpu(tid), tid_to_cpu(actual_tid));
  1449. else
  1450. #endif
  1451. if (tid_to_event(tid) != tid_to_event(actual_tid))
  1452. printk("due to cpu running other code. Event %ld->%ld\n",
  1453. tid_to_event(tid), tid_to_event(actual_tid));
  1454. else
  1455. printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
  1456. actual_tid, tid, next_tid(tid));
  1457. #endif
  1458. stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
  1459. }
  1460. void init_kmem_cache_cpus(struct kmem_cache *s)
  1461. {
  1462. int cpu;
  1463. for_each_possible_cpu(cpu)
  1464. per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
  1465. }
  1466. /*
  1467. * Remove the cpu slab
  1468. */
  1469. static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
  1470. {
  1471. enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
  1472. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1473. int lock = 0;
  1474. enum slab_modes l = M_NONE, m = M_NONE;
  1475. void *nextfree;
  1476. int tail = DEACTIVATE_TO_HEAD;
  1477. struct page new;
  1478. struct page old;
  1479. if (page->freelist) {
  1480. stat(s, DEACTIVATE_REMOTE_FREES);
  1481. tail = DEACTIVATE_TO_TAIL;
  1482. }
  1483. /*
  1484. * Stage one: Free all available per cpu objects back
  1485. * to the page freelist while it is still frozen. Leave the
  1486. * last one.
  1487. *
  1488. * There is no need to take the list->lock because the page
  1489. * is still frozen.
  1490. */
  1491. while (freelist && (nextfree = get_freepointer(s, freelist))) {
  1492. void *prior;
  1493. unsigned long counters;
  1494. do {
  1495. prior = page->freelist;
  1496. counters = page->counters;
  1497. set_freepointer(s, freelist, prior);
  1498. new.counters = counters;
  1499. new.inuse--;
  1500. VM_BUG_ON(!new.frozen);
  1501. } while (!__cmpxchg_double_slab(s, page,
  1502. prior, counters,
  1503. freelist, new.counters,
  1504. "drain percpu freelist"));
  1505. freelist = nextfree;
  1506. }
  1507. /*
  1508. * Stage two: Ensure that the page is unfrozen while the
  1509. * list presence reflects the actual number of objects
  1510. * during unfreeze.
  1511. *
  1512. * We setup the list membership and then perform a cmpxchg
  1513. * with the count. If there is a mismatch then the page
  1514. * is not unfrozen but the page is on the wrong list.
  1515. *
  1516. * Then we restart the process which may have to remove
  1517. * the page from the list that we just put it on again
  1518. * because the number of objects in the slab may have
  1519. * changed.
  1520. */
  1521. redo:
  1522. old.freelist = page->freelist;
  1523. old.counters = page->counters;
  1524. VM_BUG_ON(!old.frozen);
  1525. /* Determine target state of the slab */
  1526. new.counters = old.counters;
  1527. if (freelist) {
  1528. new.inuse--;
  1529. set_freepointer(s, freelist, old.freelist);
  1530. new.freelist = freelist;
  1531. } else
  1532. new.freelist = old.freelist;
  1533. new.frozen = 0;
  1534. if (!new.inuse && n->nr_partial > s->min_partial)
  1535. m = M_FREE;
  1536. else if (new.freelist) {
  1537. m = M_PARTIAL;
  1538. if (!lock) {
  1539. lock = 1;
  1540. /*
  1541. * Taking the spinlock removes the possiblity
  1542. * that acquire_slab() will see a slab page that
  1543. * is frozen
  1544. */
  1545. spin_lock(&n->list_lock);
  1546. }
  1547. } else {
  1548. m = M_FULL;
  1549. if (kmem_cache_debug(s) && !lock) {
  1550. lock = 1;
  1551. /*
  1552. * This also ensures that the scanning of full
  1553. * slabs from diagnostic functions will not see
  1554. * any frozen slabs.
  1555. */
  1556. spin_lock(&n->list_lock);
  1557. }
  1558. }
  1559. if (l != m) {
  1560. if (l == M_PARTIAL)
  1561. remove_partial(n, page);
  1562. else if (l == M_FULL)
  1563. remove_full(s, page);
  1564. if (m == M_PARTIAL) {
  1565. add_partial(n, page, tail);
  1566. stat(s, tail);
  1567. } else if (m == M_FULL) {
  1568. stat(s, DEACTIVATE_FULL);
  1569. add_full(s, n, page);
  1570. }
  1571. }
  1572. l = m;
  1573. if (!__cmpxchg_double_slab(s, page,
  1574. old.freelist, old.counters,
  1575. new.freelist, new.counters,
  1576. "unfreezing slab"))
  1577. goto redo;
  1578. if (lock)
  1579. spin_unlock(&n->list_lock);
  1580. if (m == M_FREE) {
  1581. stat(s, DEACTIVATE_EMPTY);
  1582. discard_slab(s, page);
  1583. stat(s, FREE_SLAB);
  1584. }
  1585. }
  1586. /*
  1587. * Unfreeze all the cpu partial slabs.
  1588. *
  1589. * This function must be called with interrupt disabled.
  1590. */
  1591. static void unfreeze_partials(struct kmem_cache *s)
  1592. {
  1593. struct kmem_cache_node *n = NULL, *n2 = NULL;
  1594. struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
  1595. struct page *page, *discard_page = NULL;
  1596. while ((page = c->partial)) {
  1597. struct page new;
  1598. struct page old;
  1599. c->partial = page->next;
  1600. n2 = get_node(s, page_to_nid(page));
  1601. if (n != n2) {
  1602. if (n)
  1603. spin_unlock(&n->list_lock);
  1604. n = n2;
  1605. spin_lock(&n->list_lock);
  1606. }
  1607. do {
  1608. old.freelist = page->freelist;
  1609. old.counters = page->counters;
  1610. VM_BUG_ON(!old.frozen);
  1611. new.counters = old.counters;
  1612. new.freelist = old.freelist;
  1613. new.frozen = 0;
  1614. } while (!__cmpxchg_double_slab(s, page,
  1615. old.freelist, old.counters,
  1616. new.freelist, new.counters,
  1617. "unfreezing slab"));
  1618. if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
  1619. page->next = discard_page;
  1620. discard_page = page;
  1621. } else {
  1622. add_partial(n, page, DEACTIVATE_TO_TAIL);
  1623. stat(s, FREE_ADD_PARTIAL);
  1624. }
  1625. }
  1626. if (n)
  1627. spin_unlock(&n->list_lock);
  1628. while (discard_page) {
  1629. page = discard_page;
  1630. discard_page = discard_page->next;
  1631. stat(s, DEACTIVATE_EMPTY);
  1632. discard_slab(s, page);
  1633. stat(s, FREE_SLAB);
  1634. }
  1635. }
  1636. /*
  1637. * Put a page that was just frozen (in __slab_free) into a partial page
  1638. * slot if available. This is done without interrupts disabled and without
  1639. * preemption disabled. The cmpxchg is racy and may put the partial page
  1640. * onto a random cpus partial slot.
  1641. *
  1642. * If we did not find a slot then simply move all the partials to the
  1643. * per node partial list.
  1644. */
  1645. int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
  1646. {
  1647. struct page *oldpage;
  1648. int pages;
  1649. int pobjects;
  1650. do {
  1651. pages = 0;
  1652. pobjects = 0;
  1653. oldpage = this_cpu_read(s->cpu_slab->partial);
  1654. if (oldpage) {
  1655. pobjects = oldpage->pobjects;
  1656. pages = oldpage->pages;
  1657. if (drain && pobjects > s->cpu_partial) {
  1658. unsigned long flags;
  1659. /*
  1660. * partial array is full. Move the existing
  1661. * set to the per node partial list.
  1662. */
  1663. local_irq_save(flags);
  1664. unfreeze_partials(s);
  1665. local_irq_restore(flags);
  1666. pobjects = 0;
  1667. pages = 0;
  1668. stat(s, CPU_PARTIAL_DRAIN);
  1669. }
  1670. }
  1671. pages++;
  1672. pobjects += page->objects - page->inuse;
  1673. page->pages = pages;
  1674. page->pobjects = pobjects;
  1675. page->next = oldpage;
  1676. } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
  1677. return pobjects;
  1678. }
  1679. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1680. {
  1681. stat(s, CPUSLAB_FLUSH);
  1682. deactivate_slab(s, c->page, c->freelist);
  1683. c->tid = next_tid(c->tid);
  1684. c->page = NULL;
  1685. c->freelist = NULL;
  1686. }
  1687. /*
  1688. * Flush cpu slab.
  1689. *
  1690. * Called from IPI handler with interrupts disabled.
  1691. */
  1692. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1693. {
  1694. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1695. if (likely(c)) {
  1696. if (c->page)
  1697. flush_slab(s, c);
  1698. unfreeze_partials(s);
  1699. }
  1700. }
  1701. static void flush_cpu_slab(void *d)
  1702. {
  1703. struct kmem_cache *s = d;
  1704. __flush_cpu_slab(s, smp_processor_id());
  1705. }
  1706. static bool has_cpu_slab(int cpu, void *info)
  1707. {
  1708. struct kmem_cache *s = info;
  1709. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1710. return c->page || c->partial;
  1711. }
  1712. static void flush_all(struct kmem_cache *s)
  1713. {
  1714. on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
  1715. }
  1716. /*
  1717. * Check if the objects in a per cpu structure fit numa
  1718. * locality expectations.
  1719. */
  1720. static inline int node_match(struct page *page, int node)
  1721. {
  1722. #ifdef CONFIG_NUMA
  1723. if (node != NUMA_NO_NODE && page_to_nid(page) != node)
  1724. return 0;
  1725. #endif
  1726. return 1;
  1727. }
  1728. static int count_free(struct page *page)
  1729. {
  1730. return page->objects - page->inuse;
  1731. }
  1732. static unsigned long count_partial(struct kmem_cache_node *n,
  1733. int (*get_count)(struct page *))
  1734. {
  1735. unsigned long flags;
  1736. unsigned long x = 0;
  1737. struct page *page;
  1738. spin_lock_irqsave(&n->list_lock, flags);
  1739. list_for_each_entry(page, &n->partial, lru)
  1740. x += get_count(page);
  1741. spin_unlock_irqrestore(&n->list_lock, flags);
  1742. return x;
  1743. }
  1744. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1745. {
  1746. #ifdef CONFIG_SLUB_DEBUG
  1747. return atomic_long_read(&n->total_objects);
  1748. #else
  1749. return 0;
  1750. #endif
  1751. }
  1752. static noinline void
  1753. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1754. {
  1755. int node;
  1756. printk(KERN_WARNING
  1757. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1758. nid, gfpflags);
  1759. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1760. "default order: %d, min order: %d\n", s->name, s->object_size,
  1761. s->size, oo_order(s->oo), oo_order(s->min));
  1762. if (oo_order(s->min) > get_order(s->object_size))
  1763. printk(KERN_WARNING " %s debugging increased min order, use "
  1764. "slub_debug=O to disable.\n", s->name);
  1765. for_each_online_node(node) {
  1766. struct kmem_cache_node *n = get_node(s, node);
  1767. unsigned long nr_slabs;
  1768. unsigned long nr_objs;
  1769. unsigned long nr_free;
  1770. if (!n)
  1771. continue;
  1772. nr_free = count_partial(n, count_free);
  1773. nr_slabs = node_nr_slabs(n);
  1774. nr_objs = node_nr_objs(n);
  1775. printk(KERN_WARNING
  1776. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1777. node, nr_slabs, nr_objs, nr_free);
  1778. }
  1779. }
  1780. static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
  1781. int node, struct kmem_cache_cpu **pc)
  1782. {
  1783. void *freelist;
  1784. struct kmem_cache_cpu *c = *pc;
  1785. struct page *page;
  1786. freelist = get_partial(s, flags, node, c);
  1787. if (freelist)
  1788. return freelist;
  1789. page = new_slab(s, flags, node);
  1790. if (page) {
  1791. c = __this_cpu_ptr(s->cpu_slab);
  1792. if (c->page)
  1793. flush_slab(s, c);
  1794. /*
  1795. * No other reference to the page yet so we can
  1796. * muck around with it freely without cmpxchg
  1797. */
  1798. freelist = page->freelist;
  1799. page->freelist = NULL;
  1800. stat(s, ALLOC_SLAB);
  1801. c->page = page;
  1802. *pc = c;
  1803. } else
  1804. freelist = NULL;
  1805. return freelist;
  1806. }
  1807. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
  1808. {
  1809. if (unlikely(PageSlabPfmemalloc(page)))
  1810. return gfp_pfmemalloc_allowed(gfpflags);
  1811. return true;
  1812. }
  1813. /*
  1814. * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
  1815. * or deactivate the page.
  1816. *
  1817. * The page is still frozen if the return value is not NULL.
  1818. *
  1819. * If this function returns NULL then the page has been unfrozen.
  1820. *
  1821. * This function must be called with interrupt disabled.
  1822. */
  1823. static inline void *get_freelist(struct kmem_cache *s, struct page *page)
  1824. {
  1825. struct page new;
  1826. unsigned long counters;
  1827. void *freelist;
  1828. do {
  1829. freelist = page->freelist;
  1830. counters = page->counters;
  1831. new.counters = counters;
  1832. VM_BUG_ON(!new.frozen);
  1833. new.inuse = page->objects;
  1834. new.frozen = freelist != NULL;
  1835. } while (!__cmpxchg_double_slab(s, page,
  1836. freelist, counters,
  1837. NULL, new.counters,
  1838. "get_freelist"));
  1839. return freelist;
  1840. }
  1841. /*
  1842. * Slow path. The lockless freelist is empty or we need to perform
  1843. * debugging duties.
  1844. *
  1845. * Processing is still very fast if new objects have been freed to the
  1846. * regular freelist. In that case we simply take over the regular freelist
  1847. * as the lockless freelist and zap the regular freelist.
  1848. *
  1849. * If that is not working then we fall back to the partial lists. We take the
  1850. * first element of the freelist as the object to allocate now and move the
  1851. * rest of the freelist to the lockless freelist.
  1852. *
  1853. * And if we were unable to get a new slab from the partial slab lists then
  1854. * we need to allocate a new slab. This is the slowest path since it involves
  1855. * a call to the page allocator and the setup of a new slab.
  1856. */
  1857. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1858. unsigned long addr, struct kmem_cache_cpu *c)
  1859. {
  1860. void *freelist;
  1861. struct page *page;
  1862. unsigned long flags;
  1863. local_irq_save(flags);
  1864. #ifdef CONFIG_PREEMPT
  1865. /*
  1866. * We may have been preempted and rescheduled on a different
  1867. * cpu before disabling interrupts. Need to reload cpu area
  1868. * pointer.
  1869. */
  1870. c = this_cpu_ptr(s->cpu_slab);
  1871. #endif
  1872. page = c->page;
  1873. if (!page)
  1874. goto new_slab;
  1875. redo:
  1876. if (unlikely(!node_match(page, node))) {
  1877. stat(s, ALLOC_NODE_MISMATCH);
  1878. deactivate_slab(s, page, c->freelist);
  1879. c->page = NULL;
  1880. c->freelist = NULL;
  1881. goto new_slab;
  1882. }
  1883. /*
  1884. * By rights, we should be searching for a slab page that was
  1885. * PFMEMALLOC but right now, we are losing the pfmemalloc
  1886. * information when the page leaves the per-cpu allocator
  1887. */
  1888. if (unlikely(!pfmemalloc_match(page, gfpflags))) {
  1889. deactivate_slab(s, page, c->freelist);
  1890. c->page = NULL;
  1891. c->freelist = NULL;
  1892. goto new_slab;
  1893. }
  1894. /* must check again c->freelist in case of cpu migration or IRQ */
  1895. freelist = c->freelist;
  1896. if (freelist)
  1897. goto load_freelist;
  1898. stat(s, ALLOC_SLOWPATH);
  1899. freelist = get_freelist(s, page);
  1900. if (!freelist) {
  1901. c->page = NULL;
  1902. stat(s, DEACTIVATE_BYPASS);
  1903. goto new_slab;
  1904. }
  1905. stat(s, ALLOC_REFILL);
  1906. load_freelist:
  1907. /*
  1908. * freelist is pointing to the list of objects to be used.
  1909. * page is pointing to the page from which the objects are obtained.
  1910. * That page must be frozen for per cpu allocations to work.
  1911. */
  1912. VM_BUG_ON(!c->page->frozen);
  1913. c->freelist = get_freepointer(s, freelist);
  1914. c->tid = next_tid(c->tid);
  1915. local_irq_restore(flags);
  1916. return freelist;
  1917. new_slab:
  1918. if (c->partial) {
  1919. page = c->page = c->partial;
  1920. c->partial = page->next;
  1921. stat(s, CPU_PARTIAL_ALLOC);
  1922. c->freelist = NULL;
  1923. goto redo;
  1924. }
  1925. freelist = new_slab_objects(s, gfpflags, node, &c);
  1926. if (unlikely(!freelist)) {
  1927. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1928. slab_out_of_memory(s, gfpflags, node);
  1929. local_irq_restore(flags);
  1930. return NULL;
  1931. }
  1932. page = c->page;
  1933. if (likely(!kmem_cache_debug(s)))
  1934. goto load_freelist;
  1935. /* Only entered in the debug case */
  1936. if (!alloc_debug_processing(s, page, freelist, addr))
  1937. goto new_slab; /* Slab failed checks. Next slab needed */
  1938. deactivate_slab(s, page, get_freepointer(s, freelist));
  1939. c->page = NULL;
  1940. c->freelist = NULL;
  1941. local_irq_restore(flags);
  1942. return freelist;
  1943. }
  1944. /*
  1945. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1946. * have the fastpath folded into their functions. So no function call
  1947. * overhead for requests that can be satisfied on the fastpath.
  1948. *
  1949. * The fastpath works by first checking if the lockless freelist can be used.
  1950. * If not then __slab_alloc is called for slow processing.
  1951. *
  1952. * Otherwise we can simply pick the next object from the lockless free list.
  1953. */
  1954. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1955. gfp_t gfpflags, int node, unsigned long addr)
  1956. {
  1957. void **object;
  1958. struct kmem_cache_cpu *c;
  1959. struct page *page;
  1960. unsigned long tid;
  1961. if (slab_pre_alloc_hook(s, gfpflags))
  1962. return NULL;
  1963. redo:
  1964. /*
  1965. * Must read kmem_cache cpu data via this cpu ptr. Preemption is
  1966. * enabled. We may switch back and forth between cpus while
  1967. * reading from one cpu area. That does not matter as long
  1968. * as we end up on the original cpu again when doing the cmpxchg.
  1969. */
  1970. c = __this_cpu_ptr(s->cpu_slab);
  1971. /*
  1972. * The transaction ids are globally unique per cpu and per operation on
  1973. * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
  1974. * occurs on the right processor and that there was no operation on the
  1975. * linked list in between.
  1976. */
  1977. tid = c->tid;
  1978. barrier();
  1979. object = c->freelist;
  1980. page = c->page;
  1981. if (unlikely(!object || !node_match(page, node) ||
  1982. !pfmemalloc_match(page, gfpflags)))
  1983. object = __slab_alloc(s, gfpflags, node, addr, c);
  1984. else {
  1985. void *next_object = get_freepointer_safe(s, object);
  1986. /*
  1987. * The cmpxchg will only match if there was no additional
  1988. * operation and if we are on the right processor.
  1989. *
  1990. * The cmpxchg does the following atomically (without lock semantics!)
  1991. * 1. Relocate first pointer to the current per cpu area.
  1992. * 2. Verify that tid and freelist have not been changed
  1993. * 3. If they were not changed replace tid and freelist
  1994. *
  1995. * Since this is without lock semantics the protection is only against
  1996. * code executing on this cpu *not* from access by other cpus.
  1997. */
  1998. if (unlikely(!this_cpu_cmpxchg_double(
  1999. s->cpu_slab->freelist, s->cpu_slab->tid,
  2000. object, tid,
  2001. next_object, next_tid(tid)))) {
  2002. note_cmpxchg_failure("slab_alloc", s, tid);
  2003. goto redo;
  2004. }
  2005. prefetch_freepointer(s, next_object);
  2006. stat(s, ALLOC_FASTPATH);
  2007. }
  2008. if (unlikely(gfpflags & __GFP_ZERO) && object)
  2009. memset(object, 0, s->object_size);
  2010. slab_post_alloc_hook(s, gfpflags, object);
  2011. return object;
  2012. }
  2013. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  2014. {
  2015. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  2016. trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
  2017. return ret;
  2018. }
  2019. EXPORT_SYMBOL(kmem_cache_alloc);
  2020. #ifdef CONFIG_TRACING
  2021. void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  2022. {
  2023. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  2024. trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
  2025. return ret;
  2026. }
  2027. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  2028. void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
  2029. {
  2030. void *ret = kmalloc_order(size, flags, order);
  2031. trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
  2032. return ret;
  2033. }
  2034. EXPORT_SYMBOL(kmalloc_order_trace);
  2035. #endif
  2036. #ifdef CONFIG_NUMA
  2037. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  2038. {
  2039. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  2040. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  2041. s->object_size, s->size, gfpflags, node);
  2042. return ret;
  2043. }
  2044. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2045. #ifdef CONFIG_TRACING
  2046. void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  2047. gfp_t gfpflags,
  2048. int node, size_t size)
  2049. {
  2050. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  2051. trace_kmalloc_node(_RET_IP_, ret,
  2052. size, s->size, gfpflags, node);
  2053. return ret;
  2054. }
  2055. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  2056. #endif
  2057. #endif
  2058. /*
  2059. * Slow patch handling. This may still be called frequently since objects
  2060. * have a longer lifetime than the cpu slabs in most processing loads.
  2061. *
  2062. * So we still attempt to reduce cache line usage. Just take the slab
  2063. * lock and free the item. If there is no additional partial page
  2064. * handling required then we can return immediately.
  2065. */
  2066. static void __slab_free(struct kmem_cache *s, struct page *page,
  2067. void *x, unsigned long addr)
  2068. {
  2069. void *prior;
  2070. void **object = (void *)x;
  2071. int was_frozen;
  2072. int inuse;
  2073. struct page new;
  2074. unsigned long counters;
  2075. struct kmem_cache_node *n = NULL;
  2076. unsigned long uninitialized_var(flags);
  2077. stat(s, FREE_SLOWPATH);
  2078. if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
  2079. return;
  2080. do {
  2081. prior = page->freelist;
  2082. counters = page->counters;
  2083. set_freepointer(s, object, prior);
  2084. new.counters = counters;
  2085. was_frozen = new.frozen;
  2086. new.inuse--;
  2087. if ((!new.inuse || !prior) && !was_frozen && !n) {
  2088. if (!kmem_cache_debug(s) && !prior)
  2089. /*
  2090. * Slab was on no list before and will be partially empty
  2091. * We can defer the list move and instead freeze it.
  2092. */
  2093. new.frozen = 1;
  2094. else { /* Needs to be taken off a list */
  2095. n = get_node(s, page_to_nid(page));
  2096. /*
  2097. * Speculatively acquire the list_lock.
  2098. * If the cmpxchg does not succeed then we may
  2099. * drop the list_lock without any processing.
  2100. *
  2101. * Otherwise the list_lock will synchronize with
  2102. * other processors updating the list of slabs.
  2103. */
  2104. spin_lock_irqsave(&n->list_lock, flags);
  2105. }
  2106. }
  2107. inuse = new.inuse;
  2108. } while (!cmpxchg_double_slab(s, page,
  2109. prior, counters,
  2110. object, new.counters,
  2111. "__slab_free"));
  2112. if (likely(!n)) {
  2113. /*
  2114. * If we just froze the page then put it onto the
  2115. * per cpu partial list.
  2116. */
  2117. if (new.frozen && !was_frozen) {
  2118. put_cpu_partial(s, page, 1);
  2119. stat(s, CPU_PARTIAL_FREE);
  2120. }
  2121. /*
  2122. * The list lock was not taken therefore no list
  2123. * activity can be necessary.
  2124. */
  2125. if (was_frozen)
  2126. stat(s, FREE_FROZEN);
  2127. return;
  2128. }
  2129. /*
  2130. * was_frozen may have been set after we acquired the list_lock in
  2131. * an earlier loop. So we need to check it here again.
  2132. */
  2133. if (was_frozen)
  2134. stat(s, FREE_FROZEN);
  2135. else {
  2136. if (unlikely(!inuse && n->nr_partial > s->min_partial))
  2137. goto slab_empty;
  2138. /*
  2139. * Objects left in the slab. If it was not on the partial list before
  2140. * then add it.
  2141. */
  2142. if (unlikely(!prior)) {
  2143. remove_full(s, page);
  2144. add_partial(n, page, DEACTIVATE_TO_TAIL);
  2145. stat(s, FREE_ADD_PARTIAL);
  2146. }
  2147. }
  2148. spin_unlock_irqrestore(&n->list_lock, flags);
  2149. return;
  2150. slab_empty:
  2151. if (prior) {
  2152. /*
  2153. * Slab on the partial list.
  2154. */
  2155. remove_partial(n, page);
  2156. stat(s, FREE_REMOVE_PARTIAL);
  2157. } else
  2158. /* Slab must be on the full list */
  2159. remove_full(s, page);
  2160. spin_unlock_irqrestore(&n->list_lock, flags);
  2161. stat(s, FREE_SLAB);
  2162. discard_slab(s, page);
  2163. }
  2164. /*
  2165. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  2166. * can perform fastpath freeing without additional function calls.
  2167. *
  2168. * The fastpath is only possible if we are freeing to the current cpu slab
  2169. * of this processor. This typically the case if we have just allocated
  2170. * the item before.
  2171. *
  2172. * If fastpath is not possible then fall back to __slab_free where we deal
  2173. * with all sorts of special processing.
  2174. */
  2175. static __always_inline void slab_free(struct kmem_cache *s,
  2176. struct page *page, void *x, unsigned long addr)
  2177. {
  2178. void **object = (void *)x;
  2179. struct kmem_cache_cpu *c;
  2180. unsigned long tid;
  2181. slab_free_hook(s, x);
  2182. redo:
  2183. /*
  2184. * Determine the currently cpus per cpu slab.
  2185. * The cpu may change afterward. However that does not matter since
  2186. * data is retrieved via this pointer. If we are on the same cpu
  2187. * during the cmpxchg then the free will succedd.
  2188. */
  2189. c = __this_cpu_ptr(s->cpu_slab);
  2190. tid = c->tid;
  2191. barrier();
  2192. if (likely(page == c->page)) {
  2193. set_freepointer(s, object, c->freelist);
  2194. if (unlikely(!this_cpu_cmpxchg_double(
  2195. s->cpu_slab->freelist, s->cpu_slab->tid,
  2196. c->freelist, tid,
  2197. object, next_tid(tid)))) {
  2198. note_cmpxchg_failure("slab_free", s, tid);
  2199. goto redo;
  2200. }
  2201. stat(s, FREE_FASTPATH);
  2202. } else
  2203. __slab_free(s, page, x, addr);
  2204. }
  2205. void kmem_cache_free(struct kmem_cache *s, void *x)
  2206. {
  2207. struct page *page;
  2208. page = virt_to_head_page(x);
  2209. slab_free(s, page, x, _RET_IP_);
  2210. trace_kmem_cache_free(_RET_IP_, x);
  2211. }
  2212. EXPORT_SYMBOL(kmem_cache_free);
  2213. /*
  2214. * Object placement in a slab is made very easy because we always start at
  2215. * offset 0. If we tune the size of the object to the alignment then we can
  2216. * get the required alignment by putting one properly sized object after
  2217. * another.
  2218. *
  2219. * Notice that the allocation order determines the sizes of the per cpu
  2220. * caches. Each processor has always one slab available for allocations.
  2221. * Increasing the allocation order reduces the number of times that slabs
  2222. * must be moved on and off the partial lists and is therefore a factor in
  2223. * locking overhead.
  2224. */
  2225. /*
  2226. * Mininum / Maximum order of slab pages. This influences locking overhead
  2227. * and slab fragmentation. A higher order reduces the number of partial slabs
  2228. * and increases the number of allocations possible without having to
  2229. * take the list_lock.
  2230. */
  2231. static int slub_min_order;
  2232. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  2233. static int slub_min_objects;
  2234. /*
  2235. * Merge control. If this is set then no merging of slab caches will occur.
  2236. * (Could be removed. This was introduced to pacify the merge skeptics.)
  2237. */
  2238. static int slub_nomerge;
  2239. /*
  2240. * Calculate the order of allocation given an slab object size.
  2241. *
  2242. * The order of allocation has significant impact on performance and other
  2243. * system components. Generally order 0 allocations should be preferred since
  2244. * order 0 does not cause fragmentation in the page allocator. Larger objects
  2245. * be problematic to put into order 0 slabs because there may be too much
  2246. * unused space left. We go to a higher order if more than 1/16th of the slab
  2247. * would be wasted.
  2248. *
  2249. * In order to reach satisfactory performance we must ensure that a minimum
  2250. * number of objects is in one slab. Otherwise we may generate too much
  2251. * activity on the partial lists which requires taking the list_lock. This is
  2252. * less a concern for large slabs though which are rarely used.
  2253. *
  2254. * slub_max_order specifies the order where we begin to stop considering the
  2255. * number of objects in a slab as critical. If we reach slub_max_order then
  2256. * we try to keep the page order as low as possible. So we accept more waste
  2257. * of space in favor of a small page order.
  2258. *
  2259. * Higher order allocations also allow the placement of more objects in a
  2260. * slab and thereby reduce object handling overhead. If the user has
  2261. * requested a higher mininum order then we start with that one instead of
  2262. * the smallest order which will fit the object.
  2263. */
  2264. static inline int slab_order(int size, int min_objects,
  2265. int max_order, int fract_leftover, int reserved)
  2266. {
  2267. int order;
  2268. int rem;
  2269. int min_order = slub_min_order;
  2270. if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
  2271. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  2272. for (order = max(min_order,
  2273. fls(min_objects * size - 1) - PAGE_SHIFT);
  2274. order <= max_order; order++) {
  2275. unsigned long slab_size = PAGE_SIZE << order;
  2276. if (slab_size < min_objects * size + reserved)
  2277. continue;
  2278. rem = (slab_size - reserved) % size;
  2279. if (rem <= slab_size / fract_leftover)
  2280. break;
  2281. }
  2282. return order;
  2283. }
  2284. static inline int calculate_order(int size, int reserved)
  2285. {
  2286. int order;
  2287. int min_objects;
  2288. int fraction;
  2289. int max_objects;
  2290. /*
  2291. * Attempt to find best configuration for a slab. This
  2292. * works by first attempting to generate a layout with
  2293. * the best configuration and backing off gradually.
  2294. *
  2295. * First we reduce the acceptable waste in a slab. Then
  2296. * we reduce the minimum objects required in a slab.
  2297. */
  2298. min_objects = slub_min_objects;
  2299. if (!min_objects)
  2300. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  2301. max_objects = order_objects(slub_max_order, size, reserved);
  2302. min_objects = min(min_objects, max_objects);
  2303. while (min_objects > 1) {
  2304. fraction = 16;
  2305. while (fraction >= 4) {
  2306. order = slab_order(size, min_objects,
  2307. slub_max_order, fraction, reserved);
  2308. if (order <= slub_max_order)
  2309. return order;
  2310. fraction /= 2;
  2311. }
  2312. min_objects--;
  2313. }
  2314. /*
  2315. * We were unable to place multiple objects in a slab. Now
  2316. * lets see if we can place a single object there.
  2317. */
  2318. order = slab_order(size, 1, slub_max_order, 1, reserved);
  2319. if (order <= slub_max_order)
  2320. return order;
  2321. /*
  2322. * Doh this slab cannot be placed using slub_max_order.
  2323. */
  2324. order = slab_order(size, 1, MAX_ORDER, 1, reserved);
  2325. if (order < MAX_ORDER)
  2326. return order;
  2327. return -ENOSYS;
  2328. }
  2329. /*
  2330. * Figure out what the alignment of the objects will be.
  2331. */
  2332. static unsigned long calculate_alignment(unsigned long flags,
  2333. unsigned long align, unsigned long size)
  2334. {
  2335. /*
  2336. * If the user wants hardware cache aligned objects then follow that
  2337. * suggestion if the object is sufficiently large.
  2338. *
  2339. * The hardware cache alignment cannot override the specified
  2340. * alignment though. If that is greater then use it.
  2341. */
  2342. if (flags & SLAB_HWCACHE_ALIGN) {
  2343. unsigned long ralign = cache_line_size();
  2344. while (size <= ralign / 2)
  2345. ralign /= 2;
  2346. align = max(align, ralign);
  2347. }
  2348. if (align < ARCH_SLAB_MINALIGN)
  2349. align = ARCH_SLAB_MINALIGN;
  2350. return ALIGN(align, sizeof(void *));
  2351. }
  2352. static void
  2353. init_kmem_cache_node(struct kmem_cache_node *n)
  2354. {
  2355. n->nr_partial = 0;
  2356. spin_lock_init(&n->list_lock);
  2357. INIT_LIST_HEAD(&n->partial);
  2358. #ifdef CONFIG_SLUB_DEBUG
  2359. atomic_long_set(&n->nr_slabs, 0);
  2360. atomic_long_set(&n->total_objects, 0);
  2361. INIT_LIST_HEAD(&n->full);
  2362. #endif
  2363. }
  2364. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  2365. {
  2366. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  2367. SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
  2368. /*
  2369. * Must align to double word boundary for the double cmpxchg
  2370. * instructions to work; see __pcpu_double_call_return_bool().
  2371. */
  2372. s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
  2373. 2 * sizeof(void *));
  2374. if (!s->cpu_slab)
  2375. return 0;
  2376. init_kmem_cache_cpus(s);
  2377. return 1;
  2378. }
  2379. static struct kmem_cache *kmem_cache_node;
  2380. /*
  2381. * No kmalloc_node yet so do it by hand. We know that this is the first
  2382. * slab on the node for this slabcache. There are no concurrent accesses
  2383. * possible.
  2384. *
  2385. * Note that this function only works on the kmalloc_node_cache
  2386. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  2387. * memory on a fresh node that has no slab structures yet.
  2388. */
  2389. static void early_kmem_cache_node_alloc(int node)
  2390. {
  2391. struct page *page;
  2392. struct kmem_cache_node *n;
  2393. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  2394. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  2395. BUG_ON(!page);
  2396. if (page_to_nid(page) != node) {
  2397. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  2398. "node %d\n", node);
  2399. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  2400. "in order to be able to continue\n");
  2401. }
  2402. n = page->freelist;
  2403. BUG_ON(!n);
  2404. page->freelist = get_freepointer(kmem_cache_node, n);
  2405. page->inuse = 1;
  2406. page->frozen = 0;
  2407. kmem_cache_node->node[node] = n;
  2408. #ifdef CONFIG_SLUB_DEBUG
  2409. init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
  2410. init_tracking(kmem_cache_node, n);
  2411. #endif
  2412. init_kmem_cache_node(n);
  2413. inc_slabs_node(kmem_cache_node, node, page->objects);
  2414. add_partial(n, page, DEACTIVATE_TO_HEAD);
  2415. }
  2416. static void free_kmem_cache_nodes(struct kmem_cache *s)
  2417. {
  2418. int node;
  2419. for_each_node_state(node, N_NORMAL_MEMORY) {
  2420. struct kmem_cache_node *n = s->node[node];
  2421. if (n)
  2422. kmem_cache_free(kmem_cache_node, n);
  2423. s->node[node] = NULL;
  2424. }
  2425. }
  2426. static int init_kmem_cache_nodes(struct kmem_cache *s)
  2427. {
  2428. int node;
  2429. for_each_node_state(node, N_NORMAL_MEMORY) {
  2430. struct kmem_cache_node *n;
  2431. if (slab_state == DOWN) {
  2432. early_kmem_cache_node_alloc(node);
  2433. continue;
  2434. }
  2435. n = kmem_cache_alloc_node(kmem_cache_node,
  2436. GFP_KERNEL, node);
  2437. if (!n) {
  2438. free_kmem_cache_nodes(s);
  2439. return 0;
  2440. }
  2441. s->node[node] = n;
  2442. init_kmem_cache_node(n);
  2443. }
  2444. return 1;
  2445. }
  2446. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  2447. {
  2448. if (min < MIN_PARTIAL)
  2449. min = MIN_PARTIAL;
  2450. else if (min > MAX_PARTIAL)
  2451. min = MAX_PARTIAL;
  2452. s->min_partial = min;
  2453. }
  2454. /*
  2455. * calculate_sizes() determines the order and the distribution of data within
  2456. * a slab object.
  2457. */
  2458. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  2459. {
  2460. unsigned long flags = s->flags;
  2461. unsigned long size = s->object_size;
  2462. unsigned long align = s->align;
  2463. int order;
  2464. /*
  2465. * Round up object size to the next word boundary. We can only
  2466. * place the free pointer at word boundaries and this determines
  2467. * the possible location of the free pointer.
  2468. */
  2469. size = ALIGN(size, sizeof(void *));
  2470. #ifdef CONFIG_SLUB_DEBUG
  2471. /*
  2472. * Determine if we can poison the object itself. If the user of
  2473. * the slab may touch the object after free or before allocation
  2474. * then we should never poison the object itself.
  2475. */
  2476. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  2477. !s->ctor)
  2478. s->flags |= __OBJECT_POISON;
  2479. else
  2480. s->flags &= ~__OBJECT_POISON;
  2481. /*
  2482. * If we are Redzoning then check if there is some space between the
  2483. * end of the object and the free pointer. If not then add an
  2484. * additional word to have some bytes to store Redzone information.
  2485. */
  2486. if ((flags & SLAB_RED_ZONE) && size == s->object_size)
  2487. size += sizeof(void *);
  2488. #endif
  2489. /*
  2490. * With that we have determined the number of bytes in actual use
  2491. * by the object. This is the potential offset to the free pointer.
  2492. */
  2493. s->inuse = size;
  2494. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  2495. s->ctor)) {
  2496. /*
  2497. * Relocate free pointer after the object if it is not
  2498. * permitted to overwrite the first word of the object on
  2499. * kmem_cache_free.
  2500. *
  2501. * This is the case if we do RCU, have a constructor or
  2502. * destructor or are poisoning the objects.
  2503. */
  2504. s->offset = size;
  2505. size += sizeof(void *);
  2506. }
  2507. #ifdef CONFIG_SLUB_DEBUG
  2508. if (flags & SLAB_STORE_USER)
  2509. /*
  2510. * Need to store information about allocs and frees after
  2511. * the object.
  2512. */
  2513. size += 2 * sizeof(struct track);
  2514. if (flags & SLAB_RED_ZONE)
  2515. /*
  2516. * Add some empty padding so that we can catch
  2517. * overwrites from earlier objects rather than let
  2518. * tracking information or the free pointer be
  2519. * corrupted if a user writes before the start
  2520. * of the object.
  2521. */
  2522. size += sizeof(void *);
  2523. #endif
  2524. /*
  2525. * Determine the alignment based on various parameters that the
  2526. * user specified and the dynamic determination of cache line size
  2527. * on bootup.
  2528. */
  2529. align = calculate_alignment(flags, align, s->object_size);
  2530. s->align = align;
  2531. /*
  2532. * SLUB stores one object immediately after another beginning from
  2533. * offset 0. In order to align the objects we have to simply size
  2534. * each object to conform to the alignment.
  2535. */
  2536. size = ALIGN(size, align);
  2537. s->size = size;
  2538. if (forced_order >= 0)
  2539. order = forced_order;
  2540. else
  2541. order = calculate_order(size, s->reserved);
  2542. if (order < 0)
  2543. return 0;
  2544. s->allocflags = 0;
  2545. if (order)
  2546. s->allocflags |= __GFP_COMP;
  2547. if (s->flags & SLAB_CACHE_DMA)
  2548. s->allocflags |= SLUB_DMA;
  2549. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  2550. s->allocflags |= __GFP_RECLAIMABLE;
  2551. /*
  2552. * Determine the number of objects per slab
  2553. */
  2554. s->oo = oo_make(order, size, s->reserved);
  2555. s->min = oo_make(get_order(size), size, s->reserved);
  2556. if (oo_objects(s->oo) > oo_objects(s->max))
  2557. s->max = s->oo;
  2558. return !!oo_objects(s->oo);
  2559. }
  2560. static int kmem_cache_open(struct kmem_cache *s,
  2561. const char *name, size_t size,
  2562. size_t align, unsigned long flags,
  2563. void (*ctor)(void *))
  2564. {
  2565. memset(s, 0, kmem_size);
  2566. s->name = name;
  2567. s->ctor = ctor;
  2568. s->object_size = size;
  2569. s->align = align;
  2570. s->flags = kmem_cache_flags(size, flags, name, ctor);
  2571. s->reserved = 0;
  2572. if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
  2573. s->reserved = sizeof(struct rcu_head);
  2574. if (!calculate_sizes(s, -1))
  2575. goto error;
  2576. if (disable_higher_order_debug) {
  2577. /*
  2578. * Disable debugging flags that store metadata if the min slab
  2579. * order increased.
  2580. */
  2581. if (get_order(s->size) > get_order(s->object_size)) {
  2582. s->flags &= ~DEBUG_METADATA_FLAGS;
  2583. s->offset = 0;
  2584. if (!calculate_sizes(s, -1))
  2585. goto error;
  2586. }
  2587. }
  2588. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  2589. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  2590. if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
  2591. /* Enable fast mode */
  2592. s->flags |= __CMPXCHG_DOUBLE;
  2593. #endif
  2594. /*
  2595. * The larger the object size is, the more pages we want on the partial
  2596. * list to avoid pounding the page allocator excessively.
  2597. */
  2598. set_min_partial(s, ilog2(s->size) / 2);
  2599. /*
  2600. * cpu_partial determined the maximum number of objects kept in the
  2601. * per cpu partial lists of a processor.
  2602. *
  2603. * Per cpu partial lists mainly contain slabs that just have one
  2604. * object freed. If they are used for allocation then they can be
  2605. * filled up again with minimal effort. The slab will never hit the
  2606. * per node partial lists and therefore no locking will be required.
  2607. *
  2608. * This setting also determines
  2609. *
  2610. * A) The number of objects from per cpu partial slabs dumped to the
  2611. * per node list when we reach the limit.
  2612. * B) The number of objects in cpu partial slabs to extract from the
  2613. * per node list when we run out of per cpu objects. We only fetch 50%
  2614. * to keep some capacity around for frees.
  2615. */
  2616. if (kmem_cache_debug(s))
  2617. s->cpu_partial = 0;
  2618. else if (s->size >= PAGE_SIZE)
  2619. s->cpu_partial = 2;
  2620. else if (s->size >= 1024)
  2621. s->cpu_partial = 6;
  2622. else if (s->size >= 256)
  2623. s->cpu_partial = 13;
  2624. else
  2625. s->cpu_partial = 30;
  2626. s->refcount = 1;
  2627. #ifdef CONFIG_NUMA
  2628. s->remote_node_defrag_ratio = 1000;
  2629. #endif
  2630. if (!init_kmem_cache_nodes(s))
  2631. goto error;
  2632. if (alloc_kmem_cache_cpus(s))
  2633. return 1;
  2634. free_kmem_cache_nodes(s);
  2635. error:
  2636. if (flags & SLAB_PANIC)
  2637. panic("Cannot create slab %s size=%lu realsize=%u "
  2638. "order=%u offset=%u flags=%lx\n",
  2639. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  2640. s->offset, flags);
  2641. return 0;
  2642. }
  2643. /*
  2644. * Determine the size of a slab object
  2645. */
  2646. unsigned int kmem_cache_size(struct kmem_cache *s)
  2647. {
  2648. return s->object_size;
  2649. }
  2650. EXPORT_SYMBOL(kmem_cache_size);
  2651. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2652. const char *text)
  2653. {
  2654. #ifdef CONFIG_SLUB_DEBUG
  2655. void *addr = page_address(page);
  2656. void *p;
  2657. unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
  2658. sizeof(long), GFP_ATOMIC);
  2659. if (!map)
  2660. return;
  2661. slab_err(s, page, "%s", text);
  2662. slab_lock(page);
  2663. get_map(s, page, map);
  2664. for_each_object(p, s, addr, page->objects) {
  2665. if (!test_bit(slab_index(p, s, addr), map)) {
  2666. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2667. p, p - addr);
  2668. print_tracking(s, p);
  2669. }
  2670. }
  2671. slab_unlock(page);
  2672. kfree(map);
  2673. #endif
  2674. }
  2675. /*
  2676. * Attempt to free all partial slabs on a node.
  2677. * This is called from kmem_cache_close(). We must be the last thread
  2678. * using the cache and therefore we do not need to lock anymore.
  2679. */
  2680. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2681. {
  2682. struct page *page, *h;
  2683. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2684. if (!page->inuse) {
  2685. remove_partial(n, page);
  2686. discard_slab(s, page);
  2687. } else {
  2688. list_slab_objects(s, page,
  2689. "Objects remaining on kmem_cache_close()");
  2690. }
  2691. }
  2692. }
  2693. /*
  2694. * Release all resources used by a slab cache.
  2695. */
  2696. static inline int kmem_cache_close(struct kmem_cache *s)
  2697. {
  2698. int node;
  2699. flush_all(s);
  2700. free_percpu(s->cpu_slab);
  2701. /* Attempt to free all objects */
  2702. for_each_node_state(node, N_NORMAL_MEMORY) {
  2703. struct kmem_cache_node *n = get_node(s, node);
  2704. free_partial(s, n);
  2705. if (n->nr_partial || slabs_node(s, node))
  2706. return 1;
  2707. }
  2708. free_kmem_cache_nodes(s);
  2709. return 0;
  2710. }
  2711. /*
  2712. * Close a cache and release the kmem_cache structure
  2713. * (must be used for caches created using kmem_cache_create)
  2714. */
  2715. void kmem_cache_destroy(struct kmem_cache *s)
  2716. {
  2717. mutex_lock(&slab_mutex);
  2718. s->refcount--;
  2719. if (!s->refcount) {
  2720. list_del(&s->list);
  2721. mutex_unlock(&slab_mutex);
  2722. if (kmem_cache_close(s)) {
  2723. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2724. "still has objects.\n", s->name, __func__);
  2725. dump_stack();
  2726. }
  2727. if (s->flags & SLAB_DESTROY_BY_RCU)
  2728. rcu_barrier();
  2729. sysfs_slab_remove(s);
  2730. } else
  2731. mutex_unlock(&slab_mutex);
  2732. }
  2733. EXPORT_SYMBOL(kmem_cache_destroy);
  2734. /********************************************************************
  2735. * Kmalloc subsystem
  2736. *******************************************************************/
  2737. struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
  2738. EXPORT_SYMBOL(kmalloc_caches);
  2739. static struct kmem_cache *kmem_cache;
  2740. #ifdef CONFIG_ZONE_DMA
  2741. static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
  2742. #endif
  2743. static int __init setup_slub_min_order(char *str)
  2744. {
  2745. get_option(&str, &slub_min_order);
  2746. return 1;
  2747. }
  2748. __setup("slub_min_order=", setup_slub_min_order);
  2749. static int __init setup_slub_max_order(char *str)
  2750. {
  2751. get_option(&str, &slub_max_order);
  2752. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2753. return 1;
  2754. }
  2755. __setup("slub_max_order=", setup_slub_max_order);
  2756. static int __init setup_slub_min_objects(char *str)
  2757. {
  2758. get_option(&str, &slub_min_objects);
  2759. return 1;
  2760. }
  2761. __setup("slub_min_objects=", setup_slub_min_objects);
  2762. static int __init setup_slub_nomerge(char *str)
  2763. {
  2764. slub_nomerge = 1;
  2765. return 1;
  2766. }
  2767. __setup("slub_nomerge", setup_slub_nomerge);
  2768. static struct kmem_cache *__init create_kmalloc_cache(const char *name,
  2769. int size, unsigned int flags)
  2770. {
  2771. struct kmem_cache *s;
  2772. s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2773. /*
  2774. * This function is called with IRQs disabled during early-boot on
  2775. * single CPU so there's no need to take slab_mutex here.
  2776. */
  2777. if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
  2778. flags, NULL))
  2779. goto panic;
  2780. list_add(&s->list, &slab_caches);
  2781. return s;
  2782. panic:
  2783. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2784. return NULL;
  2785. }
  2786. /*
  2787. * Conversion table for small slabs sizes / 8 to the index in the
  2788. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2789. * of two cache sizes there. The size of larger slabs can be determined using
  2790. * fls.
  2791. */
  2792. static s8 size_index[24] = {
  2793. 3, /* 8 */
  2794. 4, /* 16 */
  2795. 5, /* 24 */
  2796. 5, /* 32 */
  2797. 6, /* 40 */
  2798. 6, /* 48 */
  2799. 6, /* 56 */
  2800. 6, /* 64 */
  2801. 1, /* 72 */
  2802. 1, /* 80 */
  2803. 1, /* 88 */
  2804. 1, /* 96 */
  2805. 7, /* 104 */
  2806. 7, /* 112 */
  2807. 7, /* 120 */
  2808. 7, /* 128 */
  2809. 2, /* 136 */
  2810. 2, /* 144 */
  2811. 2, /* 152 */
  2812. 2, /* 160 */
  2813. 2, /* 168 */
  2814. 2, /* 176 */
  2815. 2, /* 184 */
  2816. 2 /* 192 */
  2817. };
  2818. static inline int size_index_elem(size_t bytes)
  2819. {
  2820. return (bytes - 1) / 8;
  2821. }
  2822. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2823. {
  2824. int index;
  2825. if (size <= 192) {
  2826. if (!size)
  2827. return ZERO_SIZE_PTR;
  2828. index = size_index[size_index_elem(size)];
  2829. } else
  2830. index = fls(size - 1);
  2831. #ifdef CONFIG_ZONE_DMA
  2832. if (unlikely((flags & SLUB_DMA)))
  2833. return kmalloc_dma_caches[index];
  2834. #endif
  2835. return kmalloc_caches[index];
  2836. }
  2837. void *__kmalloc(size_t size, gfp_t flags)
  2838. {
  2839. struct kmem_cache *s;
  2840. void *ret;
  2841. if (unlikely(size > SLUB_MAX_SIZE))
  2842. return kmalloc_large(size, flags);
  2843. s = get_slab(size, flags);
  2844. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2845. return s;
  2846. ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
  2847. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2848. return ret;
  2849. }
  2850. EXPORT_SYMBOL(__kmalloc);
  2851. #ifdef CONFIG_NUMA
  2852. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2853. {
  2854. struct page *page;
  2855. void *ptr = NULL;
  2856. flags |= __GFP_COMP | __GFP_NOTRACK;
  2857. page = alloc_pages_node(node, flags, get_order(size));
  2858. if (page)
  2859. ptr = page_address(page);
  2860. kmemleak_alloc(ptr, size, 1, flags);
  2861. return ptr;
  2862. }
  2863. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2864. {
  2865. struct kmem_cache *s;
  2866. void *ret;
  2867. if (unlikely(size > SLUB_MAX_SIZE)) {
  2868. ret = kmalloc_large_node(size, flags, node);
  2869. trace_kmalloc_node(_RET_IP_, ret,
  2870. size, PAGE_SIZE << get_order(size),
  2871. flags, node);
  2872. return ret;
  2873. }
  2874. s = get_slab(size, flags);
  2875. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2876. return s;
  2877. ret = slab_alloc(s, flags, node, _RET_IP_);
  2878. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2879. return ret;
  2880. }
  2881. EXPORT_SYMBOL(__kmalloc_node);
  2882. #endif
  2883. size_t ksize(const void *object)
  2884. {
  2885. struct page *page;
  2886. if (unlikely(object == ZERO_SIZE_PTR))
  2887. return 0;
  2888. page = virt_to_head_page(object);
  2889. if (unlikely(!PageSlab(page))) {
  2890. WARN_ON(!PageCompound(page));
  2891. return PAGE_SIZE << compound_order(page);
  2892. }
  2893. return slab_ksize(page->slab);
  2894. }
  2895. EXPORT_SYMBOL(ksize);
  2896. #ifdef CONFIG_SLUB_DEBUG
  2897. bool verify_mem_not_deleted(const void *x)
  2898. {
  2899. struct page *page;
  2900. void *object = (void *)x;
  2901. unsigned long flags;
  2902. bool rv;
  2903. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2904. return false;
  2905. local_irq_save(flags);
  2906. page = virt_to_head_page(x);
  2907. if (unlikely(!PageSlab(page))) {
  2908. /* maybe it was from stack? */
  2909. rv = true;
  2910. goto out_unlock;
  2911. }
  2912. slab_lock(page);
  2913. if (on_freelist(page->slab, page, object)) {
  2914. object_err(page->slab, page, object, "Object is on free-list");
  2915. rv = false;
  2916. } else {
  2917. rv = true;
  2918. }
  2919. slab_unlock(page);
  2920. out_unlock:
  2921. local_irq_restore(flags);
  2922. return rv;
  2923. }
  2924. EXPORT_SYMBOL(verify_mem_not_deleted);
  2925. #endif
  2926. void kfree(const void *x)
  2927. {
  2928. struct page *page;
  2929. void *object = (void *)x;
  2930. trace_kfree(_RET_IP_, x);
  2931. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2932. return;
  2933. page = virt_to_head_page(x);
  2934. if (unlikely(!PageSlab(page))) {
  2935. BUG_ON(!PageCompound(page));
  2936. kmemleak_free(x);
  2937. put_page(page);
  2938. return;
  2939. }
  2940. slab_free(page->slab, page, object, _RET_IP_);
  2941. }
  2942. EXPORT_SYMBOL(kfree);
  2943. /*
  2944. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2945. * the remaining slabs by the number of items in use. The slabs with the
  2946. * most items in use come first. New allocations will then fill those up
  2947. * and thus they can be removed from the partial lists.
  2948. *
  2949. * The slabs with the least items are placed last. This results in them
  2950. * being allocated from last increasing the chance that the last objects
  2951. * are freed in them.
  2952. */
  2953. int kmem_cache_shrink(struct kmem_cache *s)
  2954. {
  2955. int node;
  2956. int i;
  2957. struct kmem_cache_node *n;
  2958. struct page *page;
  2959. struct page *t;
  2960. int objects = oo_objects(s->max);
  2961. struct list_head *slabs_by_inuse =
  2962. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2963. unsigned long flags;
  2964. if (!slabs_by_inuse)
  2965. return -ENOMEM;
  2966. flush_all(s);
  2967. for_each_node_state(node, N_NORMAL_MEMORY) {
  2968. n = get_node(s, node);
  2969. if (!n->nr_partial)
  2970. continue;
  2971. for (i = 0; i < objects; i++)
  2972. INIT_LIST_HEAD(slabs_by_inuse + i);
  2973. spin_lock_irqsave(&n->list_lock, flags);
  2974. /*
  2975. * Build lists indexed by the items in use in each slab.
  2976. *
  2977. * Note that concurrent frees may occur while we hold the
  2978. * list_lock. page->inuse here is the upper limit.
  2979. */
  2980. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2981. list_move(&page->lru, slabs_by_inuse + page->inuse);
  2982. if (!page->inuse)
  2983. n->nr_partial--;
  2984. }
  2985. /*
  2986. * Rebuild the partial list with the slabs filled up most
  2987. * first and the least used slabs at the end.
  2988. */
  2989. for (i = objects - 1; i > 0; i--)
  2990. list_splice(slabs_by_inuse + i, n->partial.prev);
  2991. spin_unlock_irqrestore(&n->list_lock, flags);
  2992. /* Release empty slabs */
  2993. list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
  2994. discard_slab(s, page);
  2995. }
  2996. kfree(slabs_by_inuse);
  2997. return 0;
  2998. }
  2999. EXPORT_SYMBOL(kmem_cache_shrink);
  3000. #if defined(CONFIG_MEMORY_HOTPLUG)
  3001. static int slab_mem_going_offline_callback(void *arg)
  3002. {
  3003. struct kmem_cache *s;
  3004. mutex_lock(&slab_mutex);
  3005. list_for_each_entry(s, &slab_caches, list)
  3006. kmem_cache_shrink(s);
  3007. mutex_unlock(&slab_mutex);
  3008. return 0;
  3009. }
  3010. static void slab_mem_offline_callback(void *arg)
  3011. {
  3012. struct kmem_cache_node *n;
  3013. struct kmem_cache *s;
  3014. struct memory_notify *marg = arg;
  3015. int offline_node;
  3016. offline_node = marg->status_change_nid;
  3017. /*
  3018. * If the node still has available memory. we need kmem_cache_node
  3019. * for it yet.
  3020. */
  3021. if (offline_node < 0)
  3022. return;
  3023. mutex_lock(&slab_mutex);
  3024. list_for_each_entry(s, &slab_caches, list) {
  3025. n = get_node(s, offline_node);
  3026. if (n) {
  3027. /*
  3028. * if n->nr_slabs > 0, slabs still exist on the node
  3029. * that is going down. We were unable to free them,
  3030. * and offline_pages() function shouldn't call this
  3031. * callback. So, we must fail.
  3032. */
  3033. BUG_ON(slabs_node(s, offline_node));
  3034. s->node[offline_node] = NULL;
  3035. kmem_cache_free(kmem_cache_node, n);
  3036. }
  3037. }
  3038. mutex_unlock(&slab_mutex);
  3039. }
  3040. static int slab_mem_going_online_callback(void *arg)
  3041. {
  3042. struct kmem_cache_node *n;
  3043. struct kmem_cache *s;
  3044. struct memory_notify *marg = arg;
  3045. int nid = marg->status_change_nid;
  3046. int ret = 0;
  3047. /*
  3048. * If the node's memory is already available, then kmem_cache_node is
  3049. * already created. Nothing to do.
  3050. */
  3051. if (nid < 0)
  3052. return 0;
  3053. /*
  3054. * We are bringing a node online. No memory is available yet. We must
  3055. * allocate a kmem_cache_node structure in order to bring the node
  3056. * online.
  3057. */
  3058. mutex_lock(&slab_mutex);
  3059. list_for_each_entry(s, &slab_caches, list) {
  3060. /*
  3061. * XXX: kmem_cache_alloc_node will fallback to other nodes
  3062. * since memory is not yet available from the node that
  3063. * is brought up.
  3064. */
  3065. n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
  3066. if (!n) {
  3067. ret = -ENOMEM;
  3068. goto out;
  3069. }
  3070. init_kmem_cache_node(n);
  3071. s->node[nid] = n;
  3072. }
  3073. out:
  3074. mutex_unlock(&slab_mutex);
  3075. return ret;
  3076. }
  3077. static int slab_memory_callback(struct notifier_block *self,
  3078. unsigned long action, void *arg)
  3079. {
  3080. int ret = 0;
  3081. switch (action) {
  3082. case MEM_GOING_ONLINE:
  3083. ret = slab_mem_going_online_callback(arg);
  3084. break;
  3085. case MEM_GOING_OFFLINE:
  3086. ret = slab_mem_going_offline_callback(arg);
  3087. break;
  3088. case MEM_OFFLINE:
  3089. case MEM_CANCEL_ONLINE:
  3090. slab_mem_offline_callback(arg);
  3091. break;
  3092. case MEM_ONLINE:
  3093. case MEM_CANCEL_OFFLINE:
  3094. break;
  3095. }
  3096. if (ret)
  3097. ret = notifier_from_errno(ret);
  3098. else
  3099. ret = NOTIFY_OK;
  3100. return ret;
  3101. }
  3102. #endif /* CONFIG_MEMORY_HOTPLUG */
  3103. /********************************************************************
  3104. * Basic setup of slabs
  3105. *******************************************************************/
  3106. /*
  3107. * Used for early kmem_cache structures that were allocated using
  3108. * the page allocator
  3109. */
  3110. static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
  3111. {
  3112. int node;
  3113. list_add(&s->list, &slab_caches);
  3114. s->refcount = -1;
  3115. for_each_node_state(node, N_NORMAL_MEMORY) {
  3116. struct kmem_cache_node *n = get_node(s, node);
  3117. struct page *p;
  3118. if (n) {
  3119. list_for_each_entry(p, &n->partial, lru)
  3120. p->slab = s;
  3121. #ifdef CONFIG_SLUB_DEBUG
  3122. list_for_each_entry(p, &n->full, lru)
  3123. p->slab = s;
  3124. #endif
  3125. }
  3126. }
  3127. }
  3128. void __init kmem_cache_init(void)
  3129. {
  3130. int i;
  3131. int caches = 0;
  3132. struct kmem_cache *temp_kmem_cache;
  3133. int order;
  3134. struct kmem_cache *temp_kmem_cache_node;
  3135. unsigned long kmalloc_size;
  3136. if (debug_guardpage_minorder())
  3137. slub_max_order = 0;
  3138. kmem_size = offsetof(struct kmem_cache, node) +
  3139. nr_node_ids * sizeof(struct kmem_cache_node *);
  3140. /* Allocate two kmem_caches from the page allocator */
  3141. kmalloc_size = ALIGN(kmem_size, cache_line_size());
  3142. order = get_order(2 * kmalloc_size);
  3143. kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
  3144. /*
  3145. * Must first have the slab cache available for the allocations of the
  3146. * struct kmem_cache_node's. There is special bootstrap code in
  3147. * kmem_cache_open for slab_state == DOWN.
  3148. */
  3149. kmem_cache_node = (void *)kmem_cache + kmalloc_size;
  3150. kmem_cache_open(kmem_cache_node, "kmem_cache_node",
  3151. sizeof(struct kmem_cache_node),
  3152. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  3153. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  3154. /* Able to allocate the per node structures */
  3155. slab_state = PARTIAL;
  3156. temp_kmem_cache = kmem_cache;
  3157. kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
  3158. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  3159. kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  3160. memcpy(kmem_cache, temp_kmem_cache, kmem_size);
  3161. /*
  3162. * Allocate kmem_cache_node properly from the kmem_cache slab.
  3163. * kmem_cache_node is separately allocated so no need to
  3164. * update any list pointers.
  3165. */
  3166. temp_kmem_cache_node = kmem_cache_node;
  3167. kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  3168. memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
  3169. kmem_cache_bootstrap_fixup(kmem_cache_node);
  3170. caches++;
  3171. kmem_cache_bootstrap_fixup(kmem_cache);
  3172. caches++;
  3173. /* Free temporary boot structure */
  3174. free_pages((unsigned long)temp_kmem_cache, order);
  3175. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  3176. /*
  3177. * Patch up the size_index table if we have strange large alignment
  3178. * requirements for the kmalloc array. This is only the case for
  3179. * MIPS it seems. The standard arches will not generate any code here.
  3180. *
  3181. * Largest permitted alignment is 256 bytes due to the way we
  3182. * handle the index determination for the smaller caches.
  3183. *
  3184. * Make sure that nothing crazy happens if someone starts tinkering
  3185. * around with ARCH_KMALLOC_MINALIGN
  3186. */
  3187. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  3188. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  3189. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
  3190. int elem = size_index_elem(i);
  3191. if (elem >= ARRAY_SIZE(size_index))
  3192. break;
  3193. size_index[elem] = KMALLOC_SHIFT_LOW;
  3194. }
  3195. if (KMALLOC_MIN_SIZE == 64) {
  3196. /*
  3197. * The 96 byte size cache is not used if the alignment
  3198. * is 64 byte.
  3199. */
  3200. for (i = 64 + 8; i <= 96; i += 8)
  3201. size_index[size_index_elem(i)] = 7;
  3202. } else if (KMALLOC_MIN_SIZE == 128) {
  3203. /*
  3204. * The 192 byte sized cache is not used if the alignment
  3205. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  3206. * instead.
  3207. */
  3208. for (i = 128 + 8; i <= 192; i += 8)
  3209. size_index[size_index_elem(i)] = 8;
  3210. }
  3211. /* Caches that are not of the two-to-the-power-of size */
  3212. if (KMALLOC_MIN_SIZE <= 32) {
  3213. kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
  3214. caches++;
  3215. }
  3216. if (KMALLOC_MIN_SIZE <= 64) {
  3217. kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
  3218. caches++;
  3219. }
  3220. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  3221. kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
  3222. caches++;
  3223. }
  3224. slab_state = UP;
  3225. /* Provide the correct kmalloc names now that the caches are up */
  3226. if (KMALLOC_MIN_SIZE <= 32) {
  3227. kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
  3228. BUG_ON(!kmalloc_caches[1]->name);
  3229. }
  3230. if (KMALLOC_MIN_SIZE <= 64) {
  3231. kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
  3232. BUG_ON(!kmalloc_caches[2]->name);
  3233. }
  3234. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  3235. char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
  3236. BUG_ON(!s);
  3237. kmalloc_caches[i]->name = s;
  3238. }
  3239. #ifdef CONFIG_SMP
  3240. register_cpu_notifier(&slab_notifier);
  3241. #endif
  3242. #ifdef CONFIG_ZONE_DMA
  3243. for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
  3244. struct kmem_cache *s = kmalloc_caches[i];
  3245. if (s && s->size) {
  3246. char *name = kasprintf(GFP_NOWAIT,
  3247. "dma-kmalloc-%d", s->object_size);
  3248. BUG_ON(!name);
  3249. kmalloc_dma_caches[i] = create_kmalloc_cache(name,
  3250. s->object_size, SLAB_CACHE_DMA);
  3251. }
  3252. }
  3253. #endif
  3254. printk(KERN_INFO
  3255. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  3256. " CPUs=%d, Nodes=%d\n",
  3257. caches, cache_line_size(),
  3258. slub_min_order, slub_max_order, slub_min_objects,
  3259. nr_cpu_ids, nr_node_ids);
  3260. }
  3261. void __init kmem_cache_init_late(void)
  3262. {
  3263. }
  3264. /*
  3265. * Find a mergeable slab cache
  3266. */
  3267. static int slab_unmergeable(struct kmem_cache *s)
  3268. {
  3269. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  3270. return 1;
  3271. if (s->ctor)
  3272. return 1;
  3273. /*
  3274. * We may have set a slab to be unmergeable during bootstrap.
  3275. */
  3276. if (s->refcount < 0)
  3277. return 1;
  3278. return 0;
  3279. }
  3280. static struct kmem_cache *find_mergeable(size_t size,
  3281. size_t align, unsigned long flags, const char *name,
  3282. void (*ctor)(void *))
  3283. {
  3284. struct kmem_cache *s;
  3285. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  3286. return NULL;
  3287. if (ctor)
  3288. return NULL;
  3289. size = ALIGN(size, sizeof(void *));
  3290. align = calculate_alignment(flags, align, size);
  3291. size = ALIGN(size, align);
  3292. flags = kmem_cache_flags(size, flags, name, NULL);
  3293. list_for_each_entry(s, &slab_caches, list) {
  3294. if (slab_unmergeable(s))
  3295. continue;
  3296. if (size > s->size)
  3297. continue;
  3298. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  3299. continue;
  3300. /*
  3301. * Check if alignment is compatible.
  3302. * Courtesy of Adrian Drzewiecki
  3303. */
  3304. if ((s->size & ~(align - 1)) != s->size)
  3305. continue;
  3306. if (s->size - size >= sizeof(void *))
  3307. continue;
  3308. return s;
  3309. }
  3310. return NULL;
  3311. }
  3312. struct kmem_cache *__kmem_cache_create(const char *name, size_t size,
  3313. size_t align, unsigned long flags, void (*ctor)(void *))
  3314. {
  3315. struct kmem_cache *s;
  3316. char *n;
  3317. s = find_mergeable(size, align, flags, name, ctor);
  3318. if (s) {
  3319. s->refcount++;
  3320. /*
  3321. * Adjust the object sizes so that we clear
  3322. * the complete object on kzalloc.
  3323. */
  3324. s->object_size = max(s->object_size, (int)size);
  3325. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  3326. if (sysfs_slab_alias(s, name)) {
  3327. s->refcount--;
  3328. return NULL;
  3329. }
  3330. return s;
  3331. }
  3332. n = kstrdup(name, GFP_KERNEL);
  3333. if (!n)
  3334. return NULL;
  3335. s = kmalloc(kmem_size, GFP_KERNEL);
  3336. if (s) {
  3337. if (kmem_cache_open(s, n,
  3338. size, align, flags, ctor)) {
  3339. int r;
  3340. list_add(&s->list, &slab_caches);
  3341. mutex_unlock(&slab_mutex);
  3342. r = sysfs_slab_add(s);
  3343. mutex_lock(&slab_mutex);
  3344. if (!r)
  3345. return s;
  3346. list_del(&s->list);
  3347. kmem_cache_close(s);
  3348. }
  3349. kfree(s);
  3350. }
  3351. kfree(n);
  3352. return NULL;
  3353. }
  3354. #ifdef CONFIG_SMP
  3355. /*
  3356. * Use the cpu notifier to insure that the cpu slabs are flushed when
  3357. * necessary.
  3358. */
  3359. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  3360. unsigned long action, void *hcpu)
  3361. {
  3362. long cpu = (long)hcpu;
  3363. struct kmem_cache *s;
  3364. unsigned long flags;
  3365. switch (action) {
  3366. case CPU_UP_CANCELED:
  3367. case CPU_UP_CANCELED_FROZEN:
  3368. case CPU_DEAD:
  3369. case CPU_DEAD_FROZEN:
  3370. mutex_lock(&slab_mutex);
  3371. list_for_each_entry(s, &slab_caches, list) {
  3372. local_irq_save(flags);
  3373. __flush_cpu_slab(s, cpu);
  3374. local_irq_restore(flags);
  3375. }
  3376. mutex_unlock(&slab_mutex);
  3377. break;
  3378. default:
  3379. break;
  3380. }
  3381. return NOTIFY_OK;
  3382. }
  3383. static struct notifier_block __cpuinitdata slab_notifier = {
  3384. .notifier_call = slab_cpuup_callback
  3385. };
  3386. #endif
  3387. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  3388. {
  3389. struct kmem_cache *s;
  3390. void *ret;
  3391. if (unlikely(size > SLUB_MAX_SIZE))
  3392. return kmalloc_large(size, gfpflags);
  3393. s = get_slab(size, gfpflags);
  3394. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3395. return s;
  3396. ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
  3397. /* Honor the call site pointer we received. */
  3398. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  3399. return ret;
  3400. }
  3401. #ifdef CONFIG_NUMA
  3402. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  3403. int node, unsigned long caller)
  3404. {
  3405. struct kmem_cache *s;
  3406. void *ret;
  3407. if (unlikely(size > SLUB_MAX_SIZE)) {
  3408. ret = kmalloc_large_node(size, gfpflags, node);
  3409. trace_kmalloc_node(caller, ret,
  3410. size, PAGE_SIZE << get_order(size),
  3411. gfpflags, node);
  3412. return ret;
  3413. }
  3414. s = get_slab(size, gfpflags);
  3415. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3416. return s;
  3417. ret = slab_alloc(s, gfpflags, node, caller);
  3418. /* Honor the call site pointer we received. */
  3419. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  3420. return ret;
  3421. }
  3422. #endif
  3423. #ifdef CONFIG_SYSFS
  3424. static int count_inuse(struct page *page)
  3425. {
  3426. return page->inuse;
  3427. }
  3428. static int count_total(struct page *page)
  3429. {
  3430. return page->objects;
  3431. }
  3432. #endif
  3433. #ifdef CONFIG_SLUB_DEBUG
  3434. static int validate_slab(struct kmem_cache *s, struct page *page,
  3435. unsigned long *map)
  3436. {
  3437. void *p;
  3438. void *addr = page_address(page);
  3439. if (!check_slab(s, page) ||
  3440. !on_freelist(s, page, NULL))
  3441. return 0;
  3442. /* Now we know that a valid freelist exists */
  3443. bitmap_zero(map, page->objects);
  3444. get_map(s, page, map);
  3445. for_each_object(p, s, addr, page->objects) {
  3446. if (test_bit(slab_index(p, s, addr), map))
  3447. if (!check_object(s, page, p, SLUB_RED_INACTIVE))
  3448. return 0;
  3449. }
  3450. for_each_object(p, s, addr, page->objects)
  3451. if (!test_bit(slab_index(p, s, addr), map))
  3452. if (!check_object(s, page, p, SLUB_RED_ACTIVE))
  3453. return 0;
  3454. return 1;
  3455. }
  3456. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  3457. unsigned long *map)
  3458. {
  3459. slab_lock(page);
  3460. validate_slab(s, page, map);
  3461. slab_unlock(page);
  3462. }
  3463. static int validate_slab_node(struct kmem_cache *s,
  3464. struct kmem_cache_node *n, unsigned long *map)
  3465. {
  3466. unsigned long count = 0;
  3467. struct page *page;
  3468. unsigned long flags;
  3469. spin_lock_irqsave(&n->list_lock, flags);
  3470. list_for_each_entry(page, &n->partial, lru) {
  3471. validate_slab_slab(s, page, map);
  3472. count++;
  3473. }
  3474. if (count != n->nr_partial)
  3475. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  3476. "counter=%ld\n", s->name, count, n->nr_partial);
  3477. if (!(s->flags & SLAB_STORE_USER))
  3478. goto out;
  3479. list_for_each_entry(page, &n->full, lru) {
  3480. validate_slab_slab(s, page, map);
  3481. count++;
  3482. }
  3483. if (count != atomic_long_read(&n->nr_slabs))
  3484. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  3485. "counter=%ld\n", s->name, count,
  3486. atomic_long_read(&n->nr_slabs));
  3487. out:
  3488. spin_unlock_irqrestore(&n->list_lock, flags);
  3489. return count;
  3490. }
  3491. static long validate_slab_cache(struct kmem_cache *s)
  3492. {
  3493. int node;
  3494. unsigned long count = 0;
  3495. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3496. sizeof(unsigned long), GFP_KERNEL);
  3497. if (!map)
  3498. return -ENOMEM;
  3499. flush_all(s);
  3500. for_each_node_state(node, N_NORMAL_MEMORY) {
  3501. struct kmem_cache_node *n = get_node(s, node);
  3502. count += validate_slab_node(s, n, map);
  3503. }
  3504. kfree(map);
  3505. return count;
  3506. }
  3507. /*
  3508. * Generate lists of code addresses where slabcache objects are allocated
  3509. * and freed.
  3510. */
  3511. struct location {
  3512. unsigned long count;
  3513. unsigned long addr;
  3514. long long sum_time;
  3515. long min_time;
  3516. long max_time;
  3517. long min_pid;
  3518. long max_pid;
  3519. DECLARE_BITMAP(cpus, NR_CPUS);
  3520. nodemask_t nodes;
  3521. };
  3522. struct loc_track {
  3523. unsigned long max;
  3524. unsigned long count;
  3525. struct location *loc;
  3526. };
  3527. static void free_loc_track(struct loc_track *t)
  3528. {
  3529. if (t->max)
  3530. free_pages((unsigned long)t->loc,
  3531. get_order(sizeof(struct location) * t->max));
  3532. }
  3533. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3534. {
  3535. struct location *l;
  3536. int order;
  3537. order = get_order(sizeof(struct location) * max);
  3538. l = (void *)__get_free_pages(flags, order);
  3539. if (!l)
  3540. return 0;
  3541. if (t->count) {
  3542. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3543. free_loc_track(t);
  3544. }
  3545. t->max = max;
  3546. t->loc = l;
  3547. return 1;
  3548. }
  3549. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3550. const struct track *track)
  3551. {
  3552. long start, end, pos;
  3553. struct location *l;
  3554. unsigned long caddr;
  3555. unsigned long age = jiffies - track->when;
  3556. start = -1;
  3557. end = t->count;
  3558. for ( ; ; ) {
  3559. pos = start + (end - start + 1) / 2;
  3560. /*
  3561. * There is nothing at "end". If we end up there
  3562. * we need to add something to before end.
  3563. */
  3564. if (pos == end)
  3565. break;
  3566. caddr = t->loc[pos].addr;
  3567. if (track->addr == caddr) {
  3568. l = &t->loc[pos];
  3569. l->count++;
  3570. if (track->when) {
  3571. l->sum_time += age;
  3572. if (age < l->min_time)
  3573. l->min_time = age;
  3574. if (age > l->max_time)
  3575. l->max_time = age;
  3576. if (track->pid < l->min_pid)
  3577. l->min_pid = track->pid;
  3578. if (track->pid > l->max_pid)
  3579. l->max_pid = track->pid;
  3580. cpumask_set_cpu(track->cpu,
  3581. to_cpumask(l->cpus));
  3582. }
  3583. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3584. return 1;
  3585. }
  3586. if (track->addr < caddr)
  3587. end = pos;
  3588. else
  3589. start = pos;
  3590. }
  3591. /*
  3592. * Not found. Insert new tracking element.
  3593. */
  3594. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3595. return 0;
  3596. l = t->loc + pos;
  3597. if (pos < t->count)
  3598. memmove(l + 1, l,
  3599. (t->count - pos) * sizeof(struct location));
  3600. t->count++;
  3601. l->count = 1;
  3602. l->addr = track->addr;
  3603. l->sum_time = age;
  3604. l->min_time = age;
  3605. l->max_time = age;
  3606. l->min_pid = track->pid;
  3607. l->max_pid = track->pid;
  3608. cpumask_clear(to_cpumask(l->cpus));
  3609. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3610. nodes_clear(l->nodes);
  3611. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3612. return 1;
  3613. }
  3614. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3615. struct page *page, enum track_item alloc,
  3616. unsigned long *map)
  3617. {
  3618. void *addr = page_address(page);
  3619. void *p;
  3620. bitmap_zero(map, page->objects);
  3621. get_map(s, page, map);
  3622. for_each_object(p, s, addr, page->objects)
  3623. if (!test_bit(slab_index(p, s, addr), map))
  3624. add_location(t, s, get_track(s, p, alloc));
  3625. }
  3626. static int list_locations(struct kmem_cache *s, char *buf,
  3627. enum track_item alloc)
  3628. {
  3629. int len = 0;
  3630. unsigned long i;
  3631. struct loc_track t = { 0, 0, NULL };
  3632. int node;
  3633. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3634. sizeof(unsigned long), GFP_KERNEL);
  3635. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3636. GFP_TEMPORARY)) {
  3637. kfree(map);
  3638. return sprintf(buf, "Out of memory\n");
  3639. }
  3640. /* Push back cpu slabs */
  3641. flush_all(s);
  3642. for_each_node_state(node, N_NORMAL_MEMORY) {
  3643. struct kmem_cache_node *n = get_node(s, node);
  3644. unsigned long flags;
  3645. struct page *page;
  3646. if (!atomic_long_read(&n->nr_slabs))
  3647. continue;
  3648. spin_lock_irqsave(&n->list_lock, flags);
  3649. list_for_each_entry(page, &n->partial, lru)
  3650. process_slab(&t, s, page, alloc, map);
  3651. list_for_each_entry(page, &n->full, lru)
  3652. process_slab(&t, s, page, alloc, map);
  3653. spin_unlock_irqrestore(&n->list_lock, flags);
  3654. }
  3655. for (i = 0; i < t.count; i++) {
  3656. struct location *l = &t.loc[i];
  3657. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3658. break;
  3659. len += sprintf(buf + len, "%7ld ", l->count);
  3660. if (l->addr)
  3661. len += sprintf(buf + len, "%pS", (void *)l->addr);
  3662. else
  3663. len += sprintf(buf + len, "<not-available>");
  3664. if (l->sum_time != l->min_time) {
  3665. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3666. l->min_time,
  3667. (long)div_u64(l->sum_time, l->count),
  3668. l->max_time);
  3669. } else
  3670. len += sprintf(buf + len, " age=%ld",
  3671. l->min_time);
  3672. if (l->min_pid != l->max_pid)
  3673. len += sprintf(buf + len, " pid=%ld-%ld",
  3674. l->min_pid, l->max_pid);
  3675. else
  3676. len += sprintf(buf + len, " pid=%ld",
  3677. l->min_pid);
  3678. if (num_online_cpus() > 1 &&
  3679. !cpumask_empty(to_cpumask(l->cpus)) &&
  3680. len < PAGE_SIZE - 60) {
  3681. len += sprintf(buf + len, " cpus=");
  3682. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3683. to_cpumask(l->cpus));
  3684. }
  3685. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3686. len < PAGE_SIZE - 60) {
  3687. len += sprintf(buf + len, " nodes=");
  3688. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3689. l->nodes);
  3690. }
  3691. len += sprintf(buf + len, "\n");
  3692. }
  3693. free_loc_track(&t);
  3694. kfree(map);
  3695. if (!t.count)
  3696. len += sprintf(buf, "No data\n");
  3697. return len;
  3698. }
  3699. #endif
  3700. #ifdef SLUB_RESILIENCY_TEST
  3701. static void resiliency_test(void)
  3702. {
  3703. u8 *p;
  3704. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
  3705. printk(KERN_ERR "SLUB resiliency testing\n");
  3706. printk(KERN_ERR "-----------------------\n");
  3707. printk(KERN_ERR "A. Corruption after allocation\n");
  3708. p = kzalloc(16, GFP_KERNEL);
  3709. p[16] = 0x12;
  3710. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  3711. " 0x12->0x%p\n\n", p + 16);
  3712. validate_slab_cache(kmalloc_caches[4]);
  3713. /* Hmmm... The next two are dangerous */
  3714. p = kzalloc(32, GFP_KERNEL);
  3715. p[32 + sizeof(void *)] = 0x34;
  3716. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  3717. " 0x34 -> -0x%p\n", p);
  3718. printk(KERN_ERR
  3719. "If allocated object is overwritten then not detectable\n\n");
  3720. validate_slab_cache(kmalloc_caches[5]);
  3721. p = kzalloc(64, GFP_KERNEL);
  3722. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3723. *p = 0x56;
  3724. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3725. p);
  3726. printk(KERN_ERR
  3727. "If allocated object is overwritten then not detectable\n\n");
  3728. validate_slab_cache(kmalloc_caches[6]);
  3729. printk(KERN_ERR "\nB. Corruption after free\n");
  3730. p = kzalloc(128, GFP_KERNEL);
  3731. kfree(p);
  3732. *p = 0x78;
  3733. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3734. validate_slab_cache(kmalloc_caches[7]);
  3735. p = kzalloc(256, GFP_KERNEL);
  3736. kfree(p);
  3737. p[50] = 0x9a;
  3738. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  3739. p);
  3740. validate_slab_cache(kmalloc_caches[8]);
  3741. p = kzalloc(512, GFP_KERNEL);
  3742. kfree(p);
  3743. p[512] = 0xab;
  3744. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3745. validate_slab_cache(kmalloc_caches[9]);
  3746. }
  3747. #else
  3748. #ifdef CONFIG_SYSFS
  3749. static void resiliency_test(void) {};
  3750. #endif
  3751. #endif
  3752. #ifdef CONFIG_SYSFS
  3753. enum slab_stat_type {
  3754. SL_ALL, /* All slabs */
  3755. SL_PARTIAL, /* Only partially allocated slabs */
  3756. SL_CPU, /* Only slabs used for cpu caches */
  3757. SL_OBJECTS, /* Determine allocated objects not slabs */
  3758. SL_TOTAL /* Determine object capacity not slabs */
  3759. };
  3760. #define SO_ALL (1 << SL_ALL)
  3761. #define SO_PARTIAL (1 << SL_PARTIAL)
  3762. #define SO_CPU (1 << SL_CPU)
  3763. #define SO_OBJECTS (1 << SL_OBJECTS)
  3764. #define SO_TOTAL (1 << SL_TOTAL)
  3765. static ssize_t show_slab_objects(struct kmem_cache *s,
  3766. char *buf, unsigned long flags)
  3767. {
  3768. unsigned long total = 0;
  3769. int node;
  3770. int x;
  3771. unsigned long *nodes;
  3772. unsigned long *per_cpu;
  3773. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3774. if (!nodes)
  3775. return -ENOMEM;
  3776. per_cpu = nodes + nr_node_ids;
  3777. if (flags & SO_CPU) {
  3778. int cpu;
  3779. for_each_possible_cpu(cpu) {
  3780. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  3781. int node;
  3782. struct page *page;
  3783. page = ACCESS_ONCE(c->page);
  3784. if (!page)
  3785. continue;
  3786. node = page_to_nid(page);
  3787. if (flags & SO_TOTAL)
  3788. x = page->objects;
  3789. else if (flags & SO_OBJECTS)
  3790. x = page->inuse;
  3791. else
  3792. x = 1;
  3793. total += x;
  3794. nodes[node] += x;
  3795. page = ACCESS_ONCE(c->partial);
  3796. if (page) {
  3797. x = page->pobjects;
  3798. total += x;
  3799. nodes[node] += x;
  3800. }
  3801. per_cpu[node]++;
  3802. }
  3803. }
  3804. lock_memory_hotplug();
  3805. #ifdef CONFIG_SLUB_DEBUG
  3806. if (flags & SO_ALL) {
  3807. for_each_node_state(node, N_NORMAL_MEMORY) {
  3808. struct kmem_cache_node *n = get_node(s, node);
  3809. if (flags & SO_TOTAL)
  3810. x = atomic_long_read(&n->total_objects);
  3811. else if (flags & SO_OBJECTS)
  3812. x = atomic_long_read(&n->total_objects) -
  3813. count_partial(n, count_free);
  3814. else
  3815. x = atomic_long_read(&n->nr_slabs);
  3816. total += x;
  3817. nodes[node] += x;
  3818. }
  3819. } else
  3820. #endif
  3821. if (flags & SO_PARTIAL) {
  3822. for_each_node_state(node, N_NORMAL_MEMORY) {
  3823. struct kmem_cache_node *n = get_node(s, node);
  3824. if (flags & SO_TOTAL)
  3825. x = count_partial(n, count_total);
  3826. else if (flags & SO_OBJECTS)
  3827. x = count_partial(n, count_inuse);
  3828. else
  3829. x = n->nr_partial;
  3830. total += x;
  3831. nodes[node] += x;
  3832. }
  3833. }
  3834. x = sprintf(buf, "%lu", total);
  3835. #ifdef CONFIG_NUMA
  3836. for_each_node_state(node, N_NORMAL_MEMORY)
  3837. if (nodes[node])
  3838. x += sprintf(buf + x, " N%d=%lu",
  3839. node, nodes[node]);
  3840. #endif
  3841. unlock_memory_hotplug();
  3842. kfree(nodes);
  3843. return x + sprintf(buf + x, "\n");
  3844. }
  3845. #ifdef CONFIG_SLUB_DEBUG
  3846. static int any_slab_objects(struct kmem_cache *s)
  3847. {
  3848. int node;
  3849. for_each_online_node(node) {
  3850. struct kmem_cache_node *n = get_node(s, node);
  3851. if (!n)
  3852. continue;
  3853. if (atomic_long_read(&n->total_objects))
  3854. return 1;
  3855. }
  3856. return 0;
  3857. }
  3858. #endif
  3859. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3860. #define to_slab(n) container_of(n, struct kmem_cache, kobj)
  3861. struct slab_attribute {
  3862. struct attribute attr;
  3863. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3864. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3865. };
  3866. #define SLAB_ATTR_RO(_name) \
  3867. static struct slab_attribute _name##_attr = \
  3868. __ATTR(_name, 0400, _name##_show, NULL)
  3869. #define SLAB_ATTR(_name) \
  3870. static struct slab_attribute _name##_attr = \
  3871. __ATTR(_name, 0600, _name##_show, _name##_store)
  3872. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3873. {
  3874. return sprintf(buf, "%d\n", s->size);
  3875. }
  3876. SLAB_ATTR_RO(slab_size);
  3877. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3878. {
  3879. return sprintf(buf, "%d\n", s->align);
  3880. }
  3881. SLAB_ATTR_RO(align);
  3882. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3883. {
  3884. return sprintf(buf, "%d\n", s->object_size);
  3885. }
  3886. SLAB_ATTR_RO(object_size);
  3887. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3888. {
  3889. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3890. }
  3891. SLAB_ATTR_RO(objs_per_slab);
  3892. static ssize_t order_store(struct kmem_cache *s,
  3893. const char *buf, size_t length)
  3894. {
  3895. unsigned long order;
  3896. int err;
  3897. err = strict_strtoul(buf, 10, &order);
  3898. if (err)
  3899. return err;
  3900. if (order > slub_max_order || order < slub_min_order)
  3901. return -EINVAL;
  3902. calculate_sizes(s, order);
  3903. return length;
  3904. }
  3905. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3906. {
  3907. return sprintf(buf, "%d\n", oo_order(s->oo));
  3908. }
  3909. SLAB_ATTR(order);
  3910. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3911. {
  3912. return sprintf(buf, "%lu\n", s->min_partial);
  3913. }
  3914. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3915. size_t length)
  3916. {
  3917. unsigned long min;
  3918. int err;
  3919. err = strict_strtoul(buf, 10, &min);
  3920. if (err)
  3921. return err;
  3922. set_min_partial(s, min);
  3923. return length;
  3924. }
  3925. SLAB_ATTR(min_partial);
  3926. static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
  3927. {
  3928. return sprintf(buf, "%u\n", s->cpu_partial);
  3929. }
  3930. static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
  3931. size_t length)
  3932. {
  3933. unsigned long objects;
  3934. int err;
  3935. err = strict_strtoul(buf, 10, &objects);
  3936. if (err)
  3937. return err;
  3938. if (objects && kmem_cache_debug(s))
  3939. return -EINVAL;
  3940. s->cpu_partial = objects;
  3941. flush_all(s);
  3942. return length;
  3943. }
  3944. SLAB_ATTR(cpu_partial);
  3945. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3946. {
  3947. if (!s->ctor)
  3948. return 0;
  3949. return sprintf(buf, "%pS\n", s->ctor);
  3950. }
  3951. SLAB_ATTR_RO(ctor);
  3952. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3953. {
  3954. return sprintf(buf, "%d\n", s->refcount - 1);
  3955. }
  3956. SLAB_ATTR_RO(aliases);
  3957. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3958. {
  3959. return show_slab_objects(s, buf, SO_PARTIAL);
  3960. }
  3961. SLAB_ATTR_RO(partial);
  3962. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3963. {
  3964. return show_slab_objects(s, buf, SO_CPU);
  3965. }
  3966. SLAB_ATTR_RO(cpu_slabs);
  3967. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3968. {
  3969. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3970. }
  3971. SLAB_ATTR_RO(objects);
  3972. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3973. {
  3974. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3975. }
  3976. SLAB_ATTR_RO(objects_partial);
  3977. static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
  3978. {
  3979. int objects = 0;
  3980. int pages = 0;
  3981. int cpu;
  3982. int len;
  3983. for_each_online_cpu(cpu) {
  3984. struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
  3985. if (page) {
  3986. pages += page->pages;
  3987. objects += page->pobjects;
  3988. }
  3989. }
  3990. len = sprintf(buf, "%d(%d)", objects, pages);
  3991. #ifdef CONFIG_SMP
  3992. for_each_online_cpu(cpu) {
  3993. struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
  3994. if (page && len < PAGE_SIZE - 20)
  3995. len += sprintf(buf + len, " C%d=%d(%d)", cpu,
  3996. page->pobjects, page->pages);
  3997. }
  3998. #endif
  3999. return len + sprintf(buf + len, "\n");
  4000. }
  4001. SLAB_ATTR_RO(slabs_cpu_partial);
  4002. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  4003. {
  4004. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  4005. }
  4006. static ssize_t reclaim_account_store(struct kmem_cache *s,
  4007. const char *buf, size_t length)
  4008. {
  4009. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  4010. if (buf[0] == '1')
  4011. s->flags |= SLAB_RECLAIM_ACCOUNT;
  4012. return length;
  4013. }
  4014. SLAB_ATTR(reclaim_account);
  4015. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  4016. {
  4017. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  4018. }
  4019. SLAB_ATTR_RO(hwcache_align);
  4020. #ifdef CONFIG_ZONE_DMA
  4021. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  4022. {
  4023. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  4024. }
  4025. SLAB_ATTR_RO(cache_dma);
  4026. #endif
  4027. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  4028. {
  4029. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  4030. }
  4031. SLAB_ATTR_RO(destroy_by_rcu);
  4032. static ssize_t reserved_show(struct kmem_cache *s, char *buf)
  4033. {
  4034. return sprintf(buf, "%d\n", s->reserved);
  4035. }
  4036. SLAB_ATTR_RO(reserved);
  4037. #ifdef CONFIG_SLUB_DEBUG
  4038. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  4039. {
  4040. return show_slab_objects(s, buf, SO_ALL);
  4041. }
  4042. SLAB_ATTR_RO(slabs);
  4043. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  4044. {
  4045. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  4046. }
  4047. SLAB_ATTR_RO(total_objects);
  4048. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  4049. {
  4050. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  4051. }
  4052. static ssize_t sanity_checks_store(struct kmem_cache *s,
  4053. const char *buf, size_t length)
  4054. {
  4055. s->flags &= ~SLAB_DEBUG_FREE;
  4056. if (buf[0] == '1') {
  4057. s->flags &= ~__CMPXCHG_DOUBLE;
  4058. s->flags |= SLAB_DEBUG_FREE;
  4059. }
  4060. return length;
  4061. }
  4062. SLAB_ATTR(sanity_checks);
  4063. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  4064. {
  4065. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  4066. }
  4067. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  4068. size_t length)
  4069. {
  4070. s->flags &= ~SLAB_TRACE;
  4071. if (buf[0] == '1') {
  4072. s->flags &= ~__CMPXCHG_DOUBLE;
  4073. s->flags |= SLAB_TRACE;
  4074. }
  4075. return length;
  4076. }
  4077. SLAB_ATTR(trace);
  4078. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  4079. {
  4080. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  4081. }
  4082. static ssize_t red_zone_store(struct kmem_cache *s,
  4083. const char *buf, size_t length)
  4084. {
  4085. if (any_slab_objects(s))
  4086. return -EBUSY;
  4087. s->flags &= ~SLAB_RED_ZONE;
  4088. if (buf[0] == '1') {
  4089. s->flags &= ~__CMPXCHG_DOUBLE;
  4090. s->flags |= SLAB_RED_ZONE;
  4091. }
  4092. calculate_sizes(s, -1);
  4093. return length;
  4094. }
  4095. SLAB_ATTR(red_zone);
  4096. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  4097. {
  4098. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  4099. }
  4100. static ssize_t poison_store(struct kmem_cache *s,
  4101. const char *buf, size_t length)
  4102. {
  4103. if (any_slab_objects(s))
  4104. return -EBUSY;
  4105. s->flags &= ~SLAB_POISON;
  4106. if (buf[0] == '1') {
  4107. s->flags &= ~__CMPXCHG_DOUBLE;
  4108. s->flags |= SLAB_POISON;
  4109. }
  4110. calculate_sizes(s, -1);
  4111. return length;
  4112. }
  4113. SLAB_ATTR(poison);
  4114. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  4115. {
  4116. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  4117. }
  4118. static ssize_t store_user_store(struct kmem_cache *s,
  4119. const char *buf, size_t length)
  4120. {
  4121. if (any_slab_objects(s))
  4122. return -EBUSY;
  4123. s->flags &= ~SLAB_STORE_USER;
  4124. if (buf[0] == '1') {
  4125. s->flags &= ~__CMPXCHG_DOUBLE;
  4126. s->flags |= SLAB_STORE_USER;
  4127. }
  4128. calculate_sizes(s, -1);
  4129. return length;
  4130. }
  4131. SLAB_ATTR(store_user);
  4132. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  4133. {
  4134. return 0;
  4135. }
  4136. static ssize_t validate_store(struct kmem_cache *s,
  4137. const char *buf, size_t length)
  4138. {
  4139. int ret = -EINVAL;
  4140. if (buf[0] == '1') {
  4141. ret = validate_slab_cache(s);
  4142. if (ret >= 0)
  4143. ret = length;
  4144. }
  4145. return ret;
  4146. }
  4147. SLAB_ATTR(validate);
  4148. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  4149. {
  4150. if (!(s->flags & SLAB_STORE_USER))
  4151. return -ENOSYS;
  4152. return list_locations(s, buf, TRACK_ALLOC);
  4153. }
  4154. SLAB_ATTR_RO(alloc_calls);
  4155. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  4156. {
  4157. if (!(s->flags & SLAB_STORE_USER))
  4158. return -ENOSYS;
  4159. return list_locations(s, buf, TRACK_FREE);
  4160. }
  4161. SLAB_ATTR_RO(free_calls);
  4162. #endif /* CONFIG_SLUB_DEBUG */
  4163. #ifdef CONFIG_FAILSLAB
  4164. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  4165. {
  4166. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  4167. }
  4168. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  4169. size_t length)
  4170. {
  4171. s->flags &= ~SLAB_FAILSLAB;
  4172. if (buf[0] == '1')
  4173. s->flags |= SLAB_FAILSLAB;
  4174. return length;
  4175. }
  4176. SLAB_ATTR(failslab);
  4177. #endif
  4178. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  4179. {
  4180. return 0;
  4181. }
  4182. static ssize_t shrink_store(struct kmem_cache *s,
  4183. const char *buf, size_t length)
  4184. {
  4185. if (buf[0] == '1') {
  4186. int rc = kmem_cache_shrink(s);
  4187. if (rc)
  4188. return rc;
  4189. } else
  4190. return -EINVAL;
  4191. return length;
  4192. }
  4193. SLAB_ATTR(shrink);
  4194. #ifdef CONFIG_NUMA
  4195. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  4196. {
  4197. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  4198. }
  4199. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  4200. const char *buf, size_t length)
  4201. {
  4202. unsigned long ratio;
  4203. int err;
  4204. err = strict_strtoul(buf, 10, &ratio);
  4205. if (err)
  4206. return err;
  4207. if (ratio <= 100)
  4208. s->remote_node_defrag_ratio = ratio * 10;
  4209. return length;
  4210. }
  4211. SLAB_ATTR(remote_node_defrag_ratio);
  4212. #endif
  4213. #ifdef CONFIG_SLUB_STATS
  4214. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  4215. {
  4216. unsigned long sum = 0;
  4217. int cpu;
  4218. int len;
  4219. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  4220. if (!data)
  4221. return -ENOMEM;
  4222. for_each_online_cpu(cpu) {
  4223. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  4224. data[cpu] = x;
  4225. sum += x;
  4226. }
  4227. len = sprintf(buf, "%lu", sum);
  4228. #ifdef CONFIG_SMP
  4229. for_each_online_cpu(cpu) {
  4230. if (data[cpu] && len < PAGE_SIZE - 20)
  4231. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  4232. }
  4233. #endif
  4234. kfree(data);
  4235. return len + sprintf(buf + len, "\n");
  4236. }
  4237. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  4238. {
  4239. int cpu;
  4240. for_each_online_cpu(cpu)
  4241. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  4242. }
  4243. #define STAT_ATTR(si, text) \
  4244. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  4245. { \
  4246. return show_stat(s, buf, si); \
  4247. } \
  4248. static ssize_t text##_store(struct kmem_cache *s, \
  4249. const char *buf, size_t length) \
  4250. { \
  4251. if (buf[0] != '0') \
  4252. return -EINVAL; \
  4253. clear_stat(s, si); \
  4254. return length; \
  4255. } \
  4256. SLAB_ATTR(text); \
  4257. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  4258. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  4259. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  4260. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  4261. STAT_ATTR(FREE_FROZEN, free_frozen);
  4262. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  4263. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  4264. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  4265. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  4266. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  4267. STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
  4268. STAT_ATTR(FREE_SLAB, free_slab);
  4269. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  4270. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  4271. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  4272. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  4273. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  4274. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  4275. STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
  4276. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  4277. STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
  4278. STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
  4279. STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
  4280. STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
  4281. STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
  4282. STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
  4283. #endif
  4284. static struct attribute *slab_attrs[] = {
  4285. &slab_size_attr.attr,
  4286. &object_size_attr.attr,
  4287. &objs_per_slab_attr.attr,
  4288. &order_attr.attr,
  4289. &min_partial_attr.attr,
  4290. &cpu_partial_attr.attr,
  4291. &objects_attr.attr,
  4292. &objects_partial_attr.attr,
  4293. &partial_attr.attr,
  4294. &cpu_slabs_attr.attr,
  4295. &ctor_attr.attr,
  4296. &aliases_attr.attr,
  4297. &align_attr.attr,
  4298. &hwcache_align_attr.attr,
  4299. &reclaim_account_attr.attr,
  4300. &destroy_by_rcu_attr.attr,
  4301. &shrink_attr.attr,
  4302. &reserved_attr.attr,
  4303. &slabs_cpu_partial_attr.attr,
  4304. #ifdef CONFIG_SLUB_DEBUG
  4305. &total_objects_attr.attr,
  4306. &slabs_attr.attr,
  4307. &sanity_checks_attr.attr,
  4308. &trace_attr.attr,
  4309. &red_zone_attr.attr,
  4310. &poison_attr.attr,
  4311. &store_user_attr.attr,
  4312. &validate_attr.attr,
  4313. &alloc_calls_attr.attr,
  4314. &free_calls_attr.attr,
  4315. #endif
  4316. #ifdef CONFIG_ZONE_DMA
  4317. &cache_dma_attr.attr,
  4318. #endif
  4319. #ifdef CONFIG_NUMA
  4320. &remote_node_defrag_ratio_attr.attr,
  4321. #endif
  4322. #ifdef CONFIG_SLUB_STATS
  4323. &alloc_fastpath_attr.attr,
  4324. &alloc_slowpath_attr.attr,
  4325. &free_fastpath_attr.attr,
  4326. &free_slowpath_attr.attr,
  4327. &free_frozen_attr.attr,
  4328. &free_add_partial_attr.attr,
  4329. &free_remove_partial_attr.attr,
  4330. &alloc_from_partial_attr.attr,
  4331. &alloc_slab_attr.attr,
  4332. &alloc_refill_attr.attr,
  4333. &alloc_node_mismatch_attr.attr,
  4334. &free_slab_attr.attr,
  4335. &cpuslab_flush_attr.attr,
  4336. &deactivate_full_attr.attr,
  4337. &deactivate_empty_attr.attr,
  4338. &deactivate_to_head_attr.attr,
  4339. &deactivate_to_tail_attr.attr,
  4340. &deactivate_remote_frees_attr.attr,
  4341. &deactivate_bypass_attr.attr,
  4342. &order_fallback_attr.attr,
  4343. &cmpxchg_double_fail_attr.attr,
  4344. &cmpxchg_double_cpu_fail_attr.attr,
  4345. &cpu_partial_alloc_attr.attr,
  4346. &cpu_partial_free_attr.attr,
  4347. &cpu_partial_node_attr.attr,
  4348. &cpu_partial_drain_attr.attr,
  4349. #endif
  4350. #ifdef CONFIG_FAILSLAB
  4351. &failslab_attr.attr,
  4352. #endif
  4353. NULL
  4354. };
  4355. static struct attribute_group slab_attr_group = {
  4356. .attrs = slab_attrs,
  4357. };
  4358. static ssize_t slab_attr_show(struct kobject *kobj,
  4359. struct attribute *attr,
  4360. char *buf)
  4361. {
  4362. struct slab_attribute *attribute;
  4363. struct kmem_cache *s;
  4364. int err;
  4365. attribute = to_slab_attr(attr);
  4366. s = to_slab(kobj);
  4367. if (!attribute->show)
  4368. return -EIO;
  4369. err = attribute->show(s, buf);
  4370. return err;
  4371. }
  4372. static ssize_t slab_attr_store(struct kobject *kobj,
  4373. struct attribute *attr,
  4374. const char *buf, size_t len)
  4375. {
  4376. struct slab_attribute *attribute;
  4377. struct kmem_cache *s;
  4378. int err;
  4379. attribute = to_slab_attr(attr);
  4380. s = to_slab(kobj);
  4381. if (!attribute->store)
  4382. return -EIO;
  4383. err = attribute->store(s, buf, len);
  4384. return err;
  4385. }
  4386. static void kmem_cache_release(struct kobject *kobj)
  4387. {
  4388. struct kmem_cache *s = to_slab(kobj);
  4389. kfree(s->name);
  4390. kfree(s);
  4391. }
  4392. static const struct sysfs_ops slab_sysfs_ops = {
  4393. .show = slab_attr_show,
  4394. .store = slab_attr_store,
  4395. };
  4396. static struct kobj_type slab_ktype = {
  4397. .sysfs_ops = &slab_sysfs_ops,
  4398. .release = kmem_cache_release
  4399. };
  4400. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  4401. {
  4402. struct kobj_type *ktype = get_ktype(kobj);
  4403. if (ktype == &slab_ktype)
  4404. return 1;
  4405. return 0;
  4406. }
  4407. static const struct kset_uevent_ops slab_uevent_ops = {
  4408. .filter = uevent_filter,
  4409. };
  4410. static struct kset *slab_kset;
  4411. #define ID_STR_LENGTH 64
  4412. /* Create a unique string id for a slab cache:
  4413. *
  4414. * Format :[flags-]size
  4415. */
  4416. static char *create_unique_id(struct kmem_cache *s)
  4417. {
  4418. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  4419. char *p = name;
  4420. BUG_ON(!name);
  4421. *p++ = ':';
  4422. /*
  4423. * First flags affecting slabcache operations. We will only
  4424. * get here for aliasable slabs so we do not need to support
  4425. * too many flags. The flags here must cover all flags that
  4426. * are matched during merging to guarantee that the id is
  4427. * unique.
  4428. */
  4429. if (s->flags & SLAB_CACHE_DMA)
  4430. *p++ = 'd';
  4431. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  4432. *p++ = 'a';
  4433. if (s->flags & SLAB_DEBUG_FREE)
  4434. *p++ = 'F';
  4435. if (!(s->flags & SLAB_NOTRACK))
  4436. *p++ = 't';
  4437. if (p != name + 1)
  4438. *p++ = '-';
  4439. p += sprintf(p, "%07d", s->size);
  4440. BUG_ON(p > name + ID_STR_LENGTH - 1);
  4441. return name;
  4442. }
  4443. static int sysfs_slab_add(struct kmem_cache *s)
  4444. {
  4445. int err;
  4446. const char *name;
  4447. int unmergeable;
  4448. if (slab_state < FULL)
  4449. /* Defer until later */
  4450. return 0;
  4451. unmergeable = slab_unmergeable(s);
  4452. if (unmergeable) {
  4453. /*
  4454. * Slabcache can never be merged so we can use the name proper.
  4455. * This is typically the case for debug situations. In that
  4456. * case we can catch duplicate names easily.
  4457. */
  4458. sysfs_remove_link(&slab_kset->kobj, s->name);
  4459. name = s->name;
  4460. } else {
  4461. /*
  4462. * Create a unique name for the slab as a target
  4463. * for the symlinks.
  4464. */
  4465. name = create_unique_id(s);
  4466. }
  4467. s->kobj.kset = slab_kset;
  4468. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  4469. if (err) {
  4470. kobject_put(&s->kobj);
  4471. return err;
  4472. }
  4473. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  4474. if (err) {
  4475. kobject_del(&s->kobj);
  4476. kobject_put(&s->kobj);
  4477. return err;
  4478. }
  4479. kobject_uevent(&s->kobj, KOBJ_ADD);
  4480. if (!unmergeable) {
  4481. /* Setup first alias */
  4482. sysfs_slab_alias(s, s->name);
  4483. kfree(name);
  4484. }
  4485. return 0;
  4486. }
  4487. static void sysfs_slab_remove(struct kmem_cache *s)
  4488. {
  4489. if (slab_state < FULL)
  4490. /*
  4491. * Sysfs has not been setup yet so no need to remove the
  4492. * cache from sysfs.
  4493. */
  4494. return;
  4495. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  4496. kobject_del(&s->kobj);
  4497. kobject_put(&s->kobj);
  4498. }
  4499. /*
  4500. * Need to buffer aliases during bootup until sysfs becomes
  4501. * available lest we lose that information.
  4502. */
  4503. struct saved_alias {
  4504. struct kmem_cache *s;
  4505. const char *name;
  4506. struct saved_alias *next;
  4507. };
  4508. static struct saved_alias *alias_list;
  4509. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  4510. {
  4511. struct saved_alias *al;
  4512. if (slab_state == FULL) {
  4513. /*
  4514. * If we have a leftover link then remove it.
  4515. */
  4516. sysfs_remove_link(&slab_kset->kobj, name);
  4517. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  4518. }
  4519. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  4520. if (!al)
  4521. return -ENOMEM;
  4522. al->s = s;
  4523. al->name = name;
  4524. al->next = alias_list;
  4525. alias_list = al;
  4526. return 0;
  4527. }
  4528. static int __init slab_sysfs_init(void)
  4529. {
  4530. struct kmem_cache *s;
  4531. int err;
  4532. mutex_lock(&slab_mutex);
  4533. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  4534. if (!slab_kset) {
  4535. mutex_unlock(&slab_mutex);
  4536. printk(KERN_ERR "Cannot register slab subsystem.\n");
  4537. return -ENOSYS;
  4538. }
  4539. slab_state = FULL;
  4540. list_for_each_entry(s, &slab_caches, list) {
  4541. err = sysfs_slab_add(s);
  4542. if (err)
  4543. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  4544. " to sysfs\n", s->name);
  4545. }
  4546. while (alias_list) {
  4547. struct saved_alias *al = alias_list;
  4548. alias_list = alias_list->next;
  4549. err = sysfs_slab_alias(al->s, al->name);
  4550. if (err)
  4551. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  4552. " %s to sysfs\n", al->name);
  4553. kfree(al);
  4554. }
  4555. mutex_unlock(&slab_mutex);
  4556. resiliency_test();
  4557. return 0;
  4558. }
  4559. __initcall(slab_sysfs_init);
  4560. #endif /* CONFIG_SYSFS */
  4561. /*
  4562. * The /proc/slabinfo ABI
  4563. */
  4564. #ifdef CONFIG_SLABINFO
  4565. static void print_slabinfo_header(struct seq_file *m)
  4566. {
  4567. seq_puts(m, "slabinfo - version: 2.1\n");
  4568. seq_puts(m, "# name <active_objs> <num_objs> <object_size> "
  4569. "<objperslab> <pagesperslab>");
  4570. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  4571. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  4572. seq_putc(m, '\n');
  4573. }
  4574. static void *s_start(struct seq_file *m, loff_t *pos)
  4575. {
  4576. loff_t n = *pos;
  4577. mutex_lock(&slab_mutex);
  4578. if (!n)
  4579. print_slabinfo_header(m);
  4580. return seq_list_start(&slab_caches, *pos);
  4581. }
  4582. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  4583. {
  4584. return seq_list_next(p, &slab_caches, pos);
  4585. }
  4586. static void s_stop(struct seq_file *m, void *p)
  4587. {
  4588. mutex_unlock(&slab_mutex);
  4589. }
  4590. static int s_show(struct seq_file *m, void *p)
  4591. {
  4592. unsigned long nr_partials = 0;
  4593. unsigned long nr_slabs = 0;
  4594. unsigned long nr_inuse = 0;
  4595. unsigned long nr_objs = 0;
  4596. unsigned long nr_free = 0;
  4597. struct kmem_cache *s;
  4598. int node;
  4599. s = list_entry(p, struct kmem_cache, list);
  4600. for_each_online_node(node) {
  4601. struct kmem_cache_node *n = get_node(s, node);
  4602. if (!n)
  4603. continue;
  4604. nr_partials += n->nr_partial;
  4605. nr_slabs += atomic_long_read(&n->nr_slabs);
  4606. nr_objs += atomic_long_read(&n->total_objects);
  4607. nr_free += count_partial(n, count_free);
  4608. }
  4609. nr_inuse = nr_objs - nr_free;
  4610. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  4611. nr_objs, s->size, oo_objects(s->oo),
  4612. (1 << oo_order(s->oo)));
  4613. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  4614. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  4615. 0UL);
  4616. seq_putc(m, '\n');
  4617. return 0;
  4618. }
  4619. static const struct seq_operations slabinfo_op = {
  4620. .start = s_start,
  4621. .next = s_next,
  4622. .stop = s_stop,
  4623. .show = s_show,
  4624. };
  4625. static int slabinfo_open(struct inode *inode, struct file *file)
  4626. {
  4627. return seq_open(file, &slabinfo_op);
  4628. }
  4629. static const struct file_operations proc_slabinfo_operations = {
  4630. .open = slabinfo_open,
  4631. .read = seq_read,
  4632. .llseek = seq_lseek,
  4633. .release = seq_release,
  4634. };
  4635. static int __init slab_proc_init(void)
  4636. {
  4637. proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
  4638. return 0;
  4639. }
  4640. module_init(slab_proc_init);
  4641. #endif /* CONFIG_SLABINFO */