hw.c 66 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625
  1. /*
  2. * Copyright (c) 2008-2010 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/io.h>
  17. #include <linux/slab.h>
  18. #include <asm/unaligned.h>
  19. #include "hw.h"
  20. #include "hw-ops.h"
  21. #include "rc.h"
  22. #include "ar9003_mac.h"
  23. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  24. MODULE_AUTHOR("Atheros Communications");
  25. MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  26. MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  27. MODULE_LICENSE("Dual BSD/GPL");
  28. static int __init ath9k_init(void)
  29. {
  30. return 0;
  31. }
  32. module_init(ath9k_init);
  33. static void __exit ath9k_exit(void)
  34. {
  35. return;
  36. }
  37. module_exit(ath9k_exit);
  38. /* Private hardware callbacks */
  39. static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
  40. {
  41. ath9k_hw_private_ops(ah)->init_cal_settings(ah);
  42. }
  43. static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
  44. {
  45. ath9k_hw_private_ops(ah)->init_mode_regs(ah);
  46. }
  47. static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
  48. struct ath9k_channel *chan)
  49. {
  50. return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
  51. }
  52. static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
  53. {
  54. if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
  55. return;
  56. ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
  57. }
  58. static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
  59. {
  60. /* You will not have this callback if using the old ANI */
  61. if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
  62. return;
  63. ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
  64. }
  65. /********************/
  66. /* Helper Functions */
  67. /********************/
  68. static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  69. {
  70. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  71. struct ath_common *common = ath9k_hw_common(ah);
  72. unsigned int clockrate;
  73. if (!ah->curchan) /* should really check for CCK instead */
  74. clockrate = ATH9K_CLOCK_RATE_CCK;
  75. else if (conf->channel->band == IEEE80211_BAND_2GHZ)
  76. clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  77. else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  78. clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  79. else
  80. clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
  81. if (conf_is_ht40(conf))
  82. clockrate *= 2;
  83. common->clockrate = clockrate;
  84. }
  85. static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  86. {
  87. struct ath_common *common = ath9k_hw_common(ah);
  88. return usecs * common->clockrate;
  89. }
  90. bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  91. {
  92. int i;
  93. BUG_ON(timeout < AH_TIME_QUANTUM);
  94. for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  95. if ((REG_READ(ah, reg) & mask) == val)
  96. return true;
  97. udelay(AH_TIME_QUANTUM);
  98. }
  99. ath_dbg(ath9k_hw_common(ah), ATH_DBG_ANY,
  100. "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  101. timeout, reg, REG_READ(ah, reg), mask, val);
  102. return false;
  103. }
  104. EXPORT_SYMBOL(ath9k_hw_wait);
  105. void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
  106. int column, unsigned int *writecnt)
  107. {
  108. int r;
  109. ENABLE_REGWRITE_BUFFER(ah);
  110. for (r = 0; r < array->ia_rows; r++) {
  111. REG_WRITE(ah, INI_RA(array, r, 0),
  112. INI_RA(array, r, column));
  113. DO_DELAY(*writecnt);
  114. }
  115. REGWRITE_BUFFER_FLUSH(ah);
  116. }
  117. u32 ath9k_hw_reverse_bits(u32 val, u32 n)
  118. {
  119. u32 retval;
  120. int i;
  121. for (i = 0, retval = 0; i < n; i++) {
  122. retval = (retval << 1) | (val & 1);
  123. val >>= 1;
  124. }
  125. return retval;
  126. }
  127. u16 ath9k_hw_computetxtime(struct ath_hw *ah,
  128. u8 phy, int kbps,
  129. u32 frameLen, u16 rateix,
  130. bool shortPreamble)
  131. {
  132. u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
  133. if (kbps == 0)
  134. return 0;
  135. switch (phy) {
  136. case WLAN_RC_PHY_CCK:
  137. phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
  138. if (shortPreamble)
  139. phyTime >>= 1;
  140. numBits = frameLen << 3;
  141. txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
  142. break;
  143. case WLAN_RC_PHY_OFDM:
  144. if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
  145. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
  146. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  147. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  148. txTime = OFDM_SIFS_TIME_QUARTER
  149. + OFDM_PREAMBLE_TIME_QUARTER
  150. + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
  151. } else if (ah->curchan &&
  152. IS_CHAN_HALF_RATE(ah->curchan)) {
  153. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
  154. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  155. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  156. txTime = OFDM_SIFS_TIME_HALF +
  157. OFDM_PREAMBLE_TIME_HALF
  158. + (numSymbols * OFDM_SYMBOL_TIME_HALF);
  159. } else {
  160. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
  161. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  162. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  163. txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
  164. + (numSymbols * OFDM_SYMBOL_TIME);
  165. }
  166. break;
  167. default:
  168. ath_err(ath9k_hw_common(ah),
  169. "Unknown phy %u (rate ix %u)\n", phy, rateix);
  170. txTime = 0;
  171. break;
  172. }
  173. return txTime;
  174. }
  175. EXPORT_SYMBOL(ath9k_hw_computetxtime);
  176. void ath9k_hw_get_channel_centers(struct ath_hw *ah,
  177. struct ath9k_channel *chan,
  178. struct chan_centers *centers)
  179. {
  180. int8_t extoff;
  181. if (!IS_CHAN_HT40(chan)) {
  182. centers->ctl_center = centers->ext_center =
  183. centers->synth_center = chan->channel;
  184. return;
  185. }
  186. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  187. (chan->chanmode == CHANNEL_G_HT40PLUS)) {
  188. centers->synth_center =
  189. chan->channel + HT40_CHANNEL_CENTER_SHIFT;
  190. extoff = 1;
  191. } else {
  192. centers->synth_center =
  193. chan->channel - HT40_CHANNEL_CENTER_SHIFT;
  194. extoff = -1;
  195. }
  196. centers->ctl_center =
  197. centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
  198. /* 25 MHz spacing is supported by hw but not on upper layers */
  199. centers->ext_center =
  200. centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
  201. }
  202. /******************/
  203. /* Chip Revisions */
  204. /******************/
  205. static void ath9k_hw_read_revisions(struct ath_hw *ah)
  206. {
  207. u32 val;
  208. val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
  209. if (val == 0xFF) {
  210. val = REG_READ(ah, AR_SREV);
  211. ah->hw_version.macVersion =
  212. (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
  213. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  214. ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
  215. } else {
  216. if (!AR_SREV_9100(ah))
  217. ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
  218. ah->hw_version.macRev = val & AR_SREV_REVISION;
  219. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
  220. ah->is_pciexpress = true;
  221. }
  222. }
  223. /************************************/
  224. /* HW Attach, Detach, Init Routines */
  225. /************************************/
  226. static void ath9k_hw_disablepcie(struct ath_hw *ah)
  227. {
  228. if (!AR_SREV_5416(ah))
  229. return;
  230. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  231. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  232. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
  233. REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
  234. REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
  235. REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
  236. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  237. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  238. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
  239. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  240. }
  241. /* This should work for all families including legacy */
  242. static bool ath9k_hw_chip_test(struct ath_hw *ah)
  243. {
  244. struct ath_common *common = ath9k_hw_common(ah);
  245. u32 regAddr[2] = { AR_STA_ID0 };
  246. u32 regHold[2];
  247. static const u32 patternData[4] = {
  248. 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
  249. };
  250. int i, j, loop_max;
  251. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  252. loop_max = 2;
  253. regAddr[1] = AR_PHY_BASE + (8 << 2);
  254. } else
  255. loop_max = 1;
  256. for (i = 0; i < loop_max; i++) {
  257. u32 addr = regAddr[i];
  258. u32 wrData, rdData;
  259. regHold[i] = REG_READ(ah, addr);
  260. for (j = 0; j < 0x100; j++) {
  261. wrData = (j << 16) | j;
  262. REG_WRITE(ah, addr, wrData);
  263. rdData = REG_READ(ah, addr);
  264. if (rdData != wrData) {
  265. ath_err(common,
  266. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  267. addr, wrData, rdData);
  268. return false;
  269. }
  270. }
  271. for (j = 0; j < 4; j++) {
  272. wrData = patternData[j];
  273. REG_WRITE(ah, addr, wrData);
  274. rdData = REG_READ(ah, addr);
  275. if (wrData != rdData) {
  276. ath_err(common,
  277. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  278. addr, wrData, rdData);
  279. return false;
  280. }
  281. }
  282. REG_WRITE(ah, regAddr[i], regHold[i]);
  283. }
  284. udelay(100);
  285. return true;
  286. }
  287. static void ath9k_hw_init_config(struct ath_hw *ah)
  288. {
  289. int i;
  290. ah->config.dma_beacon_response_time = 2;
  291. ah->config.sw_beacon_response_time = 10;
  292. ah->config.additional_swba_backoff = 0;
  293. ah->config.ack_6mb = 0x0;
  294. ah->config.cwm_ignore_extcca = 0;
  295. ah->config.pcie_powersave_enable = 0;
  296. ah->config.pcie_clock_req = 0;
  297. ah->config.pcie_waen = 0;
  298. ah->config.analog_shiftreg = 1;
  299. ah->config.enable_ani = true;
  300. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  301. ah->config.spurchans[i][0] = AR_NO_SPUR;
  302. ah->config.spurchans[i][1] = AR_NO_SPUR;
  303. }
  304. /* PAPRD needs some more work to be enabled */
  305. ah->config.paprd_disable = 1;
  306. ah->config.rx_intr_mitigation = true;
  307. ah->config.pcieSerDesWrite = true;
  308. /*
  309. * We need this for PCI devices only (Cardbus, PCI, miniPCI)
  310. * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
  311. * This means we use it for all AR5416 devices, and the few
  312. * minor PCI AR9280 devices out there.
  313. *
  314. * Serialization is required because these devices do not handle
  315. * well the case of two concurrent reads/writes due to the latency
  316. * involved. During one read/write another read/write can be issued
  317. * on another CPU while the previous read/write may still be working
  318. * on our hardware, if we hit this case the hardware poops in a loop.
  319. * We prevent this by serializing reads and writes.
  320. *
  321. * This issue is not present on PCI-Express devices or pre-AR5416
  322. * devices (legacy, 802.11abg).
  323. */
  324. if (num_possible_cpus() > 1)
  325. ah->config.serialize_regmode = SER_REG_MODE_AUTO;
  326. }
  327. static void ath9k_hw_init_defaults(struct ath_hw *ah)
  328. {
  329. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  330. regulatory->country_code = CTRY_DEFAULT;
  331. regulatory->power_limit = MAX_RATE_POWER;
  332. regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
  333. ah->hw_version.magic = AR5416_MAGIC;
  334. ah->hw_version.subvendorid = 0;
  335. ah->atim_window = 0;
  336. ah->sta_id1_defaults =
  337. AR_STA_ID1_CRPT_MIC_ENABLE |
  338. AR_STA_ID1_MCAST_KSRCH;
  339. if (AR_SREV_9100(ah))
  340. ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
  341. ah->enable_32kHz_clock = DONT_USE_32KHZ;
  342. ah->slottime = 20;
  343. ah->globaltxtimeout = (u32) -1;
  344. ah->power_mode = ATH9K_PM_UNDEFINED;
  345. }
  346. static int ath9k_hw_init_macaddr(struct ath_hw *ah)
  347. {
  348. struct ath_common *common = ath9k_hw_common(ah);
  349. u32 sum;
  350. int i;
  351. u16 eeval;
  352. static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
  353. sum = 0;
  354. for (i = 0; i < 3; i++) {
  355. eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
  356. sum += eeval;
  357. common->macaddr[2 * i] = eeval >> 8;
  358. common->macaddr[2 * i + 1] = eeval & 0xff;
  359. }
  360. if (sum == 0 || sum == 0xffff * 3)
  361. return -EADDRNOTAVAIL;
  362. return 0;
  363. }
  364. static int ath9k_hw_post_init(struct ath_hw *ah)
  365. {
  366. struct ath_common *common = ath9k_hw_common(ah);
  367. int ecode;
  368. if (common->bus_ops->ath_bus_type != ATH_USB) {
  369. if (!ath9k_hw_chip_test(ah))
  370. return -ENODEV;
  371. }
  372. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  373. ecode = ar9002_hw_rf_claim(ah);
  374. if (ecode != 0)
  375. return ecode;
  376. }
  377. ecode = ath9k_hw_eeprom_init(ah);
  378. if (ecode != 0)
  379. return ecode;
  380. ath_dbg(ath9k_hw_common(ah), ATH_DBG_CONFIG,
  381. "Eeprom VER: %d, REV: %d\n",
  382. ah->eep_ops->get_eeprom_ver(ah),
  383. ah->eep_ops->get_eeprom_rev(ah));
  384. ecode = ath9k_hw_rf_alloc_ext_banks(ah);
  385. if (ecode) {
  386. ath_err(ath9k_hw_common(ah),
  387. "Failed allocating banks for external radio\n");
  388. ath9k_hw_rf_free_ext_banks(ah);
  389. return ecode;
  390. }
  391. if (!AR_SREV_9100(ah) && !AR_SREV_9340(ah)) {
  392. ath9k_hw_ani_setup(ah);
  393. ath9k_hw_ani_init(ah);
  394. }
  395. return 0;
  396. }
  397. static void ath9k_hw_attach_ops(struct ath_hw *ah)
  398. {
  399. if (AR_SREV_9300_20_OR_LATER(ah))
  400. ar9003_hw_attach_ops(ah);
  401. else
  402. ar9002_hw_attach_ops(ah);
  403. }
  404. /* Called for all hardware families */
  405. static int __ath9k_hw_init(struct ath_hw *ah)
  406. {
  407. struct ath_common *common = ath9k_hw_common(ah);
  408. int r = 0;
  409. if (ah->hw_version.devid == AR5416_AR9100_DEVID)
  410. ah->hw_version.macVersion = AR_SREV_VERSION_9100;
  411. ath9k_hw_read_revisions(ah);
  412. /*
  413. * Read back AR_WA into a permanent copy and set bits 14 and 17.
  414. * We need to do this to avoid RMW of this register. We cannot
  415. * read the reg when chip is asleep.
  416. */
  417. ah->WARegVal = REG_READ(ah, AR_WA);
  418. ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
  419. AR_WA_ASPM_TIMER_BASED_DISABLE);
  420. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  421. ath_err(common, "Couldn't reset chip\n");
  422. return -EIO;
  423. }
  424. ath9k_hw_init_defaults(ah);
  425. ath9k_hw_init_config(ah);
  426. ath9k_hw_attach_ops(ah);
  427. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
  428. ath_err(common, "Couldn't wakeup chip\n");
  429. return -EIO;
  430. }
  431. if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
  432. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
  433. ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
  434. !ah->is_pciexpress)) {
  435. ah->config.serialize_regmode =
  436. SER_REG_MODE_ON;
  437. } else {
  438. ah->config.serialize_regmode =
  439. SER_REG_MODE_OFF;
  440. }
  441. }
  442. ath_dbg(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
  443. ah->config.serialize_regmode);
  444. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  445. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
  446. else
  447. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
  448. switch (ah->hw_version.macVersion) {
  449. case AR_SREV_VERSION_5416_PCI:
  450. case AR_SREV_VERSION_5416_PCIE:
  451. case AR_SREV_VERSION_9160:
  452. case AR_SREV_VERSION_9100:
  453. case AR_SREV_VERSION_9280:
  454. case AR_SREV_VERSION_9285:
  455. case AR_SREV_VERSION_9287:
  456. case AR_SREV_VERSION_9271:
  457. case AR_SREV_VERSION_9300:
  458. case AR_SREV_VERSION_9485:
  459. break;
  460. default:
  461. ath_err(common,
  462. "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
  463. ah->hw_version.macVersion, ah->hw_version.macRev);
  464. return -EOPNOTSUPP;
  465. }
  466. if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah))
  467. ah->is_pciexpress = false;
  468. ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
  469. ath9k_hw_init_cal_settings(ah);
  470. ah->ani_function = ATH9K_ANI_ALL;
  471. if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  472. ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
  473. if (!AR_SREV_9300_20_OR_LATER(ah))
  474. ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
  475. ath9k_hw_init_mode_regs(ah);
  476. if (ah->is_pciexpress)
  477. ath9k_hw_configpcipowersave(ah, 0, 0);
  478. else
  479. ath9k_hw_disablepcie(ah);
  480. if (!AR_SREV_9300_20_OR_LATER(ah))
  481. ar9002_hw_cck_chan14_spread(ah);
  482. r = ath9k_hw_post_init(ah);
  483. if (r)
  484. return r;
  485. ath9k_hw_init_mode_gain_regs(ah);
  486. r = ath9k_hw_fill_cap_info(ah);
  487. if (r)
  488. return r;
  489. r = ath9k_hw_init_macaddr(ah);
  490. if (r) {
  491. ath_err(common, "Failed to initialize MAC address\n");
  492. return r;
  493. }
  494. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  495. ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
  496. else
  497. ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
  498. ah->bb_watchdog_timeout_ms = 25;
  499. common->state = ATH_HW_INITIALIZED;
  500. return 0;
  501. }
  502. int ath9k_hw_init(struct ath_hw *ah)
  503. {
  504. int ret;
  505. struct ath_common *common = ath9k_hw_common(ah);
  506. /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
  507. switch (ah->hw_version.devid) {
  508. case AR5416_DEVID_PCI:
  509. case AR5416_DEVID_PCIE:
  510. case AR5416_AR9100_DEVID:
  511. case AR9160_DEVID_PCI:
  512. case AR9280_DEVID_PCI:
  513. case AR9280_DEVID_PCIE:
  514. case AR9285_DEVID_PCIE:
  515. case AR9287_DEVID_PCI:
  516. case AR9287_DEVID_PCIE:
  517. case AR2427_DEVID_PCIE:
  518. case AR9300_DEVID_PCIE:
  519. case AR9300_DEVID_AR9485_PCIE:
  520. break;
  521. default:
  522. if (common->bus_ops->ath_bus_type == ATH_USB)
  523. break;
  524. ath_err(common, "Hardware device ID 0x%04x not supported\n",
  525. ah->hw_version.devid);
  526. return -EOPNOTSUPP;
  527. }
  528. ret = __ath9k_hw_init(ah);
  529. if (ret) {
  530. ath_err(common,
  531. "Unable to initialize hardware; initialization status: %d\n",
  532. ret);
  533. return ret;
  534. }
  535. return 0;
  536. }
  537. EXPORT_SYMBOL(ath9k_hw_init);
  538. static void ath9k_hw_init_qos(struct ath_hw *ah)
  539. {
  540. ENABLE_REGWRITE_BUFFER(ah);
  541. REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
  542. REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
  543. REG_WRITE(ah, AR_QOS_NO_ACK,
  544. SM(2, AR_QOS_NO_ACK_TWO_BIT) |
  545. SM(5, AR_QOS_NO_ACK_BIT_OFF) |
  546. SM(0, AR_QOS_NO_ACK_BYTE_OFF));
  547. REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
  548. REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
  549. REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
  550. REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
  551. REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
  552. REGWRITE_BUFFER_FLUSH(ah);
  553. }
  554. unsigned long ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
  555. {
  556. REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  557. udelay(100);
  558. REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  559. while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0)
  560. udelay(100);
  561. return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
  562. }
  563. EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
  564. #define DPLL3_PHASE_SHIFT_VAL 0x1
  565. static void ath9k_hw_init_pll(struct ath_hw *ah,
  566. struct ath9k_channel *chan)
  567. {
  568. u32 pll;
  569. if (AR_SREV_9485(ah)) {
  570. /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
  571. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  572. AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
  573. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  574. AR_CH0_DPLL2_KD, 0x40);
  575. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  576. AR_CH0_DPLL2_KI, 0x4);
  577. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  578. AR_CH0_BB_DPLL1_REFDIV, 0x5);
  579. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  580. AR_CH0_BB_DPLL1_NINI, 0x58);
  581. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  582. AR_CH0_BB_DPLL1_NFRAC, 0x0);
  583. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  584. AR_CH0_BB_DPLL2_OUTDIV, 0x1);
  585. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  586. AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
  587. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  588. AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
  589. /* program BB PLL phase_shift to 0x6 */
  590. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  591. AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
  592. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  593. AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
  594. udelay(1000);
  595. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  596. AR_CH0_DPLL3_PHASE_SHIFT, DPLL3_PHASE_SHIFT_VAL);
  597. } else if (AR_SREV_9340(ah)) {
  598. u32 regval, pll2_divint, pll2_divfrac, refdiv;
  599. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  600. udelay(1000);
  601. REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
  602. udelay(100);
  603. if (ah->is_clk_25mhz) {
  604. pll2_divint = 0x54;
  605. pll2_divfrac = 0x1eb85;
  606. refdiv = 3;
  607. } else {
  608. pll2_divint = 88;
  609. pll2_divfrac = 0;
  610. refdiv = 5;
  611. }
  612. regval = REG_READ(ah, AR_PHY_PLL_MODE);
  613. regval |= (0x1 << 16);
  614. REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
  615. udelay(100);
  616. REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
  617. (pll2_divint << 18) | pll2_divfrac);
  618. udelay(100);
  619. regval = REG_READ(ah, AR_PHY_PLL_MODE);
  620. regval = (regval & 0x80071fff) | (0x1 << 30) | (0x1 << 13) |
  621. (0x4 << 26) | (0x18 << 19);
  622. REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
  623. REG_WRITE(ah, AR_PHY_PLL_MODE,
  624. REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
  625. udelay(1000);
  626. }
  627. pll = ath9k_hw_compute_pll_control(ah, chan);
  628. REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
  629. if (AR_SREV_9485(ah) || AR_SREV_9340(ah))
  630. udelay(1000);
  631. /* Switch the core clock for ar9271 to 117Mhz */
  632. if (AR_SREV_9271(ah)) {
  633. udelay(500);
  634. REG_WRITE(ah, 0x50040, 0x304);
  635. }
  636. udelay(RTC_PLL_SETTLE_DELAY);
  637. REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
  638. if (AR_SREV_9340(ah)) {
  639. if (ah->is_clk_25mhz) {
  640. REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
  641. REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
  642. REG_WRITE(ah, AR_SLP32_INC, 0x0001e7ae);
  643. } else {
  644. REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
  645. REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
  646. REG_WRITE(ah, AR_SLP32_INC, 0x0001e800);
  647. }
  648. udelay(100);
  649. }
  650. }
  651. static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
  652. enum nl80211_iftype opmode)
  653. {
  654. u32 imr_reg = AR_IMR_TXERR |
  655. AR_IMR_TXURN |
  656. AR_IMR_RXERR |
  657. AR_IMR_RXORN |
  658. AR_IMR_BCNMISC;
  659. if (AR_SREV_9300_20_OR_LATER(ah)) {
  660. imr_reg |= AR_IMR_RXOK_HP;
  661. if (ah->config.rx_intr_mitigation)
  662. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  663. else
  664. imr_reg |= AR_IMR_RXOK_LP;
  665. } else {
  666. if (ah->config.rx_intr_mitigation)
  667. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  668. else
  669. imr_reg |= AR_IMR_RXOK;
  670. }
  671. if (ah->config.tx_intr_mitigation)
  672. imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
  673. else
  674. imr_reg |= AR_IMR_TXOK;
  675. if (opmode == NL80211_IFTYPE_AP)
  676. imr_reg |= AR_IMR_MIB;
  677. ENABLE_REGWRITE_BUFFER(ah);
  678. REG_WRITE(ah, AR_IMR, imr_reg);
  679. ah->imrs2_reg |= AR_IMR_S2_GTT;
  680. REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
  681. if (!AR_SREV_9100(ah)) {
  682. REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
  683. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
  684. REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
  685. }
  686. REGWRITE_BUFFER_FLUSH(ah);
  687. if (AR_SREV_9300_20_OR_LATER(ah)) {
  688. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
  689. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
  690. REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
  691. REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
  692. }
  693. }
  694. static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
  695. {
  696. u32 val = ath9k_hw_mac_to_clks(ah, us);
  697. val = min(val, (u32) 0xFFFF);
  698. REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
  699. }
  700. static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
  701. {
  702. u32 val = ath9k_hw_mac_to_clks(ah, us);
  703. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
  704. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
  705. }
  706. static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
  707. {
  708. u32 val = ath9k_hw_mac_to_clks(ah, us);
  709. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
  710. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
  711. }
  712. static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
  713. {
  714. if (tu > 0xFFFF) {
  715. ath_dbg(ath9k_hw_common(ah), ATH_DBG_XMIT,
  716. "bad global tx timeout %u\n", tu);
  717. ah->globaltxtimeout = (u32) -1;
  718. return false;
  719. } else {
  720. REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
  721. ah->globaltxtimeout = tu;
  722. return true;
  723. }
  724. }
  725. void ath9k_hw_init_global_settings(struct ath_hw *ah)
  726. {
  727. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  728. int acktimeout;
  729. int slottime;
  730. int sifstime;
  731. ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
  732. ah->misc_mode);
  733. if (ah->misc_mode != 0)
  734. REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
  735. if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
  736. sifstime = 16;
  737. else
  738. sifstime = 10;
  739. /* As defined by IEEE 802.11-2007 17.3.8.6 */
  740. slottime = ah->slottime + 3 * ah->coverage_class;
  741. acktimeout = slottime + sifstime;
  742. /*
  743. * Workaround for early ACK timeouts, add an offset to match the
  744. * initval's 64us ack timeout value.
  745. * This was initially only meant to work around an issue with delayed
  746. * BA frames in some implementations, but it has been found to fix ACK
  747. * timeout issues in other cases as well.
  748. */
  749. if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
  750. acktimeout += 64 - sifstime - ah->slottime;
  751. ath9k_hw_setslottime(ah, ah->slottime);
  752. ath9k_hw_set_ack_timeout(ah, acktimeout);
  753. ath9k_hw_set_cts_timeout(ah, acktimeout);
  754. if (ah->globaltxtimeout != (u32) -1)
  755. ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
  756. }
  757. EXPORT_SYMBOL(ath9k_hw_init_global_settings);
  758. void ath9k_hw_deinit(struct ath_hw *ah)
  759. {
  760. struct ath_common *common = ath9k_hw_common(ah);
  761. if (common->state < ATH_HW_INITIALIZED)
  762. goto free_hw;
  763. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  764. free_hw:
  765. ath9k_hw_rf_free_ext_banks(ah);
  766. }
  767. EXPORT_SYMBOL(ath9k_hw_deinit);
  768. /*******/
  769. /* INI */
  770. /*******/
  771. u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
  772. {
  773. u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
  774. if (IS_CHAN_B(chan))
  775. ctl |= CTL_11B;
  776. else if (IS_CHAN_G(chan))
  777. ctl |= CTL_11G;
  778. else
  779. ctl |= CTL_11A;
  780. return ctl;
  781. }
  782. /****************************************/
  783. /* Reset and Channel Switching Routines */
  784. /****************************************/
  785. static inline void ath9k_hw_set_dma(struct ath_hw *ah)
  786. {
  787. struct ath_common *common = ath9k_hw_common(ah);
  788. ENABLE_REGWRITE_BUFFER(ah);
  789. /*
  790. * set AHB_MODE not to do cacheline prefetches
  791. */
  792. if (!AR_SREV_9300_20_OR_LATER(ah))
  793. REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
  794. /*
  795. * let mac dma reads be in 128 byte chunks
  796. */
  797. REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
  798. REGWRITE_BUFFER_FLUSH(ah);
  799. /*
  800. * Restore TX Trigger Level to its pre-reset value.
  801. * The initial value depends on whether aggregation is enabled, and is
  802. * adjusted whenever underruns are detected.
  803. */
  804. if (!AR_SREV_9300_20_OR_LATER(ah))
  805. REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
  806. ENABLE_REGWRITE_BUFFER(ah);
  807. /*
  808. * let mac dma writes be in 128 byte chunks
  809. */
  810. REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
  811. /*
  812. * Setup receive FIFO threshold to hold off TX activities
  813. */
  814. REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
  815. if (AR_SREV_9300_20_OR_LATER(ah)) {
  816. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
  817. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
  818. ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
  819. ah->caps.rx_status_len);
  820. }
  821. /*
  822. * reduce the number of usable entries in PCU TXBUF to avoid
  823. * wrap around issues.
  824. */
  825. if (AR_SREV_9285(ah)) {
  826. /* For AR9285 the number of Fifos are reduced to half.
  827. * So set the usable tx buf size also to half to
  828. * avoid data/delimiter underruns
  829. */
  830. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  831. AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
  832. } else if (!AR_SREV_9271(ah)) {
  833. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  834. AR_PCU_TXBUF_CTRL_USABLE_SIZE);
  835. }
  836. REGWRITE_BUFFER_FLUSH(ah);
  837. if (AR_SREV_9300_20_OR_LATER(ah))
  838. ath9k_hw_reset_txstatus_ring(ah);
  839. }
  840. static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
  841. {
  842. u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
  843. u32 set = AR_STA_ID1_KSRCH_MODE;
  844. switch (opmode) {
  845. case NL80211_IFTYPE_ADHOC:
  846. case NL80211_IFTYPE_MESH_POINT:
  847. set |= AR_STA_ID1_ADHOC;
  848. REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  849. break;
  850. case NL80211_IFTYPE_AP:
  851. set |= AR_STA_ID1_STA_AP;
  852. /* fall through */
  853. case NL80211_IFTYPE_STATION:
  854. REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  855. break;
  856. default:
  857. if (!ah->is_monitoring)
  858. set = 0;
  859. break;
  860. }
  861. REG_RMW(ah, AR_STA_ID1, set, mask);
  862. }
  863. void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
  864. u32 *coef_mantissa, u32 *coef_exponent)
  865. {
  866. u32 coef_exp, coef_man;
  867. for (coef_exp = 31; coef_exp > 0; coef_exp--)
  868. if ((coef_scaled >> coef_exp) & 0x1)
  869. break;
  870. coef_exp = 14 - (coef_exp - COEF_SCALE_S);
  871. coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
  872. *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
  873. *coef_exponent = coef_exp - 16;
  874. }
  875. static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
  876. {
  877. u32 rst_flags;
  878. u32 tmpReg;
  879. if (AR_SREV_9100(ah)) {
  880. REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
  881. AR_RTC_DERIVED_CLK_PERIOD, 1);
  882. (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
  883. }
  884. ENABLE_REGWRITE_BUFFER(ah);
  885. if (AR_SREV_9300_20_OR_LATER(ah)) {
  886. REG_WRITE(ah, AR_WA, ah->WARegVal);
  887. udelay(10);
  888. }
  889. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  890. AR_RTC_FORCE_WAKE_ON_INT);
  891. if (AR_SREV_9100(ah)) {
  892. rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
  893. AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
  894. } else {
  895. tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  896. if (tmpReg &
  897. (AR_INTR_SYNC_LOCAL_TIMEOUT |
  898. AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
  899. u32 val;
  900. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  901. val = AR_RC_HOSTIF;
  902. if (!AR_SREV_9300_20_OR_LATER(ah))
  903. val |= AR_RC_AHB;
  904. REG_WRITE(ah, AR_RC, val);
  905. } else if (!AR_SREV_9300_20_OR_LATER(ah))
  906. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  907. rst_flags = AR_RTC_RC_MAC_WARM;
  908. if (type == ATH9K_RESET_COLD)
  909. rst_flags |= AR_RTC_RC_MAC_COLD;
  910. }
  911. REG_WRITE(ah, AR_RTC_RC, rst_flags);
  912. REGWRITE_BUFFER_FLUSH(ah);
  913. udelay(50);
  914. REG_WRITE(ah, AR_RTC_RC, 0);
  915. if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
  916. ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
  917. "RTC stuck in MAC reset\n");
  918. return false;
  919. }
  920. if (!AR_SREV_9100(ah))
  921. REG_WRITE(ah, AR_RC, 0);
  922. if (AR_SREV_9100(ah))
  923. udelay(50);
  924. return true;
  925. }
  926. static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
  927. {
  928. ENABLE_REGWRITE_BUFFER(ah);
  929. if (AR_SREV_9300_20_OR_LATER(ah)) {
  930. REG_WRITE(ah, AR_WA, ah->WARegVal);
  931. udelay(10);
  932. }
  933. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  934. AR_RTC_FORCE_WAKE_ON_INT);
  935. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  936. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  937. REG_WRITE(ah, AR_RTC_RESET, 0);
  938. REGWRITE_BUFFER_FLUSH(ah);
  939. if (!AR_SREV_9300_20_OR_LATER(ah))
  940. udelay(2);
  941. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  942. REG_WRITE(ah, AR_RC, 0);
  943. REG_WRITE(ah, AR_RTC_RESET, 1);
  944. if (!ath9k_hw_wait(ah,
  945. AR_RTC_STATUS,
  946. AR_RTC_STATUS_M,
  947. AR_RTC_STATUS_ON,
  948. AH_WAIT_TIMEOUT)) {
  949. ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
  950. "RTC not waking up\n");
  951. return false;
  952. }
  953. return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
  954. }
  955. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
  956. {
  957. if (AR_SREV_9300_20_OR_LATER(ah)) {
  958. REG_WRITE(ah, AR_WA, ah->WARegVal);
  959. udelay(10);
  960. }
  961. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  962. AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
  963. switch (type) {
  964. case ATH9K_RESET_POWER_ON:
  965. return ath9k_hw_set_reset_power_on(ah);
  966. case ATH9K_RESET_WARM:
  967. case ATH9K_RESET_COLD:
  968. return ath9k_hw_set_reset(ah, type);
  969. default:
  970. return false;
  971. }
  972. }
  973. static bool ath9k_hw_chip_reset(struct ath_hw *ah,
  974. struct ath9k_channel *chan)
  975. {
  976. if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
  977. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
  978. return false;
  979. } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  980. return false;
  981. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  982. return false;
  983. ah->chip_fullsleep = false;
  984. ath9k_hw_init_pll(ah, chan);
  985. ath9k_hw_set_rfmode(ah, chan);
  986. return true;
  987. }
  988. static bool ath9k_hw_channel_change(struct ath_hw *ah,
  989. struct ath9k_channel *chan)
  990. {
  991. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  992. struct ath_common *common = ath9k_hw_common(ah);
  993. struct ieee80211_channel *channel = chan->chan;
  994. u32 qnum;
  995. int r;
  996. for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
  997. if (ath9k_hw_numtxpending(ah, qnum)) {
  998. ath_dbg(common, ATH_DBG_QUEUE,
  999. "Transmit frames pending on queue %d\n", qnum);
  1000. return false;
  1001. }
  1002. }
  1003. if (!ath9k_hw_rfbus_req(ah)) {
  1004. ath_err(common, "Could not kill baseband RX\n");
  1005. return false;
  1006. }
  1007. ath9k_hw_set_channel_regs(ah, chan);
  1008. r = ath9k_hw_rf_set_freq(ah, chan);
  1009. if (r) {
  1010. ath_err(common, "Failed to set channel\n");
  1011. return false;
  1012. }
  1013. ath9k_hw_set_clockrate(ah);
  1014. ah->eep_ops->set_txpower(ah, chan,
  1015. ath9k_regd_get_ctl(regulatory, chan),
  1016. channel->max_antenna_gain * 2,
  1017. channel->max_power * 2,
  1018. min((u32) MAX_RATE_POWER,
  1019. (u32) regulatory->power_limit), false);
  1020. ath9k_hw_rfbus_done(ah);
  1021. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1022. ath9k_hw_set_delta_slope(ah, chan);
  1023. ath9k_hw_spur_mitigate_freq(ah, chan);
  1024. return true;
  1025. }
  1026. static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
  1027. {
  1028. u32 gpio_mask = ah->gpio_mask;
  1029. int i;
  1030. for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
  1031. if (!(gpio_mask & 1))
  1032. continue;
  1033. ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
  1034. ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
  1035. }
  1036. }
  1037. bool ath9k_hw_check_alive(struct ath_hw *ah)
  1038. {
  1039. int count = 50;
  1040. u32 reg;
  1041. if (AR_SREV_9285_12_OR_LATER(ah))
  1042. return true;
  1043. do {
  1044. reg = REG_READ(ah, AR_OBS_BUS_1);
  1045. if ((reg & 0x7E7FFFEF) == 0x00702400)
  1046. continue;
  1047. switch (reg & 0x7E000B00) {
  1048. case 0x1E000000:
  1049. case 0x52000B00:
  1050. case 0x18000B00:
  1051. continue;
  1052. default:
  1053. return true;
  1054. }
  1055. } while (count-- > 0);
  1056. return false;
  1057. }
  1058. EXPORT_SYMBOL(ath9k_hw_check_alive);
  1059. int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
  1060. struct ath9k_hw_cal_data *caldata, bool bChannelChange)
  1061. {
  1062. struct ath_common *common = ath9k_hw_common(ah);
  1063. u32 saveLedState;
  1064. struct ath9k_channel *curchan = ah->curchan;
  1065. u32 saveDefAntenna;
  1066. u32 macStaId1;
  1067. u64 tsf = 0;
  1068. int i, r;
  1069. ah->txchainmask = common->tx_chainmask;
  1070. ah->rxchainmask = common->rx_chainmask;
  1071. if ((common->bus_ops->ath_bus_type != ATH_USB) && !ah->chip_fullsleep) {
  1072. ath9k_hw_abortpcurecv(ah);
  1073. if (!ath9k_hw_stopdmarecv(ah)) {
  1074. ath_dbg(common, ATH_DBG_XMIT,
  1075. "Failed to stop receive dma\n");
  1076. bChannelChange = false;
  1077. }
  1078. }
  1079. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1080. return -EIO;
  1081. if (curchan && !ah->chip_fullsleep)
  1082. ath9k_hw_getnf(ah, curchan);
  1083. ah->caldata = caldata;
  1084. if (caldata &&
  1085. (chan->channel != caldata->channel ||
  1086. (chan->channelFlags & ~CHANNEL_CW_INT) !=
  1087. (caldata->channelFlags & ~CHANNEL_CW_INT))) {
  1088. /* Operating channel changed, reset channel calibration data */
  1089. memset(caldata, 0, sizeof(*caldata));
  1090. ath9k_init_nfcal_hist_buffer(ah, chan);
  1091. }
  1092. if (bChannelChange &&
  1093. (ah->chip_fullsleep != true) &&
  1094. (ah->curchan != NULL) &&
  1095. (chan->channel != ah->curchan->channel) &&
  1096. ((chan->channelFlags & CHANNEL_ALL) ==
  1097. (ah->curchan->channelFlags & CHANNEL_ALL)) &&
  1098. (!AR_SREV_9280(ah) || AR_DEVID_7010(ah))) {
  1099. if (ath9k_hw_channel_change(ah, chan)) {
  1100. ath9k_hw_loadnf(ah, ah->curchan);
  1101. ath9k_hw_start_nfcal(ah, true);
  1102. if (AR_SREV_9271(ah))
  1103. ar9002_hw_load_ani_reg(ah, chan);
  1104. return 0;
  1105. }
  1106. }
  1107. saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
  1108. if (saveDefAntenna == 0)
  1109. saveDefAntenna = 1;
  1110. macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
  1111. /* For chips on which RTC reset is done, save TSF before it gets cleared */
  1112. if (AR_SREV_9100(ah) ||
  1113. (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
  1114. tsf = ath9k_hw_gettsf64(ah);
  1115. saveLedState = REG_READ(ah, AR_CFG_LED) &
  1116. (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
  1117. AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
  1118. ath9k_hw_mark_phy_inactive(ah);
  1119. ah->paprd_table_write_done = false;
  1120. /* Only required on the first reset */
  1121. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1122. REG_WRITE(ah,
  1123. AR9271_RESET_POWER_DOWN_CONTROL,
  1124. AR9271_RADIO_RF_RST);
  1125. udelay(50);
  1126. }
  1127. if (!ath9k_hw_chip_reset(ah, chan)) {
  1128. ath_err(common, "Chip reset failed\n");
  1129. return -EINVAL;
  1130. }
  1131. /* Only required on the first reset */
  1132. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1133. ah->htc_reset_init = false;
  1134. REG_WRITE(ah,
  1135. AR9271_RESET_POWER_DOWN_CONTROL,
  1136. AR9271_GATE_MAC_CTL);
  1137. udelay(50);
  1138. }
  1139. /* Restore TSF */
  1140. if (tsf)
  1141. ath9k_hw_settsf64(ah, tsf);
  1142. if (AR_SREV_9280_20_OR_LATER(ah))
  1143. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
  1144. if (!AR_SREV_9300_20_OR_LATER(ah))
  1145. ar9002_hw_enable_async_fifo(ah);
  1146. r = ath9k_hw_process_ini(ah, chan);
  1147. if (r)
  1148. return r;
  1149. /*
  1150. * Some AR91xx SoC devices frequently fail to accept TSF writes
  1151. * right after the chip reset. When that happens, write a new
  1152. * value after the initvals have been applied, with an offset
  1153. * based on measured time difference
  1154. */
  1155. if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
  1156. tsf += 1500;
  1157. ath9k_hw_settsf64(ah, tsf);
  1158. }
  1159. /* Setup MFP options for CCMP */
  1160. if (AR_SREV_9280_20_OR_LATER(ah)) {
  1161. /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
  1162. * frames when constructing CCMP AAD. */
  1163. REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
  1164. 0xc7ff);
  1165. ah->sw_mgmt_crypto = false;
  1166. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  1167. /* Disable hardware crypto for management frames */
  1168. REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
  1169. AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
  1170. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1171. AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
  1172. ah->sw_mgmt_crypto = true;
  1173. } else
  1174. ah->sw_mgmt_crypto = true;
  1175. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1176. ath9k_hw_set_delta_slope(ah, chan);
  1177. ath9k_hw_spur_mitigate_freq(ah, chan);
  1178. ah->eep_ops->set_board_values(ah, chan);
  1179. ENABLE_REGWRITE_BUFFER(ah);
  1180. REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
  1181. REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
  1182. | macStaId1
  1183. | AR_STA_ID1_RTS_USE_DEF
  1184. | (ah->config.
  1185. ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
  1186. | ah->sta_id1_defaults);
  1187. ath_hw_setbssidmask(common);
  1188. REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
  1189. ath9k_hw_write_associd(ah);
  1190. REG_WRITE(ah, AR_ISR, ~0);
  1191. REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
  1192. REGWRITE_BUFFER_FLUSH(ah);
  1193. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1194. r = ath9k_hw_rf_set_freq(ah, chan);
  1195. if (r)
  1196. return r;
  1197. ath9k_hw_set_clockrate(ah);
  1198. ENABLE_REGWRITE_BUFFER(ah);
  1199. for (i = 0; i < AR_NUM_DCU; i++)
  1200. REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
  1201. REGWRITE_BUFFER_FLUSH(ah);
  1202. ah->intr_txqs = 0;
  1203. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1204. ath9k_hw_resettxqueue(ah, i);
  1205. ath9k_hw_init_interrupt_masks(ah, ah->opmode);
  1206. ath9k_hw_ani_cache_ini_regs(ah);
  1207. ath9k_hw_init_qos(ah);
  1208. if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1209. ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
  1210. ath9k_hw_init_global_settings(ah);
  1211. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  1212. ar9002_hw_update_async_fifo(ah);
  1213. ar9002_hw_enable_wep_aggregation(ah);
  1214. }
  1215. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
  1216. ath9k_hw_set_dma(ah);
  1217. REG_WRITE(ah, AR_OBS, 8);
  1218. if (ah->config.rx_intr_mitigation) {
  1219. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
  1220. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
  1221. }
  1222. if (ah->config.tx_intr_mitigation) {
  1223. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
  1224. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
  1225. }
  1226. ath9k_hw_init_bb(ah, chan);
  1227. if (!ath9k_hw_init_cal(ah, chan))
  1228. return -EIO;
  1229. ENABLE_REGWRITE_BUFFER(ah);
  1230. ath9k_hw_restore_chainmask(ah);
  1231. REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
  1232. REGWRITE_BUFFER_FLUSH(ah);
  1233. /*
  1234. * For big endian systems turn on swapping for descriptors
  1235. */
  1236. if (AR_SREV_9100(ah)) {
  1237. u32 mask;
  1238. mask = REG_READ(ah, AR_CFG);
  1239. if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
  1240. ath_dbg(common, ATH_DBG_RESET,
  1241. "CFG Byte Swap Set 0x%x\n", mask);
  1242. } else {
  1243. mask =
  1244. INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
  1245. REG_WRITE(ah, AR_CFG, mask);
  1246. ath_dbg(common, ATH_DBG_RESET,
  1247. "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
  1248. }
  1249. } else {
  1250. if (common->bus_ops->ath_bus_type == ATH_USB) {
  1251. /* Configure AR9271 target WLAN */
  1252. if (AR_SREV_9271(ah))
  1253. REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
  1254. else
  1255. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1256. }
  1257. #ifdef __BIG_ENDIAN
  1258. else
  1259. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1260. #endif
  1261. }
  1262. if (ah->btcoex_hw.enabled)
  1263. ath9k_hw_btcoex_enable(ah);
  1264. if (AR_SREV_9300_20_OR_LATER(ah))
  1265. ar9003_hw_bb_watchdog_config(ah);
  1266. ath9k_hw_apply_gpio_override(ah);
  1267. return 0;
  1268. }
  1269. EXPORT_SYMBOL(ath9k_hw_reset);
  1270. /******************************/
  1271. /* Power Management (Chipset) */
  1272. /******************************/
  1273. /*
  1274. * Notify Power Mgt is disabled in self-generated frames.
  1275. * If requested, force chip to sleep.
  1276. */
  1277. static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
  1278. {
  1279. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1280. if (setChip) {
  1281. /*
  1282. * Clear the RTC force wake bit to allow the
  1283. * mac to go to sleep.
  1284. */
  1285. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  1286. AR_RTC_FORCE_WAKE_EN);
  1287. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1288. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  1289. /* Shutdown chip. Active low */
  1290. if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
  1291. REG_CLR_BIT(ah, (AR_RTC_RESET),
  1292. AR_RTC_RESET_EN);
  1293. }
  1294. /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
  1295. if (AR_SREV_9300_20_OR_LATER(ah))
  1296. REG_WRITE(ah, AR_WA,
  1297. ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1298. }
  1299. /*
  1300. * Notify Power Management is enabled in self-generating
  1301. * frames. If request, set power mode of chip to
  1302. * auto/normal. Duration in units of 128us (1/8 TU).
  1303. */
  1304. static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
  1305. {
  1306. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1307. if (setChip) {
  1308. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1309. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  1310. /* Set WakeOnInterrupt bit; clear ForceWake bit */
  1311. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1312. AR_RTC_FORCE_WAKE_ON_INT);
  1313. } else {
  1314. /*
  1315. * Clear the RTC force wake bit to allow the
  1316. * mac to go to sleep.
  1317. */
  1318. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  1319. AR_RTC_FORCE_WAKE_EN);
  1320. }
  1321. }
  1322. /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
  1323. if (AR_SREV_9300_20_OR_LATER(ah))
  1324. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1325. }
  1326. static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
  1327. {
  1328. u32 val;
  1329. int i;
  1330. /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
  1331. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1332. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1333. udelay(10);
  1334. }
  1335. if (setChip) {
  1336. if ((REG_READ(ah, AR_RTC_STATUS) &
  1337. AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
  1338. if (ath9k_hw_set_reset_reg(ah,
  1339. ATH9K_RESET_POWER_ON) != true) {
  1340. return false;
  1341. }
  1342. if (!AR_SREV_9300_20_OR_LATER(ah))
  1343. ath9k_hw_init_pll(ah, NULL);
  1344. }
  1345. if (AR_SREV_9100(ah))
  1346. REG_SET_BIT(ah, AR_RTC_RESET,
  1347. AR_RTC_RESET_EN);
  1348. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1349. AR_RTC_FORCE_WAKE_EN);
  1350. udelay(50);
  1351. for (i = POWER_UP_TIME / 50; i > 0; i--) {
  1352. val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
  1353. if (val == AR_RTC_STATUS_ON)
  1354. break;
  1355. udelay(50);
  1356. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1357. AR_RTC_FORCE_WAKE_EN);
  1358. }
  1359. if (i == 0) {
  1360. ath_err(ath9k_hw_common(ah),
  1361. "Failed to wakeup in %uus\n",
  1362. POWER_UP_TIME / 20);
  1363. return false;
  1364. }
  1365. }
  1366. REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1367. return true;
  1368. }
  1369. bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
  1370. {
  1371. struct ath_common *common = ath9k_hw_common(ah);
  1372. int status = true, setChip = true;
  1373. static const char *modes[] = {
  1374. "AWAKE",
  1375. "FULL-SLEEP",
  1376. "NETWORK SLEEP",
  1377. "UNDEFINED"
  1378. };
  1379. if (ah->power_mode == mode)
  1380. return status;
  1381. ath_dbg(common, ATH_DBG_RESET, "%s -> %s\n",
  1382. modes[ah->power_mode], modes[mode]);
  1383. switch (mode) {
  1384. case ATH9K_PM_AWAKE:
  1385. status = ath9k_hw_set_power_awake(ah, setChip);
  1386. break;
  1387. case ATH9K_PM_FULL_SLEEP:
  1388. ath9k_set_power_sleep(ah, setChip);
  1389. ah->chip_fullsleep = true;
  1390. break;
  1391. case ATH9K_PM_NETWORK_SLEEP:
  1392. ath9k_set_power_network_sleep(ah, setChip);
  1393. break;
  1394. default:
  1395. ath_err(common, "Unknown power mode %u\n", mode);
  1396. return false;
  1397. }
  1398. ah->power_mode = mode;
  1399. /*
  1400. * XXX: If this warning never comes up after a while then
  1401. * simply keep the ATH_DBG_WARN_ON_ONCE() but make
  1402. * ath9k_hw_setpower() return type void.
  1403. */
  1404. if (!(ah->ah_flags & AH_UNPLUGGED))
  1405. ATH_DBG_WARN_ON_ONCE(!status);
  1406. return status;
  1407. }
  1408. EXPORT_SYMBOL(ath9k_hw_setpower);
  1409. /*******************/
  1410. /* Beacon Handling */
  1411. /*******************/
  1412. void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
  1413. {
  1414. int flags = 0;
  1415. ENABLE_REGWRITE_BUFFER(ah);
  1416. switch (ah->opmode) {
  1417. case NL80211_IFTYPE_ADHOC:
  1418. case NL80211_IFTYPE_MESH_POINT:
  1419. REG_SET_BIT(ah, AR_TXCFG,
  1420. AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
  1421. REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
  1422. TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
  1423. flags |= AR_NDP_TIMER_EN;
  1424. case NL80211_IFTYPE_AP:
  1425. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
  1426. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
  1427. TU_TO_USEC(ah->config.dma_beacon_response_time));
  1428. REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
  1429. TU_TO_USEC(ah->config.sw_beacon_response_time));
  1430. flags |=
  1431. AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
  1432. break;
  1433. default:
  1434. ath_dbg(ath9k_hw_common(ah), ATH_DBG_BEACON,
  1435. "%s: unsupported opmode: %d\n",
  1436. __func__, ah->opmode);
  1437. return;
  1438. break;
  1439. }
  1440. REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
  1441. REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
  1442. REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
  1443. REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
  1444. REGWRITE_BUFFER_FLUSH(ah);
  1445. REG_SET_BIT(ah, AR_TIMER_MODE, flags);
  1446. }
  1447. EXPORT_SYMBOL(ath9k_hw_beaconinit);
  1448. void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
  1449. const struct ath9k_beacon_state *bs)
  1450. {
  1451. u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
  1452. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1453. struct ath_common *common = ath9k_hw_common(ah);
  1454. ENABLE_REGWRITE_BUFFER(ah);
  1455. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
  1456. REG_WRITE(ah, AR_BEACON_PERIOD,
  1457. TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
  1458. REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
  1459. TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
  1460. REGWRITE_BUFFER_FLUSH(ah);
  1461. REG_RMW_FIELD(ah, AR_RSSI_THR,
  1462. AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
  1463. beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
  1464. if (bs->bs_sleepduration > beaconintval)
  1465. beaconintval = bs->bs_sleepduration;
  1466. dtimperiod = bs->bs_dtimperiod;
  1467. if (bs->bs_sleepduration > dtimperiod)
  1468. dtimperiod = bs->bs_sleepduration;
  1469. if (beaconintval == dtimperiod)
  1470. nextTbtt = bs->bs_nextdtim;
  1471. else
  1472. nextTbtt = bs->bs_nexttbtt;
  1473. ath_dbg(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
  1474. ath_dbg(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
  1475. ath_dbg(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
  1476. ath_dbg(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
  1477. ENABLE_REGWRITE_BUFFER(ah);
  1478. REG_WRITE(ah, AR_NEXT_DTIM,
  1479. TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
  1480. REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
  1481. REG_WRITE(ah, AR_SLEEP1,
  1482. SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
  1483. | AR_SLEEP1_ASSUME_DTIM);
  1484. if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
  1485. beacontimeout = (BEACON_TIMEOUT_VAL << 3);
  1486. else
  1487. beacontimeout = MIN_BEACON_TIMEOUT_VAL;
  1488. REG_WRITE(ah, AR_SLEEP2,
  1489. SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
  1490. REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
  1491. REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
  1492. REGWRITE_BUFFER_FLUSH(ah);
  1493. REG_SET_BIT(ah, AR_TIMER_MODE,
  1494. AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
  1495. AR_DTIM_TIMER_EN);
  1496. /* TSF Out of Range Threshold */
  1497. REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
  1498. }
  1499. EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
  1500. /*******************/
  1501. /* HW Capabilities */
  1502. /*******************/
  1503. int ath9k_hw_fill_cap_info(struct ath_hw *ah)
  1504. {
  1505. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1506. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1507. struct ath_common *common = ath9k_hw_common(ah);
  1508. struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
  1509. u16 capField = 0, eeval;
  1510. u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
  1511. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
  1512. regulatory->current_rd = eeval;
  1513. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
  1514. if (AR_SREV_9285_12_OR_LATER(ah))
  1515. eeval |= AR9285_RDEXT_DEFAULT;
  1516. regulatory->current_rd_ext = eeval;
  1517. capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
  1518. if (ah->opmode != NL80211_IFTYPE_AP &&
  1519. ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
  1520. if (regulatory->current_rd == 0x64 ||
  1521. regulatory->current_rd == 0x65)
  1522. regulatory->current_rd += 5;
  1523. else if (regulatory->current_rd == 0x41)
  1524. regulatory->current_rd = 0x43;
  1525. ath_dbg(common, ATH_DBG_REGULATORY,
  1526. "regdomain mapped to 0x%x\n", regulatory->current_rd);
  1527. }
  1528. eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
  1529. if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
  1530. ath_err(common,
  1531. "no band has been marked as supported in EEPROM\n");
  1532. return -EINVAL;
  1533. }
  1534. if (eeval & AR5416_OPFLAGS_11A)
  1535. pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
  1536. if (eeval & AR5416_OPFLAGS_11G)
  1537. pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
  1538. pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
  1539. /*
  1540. * For AR9271 we will temporarilly uses the rx chainmax as read from
  1541. * the EEPROM.
  1542. */
  1543. if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
  1544. !(eeval & AR5416_OPFLAGS_11A) &&
  1545. !(AR_SREV_9271(ah)))
  1546. /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
  1547. pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
  1548. else if (AR_SREV_9100(ah))
  1549. pCap->rx_chainmask = 0x7;
  1550. else
  1551. /* Use rx_chainmask from EEPROM. */
  1552. pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
  1553. ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
  1554. /* enable key search for every frame in an aggregate */
  1555. if (AR_SREV_9300_20_OR_LATER(ah))
  1556. ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
  1557. common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
  1558. if (ah->hw_version.devid != AR2427_DEVID_PCIE)
  1559. pCap->hw_caps |= ATH9K_HW_CAP_HT;
  1560. else
  1561. pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
  1562. if (AR_SREV_9271(ah))
  1563. pCap->num_gpio_pins = AR9271_NUM_GPIO;
  1564. else if (AR_DEVID_7010(ah))
  1565. pCap->num_gpio_pins = AR7010_NUM_GPIO;
  1566. else if (AR_SREV_9285_12_OR_LATER(ah))
  1567. pCap->num_gpio_pins = AR9285_NUM_GPIO;
  1568. else if (AR_SREV_9280_20_OR_LATER(ah))
  1569. pCap->num_gpio_pins = AR928X_NUM_GPIO;
  1570. else
  1571. pCap->num_gpio_pins = AR_NUM_GPIO;
  1572. if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
  1573. pCap->hw_caps |= ATH9K_HW_CAP_CST;
  1574. pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
  1575. } else {
  1576. pCap->rts_aggr_limit = (8 * 1024);
  1577. }
  1578. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  1579. ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
  1580. if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
  1581. ah->rfkill_gpio =
  1582. MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
  1583. ah->rfkill_polarity =
  1584. MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
  1585. pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
  1586. }
  1587. #endif
  1588. if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
  1589. pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
  1590. else
  1591. pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
  1592. if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
  1593. pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
  1594. else
  1595. pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
  1596. if (AR_SREV_9280_20_OR_LATER(ah) && common->btcoex_enabled) {
  1597. btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
  1598. btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
  1599. if (AR_SREV_9285(ah)) {
  1600. btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
  1601. btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
  1602. } else {
  1603. btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
  1604. }
  1605. } else {
  1606. btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
  1607. }
  1608. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1609. pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
  1610. if (!AR_SREV_9485(ah))
  1611. pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
  1612. pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
  1613. pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
  1614. pCap->rx_status_len = sizeof(struct ar9003_rxs);
  1615. pCap->tx_desc_len = sizeof(struct ar9003_txc);
  1616. pCap->txs_len = sizeof(struct ar9003_txs);
  1617. if (!ah->config.paprd_disable &&
  1618. ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
  1619. pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
  1620. } else {
  1621. pCap->tx_desc_len = sizeof(struct ath_desc);
  1622. if (AR_SREV_9280_20(ah) &&
  1623. ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <=
  1624. AR5416_EEP_MINOR_VER_16) ||
  1625. ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G)))
  1626. pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
  1627. }
  1628. if (AR_SREV_9300_20_OR_LATER(ah))
  1629. pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
  1630. if (AR_SREV_9300_20_OR_LATER(ah))
  1631. ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
  1632. if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
  1633. pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
  1634. if (AR_SREV_9285(ah))
  1635. if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
  1636. ant_div_ctl1 =
  1637. ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  1638. if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
  1639. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  1640. }
  1641. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1642. if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
  1643. pCap->hw_caps |= ATH9K_HW_CAP_APM;
  1644. }
  1645. if (AR_SREV_9485_10(ah)) {
  1646. pCap->pcie_lcr_extsync_en = true;
  1647. pCap->pcie_lcr_offset = 0x80;
  1648. }
  1649. tx_chainmask = pCap->tx_chainmask;
  1650. rx_chainmask = pCap->rx_chainmask;
  1651. while (tx_chainmask || rx_chainmask) {
  1652. if (tx_chainmask & BIT(0))
  1653. pCap->max_txchains++;
  1654. if (rx_chainmask & BIT(0))
  1655. pCap->max_rxchains++;
  1656. tx_chainmask >>= 1;
  1657. rx_chainmask >>= 1;
  1658. }
  1659. return 0;
  1660. }
  1661. /****************************/
  1662. /* GPIO / RFKILL / Antennae */
  1663. /****************************/
  1664. static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
  1665. u32 gpio, u32 type)
  1666. {
  1667. int addr;
  1668. u32 gpio_shift, tmp;
  1669. if (gpio > 11)
  1670. addr = AR_GPIO_OUTPUT_MUX3;
  1671. else if (gpio > 5)
  1672. addr = AR_GPIO_OUTPUT_MUX2;
  1673. else
  1674. addr = AR_GPIO_OUTPUT_MUX1;
  1675. gpio_shift = (gpio % 6) * 5;
  1676. if (AR_SREV_9280_20_OR_LATER(ah)
  1677. || (addr != AR_GPIO_OUTPUT_MUX1)) {
  1678. REG_RMW(ah, addr, (type << gpio_shift),
  1679. (0x1f << gpio_shift));
  1680. } else {
  1681. tmp = REG_READ(ah, addr);
  1682. tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
  1683. tmp &= ~(0x1f << gpio_shift);
  1684. tmp |= (type << gpio_shift);
  1685. REG_WRITE(ah, addr, tmp);
  1686. }
  1687. }
  1688. void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
  1689. {
  1690. u32 gpio_shift;
  1691. BUG_ON(gpio >= ah->caps.num_gpio_pins);
  1692. if (AR_DEVID_7010(ah)) {
  1693. gpio_shift = gpio;
  1694. REG_RMW(ah, AR7010_GPIO_OE,
  1695. (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
  1696. (AR7010_GPIO_OE_MASK << gpio_shift));
  1697. return;
  1698. }
  1699. gpio_shift = gpio << 1;
  1700. REG_RMW(ah,
  1701. AR_GPIO_OE_OUT,
  1702. (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
  1703. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  1704. }
  1705. EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
  1706. u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
  1707. {
  1708. #define MS_REG_READ(x, y) \
  1709. (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
  1710. if (gpio >= ah->caps.num_gpio_pins)
  1711. return 0xffffffff;
  1712. if (AR_DEVID_7010(ah)) {
  1713. u32 val;
  1714. val = REG_READ(ah, AR7010_GPIO_IN);
  1715. return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
  1716. } else if (AR_SREV_9300_20_OR_LATER(ah))
  1717. return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
  1718. AR_GPIO_BIT(gpio)) != 0;
  1719. else if (AR_SREV_9271(ah))
  1720. return MS_REG_READ(AR9271, gpio) != 0;
  1721. else if (AR_SREV_9287_11_OR_LATER(ah))
  1722. return MS_REG_READ(AR9287, gpio) != 0;
  1723. else if (AR_SREV_9285_12_OR_LATER(ah))
  1724. return MS_REG_READ(AR9285, gpio) != 0;
  1725. else if (AR_SREV_9280_20_OR_LATER(ah))
  1726. return MS_REG_READ(AR928X, gpio) != 0;
  1727. else
  1728. return MS_REG_READ(AR, gpio) != 0;
  1729. }
  1730. EXPORT_SYMBOL(ath9k_hw_gpio_get);
  1731. void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
  1732. u32 ah_signal_type)
  1733. {
  1734. u32 gpio_shift;
  1735. if (AR_DEVID_7010(ah)) {
  1736. gpio_shift = gpio;
  1737. REG_RMW(ah, AR7010_GPIO_OE,
  1738. (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
  1739. (AR7010_GPIO_OE_MASK << gpio_shift));
  1740. return;
  1741. }
  1742. ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
  1743. gpio_shift = 2 * gpio;
  1744. REG_RMW(ah,
  1745. AR_GPIO_OE_OUT,
  1746. (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
  1747. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  1748. }
  1749. EXPORT_SYMBOL(ath9k_hw_cfg_output);
  1750. void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
  1751. {
  1752. if (AR_DEVID_7010(ah)) {
  1753. val = val ? 0 : 1;
  1754. REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
  1755. AR_GPIO_BIT(gpio));
  1756. return;
  1757. }
  1758. if (AR_SREV_9271(ah))
  1759. val = ~val;
  1760. REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
  1761. AR_GPIO_BIT(gpio));
  1762. }
  1763. EXPORT_SYMBOL(ath9k_hw_set_gpio);
  1764. u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
  1765. {
  1766. return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
  1767. }
  1768. EXPORT_SYMBOL(ath9k_hw_getdefantenna);
  1769. void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
  1770. {
  1771. REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
  1772. }
  1773. EXPORT_SYMBOL(ath9k_hw_setantenna);
  1774. /*********************/
  1775. /* General Operation */
  1776. /*********************/
  1777. u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
  1778. {
  1779. u32 bits = REG_READ(ah, AR_RX_FILTER);
  1780. u32 phybits = REG_READ(ah, AR_PHY_ERR);
  1781. if (phybits & AR_PHY_ERR_RADAR)
  1782. bits |= ATH9K_RX_FILTER_PHYRADAR;
  1783. if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
  1784. bits |= ATH9K_RX_FILTER_PHYERR;
  1785. return bits;
  1786. }
  1787. EXPORT_SYMBOL(ath9k_hw_getrxfilter);
  1788. void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
  1789. {
  1790. u32 phybits;
  1791. ENABLE_REGWRITE_BUFFER(ah);
  1792. REG_WRITE(ah, AR_RX_FILTER, bits);
  1793. phybits = 0;
  1794. if (bits & ATH9K_RX_FILTER_PHYRADAR)
  1795. phybits |= AR_PHY_ERR_RADAR;
  1796. if (bits & ATH9K_RX_FILTER_PHYERR)
  1797. phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
  1798. REG_WRITE(ah, AR_PHY_ERR, phybits);
  1799. if (phybits)
  1800. REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  1801. else
  1802. REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  1803. REGWRITE_BUFFER_FLUSH(ah);
  1804. }
  1805. EXPORT_SYMBOL(ath9k_hw_setrxfilter);
  1806. bool ath9k_hw_phy_disable(struct ath_hw *ah)
  1807. {
  1808. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  1809. return false;
  1810. ath9k_hw_init_pll(ah, NULL);
  1811. return true;
  1812. }
  1813. EXPORT_SYMBOL(ath9k_hw_phy_disable);
  1814. bool ath9k_hw_disable(struct ath_hw *ah)
  1815. {
  1816. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1817. return false;
  1818. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
  1819. return false;
  1820. ath9k_hw_init_pll(ah, NULL);
  1821. return true;
  1822. }
  1823. EXPORT_SYMBOL(ath9k_hw_disable);
  1824. void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
  1825. {
  1826. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1827. struct ath9k_channel *chan = ah->curchan;
  1828. struct ieee80211_channel *channel = chan->chan;
  1829. regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
  1830. ah->eep_ops->set_txpower(ah, chan,
  1831. ath9k_regd_get_ctl(regulatory, chan),
  1832. channel->max_antenna_gain * 2,
  1833. channel->max_power * 2,
  1834. min((u32) MAX_RATE_POWER,
  1835. (u32) regulatory->power_limit), test);
  1836. }
  1837. EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
  1838. void ath9k_hw_setopmode(struct ath_hw *ah)
  1839. {
  1840. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1841. }
  1842. EXPORT_SYMBOL(ath9k_hw_setopmode);
  1843. void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
  1844. {
  1845. REG_WRITE(ah, AR_MCAST_FIL0, filter0);
  1846. REG_WRITE(ah, AR_MCAST_FIL1, filter1);
  1847. }
  1848. EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
  1849. void ath9k_hw_write_associd(struct ath_hw *ah)
  1850. {
  1851. struct ath_common *common = ath9k_hw_common(ah);
  1852. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
  1853. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
  1854. ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
  1855. }
  1856. EXPORT_SYMBOL(ath9k_hw_write_associd);
  1857. #define ATH9K_MAX_TSF_READ 10
  1858. u64 ath9k_hw_gettsf64(struct ath_hw *ah)
  1859. {
  1860. u32 tsf_lower, tsf_upper1, tsf_upper2;
  1861. int i;
  1862. tsf_upper1 = REG_READ(ah, AR_TSF_U32);
  1863. for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
  1864. tsf_lower = REG_READ(ah, AR_TSF_L32);
  1865. tsf_upper2 = REG_READ(ah, AR_TSF_U32);
  1866. if (tsf_upper2 == tsf_upper1)
  1867. break;
  1868. tsf_upper1 = tsf_upper2;
  1869. }
  1870. WARN_ON( i == ATH9K_MAX_TSF_READ );
  1871. return (((u64)tsf_upper1 << 32) | tsf_lower);
  1872. }
  1873. EXPORT_SYMBOL(ath9k_hw_gettsf64);
  1874. void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
  1875. {
  1876. REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
  1877. REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
  1878. }
  1879. EXPORT_SYMBOL(ath9k_hw_settsf64);
  1880. void ath9k_hw_reset_tsf(struct ath_hw *ah)
  1881. {
  1882. if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
  1883. AH_TSF_WRITE_TIMEOUT))
  1884. ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
  1885. "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
  1886. REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
  1887. }
  1888. EXPORT_SYMBOL(ath9k_hw_reset_tsf);
  1889. void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
  1890. {
  1891. if (setting)
  1892. ah->misc_mode |= AR_PCU_TX_ADD_TSF;
  1893. else
  1894. ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
  1895. }
  1896. EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
  1897. void ath9k_hw_set11nmac2040(struct ath_hw *ah)
  1898. {
  1899. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  1900. u32 macmode;
  1901. if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
  1902. macmode = AR_2040_JOINED_RX_CLEAR;
  1903. else
  1904. macmode = 0;
  1905. REG_WRITE(ah, AR_2040_MODE, macmode);
  1906. }
  1907. /* HW Generic timers configuration */
  1908. static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
  1909. {
  1910. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1911. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1912. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1913. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1914. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1915. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1916. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1917. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1918. {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
  1919. {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
  1920. AR_NDP2_TIMER_MODE, 0x0002},
  1921. {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
  1922. AR_NDP2_TIMER_MODE, 0x0004},
  1923. {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
  1924. AR_NDP2_TIMER_MODE, 0x0008},
  1925. {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
  1926. AR_NDP2_TIMER_MODE, 0x0010},
  1927. {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
  1928. AR_NDP2_TIMER_MODE, 0x0020},
  1929. {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
  1930. AR_NDP2_TIMER_MODE, 0x0040},
  1931. {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
  1932. AR_NDP2_TIMER_MODE, 0x0080}
  1933. };
  1934. /* HW generic timer primitives */
  1935. /* compute and clear index of rightmost 1 */
  1936. static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
  1937. {
  1938. u32 b;
  1939. b = *mask;
  1940. b &= (0-b);
  1941. *mask &= ~b;
  1942. b *= debruijn32;
  1943. b >>= 27;
  1944. return timer_table->gen_timer_index[b];
  1945. }
  1946. u32 ath9k_hw_gettsf32(struct ath_hw *ah)
  1947. {
  1948. return REG_READ(ah, AR_TSF_L32);
  1949. }
  1950. EXPORT_SYMBOL(ath9k_hw_gettsf32);
  1951. struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
  1952. void (*trigger)(void *),
  1953. void (*overflow)(void *),
  1954. void *arg,
  1955. u8 timer_index)
  1956. {
  1957. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  1958. struct ath_gen_timer *timer;
  1959. timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
  1960. if (timer == NULL) {
  1961. ath_err(ath9k_hw_common(ah),
  1962. "Failed to allocate memory for hw timer[%d]\n",
  1963. timer_index);
  1964. return NULL;
  1965. }
  1966. /* allocate a hardware generic timer slot */
  1967. timer_table->timers[timer_index] = timer;
  1968. timer->index = timer_index;
  1969. timer->trigger = trigger;
  1970. timer->overflow = overflow;
  1971. timer->arg = arg;
  1972. return timer;
  1973. }
  1974. EXPORT_SYMBOL(ath_gen_timer_alloc);
  1975. void ath9k_hw_gen_timer_start(struct ath_hw *ah,
  1976. struct ath_gen_timer *timer,
  1977. u32 timer_next,
  1978. u32 timer_period)
  1979. {
  1980. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  1981. u32 tsf;
  1982. BUG_ON(!timer_period);
  1983. set_bit(timer->index, &timer_table->timer_mask.timer_bits);
  1984. tsf = ath9k_hw_gettsf32(ah);
  1985. ath_dbg(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
  1986. "current tsf %x period %x timer_next %x\n",
  1987. tsf, timer_period, timer_next);
  1988. /*
  1989. * Pull timer_next forward if the current TSF already passed it
  1990. * because of software latency
  1991. */
  1992. if (timer_next < tsf)
  1993. timer_next = tsf + timer_period;
  1994. /*
  1995. * Program generic timer registers
  1996. */
  1997. REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
  1998. timer_next);
  1999. REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
  2000. timer_period);
  2001. REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2002. gen_tmr_configuration[timer->index].mode_mask);
  2003. /* Enable both trigger and thresh interrupt masks */
  2004. REG_SET_BIT(ah, AR_IMR_S5,
  2005. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2006. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2007. }
  2008. EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
  2009. void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
  2010. {
  2011. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2012. if ((timer->index < AR_FIRST_NDP_TIMER) ||
  2013. (timer->index >= ATH_MAX_GEN_TIMER)) {
  2014. return;
  2015. }
  2016. /* Clear generic timer enable bits. */
  2017. REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2018. gen_tmr_configuration[timer->index].mode_mask);
  2019. /* Disable both trigger and thresh interrupt masks */
  2020. REG_CLR_BIT(ah, AR_IMR_S5,
  2021. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2022. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2023. clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2024. }
  2025. EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
  2026. void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
  2027. {
  2028. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2029. /* free the hardware generic timer slot */
  2030. timer_table->timers[timer->index] = NULL;
  2031. kfree(timer);
  2032. }
  2033. EXPORT_SYMBOL(ath_gen_timer_free);
  2034. /*
  2035. * Generic Timer Interrupts handling
  2036. */
  2037. void ath_gen_timer_isr(struct ath_hw *ah)
  2038. {
  2039. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2040. struct ath_gen_timer *timer;
  2041. struct ath_common *common = ath9k_hw_common(ah);
  2042. u32 trigger_mask, thresh_mask, index;
  2043. /* get hardware generic timer interrupt status */
  2044. trigger_mask = ah->intr_gen_timer_trigger;
  2045. thresh_mask = ah->intr_gen_timer_thresh;
  2046. trigger_mask &= timer_table->timer_mask.val;
  2047. thresh_mask &= timer_table->timer_mask.val;
  2048. trigger_mask &= ~thresh_mask;
  2049. while (thresh_mask) {
  2050. index = rightmost_index(timer_table, &thresh_mask);
  2051. timer = timer_table->timers[index];
  2052. BUG_ON(!timer);
  2053. ath_dbg(common, ATH_DBG_HWTIMER,
  2054. "TSF overflow for Gen timer %d\n", index);
  2055. timer->overflow(timer->arg);
  2056. }
  2057. while (trigger_mask) {
  2058. index = rightmost_index(timer_table, &trigger_mask);
  2059. timer = timer_table->timers[index];
  2060. BUG_ON(!timer);
  2061. ath_dbg(common, ATH_DBG_HWTIMER,
  2062. "Gen timer[%d] trigger\n", index);
  2063. timer->trigger(timer->arg);
  2064. }
  2065. }
  2066. EXPORT_SYMBOL(ath_gen_timer_isr);
  2067. /********/
  2068. /* HTC */
  2069. /********/
  2070. void ath9k_hw_htc_resetinit(struct ath_hw *ah)
  2071. {
  2072. ah->htc_reset_init = true;
  2073. }
  2074. EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
  2075. static struct {
  2076. u32 version;
  2077. const char * name;
  2078. } ath_mac_bb_names[] = {
  2079. /* Devices with external radios */
  2080. { AR_SREV_VERSION_5416_PCI, "5416" },
  2081. { AR_SREV_VERSION_5416_PCIE, "5418" },
  2082. { AR_SREV_VERSION_9100, "9100" },
  2083. { AR_SREV_VERSION_9160, "9160" },
  2084. /* Single-chip solutions */
  2085. { AR_SREV_VERSION_9280, "9280" },
  2086. { AR_SREV_VERSION_9285, "9285" },
  2087. { AR_SREV_VERSION_9287, "9287" },
  2088. { AR_SREV_VERSION_9271, "9271" },
  2089. { AR_SREV_VERSION_9300, "9300" },
  2090. { AR_SREV_VERSION_9485, "9485" },
  2091. };
  2092. /* For devices with external radios */
  2093. static struct {
  2094. u16 version;
  2095. const char * name;
  2096. } ath_rf_names[] = {
  2097. { 0, "5133" },
  2098. { AR_RAD5133_SREV_MAJOR, "5133" },
  2099. { AR_RAD5122_SREV_MAJOR, "5122" },
  2100. { AR_RAD2133_SREV_MAJOR, "2133" },
  2101. { AR_RAD2122_SREV_MAJOR, "2122" }
  2102. };
  2103. /*
  2104. * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
  2105. */
  2106. static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
  2107. {
  2108. int i;
  2109. for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
  2110. if (ath_mac_bb_names[i].version == mac_bb_version) {
  2111. return ath_mac_bb_names[i].name;
  2112. }
  2113. }
  2114. return "????";
  2115. }
  2116. /*
  2117. * Return the RF name. "????" is returned if the RF is unknown.
  2118. * Used for devices with external radios.
  2119. */
  2120. static const char *ath9k_hw_rf_name(u16 rf_version)
  2121. {
  2122. int i;
  2123. for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
  2124. if (ath_rf_names[i].version == rf_version) {
  2125. return ath_rf_names[i].name;
  2126. }
  2127. }
  2128. return "????";
  2129. }
  2130. void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
  2131. {
  2132. int used;
  2133. /* chipsets >= AR9280 are single-chip */
  2134. if (AR_SREV_9280_20_OR_LATER(ah)) {
  2135. used = snprintf(hw_name, len,
  2136. "Atheros AR%s Rev:%x",
  2137. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2138. ah->hw_version.macRev);
  2139. }
  2140. else {
  2141. used = snprintf(hw_name, len,
  2142. "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
  2143. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2144. ah->hw_version.macRev,
  2145. ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
  2146. AR_RADIO_SREV_MAJOR)),
  2147. ah->hw_version.phyRev);
  2148. }
  2149. hw_name[used] = '\0';
  2150. }
  2151. EXPORT_SYMBOL(ath9k_hw_name);