fair.c 174 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. #include <linux/sched.h>
  24. #include <linux/cpumask.h>
  25. #include <linux/slab.h>
  26. #include <linux/profile.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/mempolicy.h>
  29. #include <linux/migrate.h>
  30. #include <linux/task_work.h>
  31. #include <trace/events/sched.h>
  32. #include "sched.h"
  33. /*
  34. * Targeted preemption latency for CPU-bound tasks:
  35. * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  36. *
  37. * NOTE: this latency value is not the same as the concept of
  38. * 'timeslice length' - timeslices in CFS are of variable length
  39. * and have no persistent notion like in traditional, time-slice
  40. * based scheduling concepts.
  41. *
  42. * (to see the precise effective timeslice length of your workload,
  43. * run vmstat and monitor the context-switches (cs) field)
  44. */
  45. unsigned int sysctl_sched_latency = 6000000ULL;
  46. unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  47. /*
  48. * The initial- and re-scaling of tunables is configurable
  49. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  50. *
  51. * Options are:
  52. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  53. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  54. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  55. */
  56. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  57. = SCHED_TUNABLESCALING_LOG;
  58. /*
  59. * Minimal preemption granularity for CPU-bound tasks:
  60. * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  61. */
  62. unsigned int sysctl_sched_min_granularity = 750000ULL;
  63. unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  64. /*
  65. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  66. */
  67. static unsigned int sched_nr_latency = 8;
  68. /*
  69. * After fork, child runs first. If set to 0 (default) then
  70. * parent will (try to) run first.
  71. */
  72. unsigned int sysctl_sched_child_runs_first __read_mostly;
  73. /*
  74. * SCHED_OTHER wake-up granularity.
  75. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  76. *
  77. * This option delays the preemption effects of decoupled workloads
  78. * and reduces their over-scheduling. Synchronous workloads will still
  79. * have immediate wakeup/sleep latencies.
  80. */
  81. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  82. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  83. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  84. /*
  85. * The exponential sliding window over which load is averaged for shares
  86. * distribution.
  87. * (default: 10msec)
  88. */
  89. unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
  90. #ifdef CONFIG_CFS_BANDWIDTH
  91. /*
  92. * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
  93. * each time a cfs_rq requests quota.
  94. *
  95. * Note: in the case that the slice exceeds the runtime remaining (either due
  96. * to consumption or the quota being specified to be smaller than the slice)
  97. * we will always only issue the remaining available time.
  98. *
  99. * default: 5 msec, units: microseconds
  100. */
  101. unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
  102. #endif
  103. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  104. {
  105. lw->weight += inc;
  106. lw->inv_weight = 0;
  107. }
  108. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  109. {
  110. lw->weight -= dec;
  111. lw->inv_weight = 0;
  112. }
  113. static inline void update_load_set(struct load_weight *lw, unsigned long w)
  114. {
  115. lw->weight = w;
  116. lw->inv_weight = 0;
  117. }
  118. /*
  119. * Increase the granularity value when there are more CPUs,
  120. * because with more CPUs the 'effective latency' as visible
  121. * to users decreases. But the relationship is not linear,
  122. * so pick a second-best guess by going with the log2 of the
  123. * number of CPUs.
  124. *
  125. * This idea comes from the SD scheduler of Con Kolivas:
  126. */
  127. static int get_update_sysctl_factor(void)
  128. {
  129. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  130. unsigned int factor;
  131. switch (sysctl_sched_tunable_scaling) {
  132. case SCHED_TUNABLESCALING_NONE:
  133. factor = 1;
  134. break;
  135. case SCHED_TUNABLESCALING_LINEAR:
  136. factor = cpus;
  137. break;
  138. case SCHED_TUNABLESCALING_LOG:
  139. default:
  140. factor = 1 + ilog2(cpus);
  141. break;
  142. }
  143. return factor;
  144. }
  145. static void update_sysctl(void)
  146. {
  147. unsigned int factor = get_update_sysctl_factor();
  148. #define SET_SYSCTL(name) \
  149. (sysctl_##name = (factor) * normalized_sysctl_##name)
  150. SET_SYSCTL(sched_min_granularity);
  151. SET_SYSCTL(sched_latency);
  152. SET_SYSCTL(sched_wakeup_granularity);
  153. #undef SET_SYSCTL
  154. }
  155. void sched_init_granularity(void)
  156. {
  157. update_sysctl();
  158. }
  159. #if BITS_PER_LONG == 32
  160. # define WMULT_CONST (~0UL)
  161. #else
  162. # define WMULT_CONST (1UL << 32)
  163. #endif
  164. #define WMULT_SHIFT 32
  165. /*
  166. * Shift right and round:
  167. */
  168. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  169. /*
  170. * delta *= weight / lw
  171. */
  172. static unsigned long
  173. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  174. struct load_weight *lw)
  175. {
  176. u64 tmp;
  177. /*
  178. * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
  179. * entities since MIN_SHARES = 2. Treat weight as 1 if less than
  180. * 2^SCHED_LOAD_RESOLUTION.
  181. */
  182. if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
  183. tmp = (u64)delta_exec * scale_load_down(weight);
  184. else
  185. tmp = (u64)delta_exec;
  186. if (!lw->inv_weight) {
  187. unsigned long w = scale_load_down(lw->weight);
  188. if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
  189. lw->inv_weight = 1;
  190. else if (unlikely(!w))
  191. lw->inv_weight = WMULT_CONST;
  192. else
  193. lw->inv_weight = WMULT_CONST / w;
  194. }
  195. /*
  196. * Check whether we'd overflow the 64-bit multiplication:
  197. */
  198. if (unlikely(tmp > WMULT_CONST))
  199. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  200. WMULT_SHIFT/2);
  201. else
  202. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  203. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  204. }
  205. const struct sched_class fair_sched_class;
  206. /**************************************************************
  207. * CFS operations on generic schedulable entities:
  208. */
  209. #ifdef CONFIG_FAIR_GROUP_SCHED
  210. /* cpu runqueue to which this cfs_rq is attached */
  211. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  212. {
  213. return cfs_rq->rq;
  214. }
  215. /* An entity is a task if it doesn't "own" a runqueue */
  216. #define entity_is_task(se) (!se->my_q)
  217. static inline struct task_struct *task_of(struct sched_entity *se)
  218. {
  219. #ifdef CONFIG_SCHED_DEBUG
  220. WARN_ON_ONCE(!entity_is_task(se));
  221. #endif
  222. return container_of(se, struct task_struct, se);
  223. }
  224. /* Walk up scheduling entities hierarchy */
  225. #define for_each_sched_entity(se) \
  226. for (; se; se = se->parent)
  227. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  228. {
  229. return p->se.cfs_rq;
  230. }
  231. /* runqueue on which this entity is (to be) queued */
  232. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  233. {
  234. return se->cfs_rq;
  235. }
  236. /* runqueue "owned" by this group */
  237. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  238. {
  239. return grp->my_q;
  240. }
  241. static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
  242. int force_update);
  243. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  244. {
  245. if (!cfs_rq->on_list) {
  246. /*
  247. * Ensure we either appear before our parent (if already
  248. * enqueued) or force our parent to appear after us when it is
  249. * enqueued. The fact that we always enqueue bottom-up
  250. * reduces this to two cases.
  251. */
  252. if (cfs_rq->tg->parent &&
  253. cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
  254. list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
  255. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  256. } else {
  257. list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  258. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  259. }
  260. cfs_rq->on_list = 1;
  261. /* We should have no load, but we need to update last_decay. */
  262. update_cfs_rq_blocked_load(cfs_rq, 0);
  263. }
  264. }
  265. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  266. {
  267. if (cfs_rq->on_list) {
  268. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  269. cfs_rq->on_list = 0;
  270. }
  271. }
  272. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  273. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  274. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  275. /* Do the two (enqueued) entities belong to the same group ? */
  276. static inline int
  277. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  278. {
  279. if (se->cfs_rq == pse->cfs_rq)
  280. return 1;
  281. return 0;
  282. }
  283. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  284. {
  285. return se->parent;
  286. }
  287. /* return depth at which a sched entity is present in the hierarchy */
  288. static inline int depth_se(struct sched_entity *se)
  289. {
  290. int depth = 0;
  291. for_each_sched_entity(se)
  292. depth++;
  293. return depth;
  294. }
  295. static void
  296. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  297. {
  298. int se_depth, pse_depth;
  299. /*
  300. * preemption test can be made between sibling entities who are in the
  301. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  302. * both tasks until we find their ancestors who are siblings of common
  303. * parent.
  304. */
  305. /* First walk up until both entities are at same depth */
  306. se_depth = depth_se(*se);
  307. pse_depth = depth_se(*pse);
  308. while (se_depth > pse_depth) {
  309. se_depth--;
  310. *se = parent_entity(*se);
  311. }
  312. while (pse_depth > se_depth) {
  313. pse_depth--;
  314. *pse = parent_entity(*pse);
  315. }
  316. while (!is_same_group(*se, *pse)) {
  317. *se = parent_entity(*se);
  318. *pse = parent_entity(*pse);
  319. }
  320. }
  321. #else /* !CONFIG_FAIR_GROUP_SCHED */
  322. static inline struct task_struct *task_of(struct sched_entity *se)
  323. {
  324. return container_of(se, struct task_struct, se);
  325. }
  326. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  327. {
  328. return container_of(cfs_rq, struct rq, cfs);
  329. }
  330. #define entity_is_task(se) 1
  331. #define for_each_sched_entity(se) \
  332. for (; se; se = NULL)
  333. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  334. {
  335. return &task_rq(p)->cfs;
  336. }
  337. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  338. {
  339. struct task_struct *p = task_of(se);
  340. struct rq *rq = task_rq(p);
  341. return &rq->cfs;
  342. }
  343. /* runqueue "owned" by this group */
  344. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  345. {
  346. return NULL;
  347. }
  348. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  349. {
  350. }
  351. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  352. {
  353. }
  354. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  355. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  356. static inline int
  357. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  358. {
  359. return 1;
  360. }
  361. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  362. {
  363. return NULL;
  364. }
  365. static inline void
  366. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  367. {
  368. }
  369. #endif /* CONFIG_FAIR_GROUP_SCHED */
  370. static __always_inline
  371. void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
  372. /**************************************************************
  373. * Scheduling class tree data structure manipulation methods:
  374. */
  375. static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
  376. {
  377. s64 delta = (s64)(vruntime - max_vruntime);
  378. if (delta > 0)
  379. max_vruntime = vruntime;
  380. return max_vruntime;
  381. }
  382. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  383. {
  384. s64 delta = (s64)(vruntime - min_vruntime);
  385. if (delta < 0)
  386. min_vruntime = vruntime;
  387. return min_vruntime;
  388. }
  389. static inline int entity_before(struct sched_entity *a,
  390. struct sched_entity *b)
  391. {
  392. return (s64)(a->vruntime - b->vruntime) < 0;
  393. }
  394. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  395. {
  396. u64 vruntime = cfs_rq->min_vruntime;
  397. if (cfs_rq->curr)
  398. vruntime = cfs_rq->curr->vruntime;
  399. if (cfs_rq->rb_leftmost) {
  400. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  401. struct sched_entity,
  402. run_node);
  403. if (!cfs_rq->curr)
  404. vruntime = se->vruntime;
  405. else
  406. vruntime = min_vruntime(vruntime, se->vruntime);
  407. }
  408. /* ensure we never gain time by being placed backwards. */
  409. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  410. #ifndef CONFIG_64BIT
  411. smp_wmb();
  412. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  413. #endif
  414. }
  415. /*
  416. * Enqueue an entity into the rb-tree:
  417. */
  418. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  419. {
  420. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  421. struct rb_node *parent = NULL;
  422. struct sched_entity *entry;
  423. int leftmost = 1;
  424. /*
  425. * Find the right place in the rbtree:
  426. */
  427. while (*link) {
  428. parent = *link;
  429. entry = rb_entry(parent, struct sched_entity, run_node);
  430. /*
  431. * We dont care about collisions. Nodes with
  432. * the same key stay together.
  433. */
  434. if (entity_before(se, entry)) {
  435. link = &parent->rb_left;
  436. } else {
  437. link = &parent->rb_right;
  438. leftmost = 0;
  439. }
  440. }
  441. /*
  442. * Maintain a cache of leftmost tree entries (it is frequently
  443. * used):
  444. */
  445. if (leftmost)
  446. cfs_rq->rb_leftmost = &se->run_node;
  447. rb_link_node(&se->run_node, parent, link);
  448. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  449. }
  450. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  451. {
  452. if (cfs_rq->rb_leftmost == &se->run_node) {
  453. struct rb_node *next_node;
  454. next_node = rb_next(&se->run_node);
  455. cfs_rq->rb_leftmost = next_node;
  456. }
  457. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  458. }
  459. struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
  460. {
  461. struct rb_node *left = cfs_rq->rb_leftmost;
  462. if (!left)
  463. return NULL;
  464. return rb_entry(left, struct sched_entity, run_node);
  465. }
  466. static struct sched_entity *__pick_next_entity(struct sched_entity *se)
  467. {
  468. struct rb_node *next = rb_next(&se->run_node);
  469. if (!next)
  470. return NULL;
  471. return rb_entry(next, struct sched_entity, run_node);
  472. }
  473. #ifdef CONFIG_SCHED_DEBUG
  474. struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  475. {
  476. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  477. if (!last)
  478. return NULL;
  479. return rb_entry(last, struct sched_entity, run_node);
  480. }
  481. /**************************************************************
  482. * Scheduling class statistics methods:
  483. */
  484. int sched_proc_update_handler(struct ctl_table *table, int write,
  485. void __user *buffer, size_t *lenp,
  486. loff_t *ppos)
  487. {
  488. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  489. int factor = get_update_sysctl_factor();
  490. if (ret || !write)
  491. return ret;
  492. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  493. sysctl_sched_min_granularity);
  494. #define WRT_SYSCTL(name) \
  495. (normalized_sysctl_##name = sysctl_##name / (factor))
  496. WRT_SYSCTL(sched_min_granularity);
  497. WRT_SYSCTL(sched_latency);
  498. WRT_SYSCTL(sched_wakeup_granularity);
  499. #undef WRT_SYSCTL
  500. return 0;
  501. }
  502. #endif
  503. /*
  504. * delta /= w
  505. */
  506. static inline unsigned long
  507. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  508. {
  509. if (unlikely(se->load.weight != NICE_0_LOAD))
  510. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  511. return delta;
  512. }
  513. /*
  514. * The idea is to set a period in which each task runs once.
  515. *
  516. * When there are too many tasks (sched_nr_latency) we have to stretch
  517. * this period because otherwise the slices get too small.
  518. *
  519. * p = (nr <= nl) ? l : l*nr/nl
  520. */
  521. static u64 __sched_period(unsigned long nr_running)
  522. {
  523. u64 period = sysctl_sched_latency;
  524. unsigned long nr_latency = sched_nr_latency;
  525. if (unlikely(nr_running > nr_latency)) {
  526. period = sysctl_sched_min_granularity;
  527. period *= nr_running;
  528. }
  529. return period;
  530. }
  531. /*
  532. * We calculate the wall-time slice from the period by taking a part
  533. * proportional to the weight.
  534. *
  535. * s = p*P[w/rw]
  536. */
  537. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  538. {
  539. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  540. for_each_sched_entity(se) {
  541. struct load_weight *load;
  542. struct load_weight lw;
  543. cfs_rq = cfs_rq_of(se);
  544. load = &cfs_rq->load;
  545. if (unlikely(!se->on_rq)) {
  546. lw = cfs_rq->load;
  547. update_load_add(&lw, se->load.weight);
  548. load = &lw;
  549. }
  550. slice = calc_delta_mine(slice, se->load.weight, load);
  551. }
  552. return slice;
  553. }
  554. /*
  555. * We calculate the vruntime slice of a to-be-inserted task.
  556. *
  557. * vs = s/w
  558. */
  559. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  560. {
  561. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  562. }
  563. #ifdef CONFIG_SMP
  564. static inline void __update_task_entity_contrib(struct sched_entity *se);
  565. /* Give new task start runnable values to heavy its load in infant time */
  566. void init_task_runnable_average(struct task_struct *p)
  567. {
  568. u32 slice;
  569. p->se.avg.decay_count = 0;
  570. slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
  571. p->se.avg.runnable_avg_sum = slice;
  572. p->se.avg.runnable_avg_period = slice;
  573. __update_task_entity_contrib(&p->se);
  574. }
  575. #else
  576. void init_task_runnable_average(struct task_struct *p)
  577. {
  578. }
  579. #endif
  580. /*
  581. * Update the current task's runtime statistics. Skip current tasks that
  582. * are not in our scheduling class.
  583. */
  584. static inline void
  585. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  586. unsigned long delta_exec)
  587. {
  588. unsigned long delta_exec_weighted;
  589. schedstat_set(curr->statistics.exec_max,
  590. max((u64)delta_exec, curr->statistics.exec_max));
  591. curr->sum_exec_runtime += delta_exec;
  592. schedstat_add(cfs_rq, exec_clock, delta_exec);
  593. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  594. curr->vruntime += delta_exec_weighted;
  595. update_min_vruntime(cfs_rq);
  596. }
  597. static void update_curr(struct cfs_rq *cfs_rq)
  598. {
  599. struct sched_entity *curr = cfs_rq->curr;
  600. u64 now = rq_clock_task(rq_of(cfs_rq));
  601. unsigned long delta_exec;
  602. if (unlikely(!curr))
  603. return;
  604. /*
  605. * Get the amount of time the current task was running
  606. * since the last time we changed load (this cannot
  607. * overflow on 32 bits):
  608. */
  609. delta_exec = (unsigned long)(now - curr->exec_start);
  610. if (!delta_exec)
  611. return;
  612. __update_curr(cfs_rq, curr, delta_exec);
  613. curr->exec_start = now;
  614. if (entity_is_task(curr)) {
  615. struct task_struct *curtask = task_of(curr);
  616. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  617. cpuacct_charge(curtask, delta_exec);
  618. account_group_exec_runtime(curtask, delta_exec);
  619. }
  620. account_cfs_rq_runtime(cfs_rq, delta_exec);
  621. }
  622. static inline void
  623. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  624. {
  625. schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
  626. }
  627. /*
  628. * Task is being enqueued - update stats:
  629. */
  630. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  631. {
  632. /*
  633. * Are we enqueueing a waiting task? (for current tasks
  634. * a dequeue/enqueue event is a NOP)
  635. */
  636. if (se != cfs_rq->curr)
  637. update_stats_wait_start(cfs_rq, se);
  638. }
  639. static void
  640. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  641. {
  642. schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
  643. rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
  644. schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
  645. schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
  646. rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
  647. #ifdef CONFIG_SCHEDSTATS
  648. if (entity_is_task(se)) {
  649. trace_sched_stat_wait(task_of(se),
  650. rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
  651. }
  652. #endif
  653. schedstat_set(se->statistics.wait_start, 0);
  654. }
  655. static inline void
  656. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  657. {
  658. /*
  659. * Mark the end of the wait period if dequeueing a
  660. * waiting task:
  661. */
  662. if (se != cfs_rq->curr)
  663. update_stats_wait_end(cfs_rq, se);
  664. }
  665. /*
  666. * We are picking a new current task - update its stats:
  667. */
  668. static inline void
  669. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  670. {
  671. /*
  672. * We are starting a new run period:
  673. */
  674. se->exec_start = rq_clock_task(rq_of(cfs_rq));
  675. }
  676. /**************************************************
  677. * Scheduling class queueing methods:
  678. */
  679. #ifdef CONFIG_NUMA_BALANCING
  680. /*
  681. * Approximate time to scan a full NUMA task in ms. The task scan period is
  682. * calculated based on the tasks virtual memory size and
  683. * numa_balancing_scan_size.
  684. */
  685. unsigned int sysctl_numa_balancing_scan_period_min = 1000;
  686. unsigned int sysctl_numa_balancing_scan_period_max = 60000;
  687. unsigned int sysctl_numa_balancing_scan_period_reset = 60000;
  688. /* Portion of address space to scan in MB */
  689. unsigned int sysctl_numa_balancing_scan_size = 256;
  690. /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
  691. unsigned int sysctl_numa_balancing_scan_delay = 1000;
  692. static unsigned int task_nr_scan_windows(struct task_struct *p)
  693. {
  694. unsigned long rss = 0;
  695. unsigned long nr_scan_pages;
  696. /*
  697. * Calculations based on RSS as non-present and empty pages are skipped
  698. * by the PTE scanner and NUMA hinting faults should be trapped based
  699. * on resident pages
  700. */
  701. nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
  702. rss = get_mm_rss(p->mm);
  703. if (!rss)
  704. rss = nr_scan_pages;
  705. rss = round_up(rss, nr_scan_pages);
  706. return rss / nr_scan_pages;
  707. }
  708. /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
  709. #define MAX_SCAN_WINDOW 2560
  710. static unsigned int task_scan_min(struct task_struct *p)
  711. {
  712. unsigned int scan, floor;
  713. unsigned int windows = 1;
  714. if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
  715. windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
  716. floor = 1000 / windows;
  717. scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
  718. return max_t(unsigned int, floor, scan);
  719. }
  720. static unsigned int task_scan_max(struct task_struct *p)
  721. {
  722. unsigned int smin = task_scan_min(p);
  723. unsigned int smax;
  724. /* Watch for min being lower than max due to floor calculations */
  725. smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
  726. return max(smin, smax);
  727. }
  728. /*
  729. * Once a preferred node is selected the scheduler balancer will prefer moving
  730. * a task to that node for sysctl_numa_balancing_settle_count number of PTE
  731. * scans. This will give the process the chance to accumulate more faults on
  732. * the preferred node but still allow the scheduler to move the task again if
  733. * the nodes CPUs are overloaded.
  734. */
  735. unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
  736. static inline int task_faults_idx(int nid, int priv)
  737. {
  738. return 2 * nid + priv;
  739. }
  740. static inline unsigned long task_faults(struct task_struct *p, int nid)
  741. {
  742. if (!p->numa_faults)
  743. return 0;
  744. return p->numa_faults[task_faults_idx(nid, 0)] +
  745. p->numa_faults[task_faults_idx(nid, 1)];
  746. }
  747. static unsigned long weighted_cpuload(const int cpu);
  748. static unsigned long source_load(int cpu, int type);
  749. static unsigned long target_load(int cpu, int type);
  750. static unsigned long power_of(int cpu);
  751. static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
  752. struct numa_stats {
  753. unsigned long load;
  754. s64 eff_load;
  755. unsigned long faults;
  756. };
  757. struct task_numa_env {
  758. struct task_struct *p;
  759. int src_cpu, src_nid;
  760. int dst_cpu, dst_nid;
  761. struct numa_stats src_stats, dst_stats;
  762. unsigned long best_load;
  763. int best_cpu;
  764. };
  765. static int task_numa_migrate(struct task_struct *p)
  766. {
  767. int node_cpu = cpumask_first(cpumask_of_node(p->numa_preferred_nid));
  768. struct task_numa_env env = {
  769. .p = p,
  770. .src_cpu = task_cpu(p),
  771. .src_nid = cpu_to_node(task_cpu(p)),
  772. .dst_cpu = node_cpu,
  773. .dst_nid = p->numa_preferred_nid,
  774. .best_load = ULONG_MAX,
  775. .best_cpu = task_cpu(p),
  776. };
  777. struct sched_domain *sd;
  778. int cpu;
  779. struct task_group *tg = task_group(p);
  780. unsigned long weight;
  781. bool balanced;
  782. int imbalance_pct, idx = -1;
  783. /*
  784. * Find the lowest common scheduling domain covering the nodes of both
  785. * the CPU the task is currently running on and the target NUMA node.
  786. */
  787. rcu_read_lock();
  788. for_each_domain(env.src_cpu, sd) {
  789. if (cpumask_test_cpu(node_cpu, sched_domain_span(sd))) {
  790. /*
  791. * busy_idx is used for the load decision as it is the
  792. * same index used by the regular load balancer for an
  793. * active cpu.
  794. */
  795. idx = sd->busy_idx;
  796. imbalance_pct = sd->imbalance_pct;
  797. break;
  798. }
  799. }
  800. rcu_read_unlock();
  801. if (WARN_ON_ONCE(idx == -1))
  802. return 0;
  803. /*
  804. * XXX the below is mostly nicked from wake_affine(); we should
  805. * see about sharing a bit if at all possible; also it might want
  806. * some per entity weight love.
  807. */
  808. weight = p->se.load.weight;
  809. env.src_stats.load = source_load(env.src_cpu, idx);
  810. env.src_stats.eff_load = 100 + (imbalance_pct - 100) / 2;
  811. env.src_stats.eff_load *= power_of(env.src_cpu);
  812. env.src_stats.eff_load *= env.src_stats.load + effective_load(tg, env.src_cpu, -weight, -weight);
  813. for_each_cpu(cpu, cpumask_of_node(env.dst_nid)) {
  814. env.dst_cpu = cpu;
  815. env.dst_stats.load = target_load(cpu, idx);
  816. /* If the CPU is idle, use it */
  817. if (!env.dst_stats.load) {
  818. env.best_cpu = cpu;
  819. goto migrate;
  820. }
  821. /* Otherwise check the target CPU load */
  822. env.dst_stats.eff_load = 100;
  823. env.dst_stats.eff_load *= power_of(cpu);
  824. env.dst_stats.eff_load *= env.dst_stats.load + effective_load(tg, cpu, weight, weight);
  825. /*
  826. * Destination is considered balanced if the destination CPU is
  827. * less loaded than the source CPU. Unfortunately there is a
  828. * risk that a task running on a lightly loaded CPU will not
  829. * migrate to its preferred node due to load imbalances.
  830. */
  831. balanced = (env.dst_stats.eff_load <= env.src_stats.eff_load);
  832. if (!balanced)
  833. continue;
  834. if (env.dst_stats.eff_load < env.best_load) {
  835. env.best_load = env.dst_stats.eff_load;
  836. env.best_cpu = cpu;
  837. }
  838. }
  839. migrate:
  840. return migrate_task_to(p, env.best_cpu);
  841. }
  842. /* Attempt to migrate a task to a CPU on the preferred node. */
  843. static void numa_migrate_preferred(struct task_struct *p)
  844. {
  845. /* Success if task is already running on preferred CPU */
  846. p->numa_migrate_retry = 0;
  847. if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid) {
  848. /*
  849. * If migration is temporarily disabled due to a task migration
  850. * then re-enable it now as the task is running on its
  851. * preferred node and memory should migrate locally
  852. */
  853. if (!p->numa_migrate_seq)
  854. p->numa_migrate_seq++;
  855. return;
  856. }
  857. /* This task has no NUMA fault statistics yet */
  858. if (unlikely(p->numa_preferred_nid == -1))
  859. return;
  860. /* Otherwise, try migrate to a CPU on the preferred node */
  861. if (task_numa_migrate(p) != 0)
  862. p->numa_migrate_retry = jiffies + HZ*5;
  863. }
  864. static void task_numa_placement(struct task_struct *p)
  865. {
  866. int seq, nid, max_nid = -1;
  867. unsigned long max_faults = 0;
  868. seq = ACCESS_ONCE(p->mm->numa_scan_seq);
  869. if (p->numa_scan_seq == seq)
  870. return;
  871. p->numa_scan_seq = seq;
  872. p->numa_migrate_seq++;
  873. p->numa_scan_period_max = task_scan_max(p);
  874. /* Find the node with the highest number of faults */
  875. for_each_online_node(nid) {
  876. unsigned long faults;
  877. int priv, i;
  878. for (priv = 0; priv < 2; priv++) {
  879. i = task_faults_idx(nid, priv);
  880. /* Decay existing window, copy faults since last scan */
  881. p->numa_faults[i] >>= 1;
  882. p->numa_faults[i] += p->numa_faults_buffer[i];
  883. p->numa_faults_buffer[i] = 0;
  884. }
  885. /* Find maximum private faults */
  886. faults = p->numa_faults[task_faults_idx(nid, 1)];
  887. if (faults > max_faults) {
  888. max_faults = faults;
  889. max_nid = nid;
  890. }
  891. }
  892. /* Preferred node as the node with the most faults */
  893. if (max_faults && max_nid != p->numa_preferred_nid) {
  894. /* Update the preferred nid and migrate task if possible */
  895. p->numa_preferred_nid = max_nid;
  896. p->numa_migrate_seq = 1;
  897. numa_migrate_preferred(p);
  898. }
  899. }
  900. /*
  901. * Got a PROT_NONE fault for a page on @node.
  902. */
  903. void task_numa_fault(int last_nidpid, int node, int pages, bool migrated)
  904. {
  905. struct task_struct *p = current;
  906. int priv;
  907. if (!numabalancing_enabled)
  908. return;
  909. /* for example, ksmd faulting in a user's mm */
  910. if (!p->mm)
  911. return;
  912. /*
  913. * First accesses are treated as private, otherwise consider accesses
  914. * to be private if the accessing pid has not changed
  915. */
  916. if (!nidpid_pid_unset(last_nidpid))
  917. priv = ((p->pid & LAST__PID_MASK) == nidpid_to_pid(last_nidpid));
  918. else
  919. priv = 1;
  920. /* Allocate buffer to track faults on a per-node basis */
  921. if (unlikely(!p->numa_faults)) {
  922. int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
  923. /* numa_faults and numa_faults_buffer share the allocation */
  924. p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
  925. if (!p->numa_faults)
  926. return;
  927. BUG_ON(p->numa_faults_buffer);
  928. p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
  929. }
  930. /*
  931. * If pages are properly placed (did not migrate) then scan slower.
  932. * This is reset periodically in case of phase changes
  933. */
  934. if (!migrated) {
  935. /* Initialise if necessary */
  936. if (!p->numa_scan_period_max)
  937. p->numa_scan_period_max = task_scan_max(p);
  938. p->numa_scan_period = min(p->numa_scan_period_max,
  939. p->numa_scan_period + 10);
  940. }
  941. task_numa_placement(p);
  942. /* Retry task to preferred node migration if it previously failed */
  943. if (p->numa_migrate_retry && time_after(jiffies, p->numa_migrate_retry))
  944. numa_migrate_preferred(p);
  945. p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
  946. }
  947. static void reset_ptenuma_scan(struct task_struct *p)
  948. {
  949. ACCESS_ONCE(p->mm->numa_scan_seq)++;
  950. p->mm->numa_scan_offset = 0;
  951. }
  952. /*
  953. * The expensive part of numa migration is done from task_work context.
  954. * Triggered from task_tick_numa().
  955. */
  956. void task_numa_work(struct callback_head *work)
  957. {
  958. unsigned long migrate, next_scan, now = jiffies;
  959. struct task_struct *p = current;
  960. struct mm_struct *mm = p->mm;
  961. struct vm_area_struct *vma;
  962. unsigned long start, end;
  963. unsigned long nr_pte_updates = 0;
  964. long pages;
  965. WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
  966. work->next = work; /* protect against double add */
  967. /*
  968. * Who cares about NUMA placement when they're dying.
  969. *
  970. * NOTE: make sure not to dereference p->mm before this check,
  971. * exit_task_work() happens _after_ exit_mm() so we could be called
  972. * without p->mm even though we still had it when we enqueued this
  973. * work.
  974. */
  975. if (p->flags & PF_EXITING)
  976. return;
  977. if (!mm->numa_next_reset || !mm->numa_next_scan) {
  978. mm->numa_next_scan = now +
  979. msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
  980. mm->numa_next_reset = now +
  981. msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
  982. }
  983. /*
  984. * Reset the scan period if enough time has gone by. Objective is that
  985. * scanning will be reduced if pages are properly placed. As tasks
  986. * can enter different phases this needs to be re-examined. Lacking
  987. * proper tracking of reference behaviour, this blunt hammer is used.
  988. */
  989. migrate = mm->numa_next_reset;
  990. if (time_after(now, migrate)) {
  991. p->numa_scan_period = task_scan_min(p);
  992. next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
  993. xchg(&mm->numa_next_reset, next_scan);
  994. }
  995. /*
  996. * Enforce maximal scan/migration frequency..
  997. */
  998. migrate = mm->numa_next_scan;
  999. if (time_before(now, migrate))
  1000. return;
  1001. if (p->numa_scan_period == 0) {
  1002. p->numa_scan_period_max = task_scan_max(p);
  1003. p->numa_scan_period = task_scan_min(p);
  1004. }
  1005. next_scan = now + msecs_to_jiffies(p->numa_scan_period);
  1006. if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
  1007. return;
  1008. /*
  1009. * Delay this task enough that another task of this mm will likely win
  1010. * the next time around.
  1011. */
  1012. p->node_stamp += 2 * TICK_NSEC;
  1013. start = mm->numa_scan_offset;
  1014. pages = sysctl_numa_balancing_scan_size;
  1015. pages <<= 20 - PAGE_SHIFT; /* MB in pages */
  1016. if (!pages)
  1017. return;
  1018. down_read(&mm->mmap_sem);
  1019. vma = find_vma(mm, start);
  1020. if (!vma) {
  1021. reset_ptenuma_scan(p);
  1022. start = 0;
  1023. vma = mm->mmap;
  1024. }
  1025. for (; vma; vma = vma->vm_next) {
  1026. if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
  1027. continue;
  1028. do {
  1029. start = max(start, vma->vm_start);
  1030. end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
  1031. end = min(end, vma->vm_end);
  1032. nr_pte_updates += change_prot_numa(vma, start, end);
  1033. /*
  1034. * Scan sysctl_numa_balancing_scan_size but ensure that
  1035. * at least one PTE is updated so that unused virtual
  1036. * address space is quickly skipped.
  1037. */
  1038. if (nr_pte_updates)
  1039. pages -= (end - start) >> PAGE_SHIFT;
  1040. start = end;
  1041. if (pages <= 0)
  1042. goto out;
  1043. } while (end != vma->vm_end);
  1044. }
  1045. out:
  1046. /*
  1047. * If the whole process was scanned without updates then no NUMA
  1048. * hinting faults are being recorded and scan rate should be lower.
  1049. */
  1050. if (mm->numa_scan_offset == 0 && !nr_pte_updates) {
  1051. p->numa_scan_period = min(p->numa_scan_period_max,
  1052. p->numa_scan_period << 1);
  1053. next_scan = now + msecs_to_jiffies(p->numa_scan_period);
  1054. mm->numa_next_scan = next_scan;
  1055. }
  1056. /*
  1057. * It is possible to reach the end of the VMA list but the last few
  1058. * VMAs are not guaranteed to the vma_migratable. If they are not, we
  1059. * would find the !migratable VMA on the next scan but not reset the
  1060. * scanner to the start so check it now.
  1061. */
  1062. if (vma)
  1063. mm->numa_scan_offset = start;
  1064. else
  1065. reset_ptenuma_scan(p);
  1066. up_read(&mm->mmap_sem);
  1067. }
  1068. /*
  1069. * Drive the periodic memory faults..
  1070. */
  1071. void task_tick_numa(struct rq *rq, struct task_struct *curr)
  1072. {
  1073. struct callback_head *work = &curr->numa_work;
  1074. u64 period, now;
  1075. /*
  1076. * We don't care about NUMA placement if we don't have memory.
  1077. */
  1078. if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
  1079. return;
  1080. /*
  1081. * Using runtime rather than walltime has the dual advantage that
  1082. * we (mostly) drive the selection from busy threads and that the
  1083. * task needs to have done some actual work before we bother with
  1084. * NUMA placement.
  1085. */
  1086. now = curr->se.sum_exec_runtime;
  1087. period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
  1088. if (now - curr->node_stamp > period) {
  1089. if (!curr->node_stamp)
  1090. curr->numa_scan_period = task_scan_min(curr);
  1091. curr->node_stamp += period;
  1092. if (!time_before(jiffies, curr->mm->numa_next_scan)) {
  1093. init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
  1094. task_work_add(curr, work, true);
  1095. }
  1096. }
  1097. }
  1098. #else
  1099. static void task_tick_numa(struct rq *rq, struct task_struct *curr)
  1100. {
  1101. }
  1102. #endif /* CONFIG_NUMA_BALANCING */
  1103. static void
  1104. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  1105. {
  1106. update_load_add(&cfs_rq->load, se->load.weight);
  1107. if (!parent_entity(se))
  1108. update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
  1109. #ifdef CONFIG_SMP
  1110. if (entity_is_task(se))
  1111. list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
  1112. #endif
  1113. cfs_rq->nr_running++;
  1114. }
  1115. static void
  1116. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  1117. {
  1118. update_load_sub(&cfs_rq->load, se->load.weight);
  1119. if (!parent_entity(se))
  1120. update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
  1121. if (entity_is_task(se))
  1122. list_del_init(&se->group_node);
  1123. cfs_rq->nr_running--;
  1124. }
  1125. #ifdef CONFIG_FAIR_GROUP_SCHED
  1126. # ifdef CONFIG_SMP
  1127. static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
  1128. {
  1129. long tg_weight;
  1130. /*
  1131. * Use this CPU's actual weight instead of the last load_contribution
  1132. * to gain a more accurate current total weight. See
  1133. * update_cfs_rq_load_contribution().
  1134. */
  1135. tg_weight = atomic_long_read(&tg->load_avg);
  1136. tg_weight -= cfs_rq->tg_load_contrib;
  1137. tg_weight += cfs_rq->load.weight;
  1138. return tg_weight;
  1139. }
  1140. static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  1141. {
  1142. long tg_weight, load, shares;
  1143. tg_weight = calc_tg_weight(tg, cfs_rq);
  1144. load = cfs_rq->load.weight;
  1145. shares = (tg->shares * load);
  1146. if (tg_weight)
  1147. shares /= tg_weight;
  1148. if (shares < MIN_SHARES)
  1149. shares = MIN_SHARES;
  1150. if (shares > tg->shares)
  1151. shares = tg->shares;
  1152. return shares;
  1153. }
  1154. # else /* CONFIG_SMP */
  1155. static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  1156. {
  1157. return tg->shares;
  1158. }
  1159. # endif /* CONFIG_SMP */
  1160. static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
  1161. unsigned long weight)
  1162. {
  1163. if (se->on_rq) {
  1164. /* commit outstanding execution time */
  1165. if (cfs_rq->curr == se)
  1166. update_curr(cfs_rq);
  1167. account_entity_dequeue(cfs_rq, se);
  1168. }
  1169. update_load_set(&se->load, weight);
  1170. if (se->on_rq)
  1171. account_entity_enqueue(cfs_rq, se);
  1172. }
  1173. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
  1174. static void update_cfs_shares(struct cfs_rq *cfs_rq)
  1175. {
  1176. struct task_group *tg;
  1177. struct sched_entity *se;
  1178. long shares;
  1179. tg = cfs_rq->tg;
  1180. se = tg->se[cpu_of(rq_of(cfs_rq))];
  1181. if (!se || throttled_hierarchy(cfs_rq))
  1182. return;
  1183. #ifndef CONFIG_SMP
  1184. if (likely(se->load.weight == tg->shares))
  1185. return;
  1186. #endif
  1187. shares = calc_cfs_shares(cfs_rq, tg);
  1188. reweight_entity(cfs_rq_of(se), se, shares);
  1189. }
  1190. #else /* CONFIG_FAIR_GROUP_SCHED */
  1191. static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
  1192. {
  1193. }
  1194. #endif /* CONFIG_FAIR_GROUP_SCHED */
  1195. #ifdef CONFIG_SMP
  1196. /*
  1197. * We choose a half-life close to 1 scheduling period.
  1198. * Note: The tables below are dependent on this value.
  1199. */
  1200. #define LOAD_AVG_PERIOD 32
  1201. #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
  1202. #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
  1203. /* Precomputed fixed inverse multiplies for multiplication by y^n */
  1204. static const u32 runnable_avg_yN_inv[] = {
  1205. 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
  1206. 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
  1207. 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
  1208. 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
  1209. 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
  1210. 0x85aac367, 0x82cd8698,
  1211. };
  1212. /*
  1213. * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
  1214. * over-estimates when re-combining.
  1215. */
  1216. static const u32 runnable_avg_yN_sum[] = {
  1217. 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
  1218. 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
  1219. 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
  1220. };
  1221. /*
  1222. * Approximate:
  1223. * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
  1224. */
  1225. static __always_inline u64 decay_load(u64 val, u64 n)
  1226. {
  1227. unsigned int local_n;
  1228. if (!n)
  1229. return val;
  1230. else if (unlikely(n > LOAD_AVG_PERIOD * 63))
  1231. return 0;
  1232. /* after bounds checking we can collapse to 32-bit */
  1233. local_n = n;
  1234. /*
  1235. * As y^PERIOD = 1/2, we can combine
  1236. * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
  1237. * With a look-up table which covers k^n (n<PERIOD)
  1238. *
  1239. * To achieve constant time decay_load.
  1240. */
  1241. if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
  1242. val >>= local_n / LOAD_AVG_PERIOD;
  1243. local_n %= LOAD_AVG_PERIOD;
  1244. }
  1245. val *= runnable_avg_yN_inv[local_n];
  1246. /* We don't use SRR here since we always want to round down. */
  1247. return val >> 32;
  1248. }
  1249. /*
  1250. * For updates fully spanning n periods, the contribution to runnable
  1251. * average will be: \Sum 1024*y^n
  1252. *
  1253. * We can compute this reasonably efficiently by combining:
  1254. * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
  1255. */
  1256. static u32 __compute_runnable_contrib(u64 n)
  1257. {
  1258. u32 contrib = 0;
  1259. if (likely(n <= LOAD_AVG_PERIOD))
  1260. return runnable_avg_yN_sum[n];
  1261. else if (unlikely(n >= LOAD_AVG_MAX_N))
  1262. return LOAD_AVG_MAX;
  1263. /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
  1264. do {
  1265. contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
  1266. contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
  1267. n -= LOAD_AVG_PERIOD;
  1268. } while (n > LOAD_AVG_PERIOD);
  1269. contrib = decay_load(contrib, n);
  1270. return contrib + runnable_avg_yN_sum[n];
  1271. }
  1272. /*
  1273. * We can represent the historical contribution to runnable average as the
  1274. * coefficients of a geometric series. To do this we sub-divide our runnable
  1275. * history into segments of approximately 1ms (1024us); label the segment that
  1276. * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
  1277. *
  1278. * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
  1279. * p0 p1 p2
  1280. * (now) (~1ms ago) (~2ms ago)
  1281. *
  1282. * Let u_i denote the fraction of p_i that the entity was runnable.
  1283. *
  1284. * We then designate the fractions u_i as our co-efficients, yielding the
  1285. * following representation of historical load:
  1286. * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
  1287. *
  1288. * We choose y based on the with of a reasonably scheduling period, fixing:
  1289. * y^32 = 0.5
  1290. *
  1291. * This means that the contribution to load ~32ms ago (u_32) will be weighted
  1292. * approximately half as much as the contribution to load within the last ms
  1293. * (u_0).
  1294. *
  1295. * When a period "rolls over" and we have new u_0`, multiplying the previous
  1296. * sum again by y is sufficient to update:
  1297. * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
  1298. * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
  1299. */
  1300. static __always_inline int __update_entity_runnable_avg(u64 now,
  1301. struct sched_avg *sa,
  1302. int runnable)
  1303. {
  1304. u64 delta, periods;
  1305. u32 runnable_contrib;
  1306. int delta_w, decayed = 0;
  1307. delta = now - sa->last_runnable_update;
  1308. /*
  1309. * This should only happen when time goes backwards, which it
  1310. * unfortunately does during sched clock init when we swap over to TSC.
  1311. */
  1312. if ((s64)delta < 0) {
  1313. sa->last_runnable_update = now;
  1314. return 0;
  1315. }
  1316. /*
  1317. * Use 1024ns as the unit of measurement since it's a reasonable
  1318. * approximation of 1us and fast to compute.
  1319. */
  1320. delta >>= 10;
  1321. if (!delta)
  1322. return 0;
  1323. sa->last_runnable_update = now;
  1324. /* delta_w is the amount already accumulated against our next period */
  1325. delta_w = sa->runnable_avg_period % 1024;
  1326. if (delta + delta_w >= 1024) {
  1327. /* period roll-over */
  1328. decayed = 1;
  1329. /*
  1330. * Now that we know we're crossing a period boundary, figure
  1331. * out how much from delta we need to complete the current
  1332. * period and accrue it.
  1333. */
  1334. delta_w = 1024 - delta_w;
  1335. if (runnable)
  1336. sa->runnable_avg_sum += delta_w;
  1337. sa->runnable_avg_period += delta_w;
  1338. delta -= delta_w;
  1339. /* Figure out how many additional periods this update spans */
  1340. periods = delta / 1024;
  1341. delta %= 1024;
  1342. sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
  1343. periods + 1);
  1344. sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
  1345. periods + 1);
  1346. /* Efficiently calculate \sum (1..n_period) 1024*y^i */
  1347. runnable_contrib = __compute_runnable_contrib(periods);
  1348. if (runnable)
  1349. sa->runnable_avg_sum += runnable_contrib;
  1350. sa->runnable_avg_period += runnable_contrib;
  1351. }
  1352. /* Remainder of delta accrued against u_0` */
  1353. if (runnable)
  1354. sa->runnable_avg_sum += delta;
  1355. sa->runnable_avg_period += delta;
  1356. return decayed;
  1357. }
  1358. /* Synchronize an entity's decay with its parenting cfs_rq.*/
  1359. static inline u64 __synchronize_entity_decay(struct sched_entity *se)
  1360. {
  1361. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1362. u64 decays = atomic64_read(&cfs_rq->decay_counter);
  1363. decays -= se->avg.decay_count;
  1364. if (!decays)
  1365. return 0;
  1366. se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
  1367. se->avg.decay_count = 0;
  1368. return decays;
  1369. }
  1370. #ifdef CONFIG_FAIR_GROUP_SCHED
  1371. static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
  1372. int force_update)
  1373. {
  1374. struct task_group *tg = cfs_rq->tg;
  1375. long tg_contrib;
  1376. tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
  1377. tg_contrib -= cfs_rq->tg_load_contrib;
  1378. if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
  1379. atomic_long_add(tg_contrib, &tg->load_avg);
  1380. cfs_rq->tg_load_contrib += tg_contrib;
  1381. }
  1382. }
  1383. /*
  1384. * Aggregate cfs_rq runnable averages into an equivalent task_group
  1385. * representation for computing load contributions.
  1386. */
  1387. static inline void __update_tg_runnable_avg(struct sched_avg *sa,
  1388. struct cfs_rq *cfs_rq)
  1389. {
  1390. struct task_group *tg = cfs_rq->tg;
  1391. long contrib;
  1392. /* The fraction of a cpu used by this cfs_rq */
  1393. contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
  1394. sa->runnable_avg_period + 1);
  1395. contrib -= cfs_rq->tg_runnable_contrib;
  1396. if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
  1397. atomic_add(contrib, &tg->runnable_avg);
  1398. cfs_rq->tg_runnable_contrib += contrib;
  1399. }
  1400. }
  1401. static inline void __update_group_entity_contrib(struct sched_entity *se)
  1402. {
  1403. struct cfs_rq *cfs_rq = group_cfs_rq(se);
  1404. struct task_group *tg = cfs_rq->tg;
  1405. int runnable_avg;
  1406. u64 contrib;
  1407. contrib = cfs_rq->tg_load_contrib * tg->shares;
  1408. se->avg.load_avg_contrib = div_u64(contrib,
  1409. atomic_long_read(&tg->load_avg) + 1);
  1410. /*
  1411. * For group entities we need to compute a correction term in the case
  1412. * that they are consuming <1 cpu so that we would contribute the same
  1413. * load as a task of equal weight.
  1414. *
  1415. * Explicitly co-ordinating this measurement would be expensive, but
  1416. * fortunately the sum of each cpus contribution forms a usable
  1417. * lower-bound on the true value.
  1418. *
  1419. * Consider the aggregate of 2 contributions. Either they are disjoint
  1420. * (and the sum represents true value) or they are disjoint and we are
  1421. * understating by the aggregate of their overlap.
  1422. *
  1423. * Extending this to N cpus, for a given overlap, the maximum amount we
  1424. * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
  1425. * cpus that overlap for this interval and w_i is the interval width.
  1426. *
  1427. * On a small machine; the first term is well-bounded which bounds the
  1428. * total error since w_i is a subset of the period. Whereas on a
  1429. * larger machine, while this first term can be larger, if w_i is the
  1430. * of consequential size guaranteed to see n_i*w_i quickly converge to
  1431. * our upper bound of 1-cpu.
  1432. */
  1433. runnable_avg = atomic_read(&tg->runnable_avg);
  1434. if (runnable_avg < NICE_0_LOAD) {
  1435. se->avg.load_avg_contrib *= runnable_avg;
  1436. se->avg.load_avg_contrib >>= NICE_0_SHIFT;
  1437. }
  1438. }
  1439. #else
  1440. static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
  1441. int force_update) {}
  1442. static inline void __update_tg_runnable_avg(struct sched_avg *sa,
  1443. struct cfs_rq *cfs_rq) {}
  1444. static inline void __update_group_entity_contrib(struct sched_entity *se) {}
  1445. #endif
  1446. static inline void __update_task_entity_contrib(struct sched_entity *se)
  1447. {
  1448. u32 contrib;
  1449. /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
  1450. contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
  1451. contrib /= (se->avg.runnable_avg_period + 1);
  1452. se->avg.load_avg_contrib = scale_load(contrib);
  1453. }
  1454. /* Compute the current contribution to load_avg by se, return any delta */
  1455. static long __update_entity_load_avg_contrib(struct sched_entity *se)
  1456. {
  1457. long old_contrib = se->avg.load_avg_contrib;
  1458. if (entity_is_task(se)) {
  1459. __update_task_entity_contrib(se);
  1460. } else {
  1461. __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
  1462. __update_group_entity_contrib(se);
  1463. }
  1464. return se->avg.load_avg_contrib - old_contrib;
  1465. }
  1466. static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
  1467. long load_contrib)
  1468. {
  1469. if (likely(load_contrib < cfs_rq->blocked_load_avg))
  1470. cfs_rq->blocked_load_avg -= load_contrib;
  1471. else
  1472. cfs_rq->blocked_load_avg = 0;
  1473. }
  1474. static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
  1475. /* Update a sched_entity's runnable average */
  1476. static inline void update_entity_load_avg(struct sched_entity *se,
  1477. int update_cfs_rq)
  1478. {
  1479. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1480. long contrib_delta;
  1481. u64 now;
  1482. /*
  1483. * For a group entity we need to use their owned cfs_rq_clock_task() in
  1484. * case they are the parent of a throttled hierarchy.
  1485. */
  1486. if (entity_is_task(se))
  1487. now = cfs_rq_clock_task(cfs_rq);
  1488. else
  1489. now = cfs_rq_clock_task(group_cfs_rq(se));
  1490. if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
  1491. return;
  1492. contrib_delta = __update_entity_load_avg_contrib(se);
  1493. if (!update_cfs_rq)
  1494. return;
  1495. if (se->on_rq)
  1496. cfs_rq->runnable_load_avg += contrib_delta;
  1497. else
  1498. subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
  1499. }
  1500. /*
  1501. * Decay the load contributed by all blocked children and account this so that
  1502. * their contribution may appropriately discounted when they wake up.
  1503. */
  1504. static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
  1505. {
  1506. u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
  1507. u64 decays;
  1508. decays = now - cfs_rq->last_decay;
  1509. if (!decays && !force_update)
  1510. return;
  1511. if (atomic_long_read(&cfs_rq->removed_load)) {
  1512. unsigned long removed_load;
  1513. removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
  1514. subtract_blocked_load_contrib(cfs_rq, removed_load);
  1515. }
  1516. if (decays) {
  1517. cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
  1518. decays);
  1519. atomic64_add(decays, &cfs_rq->decay_counter);
  1520. cfs_rq->last_decay = now;
  1521. }
  1522. __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
  1523. }
  1524. static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
  1525. {
  1526. __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
  1527. __update_tg_runnable_avg(&rq->avg, &rq->cfs);
  1528. }
  1529. /* Add the load generated by se into cfs_rq's child load-average */
  1530. static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
  1531. struct sched_entity *se,
  1532. int wakeup)
  1533. {
  1534. /*
  1535. * We track migrations using entity decay_count <= 0, on a wake-up
  1536. * migration we use a negative decay count to track the remote decays
  1537. * accumulated while sleeping.
  1538. *
  1539. * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
  1540. * are seen by enqueue_entity_load_avg() as a migration with an already
  1541. * constructed load_avg_contrib.
  1542. */
  1543. if (unlikely(se->avg.decay_count <= 0)) {
  1544. se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
  1545. if (se->avg.decay_count) {
  1546. /*
  1547. * In a wake-up migration we have to approximate the
  1548. * time sleeping. This is because we can't synchronize
  1549. * clock_task between the two cpus, and it is not
  1550. * guaranteed to be read-safe. Instead, we can
  1551. * approximate this using our carried decays, which are
  1552. * explicitly atomically readable.
  1553. */
  1554. se->avg.last_runnable_update -= (-se->avg.decay_count)
  1555. << 20;
  1556. update_entity_load_avg(se, 0);
  1557. /* Indicate that we're now synchronized and on-rq */
  1558. se->avg.decay_count = 0;
  1559. }
  1560. wakeup = 0;
  1561. } else {
  1562. /*
  1563. * Task re-woke on same cpu (or else migrate_task_rq_fair()
  1564. * would have made count negative); we must be careful to avoid
  1565. * double-accounting blocked time after synchronizing decays.
  1566. */
  1567. se->avg.last_runnable_update += __synchronize_entity_decay(se)
  1568. << 20;
  1569. }
  1570. /* migrated tasks did not contribute to our blocked load */
  1571. if (wakeup) {
  1572. subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
  1573. update_entity_load_avg(se, 0);
  1574. }
  1575. cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
  1576. /* we force update consideration on load-balancer moves */
  1577. update_cfs_rq_blocked_load(cfs_rq, !wakeup);
  1578. }
  1579. /*
  1580. * Remove se's load from this cfs_rq child load-average, if the entity is
  1581. * transitioning to a blocked state we track its projected decay using
  1582. * blocked_load_avg.
  1583. */
  1584. static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
  1585. struct sched_entity *se,
  1586. int sleep)
  1587. {
  1588. update_entity_load_avg(se, 1);
  1589. /* we force update consideration on load-balancer moves */
  1590. update_cfs_rq_blocked_load(cfs_rq, !sleep);
  1591. cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
  1592. if (sleep) {
  1593. cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
  1594. se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
  1595. } /* migrations, e.g. sleep=0 leave decay_count == 0 */
  1596. }
  1597. /*
  1598. * Update the rq's load with the elapsed running time before entering
  1599. * idle. if the last scheduled task is not a CFS task, idle_enter will
  1600. * be the only way to update the runnable statistic.
  1601. */
  1602. void idle_enter_fair(struct rq *this_rq)
  1603. {
  1604. update_rq_runnable_avg(this_rq, 1);
  1605. }
  1606. /*
  1607. * Update the rq's load with the elapsed idle time before a task is
  1608. * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
  1609. * be the only way to update the runnable statistic.
  1610. */
  1611. void idle_exit_fair(struct rq *this_rq)
  1612. {
  1613. update_rq_runnable_avg(this_rq, 0);
  1614. }
  1615. #else
  1616. static inline void update_entity_load_avg(struct sched_entity *se,
  1617. int update_cfs_rq) {}
  1618. static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
  1619. static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
  1620. struct sched_entity *se,
  1621. int wakeup) {}
  1622. static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
  1623. struct sched_entity *se,
  1624. int sleep) {}
  1625. static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
  1626. int force_update) {}
  1627. #endif
  1628. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  1629. {
  1630. #ifdef CONFIG_SCHEDSTATS
  1631. struct task_struct *tsk = NULL;
  1632. if (entity_is_task(se))
  1633. tsk = task_of(se);
  1634. if (se->statistics.sleep_start) {
  1635. u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
  1636. if ((s64)delta < 0)
  1637. delta = 0;
  1638. if (unlikely(delta > se->statistics.sleep_max))
  1639. se->statistics.sleep_max = delta;
  1640. se->statistics.sleep_start = 0;
  1641. se->statistics.sum_sleep_runtime += delta;
  1642. if (tsk) {
  1643. account_scheduler_latency(tsk, delta >> 10, 1);
  1644. trace_sched_stat_sleep(tsk, delta);
  1645. }
  1646. }
  1647. if (se->statistics.block_start) {
  1648. u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
  1649. if ((s64)delta < 0)
  1650. delta = 0;
  1651. if (unlikely(delta > se->statistics.block_max))
  1652. se->statistics.block_max = delta;
  1653. se->statistics.block_start = 0;
  1654. se->statistics.sum_sleep_runtime += delta;
  1655. if (tsk) {
  1656. if (tsk->in_iowait) {
  1657. se->statistics.iowait_sum += delta;
  1658. se->statistics.iowait_count++;
  1659. trace_sched_stat_iowait(tsk, delta);
  1660. }
  1661. trace_sched_stat_blocked(tsk, delta);
  1662. /*
  1663. * Blocking time is in units of nanosecs, so shift by
  1664. * 20 to get a milliseconds-range estimation of the
  1665. * amount of time that the task spent sleeping:
  1666. */
  1667. if (unlikely(prof_on == SLEEP_PROFILING)) {
  1668. profile_hits(SLEEP_PROFILING,
  1669. (void *)get_wchan(tsk),
  1670. delta >> 20);
  1671. }
  1672. account_scheduler_latency(tsk, delta >> 10, 0);
  1673. }
  1674. }
  1675. #endif
  1676. }
  1677. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  1678. {
  1679. #ifdef CONFIG_SCHED_DEBUG
  1680. s64 d = se->vruntime - cfs_rq->min_vruntime;
  1681. if (d < 0)
  1682. d = -d;
  1683. if (d > 3*sysctl_sched_latency)
  1684. schedstat_inc(cfs_rq, nr_spread_over);
  1685. #endif
  1686. }
  1687. static void
  1688. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  1689. {
  1690. u64 vruntime = cfs_rq->min_vruntime;
  1691. /*
  1692. * The 'current' period is already promised to the current tasks,
  1693. * however the extra weight of the new task will slow them down a
  1694. * little, place the new task so that it fits in the slot that
  1695. * stays open at the end.
  1696. */
  1697. if (initial && sched_feat(START_DEBIT))
  1698. vruntime += sched_vslice(cfs_rq, se);
  1699. /* sleeps up to a single latency don't count. */
  1700. if (!initial) {
  1701. unsigned long thresh = sysctl_sched_latency;
  1702. /*
  1703. * Halve their sleep time's effect, to allow
  1704. * for a gentler effect of sleepers:
  1705. */
  1706. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  1707. thresh >>= 1;
  1708. vruntime -= thresh;
  1709. }
  1710. /* ensure we never gain time by being placed backwards. */
  1711. se->vruntime = max_vruntime(se->vruntime, vruntime);
  1712. }
  1713. static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
  1714. static void
  1715. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  1716. {
  1717. /*
  1718. * Update the normalized vruntime before updating min_vruntime
  1719. * through calling update_curr().
  1720. */
  1721. if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
  1722. se->vruntime += cfs_rq->min_vruntime;
  1723. /*
  1724. * Update run-time statistics of the 'current'.
  1725. */
  1726. update_curr(cfs_rq);
  1727. enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
  1728. account_entity_enqueue(cfs_rq, se);
  1729. update_cfs_shares(cfs_rq);
  1730. if (flags & ENQUEUE_WAKEUP) {
  1731. place_entity(cfs_rq, se, 0);
  1732. enqueue_sleeper(cfs_rq, se);
  1733. }
  1734. update_stats_enqueue(cfs_rq, se);
  1735. check_spread(cfs_rq, se);
  1736. if (se != cfs_rq->curr)
  1737. __enqueue_entity(cfs_rq, se);
  1738. se->on_rq = 1;
  1739. if (cfs_rq->nr_running == 1) {
  1740. list_add_leaf_cfs_rq(cfs_rq);
  1741. check_enqueue_throttle(cfs_rq);
  1742. }
  1743. }
  1744. static void __clear_buddies_last(struct sched_entity *se)
  1745. {
  1746. for_each_sched_entity(se) {
  1747. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1748. if (cfs_rq->last == se)
  1749. cfs_rq->last = NULL;
  1750. else
  1751. break;
  1752. }
  1753. }
  1754. static void __clear_buddies_next(struct sched_entity *se)
  1755. {
  1756. for_each_sched_entity(se) {
  1757. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1758. if (cfs_rq->next == se)
  1759. cfs_rq->next = NULL;
  1760. else
  1761. break;
  1762. }
  1763. }
  1764. static void __clear_buddies_skip(struct sched_entity *se)
  1765. {
  1766. for_each_sched_entity(se) {
  1767. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1768. if (cfs_rq->skip == se)
  1769. cfs_rq->skip = NULL;
  1770. else
  1771. break;
  1772. }
  1773. }
  1774. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  1775. {
  1776. if (cfs_rq->last == se)
  1777. __clear_buddies_last(se);
  1778. if (cfs_rq->next == se)
  1779. __clear_buddies_next(se);
  1780. if (cfs_rq->skip == se)
  1781. __clear_buddies_skip(se);
  1782. }
  1783. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  1784. static void
  1785. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  1786. {
  1787. /*
  1788. * Update run-time statistics of the 'current'.
  1789. */
  1790. update_curr(cfs_rq);
  1791. dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
  1792. update_stats_dequeue(cfs_rq, se);
  1793. if (flags & DEQUEUE_SLEEP) {
  1794. #ifdef CONFIG_SCHEDSTATS
  1795. if (entity_is_task(se)) {
  1796. struct task_struct *tsk = task_of(se);
  1797. if (tsk->state & TASK_INTERRUPTIBLE)
  1798. se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
  1799. if (tsk->state & TASK_UNINTERRUPTIBLE)
  1800. se->statistics.block_start = rq_clock(rq_of(cfs_rq));
  1801. }
  1802. #endif
  1803. }
  1804. clear_buddies(cfs_rq, se);
  1805. if (se != cfs_rq->curr)
  1806. __dequeue_entity(cfs_rq, se);
  1807. se->on_rq = 0;
  1808. account_entity_dequeue(cfs_rq, se);
  1809. /*
  1810. * Normalize the entity after updating the min_vruntime because the
  1811. * update can refer to the ->curr item and we need to reflect this
  1812. * movement in our normalized position.
  1813. */
  1814. if (!(flags & DEQUEUE_SLEEP))
  1815. se->vruntime -= cfs_rq->min_vruntime;
  1816. /* return excess runtime on last dequeue */
  1817. return_cfs_rq_runtime(cfs_rq);
  1818. update_min_vruntime(cfs_rq);
  1819. update_cfs_shares(cfs_rq);
  1820. }
  1821. /*
  1822. * Preempt the current task with a newly woken task if needed:
  1823. */
  1824. static void
  1825. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  1826. {
  1827. unsigned long ideal_runtime, delta_exec;
  1828. struct sched_entity *se;
  1829. s64 delta;
  1830. ideal_runtime = sched_slice(cfs_rq, curr);
  1831. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  1832. if (delta_exec > ideal_runtime) {
  1833. resched_task(rq_of(cfs_rq)->curr);
  1834. /*
  1835. * The current task ran long enough, ensure it doesn't get
  1836. * re-elected due to buddy favours.
  1837. */
  1838. clear_buddies(cfs_rq, curr);
  1839. return;
  1840. }
  1841. /*
  1842. * Ensure that a task that missed wakeup preemption by a
  1843. * narrow margin doesn't have to wait for a full slice.
  1844. * This also mitigates buddy induced latencies under load.
  1845. */
  1846. if (delta_exec < sysctl_sched_min_granularity)
  1847. return;
  1848. se = __pick_first_entity(cfs_rq);
  1849. delta = curr->vruntime - se->vruntime;
  1850. if (delta < 0)
  1851. return;
  1852. if (delta > ideal_runtime)
  1853. resched_task(rq_of(cfs_rq)->curr);
  1854. }
  1855. static void
  1856. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  1857. {
  1858. /* 'current' is not kept within the tree. */
  1859. if (se->on_rq) {
  1860. /*
  1861. * Any task has to be enqueued before it get to execute on
  1862. * a CPU. So account for the time it spent waiting on the
  1863. * runqueue.
  1864. */
  1865. update_stats_wait_end(cfs_rq, se);
  1866. __dequeue_entity(cfs_rq, se);
  1867. }
  1868. update_stats_curr_start(cfs_rq, se);
  1869. cfs_rq->curr = se;
  1870. #ifdef CONFIG_SCHEDSTATS
  1871. /*
  1872. * Track our maximum slice length, if the CPU's load is at
  1873. * least twice that of our own weight (i.e. dont track it
  1874. * when there are only lesser-weight tasks around):
  1875. */
  1876. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  1877. se->statistics.slice_max = max(se->statistics.slice_max,
  1878. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  1879. }
  1880. #endif
  1881. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  1882. }
  1883. static int
  1884. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  1885. /*
  1886. * Pick the next process, keeping these things in mind, in this order:
  1887. * 1) keep things fair between processes/task groups
  1888. * 2) pick the "next" process, since someone really wants that to run
  1889. * 3) pick the "last" process, for cache locality
  1890. * 4) do not run the "skip" process, if something else is available
  1891. */
  1892. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  1893. {
  1894. struct sched_entity *se = __pick_first_entity(cfs_rq);
  1895. struct sched_entity *left = se;
  1896. /*
  1897. * Avoid running the skip buddy, if running something else can
  1898. * be done without getting too unfair.
  1899. */
  1900. if (cfs_rq->skip == se) {
  1901. struct sched_entity *second = __pick_next_entity(se);
  1902. if (second && wakeup_preempt_entity(second, left) < 1)
  1903. se = second;
  1904. }
  1905. /*
  1906. * Prefer last buddy, try to return the CPU to a preempted task.
  1907. */
  1908. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  1909. se = cfs_rq->last;
  1910. /*
  1911. * Someone really wants this to run. If it's not unfair, run it.
  1912. */
  1913. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  1914. se = cfs_rq->next;
  1915. clear_buddies(cfs_rq, se);
  1916. return se;
  1917. }
  1918. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  1919. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  1920. {
  1921. /*
  1922. * If still on the runqueue then deactivate_task()
  1923. * was not called and update_curr() has to be done:
  1924. */
  1925. if (prev->on_rq)
  1926. update_curr(cfs_rq);
  1927. /* throttle cfs_rqs exceeding runtime */
  1928. check_cfs_rq_runtime(cfs_rq);
  1929. check_spread(cfs_rq, prev);
  1930. if (prev->on_rq) {
  1931. update_stats_wait_start(cfs_rq, prev);
  1932. /* Put 'current' back into the tree. */
  1933. __enqueue_entity(cfs_rq, prev);
  1934. /* in !on_rq case, update occurred at dequeue */
  1935. update_entity_load_avg(prev, 1);
  1936. }
  1937. cfs_rq->curr = NULL;
  1938. }
  1939. static void
  1940. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  1941. {
  1942. /*
  1943. * Update run-time statistics of the 'current'.
  1944. */
  1945. update_curr(cfs_rq);
  1946. /*
  1947. * Ensure that runnable average is periodically updated.
  1948. */
  1949. update_entity_load_avg(curr, 1);
  1950. update_cfs_rq_blocked_load(cfs_rq, 1);
  1951. update_cfs_shares(cfs_rq);
  1952. #ifdef CONFIG_SCHED_HRTICK
  1953. /*
  1954. * queued ticks are scheduled to match the slice, so don't bother
  1955. * validating it and just reschedule.
  1956. */
  1957. if (queued) {
  1958. resched_task(rq_of(cfs_rq)->curr);
  1959. return;
  1960. }
  1961. /*
  1962. * don't let the period tick interfere with the hrtick preemption
  1963. */
  1964. if (!sched_feat(DOUBLE_TICK) &&
  1965. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  1966. return;
  1967. #endif
  1968. if (cfs_rq->nr_running > 1)
  1969. check_preempt_tick(cfs_rq, curr);
  1970. }
  1971. /**************************************************
  1972. * CFS bandwidth control machinery
  1973. */
  1974. #ifdef CONFIG_CFS_BANDWIDTH
  1975. #ifdef HAVE_JUMP_LABEL
  1976. static struct static_key __cfs_bandwidth_used;
  1977. static inline bool cfs_bandwidth_used(void)
  1978. {
  1979. return static_key_false(&__cfs_bandwidth_used);
  1980. }
  1981. void account_cfs_bandwidth_used(int enabled, int was_enabled)
  1982. {
  1983. /* only need to count groups transitioning between enabled/!enabled */
  1984. if (enabled && !was_enabled)
  1985. static_key_slow_inc(&__cfs_bandwidth_used);
  1986. else if (!enabled && was_enabled)
  1987. static_key_slow_dec(&__cfs_bandwidth_used);
  1988. }
  1989. #else /* HAVE_JUMP_LABEL */
  1990. static bool cfs_bandwidth_used(void)
  1991. {
  1992. return true;
  1993. }
  1994. void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
  1995. #endif /* HAVE_JUMP_LABEL */
  1996. /*
  1997. * default period for cfs group bandwidth.
  1998. * default: 0.1s, units: nanoseconds
  1999. */
  2000. static inline u64 default_cfs_period(void)
  2001. {
  2002. return 100000000ULL;
  2003. }
  2004. static inline u64 sched_cfs_bandwidth_slice(void)
  2005. {
  2006. return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
  2007. }
  2008. /*
  2009. * Replenish runtime according to assigned quota and update expiration time.
  2010. * We use sched_clock_cpu directly instead of rq->clock to avoid adding
  2011. * additional synchronization around rq->lock.
  2012. *
  2013. * requires cfs_b->lock
  2014. */
  2015. void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
  2016. {
  2017. u64 now;
  2018. if (cfs_b->quota == RUNTIME_INF)
  2019. return;
  2020. now = sched_clock_cpu(smp_processor_id());
  2021. cfs_b->runtime = cfs_b->quota;
  2022. cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
  2023. }
  2024. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  2025. {
  2026. return &tg->cfs_bandwidth;
  2027. }
  2028. /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
  2029. static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
  2030. {
  2031. if (unlikely(cfs_rq->throttle_count))
  2032. return cfs_rq->throttled_clock_task;
  2033. return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
  2034. }
  2035. /* returns 0 on failure to allocate runtime */
  2036. static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  2037. {
  2038. struct task_group *tg = cfs_rq->tg;
  2039. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
  2040. u64 amount = 0, min_amount, expires;
  2041. /* note: this is a positive sum as runtime_remaining <= 0 */
  2042. min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
  2043. raw_spin_lock(&cfs_b->lock);
  2044. if (cfs_b->quota == RUNTIME_INF)
  2045. amount = min_amount;
  2046. else {
  2047. /*
  2048. * If the bandwidth pool has become inactive, then at least one
  2049. * period must have elapsed since the last consumption.
  2050. * Refresh the global state and ensure bandwidth timer becomes
  2051. * active.
  2052. */
  2053. if (!cfs_b->timer_active) {
  2054. __refill_cfs_bandwidth_runtime(cfs_b);
  2055. __start_cfs_bandwidth(cfs_b);
  2056. }
  2057. if (cfs_b->runtime > 0) {
  2058. amount = min(cfs_b->runtime, min_amount);
  2059. cfs_b->runtime -= amount;
  2060. cfs_b->idle = 0;
  2061. }
  2062. }
  2063. expires = cfs_b->runtime_expires;
  2064. raw_spin_unlock(&cfs_b->lock);
  2065. cfs_rq->runtime_remaining += amount;
  2066. /*
  2067. * we may have advanced our local expiration to account for allowed
  2068. * spread between our sched_clock and the one on which runtime was
  2069. * issued.
  2070. */
  2071. if ((s64)(expires - cfs_rq->runtime_expires) > 0)
  2072. cfs_rq->runtime_expires = expires;
  2073. return cfs_rq->runtime_remaining > 0;
  2074. }
  2075. /*
  2076. * Note: This depends on the synchronization provided by sched_clock and the
  2077. * fact that rq->clock snapshots this value.
  2078. */
  2079. static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  2080. {
  2081. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  2082. /* if the deadline is ahead of our clock, nothing to do */
  2083. if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
  2084. return;
  2085. if (cfs_rq->runtime_remaining < 0)
  2086. return;
  2087. /*
  2088. * If the local deadline has passed we have to consider the
  2089. * possibility that our sched_clock is 'fast' and the global deadline
  2090. * has not truly expired.
  2091. *
  2092. * Fortunately we can check determine whether this the case by checking
  2093. * whether the global deadline has advanced.
  2094. */
  2095. if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
  2096. /* extend local deadline, drift is bounded above by 2 ticks */
  2097. cfs_rq->runtime_expires += TICK_NSEC;
  2098. } else {
  2099. /* global deadline is ahead, expiration has passed */
  2100. cfs_rq->runtime_remaining = 0;
  2101. }
  2102. }
  2103. static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  2104. unsigned long delta_exec)
  2105. {
  2106. /* dock delta_exec before expiring quota (as it could span periods) */
  2107. cfs_rq->runtime_remaining -= delta_exec;
  2108. expire_cfs_rq_runtime(cfs_rq);
  2109. if (likely(cfs_rq->runtime_remaining > 0))
  2110. return;
  2111. /*
  2112. * if we're unable to extend our runtime we resched so that the active
  2113. * hierarchy can be throttled
  2114. */
  2115. if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
  2116. resched_task(rq_of(cfs_rq)->curr);
  2117. }
  2118. static __always_inline
  2119. void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
  2120. {
  2121. if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
  2122. return;
  2123. __account_cfs_rq_runtime(cfs_rq, delta_exec);
  2124. }
  2125. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  2126. {
  2127. return cfs_bandwidth_used() && cfs_rq->throttled;
  2128. }
  2129. /* check whether cfs_rq, or any parent, is throttled */
  2130. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  2131. {
  2132. return cfs_bandwidth_used() && cfs_rq->throttle_count;
  2133. }
  2134. /*
  2135. * Ensure that neither of the group entities corresponding to src_cpu or
  2136. * dest_cpu are members of a throttled hierarchy when performing group
  2137. * load-balance operations.
  2138. */
  2139. static inline int throttled_lb_pair(struct task_group *tg,
  2140. int src_cpu, int dest_cpu)
  2141. {
  2142. struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
  2143. src_cfs_rq = tg->cfs_rq[src_cpu];
  2144. dest_cfs_rq = tg->cfs_rq[dest_cpu];
  2145. return throttled_hierarchy(src_cfs_rq) ||
  2146. throttled_hierarchy(dest_cfs_rq);
  2147. }
  2148. /* updated child weight may affect parent so we have to do this bottom up */
  2149. static int tg_unthrottle_up(struct task_group *tg, void *data)
  2150. {
  2151. struct rq *rq = data;
  2152. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  2153. cfs_rq->throttle_count--;
  2154. #ifdef CONFIG_SMP
  2155. if (!cfs_rq->throttle_count) {
  2156. /* adjust cfs_rq_clock_task() */
  2157. cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
  2158. cfs_rq->throttled_clock_task;
  2159. }
  2160. #endif
  2161. return 0;
  2162. }
  2163. static int tg_throttle_down(struct task_group *tg, void *data)
  2164. {
  2165. struct rq *rq = data;
  2166. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  2167. /* group is entering throttled state, stop time */
  2168. if (!cfs_rq->throttle_count)
  2169. cfs_rq->throttled_clock_task = rq_clock_task(rq);
  2170. cfs_rq->throttle_count++;
  2171. return 0;
  2172. }
  2173. static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
  2174. {
  2175. struct rq *rq = rq_of(cfs_rq);
  2176. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  2177. struct sched_entity *se;
  2178. long task_delta, dequeue = 1;
  2179. se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
  2180. /* freeze hierarchy runnable averages while throttled */
  2181. rcu_read_lock();
  2182. walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
  2183. rcu_read_unlock();
  2184. task_delta = cfs_rq->h_nr_running;
  2185. for_each_sched_entity(se) {
  2186. struct cfs_rq *qcfs_rq = cfs_rq_of(se);
  2187. /* throttled entity or throttle-on-deactivate */
  2188. if (!se->on_rq)
  2189. break;
  2190. if (dequeue)
  2191. dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
  2192. qcfs_rq->h_nr_running -= task_delta;
  2193. if (qcfs_rq->load.weight)
  2194. dequeue = 0;
  2195. }
  2196. if (!se)
  2197. rq->nr_running -= task_delta;
  2198. cfs_rq->throttled = 1;
  2199. cfs_rq->throttled_clock = rq_clock(rq);
  2200. raw_spin_lock(&cfs_b->lock);
  2201. list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
  2202. raw_spin_unlock(&cfs_b->lock);
  2203. }
  2204. void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
  2205. {
  2206. struct rq *rq = rq_of(cfs_rq);
  2207. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  2208. struct sched_entity *se;
  2209. int enqueue = 1;
  2210. long task_delta;
  2211. se = cfs_rq->tg->se[cpu_of(rq)];
  2212. cfs_rq->throttled = 0;
  2213. update_rq_clock(rq);
  2214. raw_spin_lock(&cfs_b->lock);
  2215. cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
  2216. list_del_rcu(&cfs_rq->throttled_list);
  2217. raw_spin_unlock(&cfs_b->lock);
  2218. /* update hierarchical throttle state */
  2219. walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
  2220. if (!cfs_rq->load.weight)
  2221. return;
  2222. task_delta = cfs_rq->h_nr_running;
  2223. for_each_sched_entity(se) {
  2224. if (se->on_rq)
  2225. enqueue = 0;
  2226. cfs_rq = cfs_rq_of(se);
  2227. if (enqueue)
  2228. enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
  2229. cfs_rq->h_nr_running += task_delta;
  2230. if (cfs_rq_throttled(cfs_rq))
  2231. break;
  2232. }
  2233. if (!se)
  2234. rq->nr_running += task_delta;
  2235. /* determine whether we need to wake up potentially idle cpu */
  2236. if (rq->curr == rq->idle && rq->cfs.nr_running)
  2237. resched_task(rq->curr);
  2238. }
  2239. static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
  2240. u64 remaining, u64 expires)
  2241. {
  2242. struct cfs_rq *cfs_rq;
  2243. u64 runtime = remaining;
  2244. rcu_read_lock();
  2245. list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
  2246. throttled_list) {
  2247. struct rq *rq = rq_of(cfs_rq);
  2248. raw_spin_lock(&rq->lock);
  2249. if (!cfs_rq_throttled(cfs_rq))
  2250. goto next;
  2251. runtime = -cfs_rq->runtime_remaining + 1;
  2252. if (runtime > remaining)
  2253. runtime = remaining;
  2254. remaining -= runtime;
  2255. cfs_rq->runtime_remaining += runtime;
  2256. cfs_rq->runtime_expires = expires;
  2257. /* we check whether we're throttled above */
  2258. if (cfs_rq->runtime_remaining > 0)
  2259. unthrottle_cfs_rq(cfs_rq);
  2260. next:
  2261. raw_spin_unlock(&rq->lock);
  2262. if (!remaining)
  2263. break;
  2264. }
  2265. rcu_read_unlock();
  2266. return remaining;
  2267. }
  2268. /*
  2269. * Responsible for refilling a task_group's bandwidth and unthrottling its
  2270. * cfs_rqs as appropriate. If there has been no activity within the last
  2271. * period the timer is deactivated until scheduling resumes; cfs_b->idle is
  2272. * used to track this state.
  2273. */
  2274. static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
  2275. {
  2276. u64 runtime, runtime_expires;
  2277. int idle = 1, throttled;
  2278. raw_spin_lock(&cfs_b->lock);
  2279. /* no need to continue the timer with no bandwidth constraint */
  2280. if (cfs_b->quota == RUNTIME_INF)
  2281. goto out_unlock;
  2282. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  2283. /* idle depends on !throttled (for the case of a large deficit) */
  2284. idle = cfs_b->idle && !throttled;
  2285. cfs_b->nr_periods += overrun;
  2286. /* if we're going inactive then everything else can be deferred */
  2287. if (idle)
  2288. goto out_unlock;
  2289. __refill_cfs_bandwidth_runtime(cfs_b);
  2290. if (!throttled) {
  2291. /* mark as potentially idle for the upcoming period */
  2292. cfs_b->idle = 1;
  2293. goto out_unlock;
  2294. }
  2295. /* account preceding periods in which throttling occurred */
  2296. cfs_b->nr_throttled += overrun;
  2297. /*
  2298. * There are throttled entities so we must first use the new bandwidth
  2299. * to unthrottle them before making it generally available. This
  2300. * ensures that all existing debts will be paid before a new cfs_rq is
  2301. * allowed to run.
  2302. */
  2303. runtime = cfs_b->runtime;
  2304. runtime_expires = cfs_b->runtime_expires;
  2305. cfs_b->runtime = 0;
  2306. /*
  2307. * This check is repeated as we are holding onto the new bandwidth
  2308. * while we unthrottle. This can potentially race with an unthrottled
  2309. * group trying to acquire new bandwidth from the global pool.
  2310. */
  2311. while (throttled && runtime > 0) {
  2312. raw_spin_unlock(&cfs_b->lock);
  2313. /* we can't nest cfs_b->lock while distributing bandwidth */
  2314. runtime = distribute_cfs_runtime(cfs_b, runtime,
  2315. runtime_expires);
  2316. raw_spin_lock(&cfs_b->lock);
  2317. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  2318. }
  2319. /* return (any) remaining runtime */
  2320. cfs_b->runtime = runtime;
  2321. /*
  2322. * While we are ensured activity in the period following an
  2323. * unthrottle, this also covers the case in which the new bandwidth is
  2324. * insufficient to cover the existing bandwidth deficit. (Forcing the
  2325. * timer to remain active while there are any throttled entities.)
  2326. */
  2327. cfs_b->idle = 0;
  2328. out_unlock:
  2329. if (idle)
  2330. cfs_b->timer_active = 0;
  2331. raw_spin_unlock(&cfs_b->lock);
  2332. return idle;
  2333. }
  2334. /* a cfs_rq won't donate quota below this amount */
  2335. static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
  2336. /* minimum remaining period time to redistribute slack quota */
  2337. static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
  2338. /* how long we wait to gather additional slack before distributing */
  2339. static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
  2340. /* are we near the end of the current quota period? */
  2341. static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
  2342. {
  2343. struct hrtimer *refresh_timer = &cfs_b->period_timer;
  2344. u64 remaining;
  2345. /* if the call-back is running a quota refresh is already occurring */
  2346. if (hrtimer_callback_running(refresh_timer))
  2347. return 1;
  2348. /* is a quota refresh about to occur? */
  2349. remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
  2350. if (remaining < min_expire)
  2351. return 1;
  2352. return 0;
  2353. }
  2354. static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
  2355. {
  2356. u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
  2357. /* if there's a quota refresh soon don't bother with slack */
  2358. if (runtime_refresh_within(cfs_b, min_left))
  2359. return;
  2360. start_bandwidth_timer(&cfs_b->slack_timer,
  2361. ns_to_ktime(cfs_bandwidth_slack_period));
  2362. }
  2363. /* we know any runtime found here is valid as update_curr() precedes return */
  2364. static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  2365. {
  2366. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  2367. s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
  2368. if (slack_runtime <= 0)
  2369. return;
  2370. raw_spin_lock(&cfs_b->lock);
  2371. if (cfs_b->quota != RUNTIME_INF &&
  2372. cfs_rq->runtime_expires == cfs_b->runtime_expires) {
  2373. cfs_b->runtime += slack_runtime;
  2374. /* we are under rq->lock, defer unthrottling using a timer */
  2375. if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
  2376. !list_empty(&cfs_b->throttled_cfs_rq))
  2377. start_cfs_slack_bandwidth(cfs_b);
  2378. }
  2379. raw_spin_unlock(&cfs_b->lock);
  2380. /* even if it's not valid for return we don't want to try again */
  2381. cfs_rq->runtime_remaining -= slack_runtime;
  2382. }
  2383. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  2384. {
  2385. if (!cfs_bandwidth_used())
  2386. return;
  2387. if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
  2388. return;
  2389. __return_cfs_rq_runtime(cfs_rq);
  2390. }
  2391. /*
  2392. * This is done with a timer (instead of inline with bandwidth return) since
  2393. * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
  2394. */
  2395. static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
  2396. {
  2397. u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
  2398. u64 expires;
  2399. /* confirm we're still not at a refresh boundary */
  2400. if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
  2401. return;
  2402. raw_spin_lock(&cfs_b->lock);
  2403. if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
  2404. runtime = cfs_b->runtime;
  2405. cfs_b->runtime = 0;
  2406. }
  2407. expires = cfs_b->runtime_expires;
  2408. raw_spin_unlock(&cfs_b->lock);
  2409. if (!runtime)
  2410. return;
  2411. runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
  2412. raw_spin_lock(&cfs_b->lock);
  2413. if (expires == cfs_b->runtime_expires)
  2414. cfs_b->runtime = runtime;
  2415. raw_spin_unlock(&cfs_b->lock);
  2416. }
  2417. /*
  2418. * When a group wakes up we want to make sure that its quota is not already
  2419. * expired/exceeded, otherwise it may be allowed to steal additional ticks of
  2420. * runtime as update_curr() throttling can not not trigger until it's on-rq.
  2421. */
  2422. static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
  2423. {
  2424. if (!cfs_bandwidth_used())
  2425. return;
  2426. /* an active group must be handled by the update_curr()->put() path */
  2427. if (!cfs_rq->runtime_enabled || cfs_rq->curr)
  2428. return;
  2429. /* ensure the group is not already throttled */
  2430. if (cfs_rq_throttled(cfs_rq))
  2431. return;
  2432. /* update runtime allocation */
  2433. account_cfs_rq_runtime(cfs_rq, 0);
  2434. if (cfs_rq->runtime_remaining <= 0)
  2435. throttle_cfs_rq(cfs_rq);
  2436. }
  2437. /* conditionally throttle active cfs_rq's from put_prev_entity() */
  2438. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  2439. {
  2440. if (!cfs_bandwidth_used())
  2441. return;
  2442. if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
  2443. return;
  2444. /*
  2445. * it's possible for a throttled entity to be forced into a running
  2446. * state (e.g. set_curr_task), in this case we're finished.
  2447. */
  2448. if (cfs_rq_throttled(cfs_rq))
  2449. return;
  2450. throttle_cfs_rq(cfs_rq);
  2451. }
  2452. static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
  2453. {
  2454. struct cfs_bandwidth *cfs_b =
  2455. container_of(timer, struct cfs_bandwidth, slack_timer);
  2456. do_sched_cfs_slack_timer(cfs_b);
  2457. return HRTIMER_NORESTART;
  2458. }
  2459. static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
  2460. {
  2461. struct cfs_bandwidth *cfs_b =
  2462. container_of(timer, struct cfs_bandwidth, period_timer);
  2463. ktime_t now;
  2464. int overrun;
  2465. int idle = 0;
  2466. for (;;) {
  2467. now = hrtimer_cb_get_time(timer);
  2468. overrun = hrtimer_forward(timer, now, cfs_b->period);
  2469. if (!overrun)
  2470. break;
  2471. idle = do_sched_cfs_period_timer(cfs_b, overrun);
  2472. }
  2473. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  2474. }
  2475. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  2476. {
  2477. raw_spin_lock_init(&cfs_b->lock);
  2478. cfs_b->runtime = 0;
  2479. cfs_b->quota = RUNTIME_INF;
  2480. cfs_b->period = ns_to_ktime(default_cfs_period());
  2481. INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
  2482. hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  2483. cfs_b->period_timer.function = sched_cfs_period_timer;
  2484. hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  2485. cfs_b->slack_timer.function = sched_cfs_slack_timer;
  2486. }
  2487. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  2488. {
  2489. cfs_rq->runtime_enabled = 0;
  2490. INIT_LIST_HEAD(&cfs_rq->throttled_list);
  2491. }
  2492. /* requires cfs_b->lock, may release to reprogram timer */
  2493. void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  2494. {
  2495. /*
  2496. * The timer may be active because we're trying to set a new bandwidth
  2497. * period or because we're racing with the tear-down path
  2498. * (timer_active==0 becomes visible before the hrtimer call-back
  2499. * terminates). In either case we ensure that it's re-programmed
  2500. */
  2501. while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
  2502. raw_spin_unlock(&cfs_b->lock);
  2503. /* ensure cfs_b->lock is available while we wait */
  2504. hrtimer_cancel(&cfs_b->period_timer);
  2505. raw_spin_lock(&cfs_b->lock);
  2506. /* if someone else restarted the timer then we're done */
  2507. if (cfs_b->timer_active)
  2508. return;
  2509. }
  2510. cfs_b->timer_active = 1;
  2511. start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
  2512. }
  2513. static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  2514. {
  2515. hrtimer_cancel(&cfs_b->period_timer);
  2516. hrtimer_cancel(&cfs_b->slack_timer);
  2517. }
  2518. static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
  2519. {
  2520. struct cfs_rq *cfs_rq;
  2521. for_each_leaf_cfs_rq(rq, cfs_rq) {
  2522. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  2523. if (!cfs_rq->runtime_enabled)
  2524. continue;
  2525. /*
  2526. * clock_task is not advancing so we just need to make sure
  2527. * there's some valid quota amount
  2528. */
  2529. cfs_rq->runtime_remaining = cfs_b->quota;
  2530. if (cfs_rq_throttled(cfs_rq))
  2531. unthrottle_cfs_rq(cfs_rq);
  2532. }
  2533. }
  2534. #else /* CONFIG_CFS_BANDWIDTH */
  2535. static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
  2536. {
  2537. return rq_clock_task(rq_of(cfs_rq));
  2538. }
  2539. static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  2540. unsigned long delta_exec) {}
  2541. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  2542. static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
  2543. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  2544. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  2545. {
  2546. return 0;
  2547. }
  2548. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  2549. {
  2550. return 0;
  2551. }
  2552. static inline int throttled_lb_pair(struct task_group *tg,
  2553. int src_cpu, int dest_cpu)
  2554. {
  2555. return 0;
  2556. }
  2557. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  2558. #ifdef CONFIG_FAIR_GROUP_SCHED
  2559. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  2560. #endif
  2561. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  2562. {
  2563. return NULL;
  2564. }
  2565. static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  2566. static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
  2567. #endif /* CONFIG_CFS_BANDWIDTH */
  2568. /**************************************************
  2569. * CFS operations on tasks:
  2570. */
  2571. #ifdef CONFIG_SCHED_HRTICK
  2572. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  2573. {
  2574. struct sched_entity *se = &p->se;
  2575. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2576. WARN_ON(task_rq(p) != rq);
  2577. if (cfs_rq->nr_running > 1) {
  2578. u64 slice = sched_slice(cfs_rq, se);
  2579. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  2580. s64 delta = slice - ran;
  2581. if (delta < 0) {
  2582. if (rq->curr == p)
  2583. resched_task(p);
  2584. return;
  2585. }
  2586. /*
  2587. * Don't schedule slices shorter than 10000ns, that just
  2588. * doesn't make sense. Rely on vruntime for fairness.
  2589. */
  2590. if (rq->curr != p)
  2591. delta = max_t(s64, 10000LL, delta);
  2592. hrtick_start(rq, delta);
  2593. }
  2594. }
  2595. /*
  2596. * called from enqueue/dequeue and updates the hrtick when the
  2597. * current task is from our class and nr_running is low enough
  2598. * to matter.
  2599. */
  2600. static void hrtick_update(struct rq *rq)
  2601. {
  2602. struct task_struct *curr = rq->curr;
  2603. if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
  2604. return;
  2605. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  2606. hrtick_start_fair(rq, curr);
  2607. }
  2608. #else /* !CONFIG_SCHED_HRTICK */
  2609. static inline void
  2610. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  2611. {
  2612. }
  2613. static inline void hrtick_update(struct rq *rq)
  2614. {
  2615. }
  2616. #endif
  2617. /*
  2618. * The enqueue_task method is called before nr_running is
  2619. * increased. Here we update the fair scheduling stats and
  2620. * then put the task into the rbtree:
  2621. */
  2622. static void
  2623. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  2624. {
  2625. struct cfs_rq *cfs_rq;
  2626. struct sched_entity *se = &p->se;
  2627. for_each_sched_entity(se) {
  2628. if (se->on_rq)
  2629. break;
  2630. cfs_rq = cfs_rq_of(se);
  2631. enqueue_entity(cfs_rq, se, flags);
  2632. /*
  2633. * end evaluation on encountering a throttled cfs_rq
  2634. *
  2635. * note: in the case of encountering a throttled cfs_rq we will
  2636. * post the final h_nr_running increment below.
  2637. */
  2638. if (cfs_rq_throttled(cfs_rq))
  2639. break;
  2640. cfs_rq->h_nr_running++;
  2641. flags = ENQUEUE_WAKEUP;
  2642. }
  2643. for_each_sched_entity(se) {
  2644. cfs_rq = cfs_rq_of(se);
  2645. cfs_rq->h_nr_running++;
  2646. if (cfs_rq_throttled(cfs_rq))
  2647. break;
  2648. update_cfs_shares(cfs_rq);
  2649. update_entity_load_avg(se, 1);
  2650. }
  2651. if (!se) {
  2652. update_rq_runnable_avg(rq, rq->nr_running);
  2653. inc_nr_running(rq);
  2654. }
  2655. hrtick_update(rq);
  2656. }
  2657. static void set_next_buddy(struct sched_entity *se);
  2658. /*
  2659. * The dequeue_task method is called before nr_running is
  2660. * decreased. We remove the task from the rbtree and
  2661. * update the fair scheduling stats:
  2662. */
  2663. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  2664. {
  2665. struct cfs_rq *cfs_rq;
  2666. struct sched_entity *se = &p->se;
  2667. int task_sleep = flags & DEQUEUE_SLEEP;
  2668. for_each_sched_entity(se) {
  2669. cfs_rq = cfs_rq_of(se);
  2670. dequeue_entity(cfs_rq, se, flags);
  2671. /*
  2672. * end evaluation on encountering a throttled cfs_rq
  2673. *
  2674. * note: in the case of encountering a throttled cfs_rq we will
  2675. * post the final h_nr_running decrement below.
  2676. */
  2677. if (cfs_rq_throttled(cfs_rq))
  2678. break;
  2679. cfs_rq->h_nr_running--;
  2680. /* Don't dequeue parent if it has other entities besides us */
  2681. if (cfs_rq->load.weight) {
  2682. /*
  2683. * Bias pick_next to pick a task from this cfs_rq, as
  2684. * p is sleeping when it is within its sched_slice.
  2685. */
  2686. if (task_sleep && parent_entity(se))
  2687. set_next_buddy(parent_entity(se));
  2688. /* avoid re-evaluating load for this entity */
  2689. se = parent_entity(se);
  2690. break;
  2691. }
  2692. flags |= DEQUEUE_SLEEP;
  2693. }
  2694. for_each_sched_entity(se) {
  2695. cfs_rq = cfs_rq_of(se);
  2696. cfs_rq->h_nr_running--;
  2697. if (cfs_rq_throttled(cfs_rq))
  2698. break;
  2699. update_cfs_shares(cfs_rq);
  2700. update_entity_load_avg(se, 1);
  2701. }
  2702. if (!se) {
  2703. dec_nr_running(rq);
  2704. update_rq_runnable_avg(rq, 1);
  2705. }
  2706. hrtick_update(rq);
  2707. }
  2708. #ifdef CONFIG_SMP
  2709. /* Used instead of source_load when we know the type == 0 */
  2710. static unsigned long weighted_cpuload(const int cpu)
  2711. {
  2712. return cpu_rq(cpu)->cfs.runnable_load_avg;
  2713. }
  2714. /*
  2715. * Return a low guess at the load of a migration-source cpu weighted
  2716. * according to the scheduling class and "nice" value.
  2717. *
  2718. * We want to under-estimate the load of migration sources, to
  2719. * balance conservatively.
  2720. */
  2721. static unsigned long source_load(int cpu, int type)
  2722. {
  2723. struct rq *rq = cpu_rq(cpu);
  2724. unsigned long total = weighted_cpuload(cpu);
  2725. if (type == 0 || !sched_feat(LB_BIAS))
  2726. return total;
  2727. return min(rq->cpu_load[type-1], total);
  2728. }
  2729. /*
  2730. * Return a high guess at the load of a migration-target cpu weighted
  2731. * according to the scheduling class and "nice" value.
  2732. */
  2733. static unsigned long target_load(int cpu, int type)
  2734. {
  2735. struct rq *rq = cpu_rq(cpu);
  2736. unsigned long total = weighted_cpuload(cpu);
  2737. if (type == 0 || !sched_feat(LB_BIAS))
  2738. return total;
  2739. return max(rq->cpu_load[type-1], total);
  2740. }
  2741. static unsigned long power_of(int cpu)
  2742. {
  2743. return cpu_rq(cpu)->cpu_power;
  2744. }
  2745. static unsigned long cpu_avg_load_per_task(int cpu)
  2746. {
  2747. struct rq *rq = cpu_rq(cpu);
  2748. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  2749. unsigned long load_avg = rq->cfs.runnable_load_avg;
  2750. if (nr_running)
  2751. return load_avg / nr_running;
  2752. return 0;
  2753. }
  2754. static void record_wakee(struct task_struct *p)
  2755. {
  2756. /*
  2757. * Rough decay (wiping) for cost saving, don't worry
  2758. * about the boundary, really active task won't care
  2759. * about the loss.
  2760. */
  2761. if (jiffies > current->wakee_flip_decay_ts + HZ) {
  2762. current->wakee_flips = 0;
  2763. current->wakee_flip_decay_ts = jiffies;
  2764. }
  2765. if (current->last_wakee != p) {
  2766. current->last_wakee = p;
  2767. current->wakee_flips++;
  2768. }
  2769. }
  2770. static void task_waking_fair(struct task_struct *p)
  2771. {
  2772. struct sched_entity *se = &p->se;
  2773. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2774. u64 min_vruntime;
  2775. #ifndef CONFIG_64BIT
  2776. u64 min_vruntime_copy;
  2777. do {
  2778. min_vruntime_copy = cfs_rq->min_vruntime_copy;
  2779. smp_rmb();
  2780. min_vruntime = cfs_rq->min_vruntime;
  2781. } while (min_vruntime != min_vruntime_copy);
  2782. #else
  2783. min_vruntime = cfs_rq->min_vruntime;
  2784. #endif
  2785. se->vruntime -= min_vruntime;
  2786. record_wakee(p);
  2787. }
  2788. #ifdef CONFIG_FAIR_GROUP_SCHED
  2789. /*
  2790. * effective_load() calculates the load change as seen from the root_task_group
  2791. *
  2792. * Adding load to a group doesn't make a group heavier, but can cause movement
  2793. * of group shares between cpus. Assuming the shares were perfectly aligned one
  2794. * can calculate the shift in shares.
  2795. *
  2796. * Calculate the effective load difference if @wl is added (subtracted) to @tg
  2797. * on this @cpu and results in a total addition (subtraction) of @wg to the
  2798. * total group weight.
  2799. *
  2800. * Given a runqueue weight distribution (rw_i) we can compute a shares
  2801. * distribution (s_i) using:
  2802. *
  2803. * s_i = rw_i / \Sum rw_j (1)
  2804. *
  2805. * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
  2806. * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
  2807. * shares distribution (s_i):
  2808. *
  2809. * rw_i = { 2, 4, 1, 0 }
  2810. * s_i = { 2/7, 4/7, 1/7, 0 }
  2811. *
  2812. * As per wake_affine() we're interested in the load of two CPUs (the CPU the
  2813. * task used to run on and the CPU the waker is running on), we need to
  2814. * compute the effect of waking a task on either CPU and, in case of a sync
  2815. * wakeup, compute the effect of the current task going to sleep.
  2816. *
  2817. * So for a change of @wl to the local @cpu with an overall group weight change
  2818. * of @wl we can compute the new shares distribution (s'_i) using:
  2819. *
  2820. * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
  2821. *
  2822. * Suppose we're interested in CPUs 0 and 1, and want to compute the load
  2823. * differences in waking a task to CPU 0. The additional task changes the
  2824. * weight and shares distributions like:
  2825. *
  2826. * rw'_i = { 3, 4, 1, 0 }
  2827. * s'_i = { 3/8, 4/8, 1/8, 0 }
  2828. *
  2829. * We can then compute the difference in effective weight by using:
  2830. *
  2831. * dw_i = S * (s'_i - s_i) (3)
  2832. *
  2833. * Where 'S' is the group weight as seen by its parent.
  2834. *
  2835. * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
  2836. * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
  2837. * 4/7) times the weight of the group.
  2838. */
  2839. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  2840. {
  2841. struct sched_entity *se = tg->se[cpu];
  2842. if (!tg->parent || !wl) /* the trivial, non-cgroup case */
  2843. return wl;
  2844. for_each_sched_entity(se) {
  2845. long w, W;
  2846. tg = se->my_q->tg;
  2847. /*
  2848. * W = @wg + \Sum rw_j
  2849. */
  2850. W = wg + calc_tg_weight(tg, se->my_q);
  2851. /*
  2852. * w = rw_i + @wl
  2853. */
  2854. w = se->my_q->load.weight + wl;
  2855. /*
  2856. * wl = S * s'_i; see (2)
  2857. */
  2858. if (W > 0 && w < W)
  2859. wl = (w * tg->shares) / W;
  2860. else
  2861. wl = tg->shares;
  2862. /*
  2863. * Per the above, wl is the new se->load.weight value; since
  2864. * those are clipped to [MIN_SHARES, ...) do so now. See
  2865. * calc_cfs_shares().
  2866. */
  2867. if (wl < MIN_SHARES)
  2868. wl = MIN_SHARES;
  2869. /*
  2870. * wl = dw_i = S * (s'_i - s_i); see (3)
  2871. */
  2872. wl -= se->load.weight;
  2873. /*
  2874. * Recursively apply this logic to all parent groups to compute
  2875. * the final effective load change on the root group. Since
  2876. * only the @tg group gets extra weight, all parent groups can
  2877. * only redistribute existing shares. @wl is the shift in shares
  2878. * resulting from this level per the above.
  2879. */
  2880. wg = 0;
  2881. }
  2882. return wl;
  2883. }
  2884. #else
  2885. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  2886. {
  2887. return wl;
  2888. }
  2889. #endif
  2890. static int wake_wide(struct task_struct *p)
  2891. {
  2892. int factor = this_cpu_read(sd_llc_size);
  2893. /*
  2894. * Yeah, it's the switching-frequency, could means many wakee or
  2895. * rapidly switch, use factor here will just help to automatically
  2896. * adjust the loose-degree, so bigger node will lead to more pull.
  2897. */
  2898. if (p->wakee_flips > factor) {
  2899. /*
  2900. * wakee is somewhat hot, it needs certain amount of cpu
  2901. * resource, so if waker is far more hot, prefer to leave
  2902. * it alone.
  2903. */
  2904. if (current->wakee_flips > (factor * p->wakee_flips))
  2905. return 1;
  2906. }
  2907. return 0;
  2908. }
  2909. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  2910. {
  2911. s64 this_load, load;
  2912. int idx, this_cpu, prev_cpu;
  2913. unsigned long tl_per_task;
  2914. struct task_group *tg;
  2915. unsigned long weight;
  2916. int balanced;
  2917. /*
  2918. * If we wake multiple tasks be careful to not bounce
  2919. * ourselves around too much.
  2920. */
  2921. if (wake_wide(p))
  2922. return 0;
  2923. idx = sd->wake_idx;
  2924. this_cpu = smp_processor_id();
  2925. prev_cpu = task_cpu(p);
  2926. load = source_load(prev_cpu, idx);
  2927. this_load = target_load(this_cpu, idx);
  2928. /*
  2929. * If sync wakeup then subtract the (maximum possible)
  2930. * effect of the currently running task from the load
  2931. * of the current CPU:
  2932. */
  2933. if (sync) {
  2934. tg = task_group(current);
  2935. weight = current->se.load.weight;
  2936. this_load += effective_load(tg, this_cpu, -weight, -weight);
  2937. load += effective_load(tg, prev_cpu, 0, -weight);
  2938. }
  2939. tg = task_group(p);
  2940. weight = p->se.load.weight;
  2941. /*
  2942. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  2943. * due to the sync cause above having dropped this_load to 0, we'll
  2944. * always have an imbalance, but there's really nothing you can do
  2945. * about that, so that's good too.
  2946. *
  2947. * Otherwise check if either cpus are near enough in load to allow this
  2948. * task to be woken on this_cpu.
  2949. */
  2950. if (this_load > 0) {
  2951. s64 this_eff_load, prev_eff_load;
  2952. this_eff_load = 100;
  2953. this_eff_load *= power_of(prev_cpu);
  2954. this_eff_load *= this_load +
  2955. effective_load(tg, this_cpu, weight, weight);
  2956. prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
  2957. prev_eff_load *= power_of(this_cpu);
  2958. prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
  2959. balanced = this_eff_load <= prev_eff_load;
  2960. } else
  2961. balanced = true;
  2962. /*
  2963. * If the currently running task will sleep within
  2964. * a reasonable amount of time then attract this newly
  2965. * woken task:
  2966. */
  2967. if (sync && balanced)
  2968. return 1;
  2969. schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
  2970. tl_per_task = cpu_avg_load_per_task(this_cpu);
  2971. if (balanced ||
  2972. (this_load <= load &&
  2973. this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
  2974. /*
  2975. * This domain has SD_WAKE_AFFINE and
  2976. * p is cache cold in this domain, and
  2977. * there is no bad imbalance.
  2978. */
  2979. schedstat_inc(sd, ttwu_move_affine);
  2980. schedstat_inc(p, se.statistics.nr_wakeups_affine);
  2981. return 1;
  2982. }
  2983. return 0;
  2984. }
  2985. /*
  2986. * find_idlest_group finds and returns the least busy CPU group within the
  2987. * domain.
  2988. */
  2989. static struct sched_group *
  2990. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  2991. int this_cpu, int load_idx)
  2992. {
  2993. struct sched_group *idlest = NULL, *group = sd->groups;
  2994. unsigned long min_load = ULONG_MAX, this_load = 0;
  2995. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  2996. do {
  2997. unsigned long load, avg_load;
  2998. int local_group;
  2999. int i;
  3000. /* Skip over this group if it has no CPUs allowed */
  3001. if (!cpumask_intersects(sched_group_cpus(group),
  3002. tsk_cpus_allowed(p)))
  3003. continue;
  3004. local_group = cpumask_test_cpu(this_cpu,
  3005. sched_group_cpus(group));
  3006. /* Tally up the load of all CPUs in the group */
  3007. avg_load = 0;
  3008. for_each_cpu(i, sched_group_cpus(group)) {
  3009. /* Bias balancing toward cpus of our domain */
  3010. if (local_group)
  3011. load = source_load(i, load_idx);
  3012. else
  3013. load = target_load(i, load_idx);
  3014. avg_load += load;
  3015. }
  3016. /* Adjust by relative CPU power of the group */
  3017. avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
  3018. if (local_group) {
  3019. this_load = avg_load;
  3020. } else if (avg_load < min_load) {
  3021. min_load = avg_load;
  3022. idlest = group;
  3023. }
  3024. } while (group = group->next, group != sd->groups);
  3025. if (!idlest || 100*this_load < imbalance*min_load)
  3026. return NULL;
  3027. return idlest;
  3028. }
  3029. /*
  3030. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  3031. */
  3032. static int
  3033. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  3034. {
  3035. unsigned long load, min_load = ULONG_MAX;
  3036. int idlest = -1;
  3037. int i;
  3038. /* Traverse only the allowed CPUs */
  3039. for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
  3040. load = weighted_cpuload(i);
  3041. if (load < min_load || (load == min_load && i == this_cpu)) {
  3042. min_load = load;
  3043. idlest = i;
  3044. }
  3045. }
  3046. return idlest;
  3047. }
  3048. /*
  3049. * Try and locate an idle CPU in the sched_domain.
  3050. */
  3051. static int select_idle_sibling(struct task_struct *p, int target)
  3052. {
  3053. struct sched_domain *sd;
  3054. struct sched_group *sg;
  3055. int i = task_cpu(p);
  3056. if (idle_cpu(target))
  3057. return target;
  3058. /*
  3059. * If the prevous cpu is cache affine and idle, don't be stupid.
  3060. */
  3061. if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
  3062. return i;
  3063. /*
  3064. * Otherwise, iterate the domains and find an elegible idle cpu.
  3065. */
  3066. sd = rcu_dereference(per_cpu(sd_llc, target));
  3067. for_each_lower_domain(sd) {
  3068. sg = sd->groups;
  3069. do {
  3070. if (!cpumask_intersects(sched_group_cpus(sg),
  3071. tsk_cpus_allowed(p)))
  3072. goto next;
  3073. for_each_cpu(i, sched_group_cpus(sg)) {
  3074. if (i == target || !idle_cpu(i))
  3075. goto next;
  3076. }
  3077. target = cpumask_first_and(sched_group_cpus(sg),
  3078. tsk_cpus_allowed(p));
  3079. goto done;
  3080. next:
  3081. sg = sg->next;
  3082. } while (sg != sd->groups);
  3083. }
  3084. done:
  3085. return target;
  3086. }
  3087. /*
  3088. * sched_balance_self: balance the current task (running on cpu) in domains
  3089. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  3090. * SD_BALANCE_EXEC.
  3091. *
  3092. * Balance, ie. select the least loaded group.
  3093. *
  3094. * Returns the target CPU number, or the same CPU if no balancing is needed.
  3095. *
  3096. * preempt must be disabled.
  3097. */
  3098. static int
  3099. select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
  3100. {
  3101. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  3102. int cpu = smp_processor_id();
  3103. int prev_cpu = task_cpu(p);
  3104. int new_cpu = cpu;
  3105. int want_affine = 0;
  3106. int sync = wake_flags & WF_SYNC;
  3107. if (p->nr_cpus_allowed == 1)
  3108. return prev_cpu;
  3109. if (sd_flag & SD_BALANCE_WAKE) {
  3110. if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
  3111. want_affine = 1;
  3112. new_cpu = prev_cpu;
  3113. }
  3114. rcu_read_lock();
  3115. for_each_domain(cpu, tmp) {
  3116. if (!(tmp->flags & SD_LOAD_BALANCE))
  3117. continue;
  3118. /*
  3119. * If both cpu and prev_cpu are part of this domain,
  3120. * cpu is a valid SD_WAKE_AFFINE target.
  3121. */
  3122. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  3123. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  3124. affine_sd = tmp;
  3125. break;
  3126. }
  3127. if (tmp->flags & sd_flag)
  3128. sd = tmp;
  3129. }
  3130. if (affine_sd) {
  3131. if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
  3132. prev_cpu = cpu;
  3133. new_cpu = select_idle_sibling(p, prev_cpu);
  3134. goto unlock;
  3135. }
  3136. while (sd) {
  3137. int load_idx = sd->forkexec_idx;
  3138. struct sched_group *group;
  3139. int weight;
  3140. if (!(sd->flags & sd_flag)) {
  3141. sd = sd->child;
  3142. continue;
  3143. }
  3144. if (sd_flag & SD_BALANCE_WAKE)
  3145. load_idx = sd->wake_idx;
  3146. group = find_idlest_group(sd, p, cpu, load_idx);
  3147. if (!group) {
  3148. sd = sd->child;
  3149. continue;
  3150. }
  3151. new_cpu = find_idlest_cpu(group, p, cpu);
  3152. if (new_cpu == -1 || new_cpu == cpu) {
  3153. /* Now try balancing at a lower domain level of cpu */
  3154. sd = sd->child;
  3155. continue;
  3156. }
  3157. /* Now try balancing at a lower domain level of new_cpu */
  3158. cpu = new_cpu;
  3159. weight = sd->span_weight;
  3160. sd = NULL;
  3161. for_each_domain(cpu, tmp) {
  3162. if (weight <= tmp->span_weight)
  3163. break;
  3164. if (tmp->flags & sd_flag)
  3165. sd = tmp;
  3166. }
  3167. /* while loop will break here if sd == NULL */
  3168. }
  3169. unlock:
  3170. rcu_read_unlock();
  3171. return new_cpu;
  3172. }
  3173. /*
  3174. * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
  3175. * cfs_rq_of(p) references at time of call are still valid and identify the
  3176. * previous cpu. However, the caller only guarantees p->pi_lock is held; no
  3177. * other assumptions, including the state of rq->lock, should be made.
  3178. */
  3179. static void
  3180. migrate_task_rq_fair(struct task_struct *p, int next_cpu)
  3181. {
  3182. struct sched_entity *se = &p->se;
  3183. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  3184. /*
  3185. * Load tracking: accumulate removed load so that it can be processed
  3186. * when we next update owning cfs_rq under rq->lock. Tasks contribute
  3187. * to blocked load iff they have a positive decay-count. It can never
  3188. * be negative here since on-rq tasks have decay-count == 0.
  3189. */
  3190. if (se->avg.decay_count) {
  3191. se->avg.decay_count = -__synchronize_entity_decay(se);
  3192. atomic_long_add(se->avg.load_avg_contrib,
  3193. &cfs_rq->removed_load);
  3194. }
  3195. }
  3196. #endif /* CONFIG_SMP */
  3197. static unsigned long
  3198. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  3199. {
  3200. unsigned long gran = sysctl_sched_wakeup_granularity;
  3201. /*
  3202. * Since its curr running now, convert the gran from real-time
  3203. * to virtual-time in his units.
  3204. *
  3205. * By using 'se' instead of 'curr' we penalize light tasks, so
  3206. * they get preempted easier. That is, if 'se' < 'curr' then
  3207. * the resulting gran will be larger, therefore penalizing the
  3208. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  3209. * be smaller, again penalizing the lighter task.
  3210. *
  3211. * This is especially important for buddies when the leftmost
  3212. * task is higher priority than the buddy.
  3213. */
  3214. return calc_delta_fair(gran, se);
  3215. }
  3216. /*
  3217. * Should 'se' preempt 'curr'.
  3218. *
  3219. * |s1
  3220. * |s2
  3221. * |s3
  3222. * g
  3223. * |<--->|c
  3224. *
  3225. * w(c, s1) = -1
  3226. * w(c, s2) = 0
  3227. * w(c, s3) = 1
  3228. *
  3229. */
  3230. static int
  3231. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  3232. {
  3233. s64 gran, vdiff = curr->vruntime - se->vruntime;
  3234. if (vdiff <= 0)
  3235. return -1;
  3236. gran = wakeup_gran(curr, se);
  3237. if (vdiff > gran)
  3238. return 1;
  3239. return 0;
  3240. }
  3241. static void set_last_buddy(struct sched_entity *se)
  3242. {
  3243. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  3244. return;
  3245. for_each_sched_entity(se)
  3246. cfs_rq_of(se)->last = se;
  3247. }
  3248. static void set_next_buddy(struct sched_entity *se)
  3249. {
  3250. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  3251. return;
  3252. for_each_sched_entity(se)
  3253. cfs_rq_of(se)->next = se;
  3254. }
  3255. static void set_skip_buddy(struct sched_entity *se)
  3256. {
  3257. for_each_sched_entity(se)
  3258. cfs_rq_of(se)->skip = se;
  3259. }
  3260. /*
  3261. * Preempt the current task with a newly woken task if needed:
  3262. */
  3263. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  3264. {
  3265. struct task_struct *curr = rq->curr;
  3266. struct sched_entity *se = &curr->se, *pse = &p->se;
  3267. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  3268. int scale = cfs_rq->nr_running >= sched_nr_latency;
  3269. int next_buddy_marked = 0;
  3270. if (unlikely(se == pse))
  3271. return;
  3272. /*
  3273. * This is possible from callers such as move_task(), in which we
  3274. * unconditionally check_prempt_curr() after an enqueue (which may have
  3275. * lead to a throttle). This both saves work and prevents false
  3276. * next-buddy nomination below.
  3277. */
  3278. if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
  3279. return;
  3280. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
  3281. set_next_buddy(pse);
  3282. next_buddy_marked = 1;
  3283. }
  3284. /*
  3285. * We can come here with TIF_NEED_RESCHED already set from new task
  3286. * wake up path.
  3287. *
  3288. * Note: this also catches the edge-case of curr being in a throttled
  3289. * group (e.g. via set_curr_task), since update_curr() (in the
  3290. * enqueue of curr) will have resulted in resched being set. This
  3291. * prevents us from potentially nominating it as a false LAST_BUDDY
  3292. * below.
  3293. */
  3294. if (test_tsk_need_resched(curr))
  3295. return;
  3296. /* Idle tasks are by definition preempted by non-idle tasks. */
  3297. if (unlikely(curr->policy == SCHED_IDLE) &&
  3298. likely(p->policy != SCHED_IDLE))
  3299. goto preempt;
  3300. /*
  3301. * Batch and idle tasks do not preempt non-idle tasks (their preemption
  3302. * is driven by the tick):
  3303. */
  3304. if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
  3305. return;
  3306. find_matching_se(&se, &pse);
  3307. update_curr(cfs_rq_of(se));
  3308. BUG_ON(!pse);
  3309. if (wakeup_preempt_entity(se, pse) == 1) {
  3310. /*
  3311. * Bias pick_next to pick the sched entity that is
  3312. * triggering this preemption.
  3313. */
  3314. if (!next_buddy_marked)
  3315. set_next_buddy(pse);
  3316. goto preempt;
  3317. }
  3318. return;
  3319. preempt:
  3320. resched_task(curr);
  3321. /*
  3322. * Only set the backward buddy when the current task is still
  3323. * on the rq. This can happen when a wakeup gets interleaved
  3324. * with schedule on the ->pre_schedule() or idle_balance()
  3325. * point, either of which can * drop the rq lock.
  3326. *
  3327. * Also, during early boot the idle thread is in the fair class,
  3328. * for obvious reasons its a bad idea to schedule back to it.
  3329. */
  3330. if (unlikely(!se->on_rq || curr == rq->idle))
  3331. return;
  3332. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  3333. set_last_buddy(se);
  3334. }
  3335. static struct task_struct *pick_next_task_fair(struct rq *rq)
  3336. {
  3337. struct task_struct *p;
  3338. struct cfs_rq *cfs_rq = &rq->cfs;
  3339. struct sched_entity *se;
  3340. if (!cfs_rq->nr_running)
  3341. return NULL;
  3342. do {
  3343. se = pick_next_entity(cfs_rq);
  3344. set_next_entity(cfs_rq, se);
  3345. cfs_rq = group_cfs_rq(se);
  3346. } while (cfs_rq);
  3347. p = task_of(se);
  3348. if (hrtick_enabled(rq))
  3349. hrtick_start_fair(rq, p);
  3350. return p;
  3351. }
  3352. /*
  3353. * Account for a descheduled task:
  3354. */
  3355. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  3356. {
  3357. struct sched_entity *se = &prev->se;
  3358. struct cfs_rq *cfs_rq;
  3359. for_each_sched_entity(se) {
  3360. cfs_rq = cfs_rq_of(se);
  3361. put_prev_entity(cfs_rq, se);
  3362. }
  3363. }
  3364. /*
  3365. * sched_yield() is very simple
  3366. *
  3367. * The magic of dealing with the ->skip buddy is in pick_next_entity.
  3368. */
  3369. static void yield_task_fair(struct rq *rq)
  3370. {
  3371. struct task_struct *curr = rq->curr;
  3372. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  3373. struct sched_entity *se = &curr->se;
  3374. /*
  3375. * Are we the only task in the tree?
  3376. */
  3377. if (unlikely(rq->nr_running == 1))
  3378. return;
  3379. clear_buddies(cfs_rq, se);
  3380. if (curr->policy != SCHED_BATCH) {
  3381. update_rq_clock(rq);
  3382. /*
  3383. * Update run-time statistics of the 'current'.
  3384. */
  3385. update_curr(cfs_rq);
  3386. /*
  3387. * Tell update_rq_clock() that we've just updated,
  3388. * so we don't do microscopic update in schedule()
  3389. * and double the fastpath cost.
  3390. */
  3391. rq->skip_clock_update = 1;
  3392. }
  3393. set_skip_buddy(se);
  3394. }
  3395. static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
  3396. {
  3397. struct sched_entity *se = &p->se;
  3398. /* throttled hierarchies are not runnable */
  3399. if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
  3400. return false;
  3401. /* Tell the scheduler that we'd really like pse to run next. */
  3402. set_next_buddy(se);
  3403. yield_task_fair(rq);
  3404. return true;
  3405. }
  3406. #ifdef CONFIG_SMP
  3407. /**************************************************
  3408. * Fair scheduling class load-balancing methods.
  3409. *
  3410. * BASICS
  3411. *
  3412. * The purpose of load-balancing is to achieve the same basic fairness the
  3413. * per-cpu scheduler provides, namely provide a proportional amount of compute
  3414. * time to each task. This is expressed in the following equation:
  3415. *
  3416. * W_i,n/P_i == W_j,n/P_j for all i,j (1)
  3417. *
  3418. * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
  3419. * W_i,0 is defined as:
  3420. *
  3421. * W_i,0 = \Sum_j w_i,j (2)
  3422. *
  3423. * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
  3424. * is derived from the nice value as per prio_to_weight[].
  3425. *
  3426. * The weight average is an exponential decay average of the instantaneous
  3427. * weight:
  3428. *
  3429. * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
  3430. *
  3431. * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
  3432. * fraction of 'recent' time available for SCHED_OTHER task execution. But it
  3433. * can also include other factors [XXX].
  3434. *
  3435. * To achieve this balance we define a measure of imbalance which follows
  3436. * directly from (1):
  3437. *
  3438. * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
  3439. *
  3440. * We them move tasks around to minimize the imbalance. In the continuous
  3441. * function space it is obvious this converges, in the discrete case we get
  3442. * a few fun cases generally called infeasible weight scenarios.
  3443. *
  3444. * [XXX expand on:
  3445. * - infeasible weights;
  3446. * - local vs global optima in the discrete case. ]
  3447. *
  3448. *
  3449. * SCHED DOMAINS
  3450. *
  3451. * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
  3452. * for all i,j solution, we create a tree of cpus that follows the hardware
  3453. * topology where each level pairs two lower groups (or better). This results
  3454. * in O(log n) layers. Furthermore we reduce the number of cpus going up the
  3455. * tree to only the first of the previous level and we decrease the frequency
  3456. * of load-balance at each level inv. proportional to the number of cpus in
  3457. * the groups.
  3458. *
  3459. * This yields:
  3460. *
  3461. * log_2 n 1 n
  3462. * \Sum { --- * --- * 2^i } = O(n) (5)
  3463. * i = 0 2^i 2^i
  3464. * `- size of each group
  3465. * | | `- number of cpus doing load-balance
  3466. * | `- freq
  3467. * `- sum over all levels
  3468. *
  3469. * Coupled with a limit on how many tasks we can migrate every balance pass,
  3470. * this makes (5) the runtime complexity of the balancer.
  3471. *
  3472. * An important property here is that each CPU is still (indirectly) connected
  3473. * to every other cpu in at most O(log n) steps:
  3474. *
  3475. * The adjacency matrix of the resulting graph is given by:
  3476. *
  3477. * log_2 n
  3478. * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
  3479. * k = 0
  3480. *
  3481. * And you'll find that:
  3482. *
  3483. * A^(log_2 n)_i,j != 0 for all i,j (7)
  3484. *
  3485. * Showing there's indeed a path between every cpu in at most O(log n) steps.
  3486. * The task movement gives a factor of O(m), giving a convergence complexity
  3487. * of:
  3488. *
  3489. * O(nm log n), n := nr_cpus, m := nr_tasks (8)
  3490. *
  3491. *
  3492. * WORK CONSERVING
  3493. *
  3494. * In order to avoid CPUs going idle while there's still work to do, new idle
  3495. * balancing is more aggressive and has the newly idle cpu iterate up the domain
  3496. * tree itself instead of relying on other CPUs to bring it work.
  3497. *
  3498. * This adds some complexity to both (5) and (8) but it reduces the total idle
  3499. * time.
  3500. *
  3501. * [XXX more?]
  3502. *
  3503. *
  3504. * CGROUPS
  3505. *
  3506. * Cgroups make a horror show out of (2), instead of a simple sum we get:
  3507. *
  3508. * s_k,i
  3509. * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
  3510. * S_k
  3511. *
  3512. * Where
  3513. *
  3514. * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
  3515. *
  3516. * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
  3517. *
  3518. * The big problem is S_k, its a global sum needed to compute a local (W_i)
  3519. * property.
  3520. *
  3521. * [XXX write more on how we solve this.. _after_ merging pjt's patches that
  3522. * rewrite all of this once again.]
  3523. */
  3524. static unsigned long __read_mostly max_load_balance_interval = HZ/10;
  3525. #define LBF_ALL_PINNED 0x01
  3526. #define LBF_NEED_BREAK 0x02
  3527. #define LBF_DST_PINNED 0x04
  3528. #define LBF_SOME_PINNED 0x08
  3529. struct lb_env {
  3530. struct sched_domain *sd;
  3531. struct rq *src_rq;
  3532. int src_cpu;
  3533. int dst_cpu;
  3534. struct rq *dst_rq;
  3535. struct cpumask *dst_grpmask;
  3536. int new_dst_cpu;
  3537. enum cpu_idle_type idle;
  3538. long imbalance;
  3539. /* The set of CPUs under consideration for load-balancing */
  3540. struct cpumask *cpus;
  3541. unsigned int flags;
  3542. unsigned int loop;
  3543. unsigned int loop_break;
  3544. unsigned int loop_max;
  3545. };
  3546. /*
  3547. * move_task - move a task from one runqueue to another runqueue.
  3548. * Both runqueues must be locked.
  3549. */
  3550. static void move_task(struct task_struct *p, struct lb_env *env)
  3551. {
  3552. deactivate_task(env->src_rq, p, 0);
  3553. set_task_cpu(p, env->dst_cpu);
  3554. activate_task(env->dst_rq, p, 0);
  3555. check_preempt_curr(env->dst_rq, p, 0);
  3556. #ifdef CONFIG_NUMA_BALANCING
  3557. if (p->numa_preferred_nid != -1) {
  3558. int src_nid = cpu_to_node(env->src_cpu);
  3559. int dst_nid = cpu_to_node(env->dst_cpu);
  3560. /*
  3561. * If the load balancer has moved the task then limit
  3562. * migrations from taking place in the short term in
  3563. * case this is a short-lived migration.
  3564. */
  3565. if (src_nid != dst_nid && dst_nid != p->numa_preferred_nid)
  3566. p->numa_migrate_seq = 0;
  3567. }
  3568. #endif
  3569. }
  3570. /*
  3571. * Is this task likely cache-hot:
  3572. */
  3573. static int
  3574. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  3575. {
  3576. s64 delta;
  3577. if (p->sched_class != &fair_sched_class)
  3578. return 0;
  3579. if (unlikely(p->policy == SCHED_IDLE))
  3580. return 0;
  3581. /*
  3582. * Buddy candidates are cache hot:
  3583. */
  3584. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  3585. (&p->se == cfs_rq_of(&p->se)->next ||
  3586. &p->se == cfs_rq_of(&p->se)->last))
  3587. return 1;
  3588. if (sysctl_sched_migration_cost == -1)
  3589. return 1;
  3590. if (sysctl_sched_migration_cost == 0)
  3591. return 0;
  3592. delta = now - p->se.exec_start;
  3593. return delta < (s64)sysctl_sched_migration_cost;
  3594. }
  3595. #ifdef CONFIG_NUMA_BALANCING
  3596. /* Returns true if the destination node has incurred more faults */
  3597. static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
  3598. {
  3599. int src_nid, dst_nid;
  3600. if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
  3601. !(env->sd->flags & SD_NUMA)) {
  3602. return false;
  3603. }
  3604. src_nid = cpu_to_node(env->src_cpu);
  3605. dst_nid = cpu_to_node(env->dst_cpu);
  3606. if (src_nid == dst_nid ||
  3607. p->numa_migrate_seq >= sysctl_numa_balancing_settle_count)
  3608. return false;
  3609. if (dst_nid == p->numa_preferred_nid ||
  3610. task_faults(p, dst_nid) > task_faults(p, src_nid))
  3611. return true;
  3612. return false;
  3613. }
  3614. static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
  3615. {
  3616. int src_nid, dst_nid;
  3617. if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
  3618. return false;
  3619. if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
  3620. return false;
  3621. src_nid = cpu_to_node(env->src_cpu);
  3622. dst_nid = cpu_to_node(env->dst_cpu);
  3623. if (src_nid == dst_nid ||
  3624. p->numa_migrate_seq >= sysctl_numa_balancing_settle_count)
  3625. return false;
  3626. if (task_faults(p, dst_nid) < task_faults(p, src_nid))
  3627. return true;
  3628. return false;
  3629. }
  3630. #else
  3631. static inline bool migrate_improves_locality(struct task_struct *p,
  3632. struct lb_env *env)
  3633. {
  3634. return false;
  3635. }
  3636. static inline bool migrate_degrades_locality(struct task_struct *p,
  3637. struct lb_env *env)
  3638. {
  3639. return false;
  3640. }
  3641. #endif
  3642. /*
  3643. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  3644. */
  3645. static
  3646. int can_migrate_task(struct task_struct *p, struct lb_env *env)
  3647. {
  3648. int tsk_cache_hot = 0;
  3649. /*
  3650. * We do not migrate tasks that are:
  3651. * 1) throttled_lb_pair, or
  3652. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  3653. * 3) running (obviously), or
  3654. * 4) are cache-hot on their current CPU.
  3655. */
  3656. if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
  3657. return 0;
  3658. if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
  3659. int cpu;
  3660. schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
  3661. env->flags |= LBF_SOME_PINNED;
  3662. /*
  3663. * Remember if this task can be migrated to any other cpu in
  3664. * our sched_group. We may want to revisit it if we couldn't
  3665. * meet load balance goals by pulling other tasks on src_cpu.
  3666. *
  3667. * Also avoid computing new_dst_cpu if we have already computed
  3668. * one in current iteration.
  3669. */
  3670. if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
  3671. return 0;
  3672. /* Prevent to re-select dst_cpu via env's cpus */
  3673. for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
  3674. if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
  3675. env->flags |= LBF_DST_PINNED;
  3676. env->new_dst_cpu = cpu;
  3677. break;
  3678. }
  3679. }
  3680. return 0;
  3681. }
  3682. /* Record that we found atleast one task that could run on dst_cpu */
  3683. env->flags &= ~LBF_ALL_PINNED;
  3684. if (task_running(env->src_rq, p)) {
  3685. schedstat_inc(p, se.statistics.nr_failed_migrations_running);
  3686. return 0;
  3687. }
  3688. /*
  3689. * Aggressive migration if:
  3690. * 1) destination numa is preferred
  3691. * 2) task is cache cold, or
  3692. * 3) too many balance attempts have failed.
  3693. */
  3694. tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
  3695. if (!tsk_cache_hot)
  3696. tsk_cache_hot = migrate_degrades_locality(p, env);
  3697. if (migrate_improves_locality(p, env)) {
  3698. #ifdef CONFIG_SCHEDSTATS
  3699. if (tsk_cache_hot) {
  3700. schedstat_inc(env->sd, lb_hot_gained[env->idle]);
  3701. schedstat_inc(p, se.statistics.nr_forced_migrations);
  3702. }
  3703. #endif
  3704. return 1;
  3705. }
  3706. if (!tsk_cache_hot ||
  3707. env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
  3708. if (tsk_cache_hot) {
  3709. schedstat_inc(env->sd, lb_hot_gained[env->idle]);
  3710. schedstat_inc(p, se.statistics.nr_forced_migrations);
  3711. }
  3712. return 1;
  3713. }
  3714. schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
  3715. return 0;
  3716. }
  3717. /*
  3718. * move_one_task tries to move exactly one task from busiest to this_rq, as
  3719. * part of active balancing operations within "domain".
  3720. * Returns 1 if successful and 0 otherwise.
  3721. *
  3722. * Called with both runqueues locked.
  3723. */
  3724. static int move_one_task(struct lb_env *env)
  3725. {
  3726. struct task_struct *p, *n;
  3727. list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
  3728. if (!can_migrate_task(p, env))
  3729. continue;
  3730. move_task(p, env);
  3731. /*
  3732. * Right now, this is only the second place move_task()
  3733. * is called, so we can safely collect move_task()
  3734. * stats here rather than inside move_task().
  3735. */
  3736. schedstat_inc(env->sd, lb_gained[env->idle]);
  3737. return 1;
  3738. }
  3739. return 0;
  3740. }
  3741. static unsigned long task_h_load(struct task_struct *p);
  3742. static const unsigned int sched_nr_migrate_break = 32;
  3743. /*
  3744. * move_tasks tries to move up to imbalance weighted load from busiest to
  3745. * this_rq, as part of a balancing operation within domain "sd".
  3746. * Returns 1 if successful and 0 otherwise.
  3747. *
  3748. * Called with both runqueues locked.
  3749. */
  3750. static int move_tasks(struct lb_env *env)
  3751. {
  3752. struct list_head *tasks = &env->src_rq->cfs_tasks;
  3753. struct task_struct *p;
  3754. unsigned long load;
  3755. int pulled = 0;
  3756. if (env->imbalance <= 0)
  3757. return 0;
  3758. while (!list_empty(tasks)) {
  3759. p = list_first_entry(tasks, struct task_struct, se.group_node);
  3760. env->loop++;
  3761. /* We've more or less seen every task there is, call it quits */
  3762. if (env->loop > env->loop_max)
  3763. break;
  3764. /* take a breather every nr_migrate tasks */
  3765. if (env->loop > env->loop_break) {
  3766. env->loop_break += sched_nr_migrate_break;
  3767. env->flags |= LBF_NEED_BREAK;
  3768. break;
  3769. }
  3770. if (!can_migrate_task(p, env))
  3771. goto next;
  3772. load = task_h_load(p);
  3773. if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
  3774. goto next;
  3775. if ((load / 2) > env->imbalance)
  3776. goto next;
  3777. move_task(p, env);
  3778. pulled++;
  3779. env->imbalance -= load;
  3780. #ifdef CONFIG_PREEMPT
  3781. /*
  3782. * NEWIDLE balancing is a source of latency, so preemptible
  3783. * kernels will stop after the first task is pulled to minimize
  3784. * the critical section.
  3785. */
  3786. if (env->idle == CPU_NEWLY_IDLE)
  3787. break;
  3788. #endif
  3789. /*
  3790. * We only want to steal up to the prescribed amount of
  3791. * weighted load.
  3792. */
  3793. if (env->imbalance <= 0)
  3794. break;
  3795. continue;
  3796. next:
  3797. list_move_tail(&p->se.group_node, tasks);
  3798. }
  3799. /*
  3800. * Right now, this is one of only two places move_task() is called,
  3801. * so we can safely collect move_task() stats here rather than
  3802. * inside move_task().
  3803. */
  3804. schedstat_add(env->sd, lb_gained[env->idle], pulled);
  3805. return pulled;
  3806. }
  3807. #ifdef CONFIG_FAIR_GROUP_SCHED
  3808. /*
  3809. * update tg->load_weight by folding this cpu's load_avg
  3810. */
  3811. static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
  3812. {
  3813. struct sched_entity *se = tg->se[cpu];
  3814. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
  3815. /* throttled entities do not contribute to load */
  3816. if (throttled_hierarchy(cfs_rq))
  3817. return;
  3818. update_cfs_rq_blocked_load(cfs_rq, 1);
  3819. if (se) {
  3820. update_entity_load_avg(se, 1);
  3821. /*
  3822. * We pivot on our runnable average having decayed to zero for
  3823. * list removal. This generally implies that all our children
  3824. * have also been removed (modulo rounding error or bandwidth
  3825. * control); however, such cases are rare and we can fix these
  3826. * at enqueue.
  3827. *
  3828. * TODO: fix up out-of-order children on enqueue.
  3829. */
  3830. if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
  3831. list_del_leaf_cfs_rq(cfs_rq);
  3832. } else {
  3833. struct rq *rq = rq_of(cfs_rq);
  3834. update_rq_runnable_avg(rq, rq->nr_running);
  3835. }
  3836. }
  3837. static void update_blocked_averages(int cpu)
  3838. {
  3839. struct rq *rq = cpu_rq(cpu);
  3840. struct cfs_rq *cfs_rq;
  3841. unsigned long flags;
  3842. raw_spin_lock_irqsave(&rq->lock, flags);
  3843. update_rq_clock(rq);
  3844. /*
  3845. * Iterates the task_group tree in a bottom up fashion, see
  3846. * list_add_leaf_cfs_rq() for details.
  3847. */
  3848. for_each_leaf_cfs_rq(rq, cfs_rq) {
  3849. /*
  3850. * Note: We may want to consider periodically releasing
  3851. * rq->lock about these updates so that creating many task
  3852. * groups does not result in continually extending hold time.
  3853. */
  3854. __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
  3855. }
  3856. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3857. }
  3858. /*
  3859. * Compute the hierarchical load factor for cfs_rq and all its ascendants.
  3860. * This needs to be done in a top-down fashion because the load of a child
  3861. * group is a fraction of its parents load.
  3862. */
  3863. static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
  3864. {
  3865. struct rq *rq = rq_of(cfs_rq);
  3866. struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
  3867. unsigned long now = jiffies;
  3868. unsigned long load;
  3869. if (cfs_rq->last_h_load_update == now)
  3870. return;
  3871. cfs_rq->h_load_next = NULL;
  3872. for_each_sched_entity(se) {
  3873. cfs_rq = cfs_rq_of(se);
  3874. cfs_rq->h_load_next = se;
  3875. if (cfs_rq->last_h_load_update == now)
  3876. break;
  3877. }
  3878. if (!se) {
  3879. cfs_rq->h_load = cfs_rq->runnable_load_avg;
  3880. cfs_rq->last_h_load_update = now;
  3881. }
  3882. while ((se = cfs_rq->h_load_next) != NULL) {
  3883. load = cfs_rq->h_load;
  3884. load = div64_ul(load * se->avg.load_avg_contrib,
  3885. cfs_rq->runnable_load_avg + 1);
  3886. cfs_rq = group_cfs_rq(se);
  3887. cfs_rq->h_load = load;
  3888. cfs_rq->last_h_load_update = now;
  3889. }
  3890. }
  3891. static unsigned long task_h_load(struct task_struct *p)
  3892. {
  3893. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  3894. update_cfs_rq_h_load(cfs_rq);
  3895. return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
  3896. cfs_rq->runnable_load_avg + 1);
  3897. }
  3898. #else
  3899. static inline void update_blocked_averages(int cpu)
  3900. {
  3901. }
  3902. static unsigned long task_h_load(struct task_struct *p)
  3903. {
  3904. return p->se.avg.load_avg_contrib;
  3905. }
  3906. #endif
  3907. /********** Helpers for find_busiest_group ************************/
  3908. /*
  3909. * sg_lb_stats - stats of a sched_group required for load_balancing
  3910. */
  3911. struct sg_lb_stats {
  3912. unsigned long avg_load; /*Avg load across the CPUs of the group */
  3913. unsigned long group_load; /* Total load over the CPUs of the group */
  3914. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  3915. unsigned long load_per_task;
  3916. unsigned long group_power;
  3917. unsigned int sum_nr_running; /* Nr tasks running in the group */
  3918. unsigned int group_capacity;
  3919. unsigned int idle_cpus;
  3920. unsigned int group_weight;
  3921. int group_imb; /* Is there an imbalance in the group ? */
  3922. int group_has_capacity; /* Is there extra capacity in the group? */
  3923. };
  3924. /*
  3925. * sd_lb_stats - Structure to store the statistics of a sched_domain
  3926. * during load balancing.
  3927. */
  3928. struct sd_lb_stats {
  3929. struct sched_group *busiest; /* Busiest group in this sd */
  3930. struct sched_group *local; /* Local group in this sd */
  3931. unsigned long total_load; /* Total load of all groups in sd */
  3932. unsigned long total_pwr; /* Total power of all groups in sd */
  3933. unsigned long avg_load; /* Average load across all groups in sd */
  3934. struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
  3935. struct sg_lb_stats local_stat; /* Statistics of the local group */
  3936. };
  3937. static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
  3938. {
  3939. /*
  3940. * Skimp on the clearing to avoid duplicate work. We can avoid clearing
  3941. * local_stat because update_sg_lb_stats() does a full clear/assignment.
  3942. * We must however clear busiest_stat::avg_load because
  3943. * update_sd_pick_busiest() reads this before assignment.
  3944. */
  3945. *sds = (struct sd_lb_stats){
  3946. .busiest = NULL,
  3947. .local = NULL,
  3948. .total_load = 0UL,
  3949. .total_pwr = 0UL,
  3950. .busiest_stat = {
  3951. .avg_load = 0UL,
  3952. },
  3953. };
  3954. }
  3955. /**
  3956. * get_sd_load_idx - Obtain the load index for a given sched domain.
  3957. * @sd: The sched_domain whose load_idx is to be obtained.
  3958. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  3959. *
  3960. * Return: The load index.
  3961. */
  3962. static inline int get_sd_load_idx(struct sched_domain *sd,
  3963. enum cpu_idle_type idle)
  3964. {
  3965. int load_idx;
  3966. switch (idle) {
  3967. case CPU_NOT_IDLE:
  3968. load_idx = sd->busy_idx;
  3969. break;
  3970. case CPU_NEWLY_IDLE:
  3971. load_idx = sd->newidle_idx;
  3972. break;
  3973. default:
  3974. load_idx = sd->idle_idx;
  3975. break;
  3976. }
  3977. return load_idx;
  3978. }
  3979. static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  3980. {
  3981. return SCHED_POWER_SCALE;
  3982. }
  3983. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  3984. {
  3985. return default_scale_freq_power(sd, cpu);
  3986. }
  3987. static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  3988. {
  3989. unsigned long weight = sd->span_weight;
  3990. unsigned long smt_gain = sd->smt_gain;
  3991. smt_gain /= weight;
  3992. return smt_gain;
  3993. }
  3994. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  3995. {
  3996. return default_scale_smt_power(sd, cpu);
  3997. }
  3998. static unsigned long scale_rt_power(int cpu)
  3999. {
  4000. struct rq *rq = cpu_rq(cpu);
  4001. u64 total, available, age_stamp, avg;
  4002. /*
  4003. * Since we're reading these variables without serialization make sure
  4004. * we read them once before doing sanity checks on them.
  4005. */
  4006. age_stamp = ACCESS_ONCE(rq->age_stamp);
  4007. avg = ACCESS_ONCE(rq->rt_avg);
  4008. total = sched_avg_period() + (rq_clock(rq) - age_stamp);
  4009. if (unlikely(total < avg)) {
  4010. /* Ensures that power won't end up being negative */
  4011. available = 0;
  4012. } else {
  4013. available = total - avg;
  4014. }
  4015. if (unlikely((s64)total < SCHED_POWER_SCALE))
  4016. total = SCHED_POWER_SCALE;
  4017. total >>= SCHED_POWER_SHIFT;
  4018. return div_u64(available, total);
  4019. }
  4020. static void update_cpu_power(struct sched_domain *sd, int cpu)
  4021. {
  4022. unsigned long weight = sd->span_weight;
  4023. unsigned long power = SCHED_POWER_SCALE;
  4024. struct sched_group *sdg = sd->groups;
  4025. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  4026. if (sched_feat(ARCH_POWER))
  4027. power *= arch_scale_smt_power(sd, cpu);
  4028. else
  4029. power *= default_scale_smt_power(sd, cpu);
  4030. power >>= SCHED_POWER_SHIFT;
  4031. }
  4032. sdg->sgp->power_orig = power;
  4033. if (sched_feat(ARCH_POWER))
  4034. power *= arch_scale_freq_power(sd, cpu);
  4035. else
  4036. power *= default_scale_freq_power(sd, cpu);
  4037. power >>= SCHED_POWER_SHIFT;
  4038. power *= scale_rt_power(cpu);
  4039. power >>= SCHED_POWER_SHIFT;
  4040. if (!power)
  4041. power = 1;
  4042. cpu_rq(cpu)->cpu_power = power;
  4043. sdg->sgp->power = power;
  4044. }
  4045. void update_group_power(struct sched_domain *sd, int cpu)
  4046. {
  4047. struct sched_domain *child = sd->child;
  4048. struct sched_group *group, *sdg = sd->groups;
  4049. unsigned long power, power_orig;
  4050. unsigned long interval;
  4051. interval = msecs_to_jiffies(sd->balance_interval);
  4052. interval = clamp(interval, 1UL, max_load_balance_interval);
  4053. sdg->sgp->next_update = jiffies + interval;
  4054. if (!child) {
  4055. update_cpu_power(sd, cpu);
  4056. return;
  4057. }
  4058. power_orig = power = 0;
  4059. if (child->flags & SD_OVERLAP) {
  4060. /*
  4061. * SD_OVERLAP domains cannot assume that child groups
  4062. * span the current group.
  4063. */
  4064. for_each_cpu(cpu, sched_group_cpus(sdg)) {
  4065. struct sched_group *sg = cpu_rq(cpu)->sd->groups;
  4066. power_orig += sg->sgp->power_orig;
  4067. power += sg->sgp->power;
  4068. }
  4069. } else {
  4070. /*
  4071. * !SD_OVERLAP domains can assume that child groups
  4072. * span the current group.
  4073. */
  4074. group = child->groups;
  4075. do {
  4076. power_orig += group->sgp->power_orig;
  4077. power += group->sgp->power;
  4078. group = group->next;
  4079. } while (group != child->groups);
  4080. }
  4081. sdg->sgp->power_orig = power_orig;
  4082. sdg->sgp->power = power;
  4083. }
  4084. /*
  4085. * Try and fix up capacity for tiny siblings, this is needed when
  4086. * things like SD_ASYM_PACKING need f_b_g to select another sibling
  4087. * which on its own isn't powerful enough.
  4088. *
  4089. * See update_sd_pick_busiest() and check_asym_packing().
  4090. */
  4091. static inline int
  4092. fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
  4093. {
  4094. /*
  4095. * Only siblings can have significantly less than SCHED_POWER_SCALE
  4096. */
  4097. if (!(sd->flags & SD_SHARE_CPUPOWER))
  4098. return 0;
  4099. /*
  4100. * If ~90% of the cpu_power is still there, we're good.
  4101. */
  4102. if (group->sgp->power * 32 > group->sgp->power_orig * 29)
  4103. return 1;
  4104. return 0;
  4105. }
  4106. /*
  4107. * Group imbalance indicates (and tries to solve) the problem where balancing
  4108. * groups is inadequate due to tsk_cpus_allowed() constraints.
  4109. *
  4110. * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
  4111. * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
  4112. * Something like:
  4113. *
  4114. * { 0 1 2 3 } { 4 5 6 7 }
  4115. * * * * *
  4116. *
  4117. * If we were to balance group-wise we'd place two tasks in the first group and
  4118. * two tasks in the second group. Clearly this is undesired as it will overload
  4119. * cpu 3 and leave one of the cpus in the second group unused.
  4120. *
  4121. * The current solution to this issue is detecting the skew in the first group
  4122. * by noticing the lower domain failed to reach balance and had difficulty
  4123. * moving tasks due to affinity constraints.
  4124. *
  4125. * When this is so detected; this group becomes a candidate for busiest; see
  4126. * update_sd_pick_busiest(). And calculcate_imbalance() and
  4127. * find_busiest_group() avoid some of the usual balance conditions to allow it
  4128. * to create an effective group imbalance.
  4129. *
  4130. * This is a somewhat tricky proposition since the next run might not find the
  4131. * group imbalance and decide the groups need to be balanced again. A most
  4132. * subtle and fragile situation.
  4133. */
  4134. static inline int sg_imbalanced(struct sched_group *group)
  4135. {
  4136. return group->sgp->imbalance;
  4137. }
  4138. /*
  4139. * Compute the group capacity.
  4140. *
  4141. * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
  4142. * first dividing out the smt factor and computing the actual number of cores
  4143. * and limit power unit capacity with that.
  4144. */
  4145. static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
  4146. {
  4147. unsigned int capacity, smt, cpus;
  4148. unsigned int power, power_orig;
  4149. power = group->sgp->power;
  4150. power_orig = group->sgp->power_orig;
  4151. cpus = group->group_weight;
  4152. /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
  4153. smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
  4154. capacity = cpus / smt; /* cores */
  4155. capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
  4156. if (!capacity)
  4157. capacity = fix_small_capacity(env->sd, group);
  4158. return capacity;
  4159. }
  4160. /**
  4161. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  4162. * @env: The load balancing environment.
  4163. * @group: sched_group whose statistics are to be updated.
  4164. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  4165. * @local_group: Does group contain this_cpu.
  4166. * @sgs: variable to hold the statistics for this group.
  4167. */
  4168. static inline void update_sg_lb_stats(struct lb_env *env,
  4169. struct sched_group *group, int load_idx,
  4170. int local_group, struct sg_lb_stats *sgs)
  4171. {
  4172. unsigned long nr_running;
  4173. unsigned long load;
  4174. int i;
  4175. memset(sgs, 0, sizeof(*sgs));
  4176. for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
  4177. struct rq *rq = cpu_rq(i);
  4178. nr_running = rq->nr_running;
  4179. /* Bias balancing toward cpus of our domain */
  4180. if (local_group)
  4181. load = target_load(i, load_idx);
  4182. else
  4183. load = source_load(i, load_idx);
  4184. sgs->group_load += load;
  4185. sgs->sum_nr_running += nr_running;
  4186. sgs->sum_weighted_load += weighted_cpuload(i);
  4187. if (idle_cpu(i))
  4188. sgs->idle_cpus++;
  4189. }
  4190. /* Adjust by relative CPU power of the group */
  4191. sgs->group_power = group->sgp->power;
  4192. sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
  4193. if (sgs->sum_nr_running)
  4194. sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  4195. sgs->group_weight = group->group_weight;
  4196. sgs->group_imb = sg_imbalanced(group);
  4197. sgs->group_capacity = sg_capacity(env, group);
  4198. if (sgs->group_capacity > sgs->sum_nr_running)
  4199. sgs->group_has_capacity = 1;
  4200. }
  4201. /**
  4202. * update_sd_pick_busiest - return 1 on busiest group
  4203. * @env: The load balancing environment.
  4204. * @sds: sched_domain statistics
  4205. * @sg: sched_group candidate to be checked for being the busiest
  4206. * @sgs: sched_group statistics
  4207. *
  4208. * Determine if @sg is a busier group than the previously selected
  4209. * busiest group.
  4210. *
  4211. * Return: %true if @sg is a busier group than the previously selected
  4212. * busiest group. %false otherwise.
  4213. */
  4214. static bool update_sd_pick_busiest(struct lb_env *env,
  4215. struct sd_lb_stats *sds,
  4216. struct sched_group *sg,
  4217. struct sg_lb_stats *sgs)
  4218. {
  4219. if (sgs->avg_load <= sds->busiest_stat.avg_load)
  4220. return false;
  4221. if (sgs->sum_nr_running > sgs->group_capacity)
  4222. return true;
  4223. if (sgs->group_imb)
  4224. return true;
  4225. /*
  4226. * ASYM_PACKING needs to move all the work to the lowest
  4227. * numbered CPUs in the group, therefore mark all groups
  4228. * higher than ourself as busy.
  4229. */
  4230. if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
  4231. env->dst_cpu < group_first_cpu(sg)) {
  4232. if (!sds->busiest)
  4233. return true;
  4234. if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
  4235. return true;
  4236. }
  4237. return false;
  4238. }
  4239. /**
  4240. * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
  4241. * @env: The load balancing environment.
  4242. * @balance: Should we balance.
  4243. * @sds: variable to hold the statistics for this sched_domain.
  4244. */
  4245. static inline void update_sd_lb_stats(struct lb_env *env,
  4246. struct sd_lb_stats *sds)
  4247. {
  4248. struct sched_domain *child = env->sd->child;
  4249. struct sched_group *sg = env->sd->groups;
  4250. struct sg_lb_stats tmp_sgs;
  4251. int load_idx, prefer_sibling = 0;
  4252. if (child && child->flags & SD_PREFER_SIBLING)
  4253. prefer_sibling = 1;
  4254. load_idx = get_sd_load_idx(env->sd, env->idle);
  4255. do {
  4256. struct sg_lb_stats *sgs = &tmp_sgs;
  4257. int local_group;
  4258. local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
  4259. if (local_group) {
  4260. sds->local = sg;
  4261. sgs = &sds->local_stat;
  4262. if (env->idle != CPU_NEWLY_IDLE ||
  4263. time_after_eq(jiffies, sg->sgp->next_update))
  4264. update_group_power(env->sd, env->dst_cpu);
  4265. }
  4266. update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
  4267. if (local_group)
  4268. goto next_group;
  4269. /*
  4270. * In case the child domain prefers tasks go to siblings
  4271. * first, lower the sg capacity to one so that we'll try
  4272. * and move all the excess tasks away. We lower the capacity
  4273. * of a group only if the local group has the capacity to fit
  4274. * these excess tasks, i.e. nr_running < group_capacity. The
  4275. * extra check prevents the case where you always pull from the
  4276. * heaviest group when it is already under-utilized (possible
  4277. * with a large weight task outweighs the tasks on the system).
  4278. */
  4279. if (prefer_sibling && sds->local &&
  4280. sds->local_stat.group_has_capacity)
  4281. sgs->group_capacity = min(sgs->group_capacity, 1U);
  4282. if (update_sd_pick_busiest(env, sds, sg, sgs)) {
  4283. sds->busiest = sg;
  4284. sds->busiest_stat = *sgs;
  4285. }
  4286. next_group:
  4287. /* Now, start updating sd_lb_stats */
  4288. sds->total_load += sgs->group_load;
  4289. sds->total_pwr += sgs->group_power;
  4290. sg = sg->next;
  4291. } while (sg != env->sd->groups);
  4292. }
  4293. /**
  4294. * check_asym_packing - Check to see if the group is packed into the
  4295. * sched doman.
  4296. *
  4297. * This is primarily intended to used at the sibling level. Some
  4298. * cores like POWER7 prefer to use lower numbered SMT threads. In the
  4299. * case of POWER7, it can move to lower SMT modes only when higher
  4300. * threads are idle. When in lower SMT modes, the threads will
  4301. * perform better since they share less core resources. Hence when we
  4302. * have idle threads, we want them to be the higher ones.
  4303. *
  4304. * This packing function is run on idle threads. It checks to see if
  4305. * the busiest CPU in this domain (core in the P7 case) has a higher
  4306. * CPU number than the packing function is being run on. Here we are
  4307. * assuming lower CPU number will be equivalent to lower a SMT thread
  4308. * number.
  4309. *
  4310. * Return: 1 when packing is required and a task should be moved to
  4311. * this CPU. The amount of the imbalance is returned in *imbalance.
  4312. *
  4313. * @env: The load balancing environment.
  4314. * @sds: Statistics of the sched_domain which is to be packed
  4315. */
  4316. static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
  4317. {
  4318. int busiest_cpu;
  4319. if (!(env->sd->flags & SD_ASYM_PACKING))
  4320. return 0;
  4321. if (!sds->busiest)
  4322. return 0;
  4323. busiest_cpu = group_first_cpu(sds->busiest);
  4324. if (env->dst_cpu > busiest_cpu)
  4325. return 0;
  4326. env->imbalance = DIV_ROUND_CLOSEST(
  4327. sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
  4328. SCHED_POWER_SCALE);
  4329. return 1;
  4330. }
  4331. /**
  4332. * fix_small_imbalance - Calculate the minor imbalance that exists
  4333. * amongst the groups of a sched_domain, during
  4334. * load balancing.
  4335. * @env: The load balancing environment.
  4336. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  4337. */
  4338. static inline
  4339. void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
  4340. {
  4341. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  4342. unsigned int imbn = 2;
  4343. unsigned long scaled_busy_load_per_task;
  4344. struct sg_lb_stats *local, *busiest;
  4345. local = &sds->local_stat;
  4346. busiest = &sds->busiest_stat;
  4347. if (!local->sum_nr_running)
  4348. local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
  4349. else if (busiest->load_per_task > local->load_per_task)
  4350. imbn = 1;
  4351. scaled_busy_load_per_task =
  4352. (busiest->load_per_task * SCHED_POWER_SCALE) /
  4353. busiest->group_power;
  4354. if (busiest->avg_load + scaled_busy_load_per_task >=
  4355. local->avg_load + (scaled_busy_load_per_task * imbn)) {
  4356. env->imbalance = busiest->load_per_task;
  4357. return;
  4358. }
  4359. /*
  4360. * OK, we don't have enough imbalance to justify moving tasks,
  4361. * however we may be able to increase total CPU power used by
  4362. * moving them.
  4363. */
  4364. pwr_now += busiest->group_power *
  4365. min(busiest->load_per_task, busiest->avg_load);
  4366. pwr_now += local->group_power *
  4367. min(local->load_per_task, local->avg_load);
  4368. pwr_now /= SCHED_POWER_SCALE;
  4369. /* Amount of load we'd subtract */
  4370. tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
  4371. busiest->group_power;
  4372. if (busiest->avg_load > tmp) {
  4373. pwr_move += busiest->group_power *
  4374. min(busiest->load_per_task,
  4375. busiest->avg_load - tmp);
  4376. }
  4377. /* Amount of load we'd add */
  4378. if (busiest->avg_load * busiest->group_power <
  4379. busiest->load_per_task * SCHED_POWER_SCALE) {
  4380. tmp = (busiest->avg_load * busiest->group_power) /
  4381. local->group_power;
  4382. } else {
  4383. tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
  4384. local->group_power;
  4385. }
  4386. pwr_move += local->group_power *
  4387. min(local->load_per_task, local->avg_load + tmp);
  4388. pwr_move /= SCHED_POWER_SCALE;
  4389. /* Move if we gain throughput */
  4390. if (pwr_move > pwr_now)
  4391. env->imbalance = busiest->load_per_task;
  4392. }
  4393. /**
  4394. * calculate_imbalance - Calculate the amount of imbalance present within the
  4395. * groups of a given sched_domain during load balance.
  4396. * @env: load balance environment
  4397. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  4398. */
  4399. static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
  4400. {
  4401. unsigned long max_pull, load_above_capacity = ~0UL;
  4402. struct sg_lb_stats *local, *busiest;
  4403. local = &sds->local_stat;
  4404. busiest = &sds->busiest_stat;
  4405. if (busiest->group_imb) {
  4406. /*
  4407. * In the group_imb case we cannot rely on group-wide averages
  4408. * to ensure cpu-load equilibrium, look at wider averages. XXX
  4409. */
  4410. busiest->load_per_task =
  4411. min(busiest->load_per_task, sds->avg_load);
  4412. }
  4413. /*
  4414. * In the presence of smp nice balancing, certain scenarios can have
  4415. * max load less than avg load(as we skip the groups at or below
  4416. * its cpu_power, while calculating max_load..)
  4417. */
  4418. if (busiest->avg_load <= sds->avg_load ||
  4419. local->avg_load >= sds->avg_load) {
  4420. env->imbalance = 0;
  4421. return fix_small_imbalance(env, sds);
  4422. }
  4423. if (!busiest->group_imb) {
  4424. /*
  4425. * Don't want to pull so many tasks that a group would go idle.
  4426. * Except of course for the group_imb case, since then we might
  4427. * have to drop below capacity to reach cpu-load equilibrium.
  4428. */
  4429. load_above_capacity =
  4430. (busiest->sum_nr_running - busiest->group_capacity);
  4431. load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
  4432. load_above_capacity /= busiest->group_power;
  4433. }
  4434. /*
  4435. * We're trying to get all the cpus to the average_load, so we don't
  4436. * want to push ourselves above the average load, nor do we wish to
  4437. * reduce the max loaded cpu below the average load. At the same time,
  4438. * we also don't want to reduce the group load below the group capacity
  4439. * (so that we can implement power-savings policies etc). Thus we look
  4440. * for the minimum possible imbalance.
  4441. */
  4442. max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
  4443. /* How much load to actually move to equalise the imbalance */
  4444. env->imbalance = min(
  4445. max_pull * busiest->group_power,
  4446. (sds->avg_load - local->avg_load) * local->group_power
  4447. ) / SCHED_POWER_SCALE;
  4448. /*
  4449. * if *imbalance is less than the average load per runnable task
  4450. * there is no guarantee that any tasks will be moved so we'll have
  4451. * a think about bumping its value to force at least one task to be
  4452. * moved
  4453. */
  4454. if (env->imbalance < busiest->load_per_task)
  4455. return fix_small_imbalance(env, sds);
  4456. }
  4457. /******* find_busiest_group() helpers end here *********************/
  4458. /**
  4459. * find_busiest_group - Returns the busiest group within the sched_domain
  4460. * if there is an imbalance. If there isn't an imbalance, and
  4461. * the user has opted for power-savings, it returns a group whose
  4462. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  4463. * such a group exists.
  4464. *
  4465. * Also calculates the amount of weighted load which should be moved
  4466. * to restore balance.
  4467. *
  4468. * @env: The load balancing environment.
  4469. *
  4470. * Return: - The busiest group if imbalance exists.
  4471. * - If no imbalance and user has opted for power-savings balance,
  4472. * return the least loaded group whose CPUs can be
  4473. * put to idle by rebalancing its tasks onto our group.
  4474. */
  4475. static struct sched_group *find_busiest_group(struct lb_env *env)
  4476. {
  4477. struct sg_lb_stats *local, *busiest;
  4478. struct sd_lb_stats sds;
  4479. init_sd_lb_stats(&sds);
  4480. /*
  4481. * Compute the various statistics relavent for load balancing at
  4482. * this level.
  4483. */
  4484. update_sd_lb_stats(env, &sds);
  4485. local = &sds.local_stat;
  4486. busiest = &sds.busiest_stat;
  4487. if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
  4488. check_asym_packing(env, &sds))
  4489. return sds.busiest;
  4490. /* There is no busy sibling group to pull tasks from */
  4491. if (!sds.busiest || busiest->sum_nr_running == 0)
  4492. goto out_balanced;
  4493. sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
  4494. /*
  4495. * If the busiest group is imbalanced the below checks don't
  4496. * work because they assume all things are equal, which typically
  4497. * isn't true due to cpus_allowed constraints and the like.
  4498. */
  4499. if (busiest->group_imb)
  4500. goto force_balance;
  4501. /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
  4502. if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
  4503. !busiest->group_has_capacity)
  4504. goto force_balance;
  4505. /*
  4506. * If the local group is more busy than the selected busiest group
  4507. * don't try and pull any tasks.
  4508. */
  4509. if (local->avg_load >= busiest->avg_load)
  4510. goto out_balanced;
  4511. /*
  4512. * Don't pull any tasks if this group is already above the domain
  4513. * average load.
  4514. */
  4515. if (local->avg_load >= sds.avg_load)
  4516. goto out_balanced;
  4517. if (env->idle == CPU_IDLE) {
  4518. /*
  4519. * This cpu is idle. If the busiest group load doesn't
  4520. * have more tasks than the number of available cpu's and
  4521. * there is no imbalance between this and busiest group
  4522. * wrt to idle cpu's, it is balanced.
  4523. */
  4524. if ((local->idle_cpus < busiest->idle_cpus) &&
  4525. busiest->sum_nr_running <= busiest->group_weight)
  4526. goto out_balanced;
  4527. } else {
  4528. /*
  4529. * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
  4530. * imbalance_pct to be conservative.
  4531. */
  4532. if (100 * busiest->avg_load <=
  4533. env->sd->imbalance_pct * local->avg_load)
  4534. goto out_balanced;
  4535. }
  4536. force_balance:
  4537. /* Looks like there is an imbalance. Compute it */
  4538. calculate_imbalance(env, &sds);
  4539. return sds.busiest;
  4540. out_balanced:
  4541. env->imbalance = 0;
  4542. return NULL;
  4543. }
  4544. /*
  4545. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  4546. */
  4547. static struct rq *find_busiest_queue(struct lb_env *env,
  4548. struct sched_group *group)
  4549. {
  4550. struct rq *busiest = NULL, *rq;
  4551. unsigned long busiest_load = 0, busiest_power = 1;
  4552. int i;
  4553. for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
  4554. unsigned long power = power_of(i);
  4555. unsigned long capacity = DIV_ROUND_CLOSEST(power,
  4556. SCHED_POWER_SCALE);
  4557. unsigned long wl;
  4558. if (!capacity)
  4559. capacity = fix_small_capacity(env->sd, group);
  4560. rq = cpu_rq(i);
  4561. wl = weighted_cpuload(i);
  4562. /*
  4563. * When comparing with imbalance, use weighted_cpuload()
  4564. * which is not scaled with the cpu power.
  4565. */
  4566. if (capacity && rq->nr_running == 1 && wl > env->imbalance)
  4567. continue;
  4568. /*
  4569. * For the load comparisons with the other cpu's, consider
  4570. * the weighted_cpuload() scaled with the cpu power, so that
  4571. * the load can be moved away from the cpu that is potentially
  4572. * running at a lower capacity.
  4573. *
  4574. * Thus we're looking for max(wl_i / power_i), crosswise
  4575. * multiplication to rid ourselves of the division works out
  4576. * to: wl_i * power_j > wl_j * power_i; where j is our
  4577. * previous maximum.
  4578. */
  4579. if (wl * busiest_power > busiest_load * power) {
  4580. busiest_load = wl;
  4581. busiest_power = power;
  4582. busiest = rq;
  4583. }
  4584. }
  4585. return busiest;
  4586. }
  4587. /*
  4588. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  4589. * so long as it is large enough.
  4590. */
  4591. #define MAX_PINNED_INTERVAL 512
  4592. /* Working cpumask for load_balance and load_balance_newidle. */
  4593. DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
  4594. static int need_active_balance(struct lb_env *env)
  4595. {
  4596. struct sched_domain *sd = env->sd;
  4597. if (env->idle == CPU_NEWLY_IDLE) {
  4598. /*
  4599. * ASYM_PACKING needs to force migrate tasks from busy but
  4600. * higher numbered CPUs in order to pack all tasks in the
  4601. * lowest numbered CPUs.
  4602. */
  4603. if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
  4604. return 1;
  4605. }
  4606. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  4607. }
  4608. static int active_load_balance_cpu_stop(void *data);
  4609. static int should_we_balance(struct lb_env *env)
  4610. {
  4611. struct sched_group *sg = env->sd->groups;
  4612. struct cpumask *sg_cpus, *sg_mask;
  4613. int cpu, balance_cpu = -1;
  4614. /*
  4615. * In the newly idle case, we will allow all the cpu's
  4616. * to do the newly idle load balance.
  4617. */
  4618. if (env->idle == CPU_NEWLY_IDLE)
  4619. return 1;
  4620. sg_cpus = sched_group_cpus(sg);
  4621. sg_mask = sched_group_mask(sg);
  4622. /* Try to find first idle cpu */
  4623. for_each_cpu_and(cpu, sg_cpus, env->cpus) {
  4624. if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
  4625. continue;
  4626. balance_cpu = cpu;
  4627. break;
  4628. }
  4629. if (balance_cpu == -1)
  4630. balance_cpu = group_balance_cpu(sg);
  4631. /*
  4632. * First idle cpu or the first cpu(busiest) in this sched group
  4633. * is eligible for doing load balancing at this and above domains.
  4634. */
  4635. return balance_cpu == env->dst_cpu;
  4636. }
  4637. /*
  4638. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  4639. * tasks if there is an imbalance.
  4640. */
  4641. static int load_balance(int this_cpu, struct rq *this_rq,
  4642. struct sched_domain *sd, enum cpu_idle_type idle,
  4643. int *continue_balancing)
  4644. {
  4645. int ld_moved, cur_ld_moved, active_balance = 0;
  4646. struct sched_domain *sd_parent = sd->parent;
  4647. struct sched_group *group;
  4648. struct rq *busiest;
  4649. unsigned long flags;
  4650. struct cpumask *cpus = __get_cpu_var(load_balance_mask);
  4651. struct lb_env env = {
  4652. .sd = sd,
  4653. .dst_cpu = this_cpu,
  4654. .dst_rq = this_rq,
  4655. .dst_grpmask = sched_group_cpus(sd->groups),
  4656. .idle = idle,
  4657. .loop_break = sched_nr_migrate_break,
  4658. .cpus = cpus,
  4659. };
  4660. /*
  4661. * For NEWLY_IDLE load_balancing, we don't need to consider
  4662. * other cpus in our group
  4663. */
  4664. if (idle == CPU_NEWLY_IDLE)
  4665. env.dst_grpmask = NULL;
  4666. cpumask_copy(cpus, cpu_active_mask);
  4667. schedstat_inc(sd, lb_count[idle]);
  4668. redo:
  4669. if (!should_we_balance(&env)) {
  4670. *continue_balancing = 0;
  4671. goto out_balanced;
  4672. }
  4673. group = find_busiest_group(&env);
  4674. if (!group) {
  4675. schedstat_inc(sd, lb_nobusyg[idle]);
  4676. goto out_balanced;
  4677. }
  4678. busiest = find_busiest_queue(&env, group);
  4679. if (!busiest) {
  4680. schedstat_inc(sd, lb_nobusyq[idle]);
  4681. goto out_balanced;
  4682. }
  4683. BUG_ON(busiest == env.dst_rq);
  4684. schedstat_add(sd, lb_imbalance[idle], env.imbalance);
  4685. ld_moved = 0;
  4686. if (busiest->nr_running > 1) {
  4687. /*
  4688. * Attempt to move tasks. If find_busiest_group has found
  4689. * an imbalance but busiest->nr_running <= 1, the group is
  4690. * still unbalanced. ld_moved simply stays zero, so it is
  4691. * correctly treated as an imbalance.
  4692. */
  4693. env.flags |= LBF_ALL_PINNED;
  4694. env.src_cpu = busiest->cpu;
  4695. env.src_rq = busiest;
  4696. env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
  4697. more_balance:
  4698. local_irq_save(flags);
  4699. double_rq_lock(env.dst_rq, busiest);
  4700. /*
  4701. * cur_ld_moved - load moved in current iteration
  4702. * ld_moved - cumulative load moved across iterations
  4703. */
  4704. cur_ld_moved = move_tasks(&env);
  4705. ld_moved += cur_ld_moved;
  4706. double_rq_unlock(env.dst_rq, busiest);
  4707. local_irq_restore(flags);
  4708. /*
  4709. * some other cpu did the load balance for us.
  4710. */
  4711. if (cur_ld_moved && env.dst_cpu != smp_processor_id())
  4712. resched_cpu(env.dst_cpu);
  4713. if (env.flags & LBF_NEED_BREAK) {
  4714. env.flags &= ~LBF_NEED_BREAK;
  4715. goto more_balance;
  4716. }
  4717. /*
  4718. * Revisit (affine) tasks on src_cpu that couldn't be moved to
  4719. * us and move them to an alternate dst_cpu in our sched_group
  4720. * where they can run. The upper limit on how many times we
  4721. * iterate on same src_cpu is dependent on number of cpus in our
  4722. * sched_group.
  4723. *
  4724. * This changes load balance semantics a bit on who can move
  4725. * load to a given_cpu. In addition to the given_cpu itself
  4726. * (or a ilb_cpu acting on its behalf where given_cpu is
  4727. * nohz-idle), we now have balance_cpu in a position to move
  4728. * load to given_cpu. In rare situations, this may cause
  4729. * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
  4730. * _independently_ and at _same_ time to move some load to
  4731. * given_cpu) causing exceess load to be moved to given_cpu.
  4732. * This however should not happen so much in practice and
  4733. * moreover subsequent load balance cycles should correct the
  4734. * excess load moved.
  4735. */
  4736. if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
  4737. /* Prevent to re-select dst_cpu via env's cpus */
  4738. cpumask_clear_cpu(env.dst_cpu, env.cpus);
  4739. env.dst_rq = cpu_rq(env.new_dst_cpu);
  4740. env.dst_cpu = env.new_dst_cpu;
  4741. env.flags &= ~LBF_DST_PINNED;
  4742. env.loop = 0;
  4743. env.loop_break = sched_nr_migrate_break;
  4744. /*
  4745. * Go back to "more_balance" rather than "redo" since we
  4746. * need to continue with same src_cpu.
  4747. */
  4748. goto more_balance;
  4749. }
  4750. /*
  4751. * We failed to reach balance because of affinity.
  4752. */
  4753. if (sd_parent) {
  4754. int *group_imbalance = &sd_parent->groups->sgp->imbalance;
  4755. if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
  4756. *group_imbalance = 1;
  4757. } else if (*group_imbalance)
  4758. *group_imbalance = 0;
  4759. }
  4760. /* All tasks on this runqueue were pinned by CPU affinity */
  4761. if (unlikely(env.flags & LBF_ALL_PINNED)) {
  4762. cpumask_clear_cpu(cpu_of(busiest), cpus);
  4763. if (!cpumask_empty(cpus)) {
  4764. env.loop = 0;
  4765. env.loop_break = sched_nr_migrate_break;
  4766. goto redo;
  4767. }
  4768. goto out_balanced;
  4769. }
  4770. }
  4771. if (!ld_moved) {
  4772. schedstat_inc(sd, lb_failed[idle]);
  4773. /*
  4774. * Increment the failure counter only on periodic balance.
  4775. * We do not want newidle balance, which can be very
  4776. * frequent, pollute the failure counter causing
  4777. * excessive cache_hot migrations and active balances.
  4778. */
  4779. if (idle != CPU_NEWLY_IDLE)
  4780. sd->nr_balance_failed++;
  4781. if (need_active_balance(&env)) {
  4782. raw_spin_lock_irqsave(&busiest->lock, flags);
  4783. /* don't kick the active_load_balance_cpu_stop,
  4784. * if the curr task on busiest cpu can't be
  4785. * moved to this_cpu
  4786. */
  4787. if (!cpumask_test_cpu(this_cpu,
  4788. tsk_cpus_allowed(busiest->curr))) {
  4789. raw_spin_unlock_irqrestore(&busiest->lock,
  4790. flags);
  4791. env.flags |= LBF_ALL_PINNED;
  4792. goto out_one_pinned;
  4793. }
  4794. /*
  4795. * ->active_balance synchronizes accesses to
  4796. * ->active_balance_work. Once set, it's cleared
  4797. * only after active load balance is finished.
  4798. */
  4799. if (!busiest->active_balance) {
  4800. busiest->active_balance = 1;
  4801. busiest->push_cpu = this_cpu;
  4802. active_balance = 1;
  4803. }
  4804. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  4805. if (active_balance) {
  4806. stop_one_cpu_nowait(cpu_of(busiest),
  4807. active_load_balance_cpu_stop, busiest,
  4808. &busiest->active_balance_work);
  4809. }
  4810. /*
  4811. * We've kicked active balancing, reset the failure
  4812. * counter.
  4813. */
  4814. sd->nr_balance_failed = sd->cache_nice_tries+1;
  4815. }
  4816. } else
  4817. sd->nr_balance_failed = 0;
  4818. if (likely(!active_balance)) {
  4819. /* We were unbalanced, so reset the balancing interval */
  4820. sd->balance_interval = sd->min_interval;
  4821. } else {
  4822. /*
  4823. * If we've begun active balancing, start to back off. This
  4824. * case may not be covered by the all_pinned logic if there
  4825. * is only 1 task on the busy runqueue (because we don't call
  4826. * move_tasks).
  4827. */
  4828. if (sd->balance_interval < sd->max_interval)
  4829. sd->balance_interval *= 2;
  4830. }
  4831. goto out;
  4832. out_balanced:
  4833. schedstat_inc(sd, lb_balanced[idle]);
  4834. sd->nr_balance_failed = 0;
  4835. out_one_pinned:
  4836. /* tune up the balancing interval */
  4837. if (((env.flags & LBF_ALL_PINNED) &&
  4838. sd->balance_interval < MAX_PINNED_INTERVAL) ||
  4839. (sd->balance_interval < sd->max_interval))
  4840. sd->balance_interval *= 2;
  4841. ld_moved = 0;
  4842. out:
  4843. return ld_moved;
  4844. }
  4845. /*
  4846. * idle_balance is called by schedule() if this_cpu is about to become
  4847. * idle. Attempts to pull tasks from other CPUs.
  4848. */
  4849. void idle_balance(int this_cpu, struct rq *this_rq)
  4850. {
  4851. struct sched_domain *sd;
  4852. int pulled_task = 0;
  4853. unsigned long next_balance = jiffies + HZ;
  4854. u64 curr_cost = 0;
  4855. this_rq->idle_stamp = rq_clock(this_rq);
  4856. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  4857. return;
  4858. /*
  4859. * Drop the rq->lock, but keep IRQ/preempt disabled.
  4860. */
  4861. raw_spin_unlock(&this_rq->lock);
  4862. update_blocked_averages(this_cpu);
  4863. rcu_read_lock();
  4864. for_each_domain(this_cpu, sd) {
  4865. unsigned long interval;
  4866. int continue_balancing = 1;
  4867. u64 t0, domain_cost;
  4868. if (!(sd->flags & SD_LOAD_BALANCE))
  4869. continue;
  4870. if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
  4871. break;
  4872. if (sd->flags & SD_BALANCE_NEWIDLE) {
  4873. t0 = sched_clock_cpu(this_cpu);
  4874. /* If we've pulled tasks over stop searching: */
  4875. pulled_task = load_balance(this_cpu, this_rq,
  4876. sd, CPU_NEWLY_IDLE,
  4877. &continue_balancing);
  4878. domain_cost = sched_clock_cpu(this_cpu) - t0;
  4879. if (domain_cost > sd->max_newidle_lb_cost)
  4880. sd->max_newidle_lb_cost = domain_cost;
  4881. curr_cost += domain_cost;
  4882. }
  4883. interval = msecs_to_jiffies(sd->balance_interval);
  4884. if (time_after(next_balance, sd->last_balance + interval))
  4885. next_balance = sd->last_balance + interval;
  4886. if (pulled_task) {
  4887. this_rq->idle_stamp = 0;
  4888. break;
  4889. }
  4890. }
  4891. rcu_read_unlock();
  4892. raw_spin_lock(&this_rq->lock);
  4893. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  4894. /*
  4895. * We are going idle. next_balance may be set based on
  4896. * a busy processor. So reset next_balance.
  4897. */
  4898. this_rq->next_balance = next_balance;
  4899. }
  4900. if (curr_cost > this_rq->max_idle_balance_cost)
  4901. this_rq->max_idle_balance_cost = curr_cost;
  4902. }
  4903. /*
  4904. * active_load_balance_cpu_stop is run by cpu stopper. It pushes
  4905. * running tasks off the busiest CPU onto idle CPUs. It requires at
  4906. * least 1 task to be running on each physical CPU where possible, and
  4907. * avoids physical / logical imbalances.
  4908. */
  4909. static int active_load_balance_cpu_stop(void *data)
  4910. {
  4911. struct rq *busiest_rq = data;
  4912. int busiest_cpu = cpu_of(busiest_rq);
  4913. int target_cpu = busiest_rq->push_cpu;
  4914. struct rq *target_rq = cpu_rq(target_cpu);
  4915. struct sched_domain *sd;
  4916. raw_spin_lock_irq(&busiest_rq->lock);
  4917. /* make sure the requested cpu hasn't gone down in the meantime */
  4918. if (unlikely(busiest_cpu != smp_processor_id() ||
  4919. !busiest_rq->active_balance))
  4920. goto out_unlock;
  4921. /* Is there any task to move? */
  4922. if (busiest_rq->nr_running <= 1)
  4923. goto out_unlock;
  4924. /*
  4925. * This condition is "impossible", if it occurs
  4926. * we need to fix it. Originally reported by
  4927. * Bjorn Helgaas on a 128-cpu setup.
  4928. */
  4929. BUG_ON(busiest_rq == target_rq);
  4930. /* move a task from busiest_rq to target_rq */
  4931. double_lock_balance(busiest_rq, target_rq);
  4932. /* Search for an sd spanning us and the target CPU. */
  4933. rcu_read_lock();
  4934. for_each_domain(target_cpu, sd) {
  4935. if ((sd->flags & SD_LOAD_BALANCE) &&
  4936. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  4937. break;
  4938. }
  4939. if (likely(sd)) {
  4940. struct lb_env env = {
  4941. .sd = sd,
  4942. .dst_cpu = target_cpu,
  4943. .dst_rq = target_rq,
  4944. .src_cpu = busiest_rq->cpu,
  4945. .src_rq = busiest_rq,
  4946. .idle = CPU_IDLE,
  4947. };
  4948. schedstat_inc(sd, alb_count);
  4949. if (move_one_task(&env))
  4950. schedstat_inc(sd, alb_pushed);
  4951. else
  4952. schedstat_inc(sd, alb_failed);
  4953. }
  4954. rcu_read_unlock();
  4955. double_unlock_balance(busiest_rq, target_rq);
  4956. out_unlock:
  4957. busiest_rq->active_balance = 0;
  4958. raw_spin_unlock_irq(&busiest_rq->lock);
  4959. return 0;
  4960. }
  4961. #ifdef CONFIG_NO_HZ_COMMON
  4962. /*
  4963. * idle load balancing details
  4964. * - When one of the busy CPUs notice that there may be an idle rebalancing
  4965. * needed, they will kick the idle load balancer, which then does idle
  4966. * load balancing for all the idle CPUs.
  4967. */
  4968. static struct {
  4969. cpumask_var_t idle_cpus_mask;
  4970. atomic_t nr_cpus;
  4971. unsigned long next_balance; /* in jiffy units */
  4972. } nohz ____cacheline_aligned;
  4973. static inline int find_new_ilb(int call_cpu)
  4974. {
  4975. int ilb = cpumask_first(nohz.idle_cpus_mask);
  4976. if (ilb < nr_cpu_ids && idle_cpu(ilb))
  4977. return ilb;
  4978. return nr_cpu_ids;
  4979. }
  4980. /*
  4981. * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
  4982. * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
  4983. * CPU (if there is one).
  4984. */
  4985. static void nohz_balancer_kick(int cpu)
  4986. {
  4987. int ilb_cpu;
  4988. nohz.next_balance++;
  4989. ilb_cpu = find_new_ilb(cpu);
  4990. if (ilb_cpu >= nr_cpu_ids)
  4991. return;
  4992. if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
  4993. return;
  4994. /*
  4995. * Use smp_send_reschedule() instead of resched_cpu().
  4996. * This way we generate a sched IPI on the target cpu which
  4997. * is idle. And the softirq performing nohz idle load balance
  4998. * will be run before returning from the IPI.
  4999. */
  5000. smp_send_reschedule(ilb_cpu);
  5001. return;
  5002. }
  5003. static inline void nohz_balance_exit_idle(int cpu)
  5004. {
  5005. if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
  5006. cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
  5007. atomic_dec(&nohz.nr_cpus);
  5008. clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
  5009. }
  5010. }
  5011. static inline void set_cpu_sd_state_busy(void)
  5012. {
  5013. struct sched_domain *sd;
  5014. rcu_read_lock();
  5015. sd = rcu_dereference_check_sched_domain(this_rq()->sd);
  5016. if (!sd || !sd->nohz_idle)
  5017. goto unlock;
  5018. sd->nohz_idle = 0;
  5019. for (; sd; sd = sd->parent)
  5020. atomic_inc(&sd->groups->sgp->nr_busy_cpus);
  5021. unlock:
  5022. rcu_read_unlock();
  5023. }
  5024. void set_cpu_sd_state_idle(void)
  5025. {
  5026. struct sched_domain *sd;
  5027. rcu_read_lock();
  5028. sd = rcu_dereference_check_sched_domain(this_rq()->sd);
  5029. if (!sd || sd->nohz_idle)
  5030. goto unlock;
  5031. sd->nohz_idle = 1;
  5032. for (; sd; sd = sd->parent)
  5033. atomic_dec(&sd->groups->sgp->nr_busy_cpus);
  5034. unlock:
  5035. rcu_read_unlock();
  5036. }
  5037. /*
  5038. * This routine will record that the cpu is going idle with tick stopped.
  5039. * This info will be used in performing idle load balancing in the future.
  5040. */
  5041. void nohz_balance_enter_idle(int cpu)
  5042. {
  5043. /*
  5044. * If this cpu is going down, then nothing needs to be done.
  5045. */
  5046. if (!cpu_active(cpu))
  5047. return;
  5048. if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
  5049. return;
  5050. cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
  5051. atomic_inc(&nohz.nr_cpus);
  5052. set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
  5053. }
  5054. static int sched_ilb_notifier(struct notifier_block *nfb,
  5055. unsigned long action, void *hcpu)
  5056. {
  5057. switch (action & ~CPU_TASKS_FROZEN) {
  5058. case CPU_DYING:
  5059. nohz_balance_exit_idle(smp_processor_id());
  5060. return NOTIFY_OK;
  5061. default:
  5062. return NOTIFY_DONE;
  5063. }
  5064. }
  5065. #endif
  5066. static DEFINE_SPINLOCK(balancing);
  5067. /*
  5068. * Scale the max load_balance interval with the number of CPUs in the system.
  5069. * This trades load-balance latency on larger machines for less cross talk.
  5070. */
  5071. void update_max_interval(void)
  5072. {
  5073. max_load_balance_interval = HZ*num_online_cpus()/10;
  5074. }
  5075. /*
  5076. * It checks each scheduling domain to see if it is due to be balanced,
  5077. * and initiates a balancing operation if so.
  5078. *
  5079. * Balancing parameters are set up in init_sched_domains.
  5080. */
  5081. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  5082. {
  5083. int continue_balancing = 1;
  5084. struct rq *rq = cpu_rq(cpu);
  5085. unsigned long interval;
  5086. struct sched_domain *sd;
  5087. /* Earliest time when we have to do rebalance again */
  5088. unsigned long next_balance = jiffies + 60*HZ;
  5089. int update_next_balance = 0;
  5090. int need_serialize, need_decay = 0;
  5091. u64 max_cost = 0;
  5092. update_blocked_averages(cpu);
  5093. rcu_read_lock();
  5094. for_each_domain(cpu, sd) {
  5095. /*
  5096. * Decay the newidle max times here because this is a regular
  5097. * visit to all the domains. Decay ~1% per second.
  5098. */
  5099. if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
  5100. sd->max_newidle_lb_cost =
  5101. (sd->max_newidle_lb_cost * 253) / 256;
  5102. sd->next_decay_max_lb_cost = jiffies + HZ;
  5103. need_decay = 1;
  5104. }
  5105. max_cost += sd->max_newidle_lb_cost;
  5106. if (!(sd->flags & SD_LOAD_BALANCE))
  5107. continue;
  5108. /*
  5109. * Stop the load balance at this level. There is another
  5110. * CPU in our sched group which is doing load balancing more
  5111. * actively.
  5112. */
  5113. if (!continue_balancing) {
  5114. if (need_decay)
  5115. continue;
  5116. break;
  5117. }
  5118. interval = sd->balance_interval;
  5119. if (idle != CPU_IDLE)
  5120. interval *= sd->busy_factor;
  5121. /* scale ms to jiffies */
  5122. interval = msecs_to_jiffies(interval);
  5123. interval = clamp(interval, 1UL, max_load_balance_interval);
  5124. need_serialize = sd->flags & SD_SERIALIZE;
  5125. if (need_serialize) {
  5126. if (!spin_trylock(&balancing))
  5127. goto out;
  5128. }
  5129. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  5130. if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
  5131. /*
  5132. * The LBF_DST_PINNED logic could have changed
  5133. * env->dst_cpu, so we can't know our idle
  5134. * state even if we migrated tasks. Update it.
  5135. */
  5136. idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
  5137. }
  5138. sd->last_balance = jiffies;
  5139. }
  5140. if (need_serialize)
  5141. spin_unlock(&balancing);
  5142. out:
  5143. if (time_after(next_balance, sd->last_balance + interval)) {
  5144. next_balance = sd->last_balance + interval;
  5145. update_next_balance = 1;
  5146. }
  5147. }
  5148. if (need_decay) {
  5149. /*
  5150. * Ensure the rq-wide value also decays but keep it at a
  5151. * reasonable floor to avoid funnies with rq->avg_idle.
  5152. */
  5153. rq->max_idle_balance_cost =
  5154. max((u64)sysctl_sched_migration_cost, max_cost);
  5155. }
  5156. rcu_read_unlock();
  5157. /*
  5158. * next_balance will be updated only when there is a need.
  5159. * When the cpu is attached to null domain for ex, it will not be
  5160. * updated.
  5161. */
  5162. if (likely(update_next_balance))
  5163. rq->next_balance = next_balance;
  5164. }
  5165. #ifdef CONFIG_NO_HZ_COMMON
  5166. /*
  5167. * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
  5168. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  5169. */
  5170. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
  5171. {
  5172. struct rq *this_rq = cpu_rq(this_cpu);
  5173. struct rq *rq;
  5174. int balance_cpu;
  5175. if (idle != CPU_IDLE ||
  5176. !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
  5177. goto end;
  5178. for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
  5179. if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
  5180. continue;
  5181. /*
  5182. * If this cpu gets work to do, stop the load balancing
  5183. * work being done for other cpus. Next load
  5184. * balancing owner will pick it up.
  5185. */
  5186. if (need_resched())
  5187. break;
  5188. rq = cpu_rq(balance_cpu);
  5189. raw_spin_lock_irq(&rq->lock);
  5190. update_rq_clock(rq);
  5191. update_idle_cpu_load(rq);
  5192. raw_spin_unlock_irq(&rq->lock);
  5193. rebalance_domains(balance_cpu, CPU_IDLE);
  5194. if (time_after(this_rq->next_balance, rq->next_balance))
  5195. this_rq->next_balance = rq->next_balance;
  5196. }
  5197. nohz.next_balance = this_rq->next_balance;
  5198. end:
  5199. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
  5200. }
  5201. /*
  5202. * Current heuristic for kicking the idle load balancer in the presence
  5203. * of an idle cpu is the system.
  5204. * - This rq has more than one task.
  5205. * - At any scheduler domain level, this cpu's scheduler group has multiple
  5206. * busy cpu's exceeding the group's power.
  5207. * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
  5208. * domain span are idle.
  5209. */
  5210. static inline int nohz_kick_needed(struct rq *rq, int cpu)
  5211. {
  5212. unsigned long now = jiffies;
  5213. struct sched_domain *sd;
  5214. if (unlikely(idle_cpu(cpu)))
  5215. return 0;
  5216. /*
  5217. * We may be recently in ticked or tickless idle mode. At the first
  5218. * busy tick after returning from idle, we will update the busy stats.
  5219. */
  5220. set_cpu_sd_state_busy();
  5221. nohz_balance_exit_idle(cpu);
  5222. /*
  5223. * None are in tickless mode and hence no need for NOHZ idle load
  5224. * balancing.
  5225. */
  5226. if (likely(!atomic_read(&nohz.nr_cpus)))
  5227. return 0;
  5228. if (time_before(now, nohz.next_balance))
  5229. return 0;
  5230. if (rq->nr_running >= 2)
  5231. goto need_kick;
  5232. rcu_read_lock();
  5233. for_each_domain(cpu, sd) {
  5234. struct sched_group *sg = sd->groups;
  5235. struct sched_group_power *sgp = sg->sgp;
  5236. int nr_busy = atomic_read(&sgp->nr_busy_cpus);
  5237. if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
  5238. goto need_kick_unlock;
  5239. if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
  5240. && (cpumask_first_and(nohz.idle_cpus_mask,
  5241. sched_domain_span(sd)) < cpu))
  5242. goto need_kick_unlock;
  5243. if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
  5244. break;
  5245. }
  5246. rcu_read_unlock();
  5247. return 0;
  5248. need_kick_unlock:
  5249. rcu_read_unlock();
  5250. need_kick:
  5251. return 1;
  5252. }
  5253. #else
  5254. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
  5255. #endif
  5256. /*
  5257. * run_rebalance_domains is triggered when needed from the scheduler tick.
  5258. * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
  5259. */
  5260. static void run_rebalance_domains(struct softirq_action *h)
  5261. {
  5262. int this_cpu = smp_processor_id();
  5263. struct rq *this_rq = cpu_rq(this_cpu);
  5264. enum cpu_idle_type idle = this_rq->idle_balance ?
  5265. CPU_IDLE : CPU_NOT_IDLE;
  5266. rebalance_domains(this_cpu, idle);
  5267. /*
  5268. * If this cpu has a pending nohz_balance_kick, then do the
  5269. * balancing on behalf of the other idle cpus whose ticks are
  5270. * stopped.
  5271. */
  5272. nohz_idle_balance(this_cpu, idle);
  5273. }
  5274. static inline int on_null_domain(int cpu)
  5275. {
  5276. return !rcu_dereference_sched(cpu_rq(cpu)->sd);
  5277. }
  5278. /*
  5279. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  5280. */
  5281. void trigger_load_balance(struct rq *rq, int cpu)
  5282. {
  5283. /* Don't need to rebalance while attached to NULL domain */
  5284. if (time_after_eq(jiffies, rq->next_balance) &&
  5285. likely(!on_null_domain(cpu)))
  5286. raise_softirq(SCHED_SOFTIRQ);
  5287. #ifdef CONFIG_NO_HZ_COMMON
  5288. if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
  5289. nohz_balancer_kick(cpu);
  5290. #endif
  5291. }
  5292. static void rq_online_fair(struct rq *rq)
  5293. {
  5294. update_sysctl();
  5295. }
  5296. static void rq_offline_fair(struct rq *rq)
  5297. {
  5298. update_sysctl();
  5299. /* Ensure any throttled groups are reachable by pick_next_task */
  5300. unthrottle_offline_cfs_rqs(rq);
  5301. }
  5302. #endif /* CONFIG_SMP */
  5303. /*
  5304. * scheduler tick hitting a task of our scheduling class:
  5305. */
  5306. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  5307. {
  5308. struct cfs_rq *cfs_rq;
  5309. struct sched_entity *se = &curr->se;
  5310. for_each_sched_entity(se) {
  5311. cfs_rq = cfs_rq_of(se);
  5312. entity_tick(cfs_rq, se, queued);
  5313. }
  5314. if (numabalancing_enabled)
  5315. task_tick_numa(rq, curr);
  5316. update_rq_runnable_avg(rq, 1);
  5317. }
  5318. /*
  5319. * called on fork with the child task as argument from the parent's context
  5320. * - child not yet on the tasklist
  5321. * - preemption disabled
  5322. */
  5323. static void task_fork_fair(struct task_struct *p)
  5324. {
  5325. struct cfs_rq *cfs_rq;
  5326. struct sched_entity *se = &p->se, *curr;
  5327. int this_cpu = smp_processor_id();
  5328. struct rq *rq = this_rq();
  5329. unsigned long flags;
  5330. raw_spin_lock_irqsave(&rq->lock, flags);
  5331. update_rq_clock(rq);
  5332. cfs_rq = task_cfs_rq(current);
  5333. curr = cfs_rq->curr;
  5334. /*
  5335. * Not only the cpu but also the task_group of the parent might have
  5336. * been changed after parent->se.parent,cfs_rq were copied to
  5337. * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
  5338. * of child point to valid ones.
  5339. */
  5340. rcu_read_lock();
  5341. __set_task_cpu(p, this_cpu);
  5342. rcu_read_unlock();
  5343. update_curr(cfs_rq);
  5344. if (curr)
  5345. se->vruntime = curr->vruntime;
  5346. place_entity(cfs_rq, se, 1);
  5347. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  5348. /*
  5349. * Upon rescheduling, sched_class::put_prev_task() will place
  5350. * 'current' within the tree based on its new key value.
  5351. */
  5352. swap(curr->vruntime, se->vruntime);
  5353. resched_task(rq->curr);
  5354. }
  5355. se->vruntime -= cfs_rq->min_vruntime;
  5356. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5357. }
  5358. /*
  5359. * Priority of the task has changed. Check to see if we preempt
  5360. * the current task.
  5361. */
  5362. static void
  5363. prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
  5364. {
  5365. if (!p->se.on_rq)
  5366. return;
  5367. /*
  5368. * Reschedule if we are currently running on this runqueue and
  5369. * our priority decreased, or if we are not currently running on
  5370. * this runqueue and our priority is higher than the current's
  5371. */
  5372. if (rq->curr == p) {
  5373. if (p->prio > oldprio)
  5374. resched_task(rq->curr);
  5375. } else
  5376. check_preempt_curr(rq, p, 0);
  5377. }
  5378. static void switched_from_fair(struct rq *rq, struct task_struct *p)
  5379. {
  5380. struct sched_entity *se = &p->se;
  5381. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  5382. /*
  5383. * Ensure the task's vruntime is normalized, so that when its
  5384. * switched back to the fair class the enqueue_entity(.flags=0) will
  5385. * do the right thing.
  5386. *
  5387. * If it was on_rq, then the dequeue_entity(.flags=0) will already
  5388. * have normalized the vruntime, if it was !on_rq, then only when
  5389. * the task is sleeping will it still have non-normalized vruntime.
  5390. */
  5391. if (!se->on_rq && p->state != TASK_RUNNING) {
  5392. /*
  5393. * Fix up our vruntime so that the current sleep doesn't
  5394. * cause 'unlimited' sleep bonus.
  5395. */
  5396. place_entity(cfs_rq, se, 0);
  5397. se->vruntime -= cfs_rq->min_vruntime;
  5398. }
  5399. #ifdef CONFIG_SMP
  5400. /*
  5401. * Remove our load from contribution when we leave sched_fair
  5402. * and ensure we don't carry in an old decay_count if we
  5403. * switch back.
  5404. */
  5405. if (se->avg.decay_count) {
  5406. __synchronize_entity_decay(se);
  5407. subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
  5408. }
  5409. #endif
  5410. }
  5411. /*
  5412. * We switched to the sched_fair class.
  5413. */
  5414. static void switched_to_fair(struct rq *rq, struct task_struct *p)
  5415. {
  5416. if (!p->se.on_rq)
  5417. return;
  5418. /*
  5419. * We were most likely switched from sched_rt, so
  5420. * kick off the schedule if running, otherwise just see
  5421. * if we can still preempt the current task.
  5422. */
  5423. if (rq->curr == p)
  5424. resched_task(rq->curr);
  5425. else
  5426. check_preempt_curr(rq, p, 0);
  5427. }
  5428. /* Account for a task changing its policy or group.
  5429. *
  5430. * This routine is mostly called to set cfs_rq->curr field when a task
  5431. * migrates between groups/classes.
  5432. */
  5433. static void set_curr_task_fair(struct rq *rq)
  5434. {
  5435. struct sched_entity *se = &rq->curr->se;
  5436. for_each_sched_entity(se) {
  5437. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  5438. set_next_entity(cfs_rq, se);
  5439. /* ensure bandwidth has been allocated on our new cfs_rq */
  5440. account_cfs_rq_runtime(cfs_rq, 0);
  5441. }
  5442. }
  5443. void init_cfs_rq(struct cfs_rq *cfs_rq)
  5444. {
  5445. cfs_rq->tasks_timeline = RB_ROOT;
  5446. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  5447. #ifndef CONFIG_64BIT
  5448. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  5449. #endif
  5450. #ifdef CONFIG_SMP
  5451. atomic64_set(&cfs_rq->decay_counter, 1);
  5452. atomic_long_set(&cfs_rq->removed_load, 0);
  5453. #endif
  5454. }
  5455. #ifdef CONFIG_FAIR_GROUP_SCHED
  5456. static void task_move_group_fair(struct task_struct *p, int on_rq)
  5457. {
  5458. struct cfs_rq *cfs_rq;
  5459. /*
  5460. * If the task was not on the rq at the time of this cgroup movement
  5461. * it must have been asleep, sleeping tasks keep their ->vruntime
  5462. * absolute on their old rq until wakeup (needed for the fair sleeper
  5463. * bonus in place_entity()).
  5464. *
  5465. * If it was on the rq, we've just 'preempted' it, which does convert
  5466. * ->vruntime to a relative base.
  5467. *
  5468. * Make sure both cases convert their relative position when migrating
  5469. * to another cgroup's rq. This does somewhat interfere with the
  5470. * fair sleeper stuff for the first placement, but who cares.
  5471. */
  5472. /*
  5473. * When !on_rq, vruntime of the task has usually NOT been normalized.
  5474. * But there are some cases where it has already been normalized:
  5475. *
  5476. * - Moving a forked child which is waiting for being woken up by
  5477. * wake_up_new_task().
  5478. * - Moving a task which has been woken up by try_to_wake_up() and
  5479. * waiting for actually being woken up by sched_ttwu_pending().
  5480. *
  5481. * To prevent boost or penalty in the new cfs_rq caused by delta
  5482. * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
  5483. */
  5484. if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
  5485. on_rq = 1;
  5486. if (!on_rq)
  5487. p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
  5488. set_task_rq(p, task_cpu(p));
  5489. if (!on_rq) {
  5490. cfs_rq = cfs_rq_of(&p->se);
  5491. p->se.vruntime += cfs_rq->min_vruntime;
  5492. #ifdef CONFIG_SMP
  5493. /*
  5494. * migrate_task_rq_fair() will have removed our previous
  5495. * contribution, but we must synchronize for ongoing future
  5496. * decay.
  5497. */
  5498. p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
  5499. cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
  5500. #endif
  5501. }
  5502. }
  5503. void free_fair_sched_group(struct task_group *tg)
  5504. {
  5505. int i;
  5506. destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
  5507. for_each_possible_cpu(i) {
  5508. if (tg->cfs_rq)
  5509. kfree(tg->cfs_rq[i]);
  5510. if (tg->se)
  5511. kfree(tg->se[i]);
  5512. }
  5513. kfree(tg->cfs_rq);
  5514. kfree(tg->se);
  5515. }
  5516. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  5517. {
  5518. struct cfs_rq *cfs_rq;
  5519. struct sched_entity *se;
  5520. int i;
  5521. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  5522. if (!tg->cfs_rq)
  5523. goto err;
  5524. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  5525. if (!tg->se)
  5526. goto err;
  5527. tg->shares = NICE_0_LOAD;
  5528. init_cfs_bandwidth(tg_cfs_bandwidth(tg));
  5529. for_each_possible_cpu(i) {
  5530. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  5531. GFP_KERNEL, cpu_to_node(i));
  5532. if (!cfs_rq)
  5533. goto err;
  5534. se = kzalloc_node(sizeof(struct sched_entity),
  5535. GFP_KERNEL, cpu_to_node(i));
  5536. if (!se)
  5537. goto err_free_rq;
  5538. init_cfs_rq(cfs_rq);
  5539. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  5540. }
  5541. return 1;
  5542. err_free_rq:
  5543. kfree(cfs_rq);
  5544. err:
  5545. return 0;
  5546. }
  5547. void unregister_fair_sched_group(struct task_group *tg, int cpu)
  5548. {
  5549. struct rq *rq = cpu_rq(cpu);
  5550. unsigned long flags;
  5551. /*
  5552. * Only empty task groups can be destroyed; so we can speculatively
  5553. * check on_list without danger of it being re-added.
  5554. */
  5555. if (!tg->cfs_rq[cpu]->on_list)
  5556. return;
  5557. raw_spin_lock_irqsave(&rq->lock, flags);
  5558. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  5559. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5560. }
  5561. void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  5562. struct sched_entity *se, int cpu,
  5563. struct sched_entity *parent)
  5564. {
  5565. struct rq *rq = cpu_rq(cpu);
  5566. cfs_rq->tg = tg;
  5567. cfs_rq->rq = rq;
  5568. init_cfs_rq_runtime(cfs_rq);
  5569. tg->cfs_rq[cpu] = cfs_rq;
  5570. tg->se[cpu] = se;
  5571. /* se could be NULL for root_task_group */
  5572. if (!se)
  5573. return;
  5574. if (!parent)
  5575. se->cfs_rq = &rq->cfs;
  5576. else
  5577. se->cfs_rq = parent->my_q;
  5578. se->my_q = cfs_rq;
  5579. update_load_set(&se->load, 0);
  5580. se->parent = parent;
  5581. }
  5582. static DEFINE_MUTEX(shares_mutex);
  5583. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  5584. {
  5585. int i;
  5586. unsigned long flags;
  5587. /*
  5588. * We can't change the weight of the root cgroup.
  5589. */
  5590. if (!tg->se[0])
  5591. return -EINVAL;
  5592. shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
  5593. mutex_lock(&shares_mutex);
  5594. if (tg->shares == shares)
  5595. goto done;
  5596. tg->shares = shares;
  5597. for_each_possible_cpu(i) {
  5598. struct rq *rq = cpu_rq(i);
  5599. struct sched_entity *se;
  5600. se = tg->se[i];
  5601. /* Propagate contribution to hierarchy */
  5602. raw_spin_lock_irqsave(&rq->lock, flags);
  5603. /* Possible calls to update_curr() need rq clock */
  5604. update_rq_clock(rq);
  5605. for_each_sched_entity(se)
  5606. update_cfs_shares(group_cfs_rq(se));
  5607. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5608. }
  5609. done:
  5610. mutex_unlock(&shares_mutex);
  5611. return 0;
  5612. }
  5613. #else /* CONFIG_FAIR_GROUP_SCHED */
  5614. void free_fair_sched_group(struct task_group *tg) { }
  5615. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  5616. {
  5617. return 1;
  5618. }
  5619. void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
  5620. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5621. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  5622. {
  5623. struct sched_entity *se = &task->se;
  5624. unsigned int rr_interval = 0;
  5625. /*
  5626. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  5627. * idle runqueue:
  5628. */
  5629. if (rq->cfs.load.weight)
  5630. rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
  5631. return rr_interval;
  5632. }
  5633. /*
  5634. * All the scheduling class methods:
  5635. */
  5636. const struct sched_class fair_sched_class = {
  5637. .next = &idle_sched_class,
  5638. .enqueue_task = enqueue_task_fair,
  5639. .dequeue_task = dequeue_task_fair,
  5640. .yield_task = yield_task_fair,
  5641. .yield_to_task = yield_to_task_fair,
  5642. .check_preempt_curr = check_preempt_wakeup,
  5643. .pick_next_task = pick_next_task_fair,
  5644. .put_prev_task = put_prev_task_fair,
  5645. #ifdef CONFIG_SMP
  5646. .select_task_rq = select_task_rq_fair,
  5647. .migrate_task_rq = migrate_task_rq_fair,
  5648. .rq_online = rq_online_fair,
  5649. .rq_offline = rq_offline_fair,
  5650. .task_waking = task_waking_fair,
  5651. #endif
  5652. .set_curr_task = set_curr_task_fair,
  5653. .task_tick = task_tick_fair,
  5654. .task_fork = task_fork_fair,
  5655. .prio_changed = prio_changed_fair,
  5656. .switched_from = switched_from_fair,
  5657. .switched_to = switched_to_fair,
  5658. .get_rr_interval = get_rr_interval_fair,
  5659. #ifdef CONFIG_FAIR_GROUP_SCHED
  5660. .task_move_group = task_move_group_fair,
  5661. #endif
  5662. };
  5663. #ifdef CONFIG_SCHED_DEBUG
  5664. void print_cfs_stats(struct seq_file *m, int cpu)
  5665. {
  5666. struct cfs_rq *cfs_rq;
  5667. rcu_read_lock();
  5668. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  5669. print_cfs_rq(m, cpu, cfs_rq);
  5670. rcu_read_unlock();
  5671. }
  5672. #endif
  5673. __init void init_sched_fair_class(void)
  5674. {
  5675. #ifdef CONFIG_SMP
  5676. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  5677. #ifdef CONFIG_NO_HZ_COMMON
  5678. nohz.next_balance = jiffies;
  5679. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  5680. cpu_notifier(sched_ilb_notifier, 0);
  5681. #endif
  5682. #endif /* SMP */
  5683. }