kvm_main.c 64 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "iodev.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/syscore_ops.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <linux/bitops.h>
  43. #include <linux/spinlock.h>
  44. #include <linux/compat.h>
  45. #include <linux/srcu.h>
  46. #include <linux/hugetlb.h>
  47. #include <linux/slab.h>
  48. #include <linux/sort.h>
  49. #include <linux/bsearch.h>
  50. #include <asm/processor.h>
  51. #include <asm/io.h>
  52. #include <asm/uaccess.h>
  53. #include <asm/pgtable.h>
  54. #include "coalesced_mmio.h"
  55. #include "async_pf.h"
  56. #define CREATE_TRACE_POINTS
  57. #include <trace/events/kvm.h>
  58. MODULE_AUTHOR("Qumranet");
  59. MODULE_LICENSE("GPL");
  60. /*
  61. * Ordering of locks:
  62. *
  63. * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  64. */
  65. DEFINE_RAW_SPINLOCK(kvm_lock);
  66. LIST_HEAD(vm_list);
  67. static cpumask_var_t cpus_hardware_enabled;
  68. static int kvm_usage_count = 0;
  69. static atomic_t hardware_enable_failed;
  70. struct kmem_cache *kvm_vcpu_cache;
  71. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  72. static __read_mostly struct preempt_ops kvm_preempt_ops;
  73. struct dentry *kvm_debugfs_dir;
  74. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  75. unsigned long arg);
  76. #ifdef CONFIG_COMPAT
  77. static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
  78. unsigned long arg);
  79. #endif
  80. static int hardware_enable_all(void);
  81. static void hardware_disable_all(void);
  82. static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
  83. bool kvm_rebooting;
  84. EXPORT_SYMBOL_GPL(kvm_rebooting);
  85. static bool largepages_enabled = true;
  86. struct page *bad_page;
  87. static pfn_t bad_pfn;
  88. static struct page *hwpoison_page;
  89. static pfn_t hwpoison_pfn;
  90. static struct page *fault_page;
  91. static pfn_t fault_pfn;
  92. inline int kvm_is_mmio_pfn(pfn_t pfn)
  93. {
  94. if (pfn_valid(pfn)) {
  95. int reserved;
  96. struct page *tail = pfn_to_page(pfn);
  97. struct page *head = compound_trans_head(tail);
  98. reserved = PageReserved(head);
  99. if (head != tail) {
  100. /*
  101. * "head" is not a dangling pointer
  102. * (compound_trans_head takes care of that)
  103. * but the hugepage may have been splitted
  104. * from under us (and we may not hold a
  105. * reference count on the head page so it can
  106. * be reused before we run PageReferenced), so
  107. * we've to check PageTail before returning
  108. * what we just read.
  109. */
  110. smp_rmb();
  111. if (PageTail(tail))
  112. return reserved;
  113. }
  114. return PageReserved(tail);
  115. }
  116. return true;
  117. }
  118. /*
  119. * Switches to specified vcpu, until a matching vcpu_put()
  120. */
  121. void vcpu_load(struct kvm_vcpu *vcpu)
  122. {
  123. int cpu;
  124. mutex_lock(&vcpu->mutex);
  125. if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
  126. /* The thread running this VCPU changed. */
  127. struct pid *oldpid = vcpu->pid;
  128. struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
  129. rcu_assign_pointer(vcpu->pid, newpid);
  130. synchronize_rcu();
  131. put_pid(oldpid);
  132. }
  133. cpu = get_cpu();
  134. preempt_notifier_register(&vcpu->preempt_notifier);
  135. kvm_arch_vcpu_load(vcpu, cpu);
  136. put_cpu();
  137. }
  138. void vcpu_put(struct kvm_vcpu *vcpu)
  139. {
  140. preempt_disable();
  141. kvm_arch_vcpu_put(vcpu);
  142. preempt_notifier_unregister(&vcpu->preempt_notifier);
  143. preempt_enable();
  144. mutex_unlock(&vcpu->mutex);
  145. }
  146. static void ack_flush(void *_completed)
  147. {
  148. }
  149. static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
  150. {
  151. int i, cpu, me;
  152. cpumask_var_t cpus;
  153. bool called = true;
  154. struct kvm_vcpu *vcpu;
  155. zalloc_cpumask_var(&cpus, GFP_ATOMIC);
  156. me = get_cpu();
  157. kvm_for_each_vcpu(i, vcpu, kvm) {
  158. kvm_make_request(req, vcpu);
  159. cpu = vcpu->cpu;
  160. /* Set ->requests bit before we read ->mode */
  161. smp_mb();
  162. if (cpus != NULL && cpu != -1 && cpu != me &&
  163. kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
  164. cpumask_set_cpu(cpu, cpus);
  165. }
  166. if (unlikely(cpus == NULL))
  167. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  168. else if (!cpumask_empty(cpus))
  169. smp_call_function_many(cpus, ack_flush, NULL, 1);
  170. else
  171. called = false;
  172. put_cpu();
  173. free_cpumask_var(cpus);
  174. return called;
  175. }
  176. void kvm_flush_remote_tlbs(struct kvm *kvm)
  177. {
  178. long dirty_count = kvm->tlbs_dirty;
  179. smp_mb();
  180. if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  181. ++kvm->stat.remote_tlb_flush;
  182. cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
  183. }
  184. void kvm_reload_remote_mmus(struct kvm *kvm)
  185. {
  186. make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  187. }
  188. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  189. {
  190. struct page *page;
  191. int r;
  192. mutex_init(&vcpu->mutex);
  193. vcpu->cpu = -1;
  194. vcpu->kvm = kvm;
  195. vcpu->vcpu_id = id;
  196. vcpu->pid = NULL;
  197. init_waitqueue_head(&vcpu->wq);
  198. kvm_async_pf_vcpu_init(vcpu);
  199. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  200. if (!page) {
  201. r = -ENOMEM;
  202. goto fail;
  203. }
  204. vcpu->run = page_address(page);
  205. kvm_vcpu_set_in_spin_loop(vcpu, false);
  206. kvm_vcpu_set_dy_eligible(vcpu, false);
  207. r = kvm_arch_vcpu_init(vcpu);
  208. if (r < 0)
  209. goto fail_free_run;
  210. return 0;
  211. fail_free_run:
  212. free_page((unsigned long)vcpu->run);
  213. fail:
  214. return r;
  215. }
  216. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  217. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  218. {
  219. put_pid(vcpu->pid);
  220. kvm_arch_vcpu_uninit(vcpu);
  221. free_page((unsigned long)vcpu->run);
  222. }
  223. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  224. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  225. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  226. {
  227. return container_of(mn, struct kvm, mmu_notifier);
  228. }
  229. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  230. struct mm_struct *mm,
  231. unsigned long address)
  232. {
  233. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  234. int need_tlb_flush, idx;
  235. /*
  236. * When ->invalidate_page runs, the linux pte has been zapped
  237. * already but the page is still allocated until
  238. * ->invalidate_page returns. So if we increase the sequence
  239. * here the kvm page fault will notice if the spte can't be
  240. * established because the page is going to be freed. If
  241. * instead the kvm page fault establishes the spte before
  242. * ->invalidate_page runs, kvm_unmap_hva will release it
  243. * before returning.
  244. *
  245. * The sequence increase only need to be seen at spin_unlock
  246. * time, and not at spin_lock time.
  247. *
  248. * Increasing the sequence after the spin_unlock would be
  249. * unsafe because the kvm page fault could then establish the
  250. * pte after kvm_unmap_hva returned, without noticing the page
  251. * is going to be freed.
  252. */
  253. idx = srcu_read_lock(&kvm->srcu);
  254. spin_lock(&kvm->mmu_lock);
  255. kvm->mmu_notifier_seq++;
  256. need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
  257. /* we've to flush the tlb before the pages can be freed */
  258. if (need_tlb_flush)
  259. kvm_flush_remote_tlbs(kvm);
  260. spin_unlock(&kvm->mmu_lock);
  261. srcu_read_unlock(&kvm->srcu, idx);
  262. }
  263. static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
  264. struct mm_struct *mm,
  265. unsigned long address,
  266. pte_t pte)
  267. {
  268. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  269. int idx;
  270. idx = srcu_read_lock(&kvm->srcu);
  271. spin_lock(&kvm->mmu_lock);
  272. kvm->mmu_notifier_seq++;
  273. kvm_set_spte_hva(kvm, address, pte);
  274. spin_unlock(&kvm->mmu_lock);
  275. srcu_read_unlock(&kvm->srcu, idx);
  276. }
  277. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  278. struct mm_struct *mm,
  279. unsigned long start,
  280. unsigned long end)
  281. {
  282. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  283. int need_tlb_flush = 0, idx;
  284. idx = srcu_read_lock(&kvm->srcu);
  285. spin_lock(&kvm->mmu_lock);
  286. /*
  287. * The count increase must become visible at unlock time as no
  288. * spte can be established without taking the mmu_lock and
  289. * count is also read inside the mmu_lock critical section.
  290. */
  291. kvm->mmu_notifier_count++;
  292. need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
  293. need_tlb_flush |= kvm->tlbs_dirty;
  294. /* we've to flush the tlb before the pages can be freed */
  295. if (need_tlb_flush)
  296. kvm_flush_remote_tlbs(kvm);
  297. spin_unlock(&kvm->mmu_lock);
  298. srcu_read_unlock(&kvm->srcu, idx);
  299. }
  300. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  301. struct mm_struct *mm,
  302. unsigned long start,
  303. unsigned long end)
  304. {
  305. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  306. spin_lock(&kvm->mmu_lock);
  307. /*
  308. * This sequence increase will notify the kvm page fault that
  309. * the page that is going to be mapped in the spte could have
  310. * been freed.
  311. */
  312. kvm->mmu_notifier_seq++;
  313. smp_wmb();
  314. /*
  315. * The above sequence increase must be visible before the
  316. * below count decrease, which is ensured by the smp_wmb above
  317. * in conjunction with the smp_rmb in mmu_notifier_retry().
  318. */
  319. kvm->mmu_notifier_count--;
  320. spin_unlock(&kvm->mmu_lock);
  321. BUG_ON(kvm->mmu_notifier_count < 0);
  322. }
  323. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  324. struct mm_struct *mm,
  325. unsigned long address)
  326. {
  327. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  328. int young, idx;
  329. idx = srcu_read_lock(&kvm->srcu);
  330. spin_lock(&kvm->mmu_lock);
  331. young = kvm_age_hva(kvm, address);
  332. if (young)
  333. kvm_flush_remote_tlbs(kvm);
  334. spin_unlock(&kvm->mmu_lock);
  335. srcu_read_unlock(&kvm->srcu, idx);
  336. return young;
  337. }
  338. static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
  339. struct mm_struct *mm,
  340. unsigned long address)
  341. {
  342. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  343. int young, idx;
  344. idx = srcu_read_lock(&kvm->srcu);
  345. spin_lock(&kvm->mmu_lock);
  346. young = kvm_test_age_hva(kvm, address);
  347. spin_unlock(&kvm->mmu_lock);
  348. srcu_read_unlock(&kvm->srcu, idx);
  349. return young;
  350. }
  351. static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
  352. struct mm_struct *mm)
  353. {
  354. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  355. int idx;
  356. idx = srcu_read_lock(&kvm->srcu);
  357. kvm_arch_flush_shadow(kvm);
  358. srcu_read_unlock(&kvm->srcu, idx);
  359. }
  360. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  361. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  362. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  363. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  364. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  365. .test_young = kvm_mmu_notifier_test_young,
  366. .change_pte = kvm_mmu_notifier_change_pte,
  367. .release = kvm_mmu_notifier_release,
  368. };
  369. static int kvm_init_mmu_notifier(struct kvm *kvm)
  370. {
  371. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  372. return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  373. }
  374. #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
  375. static int kvm_init_mmu_notifier(struct kvm *kvm)
  376. {
  377. return 0;
  378. }
  379. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  380. static void kvm_init_memslots_id(struct kvm *kvm)
  381. {
  382. int i;
  383. struct kvm_memslots *slots = kvm->memslots;
  384. for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
  385. slots->id_to_index[i] = slots->memslots[i].id = i;
  386. }
  387. static struct kvm *kvm_create_vm(unsigned long type)
  388. {
  389. int r, i;
  390. struct kvm *kvm = kvm_arch_alloc_vm();
  391. if (!kvm)
  392. return ERR_PTR(-ENOMEM);
  393. r = kvm_arch_init_vm(kvm, type);
  394. if (r)
  395. goto out_err_nodisable;
  396. r = hardware_enable_all();
  397. if (r)
  398. goto out_err_nodisable;
  399. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  400. INIT_HLIST_HEAD(&kvm->mask_notifier_list);
  401. INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
  402. #endif
  403. r = -ENOMEM;
  404. kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  405. if (!kvm->memslots)
  406. goto out_err_nosrcu;
  407. kvm_init_memslots_id(kvm);
  408. if (init_srcu_struct(&kvm->srcu))
  409. goto out_err_nosrcu;
  410. for (i = 0; i < KVM_NR_BUSES; i++) {
  411. kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
  412. GFP_KERNEL);
  413. if (!kvm->buses[i])
  414. goto out_err;
  415. }
  416. spin_lock_init(&kvm->mmu_lock);
  417. kvm->mm = current->mm;
  418. atomic_inc(&kvm->mm->mm_count);
  419. kvm_eventfd_init(kvm);
  420. mutex_init(&kvm->lock);
  421. mutex_init(&kvm->irq_lock);
  422. mutex_init(&kvm->slots_lock);
  423. atomic_set(&kvm->users_count, 1);
  424. r = kvm_init_mmu_notifier(kvm);
  425. if (r)
  426. goto out_err;
  427. raw_spin_lock(&kvm_lock);
  428. list_add(&kvm->vm_list, &vm_list);
  429. raw_spin_unlock(&kvm_lock);
  430. return kvm;
  431. out_err:
  432. cleanup_srcu_struct(&kvm->srcu);
  433. out_err_nosrcu:
  434. hardware_disable_all();
  435. out_err_nodisable:
  436. for (i = 0; i < KVM_NR_BUSES; i++)
  437. kfree(kvm->buses[i]);
  438. kfree(kvm->memslots);
  439. kvm_arch_free_vm(kvm);
  440. return ERR_PTR(r);
  441. }
  442. /*
  443. * Avoid using vmalloc for a small buffer.
  444. * Should not be used when the size is statically known.
  445. */
  446. void *kvm_kvzalloc(unsigned long size)
  447. {
  448. if (size > PAGE_SIZE)
  449. return vzalloc(size);
  450. else
  451. return kzalloc(size, GFP_KERNEL);
  452. }
  453. void kvm_kvfree(const void *addr)
  454. {
  455. if (is_vmalloc_addr(addr))
  456. vfree(addr);
  457. else
  458. kfree(addr);
  459. }
  460. static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
  461. {
  462. if (!memslot->dirty_bitmap)
  463. return;
  464. kvm_kvfree(memslot->dirty_bitmap);
  465. memslot->dirty_bitmap = NULL;
  466. }
  467. /*
  468. * Free any memory in @free but not in @dont.
  469. */
  470. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  471. struct kvm_memory_slot *dont)
  472. {
  473. if (!dont || free->rmap != dont->rmap)
  474. vfree(free->rmap);
  475. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  476. kvm_destroy_dirty_bitmap(free);
  477. kvm_arch_free_memslot(free, dont);
  478. free->npages = 0;
  479. free->rmap = NULL;
  480. }
  481. void kvm_free_physmem(struct kvm *kvm)
  482. {
  483. struct kvm_memslots *slots = kvm->memslots;
  484. struct kvm_memory_slot *memslot;
  485. kvm_for_each_memslot(memslot, slots)
  486. kvm_free_physmem_slot(memslot, NULL);
  487. kfree(kvm->memslots);
  488. }
  489. static void kvm_destroy_vm(struct kvm *kvm)
  490. {
  491. int i;
  492. struct mm_struct *mm = kvm->mm;
  493. kvm_arch_sync_events(kvm);
  494. raw_spin_lock(&kvm_lock);
  495. list_del(&kvm->vm_list);
  496. raw_spin_unlock(&kvm_lock);
  497. kvm_free_irq_routing(kvm);
  498. for (i = 0; i < KVM_NR_BUSES; i++)
  499. kvm_io_bus_destroy(kvm->buses[i]);
  500. kvm_coalesced_mmio_free(kvm);
  501. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  502. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  503. #else
  504. kvm_arch_flush_shadow(kvm);
  505. #endif
  506. kvm_arch_destroy_vm(kvm);
  507. kvm_free_physmem(kvm);
  508. cleanup_srcu_struct(&kvm->srcu);
  509. kvm_arch_free_vm(kvm);
  510. hardware_disable_all();
  511. mmdrop(mm);
  512. }
  513. void kvm_get_kvm(struct kvm *kvm)
  514. {
  515. atomic_inc(&kvm->users_count);
  516. }
  517. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  518. void kvm_put_kvm(struct kvm *kvm)
  519. {
  520. if (atomic_dec_and_test(&kvm->users_count))
  521. kvm_destroy_vm(kvm);
  522. }
  523. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  524. static int kvm_vm_release(struct inode *inode, struct file *filp)
  525. {
  526. struct kvm *kvm = filp->private_data;
  527. kvm_irqfd_release(kvm);
  528. kvm_put_kvm(kvm);
  529. return 0;
  530. }
  531. /*
  532. * Allocation size is twice as large as the actual dirty bitmap size.
  533. * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
  534. */
  535. static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
  536. {
  537. #ifndef CONFIG_S390
  538. unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
  539. memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
  540. if (!memslot->dirty_bitmap)
  541. return -ENOMEM;
  542. #endif /* !CONFIG_S390 */
  543. return 0;
  544. }
  545. static int cmp_memslot(const void *slot1, const void *slot2)
  546. {
  547. struct kvm_memory_slot *s1, *s2;
  548. s1 = (struct kvm_memory_slot *)slot1;
  549. s2 = (struct kvm_memory_slot *)slot2;
  550. if (s1->npages < s2->npages)
  551. return 1;
  552. if (s1->npages > s2->npages)
  553. return -1;
  554. return 0;
  555. }
  556. /*
  557. * Sort the memslots base on its size, so the larger slots
  558. * will get better fit.
  559. */
  560. static void sort_memslots(struct kvm_memslots *slots)
  561. {
  562. int i;
  563. sort(slots->memslots, KVM_MEM_SLOTS_NUM,
  564. sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
  565. for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
  566. slots->id_to_index[slots->memslots[i].id] = i;
  567. }
  568. void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new)
  569. {
  570. if (new) {
  571. int id = new->id;
  572. struct kvm_memory_slot *old = id_to_memslot(slots, id);
  573. unsigned long npages = old->npages;
  574. *old = *new;
  575. if (new->npages != npages)
  576. sort_memslots(slots);
  577. }
  578. slots->generation++;
  579. }
  580. /*
  581. * Allocate some memory and give it an address in the guest physical address
  582. * space.
  583. *
  584. * Discontiguous memory is allowed, mostly for framebuffers.
  585. *
  586. * Must be called holding mmap_sem for write.
  587. */
  588. int __kvm_set_memory_region(struct kvm *kvm,
  589. struct kvm_userspace_memory_region *mem,
  590. int user_alloc)
  591. {
  592. int r;
  593. gfn_t base_gfn;
  594. unsigned long npages;
  595. unsigned long i;
  596. struct kvm_memory_slot *memslot;
  597. struct kvm_memory_slot old, new;
  598. struct kvm_memslots *slots, *old_memslots;
  599. r = -EINVAL;
  600. /* General sanity checks */
  601. if (mem->memory_size & (PAGE_SIZE - 1))
  602. goto out;
  603. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  604. goto out;
  605. /* We can read the guest memory with __xxx_user() later on. */
  606. if (user_alloc &&
  607. ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
  608. !access_ok(VERIFY_WRITE,
  609. (void __user *)(unsigned long)mem->userspace_addr,
  610. mem->memory_size)))
  611. goto out;
  612. if (mem->slot >= KVM_MEM_SLOTS_NUM)
  613. goto out;
  614. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  615. goto out;
  616. memslot = id_to_memslot(kvm->memslots, mem->slot);
  617. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  618. npages = mem->memory_size >> PAGE_SHIFT;
  619. r = -EINVAL;
  620. if (npages > KVM_MEM_MAX_NR_PAGES)
  621. goto out;
  622. if (!npages)
  623. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  624. new = old = *memslot;
  625. new.id = mem->slot;
  626. new.base_gfn = base_gfn;
  627. new.npages = npages;
  628. new.flags = mem->flags;
  629. /* Disallow changing a memory slot's size. */
  630. r = -EINVAL;
  631. if (npages && old.npages && npages != old.npages)
  632. goto out_free;
  633. /* Check for overlaps */
  634. r = -EEXIST;
  635. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  636. struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
  637. if (s == memslot || !s->npages)
  638. continue;
  639. if (!((base_gfn + npages <= s->base_gfn) ||
  640. (base_gfn >= s->base_gfn + s->npages)))
  641. goto out_free;
  642. }
  643. /* Free page dirty bitmap if unneeded */
  644. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  645. new.dirty_bitmap = NULL;
  646. r = -ENOMEM;
  647. /* Allocate if a slot is being created */
  648. if (npages && !old.npages) {
  649. new.user_alloc = user_alloc;
  650. new.userspace_addr = mem->userspace_addr;
  651. #ifndef CONFIG_S390
  652. new.rmap = vzalloc(npages * sizeof(*new.rmap));
  653. if (!new.rmap)
  654. goto out_free;
  655. #endif /* not defined CONFIG_S390 */
  656. if (kvm_arch_create_memslot(&new, npages))
  657. goto out_free;
  658. }
  659. /* Allocate page dirty bitmap if needed */
  660. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  661. if (kvm_create_dirty_bitmap(&new) < 0)
  662. goto out_free;
  663. /* destroy any largepage mappings for dirty tracking */
  664. }
  665. if (!npages) {
  666. struct kvm_memory_slot *slot;
  667. r = -ENOMEM;
  668. slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
  669. GFP_KERNEL);
  670. if (!slots)
  671. goto out_free;
  672. slot = id_to_memslot(slots, mem->slot);
  673. slot->flags |= KVM_MEMSLOT_INVALID;
  674. update_memslots(slots, NULL);
  675. old_memslots = kvm->memslots;
  676. rcu_assign_pointer(kvm->memslots, slots);
  677. synchronize_srcu_expedited(&kvm->srcu);
  678. /* From this point no new shadow pages pointing to a deleted
  679. * memslot will be created.
  680. *
  681. * validation of sp->gfn happens in:
  682. * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
  683. * - kvm_is_visible_gfn (mmu_check_roots)
  684. */
  685. kvm_arch_flush_shadow(kvm);
  686. kfree(old_memslots);
  687. }
  688. r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
  689. if (r)
  690. goto out_free;
  691. /* map/unmap the pages in iommu page table */
  692. if (npages) {
  693. r = kvm_iommu_map_pages(kvm, &new);
  694. if (r)
  695. goto out_free;
  696. } else
  697. kvm_iommu_unmap_pages(kvm, &old);
  698. r = -ENOMEM;
  699. slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
  700. GFP_KERNEL);
  701. if (!slots)
  702. goto out_free;
  703. /* actual memory is freed via old in kvm_free_physmem_slot below */
  704. if (!npages) {
  705. new.rmap = NULL;
  706. new.dirty_bitmap = NULL;
  707. memset(&new.arch, 0, sizeof(new.arch));
  708. }
  709. update_memslots(slots, &new);
  710. old_memslots = kvm->memslots;
  711. rcu_assign_pointer(kvm->memslots, slots);
  712. synchronize_srcu_expedited(&kvm->srcu);
  713. kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
  714. /*
  715. * If the new memory slot is created, we need to clear all
  716. * mmio sptes.
  717. */
  718. if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT)
  719. kvm_arch_flush_shadow(kvm);
  720. kvm_free_physmem_slot(&old, &new);
  721. kfree(old_memslots);
  722. return 0;
  723. out_free:
  724. kvm_free_physmem_slot(&new, &old);
  725. out:
  726. return r;
  727. }
  728. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  729. int kvm_set_memory_region(struct kvm *kvm,
  730. struct kvm_userspace_memory_region *mem,
  731. int user_alloc)
  732. {
  733. int r;
  734. mutex_lock(&kvm->slots_lock);
  735. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  736. mutex_unlock(&kvm->slots_lock);
  737. return r;
  738. }
  739. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  740. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  741. struct
  742. kvm_userspace_memory_region *mem,
  743. int user_alloc)
  744. {
  745. if (mem->slot >= KVM_MEMORY_SLOTS)
  746. return -EINVAL;
  747. return kvm_set_memory_region(kvm, mem, user_alloc);
  748. }
  749. int kvm_get_dirty_log(struct kvm *kvm,
  750. struct kvm_dirty_log *log, int *is_dirty)
  751. {
  752. struct kvm_memory_slot *memslot;
  753. int r, i;
  754. unsigned long n;
  755. unsigned long any = 0;
  756. r = -EINVAL;
  757. if (log->slot >= KVM_MEMORY_SLOTS)
  758. goto out;
  759. memslot = id_to_memslot(kvm->memslots, log->slot);
  760. r = -ENOENT;
  761. if (!memslot->dirty_bitmap)
  762. goto out;
  763. n = kvm_dirty_bitmap_bytes(memslot);
  764. for (i = 0; !any && i < n/sizeof(long); ++i)
  765. any = memslot->dirty_bitmap[i];
  766. r = -EFAULT;
  767. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  768. goto out;
  769. if (any)
  770. *is_dirty = 1;
  771. r = 0;
  772. out:
  773. return r;
  774. }
  775. bool kvm_largepages_enabled(void)
  776. {
  777. return largepages_enabled;
  778. }
  779. void kvm_disable_largepages(void)
  780. {
  781. largepages_enabled = false;
  782. }
  783. EXPORT_SYMBOL_GPL(kvm_disable_largepages);
  784. int is_error_page(struct page *page)
  785. {
  786. return page == bad_page || page == hwpoison_page || page == fault_page;
  787. }
  788. EXPORT_SYMBOL_GPL(is_error_page);
  789. int is_error_pfn(pfn_t pfn)
  790. {
  791. return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
  792. }
  793. EXPORT_SYMBOL_GPL(is_error_pfn);
  794. int is_hwpoison_pfn(pfn_t pfn)
  795. {
  796. return pfn == hwpoison_pfn;
  797. }
  798. EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
  799. int is_noslot_pfn(pfn_t pfn)
  800. {
  801. return pfn == bad_pfn;
  802. }
  803. EXPORT_SYMBOL_GPL(is_noslot_pfn);
  804. int is_invalid_pfn(pfn_t pfn)
  805. {
  806. return pfn == hwpoison_pfn || pfn == fault_pfn;
  807. }
  808. EXPORT_SYMBOL_GPL(is_invalid_pfn);
  809. static inline unsigned long bad_hva(void)
  810. {
  811. return PAGE_OFFSET;
  812. }
  813. int kvm_is_error_hva(unsigned long addr)
  814. {
  815. return addr == bad_hva();
  816. }
  817. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  818. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  819. {
  820. return __gfn_to_memslot(kvm_memslots(kvm), gfn);
  821. }
  822. EXPORT_SYMBOL_GPL(gfn_to_memslot);
  823. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  824. {
  825. struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
  826. if (!memslot || memslot->id >= KVM_MEMORY_SLOTS ||
  827. memslot->flags & KVM_MEMSLOT_INVALID)
  828. return 0;
  829. return 1;
  830. }
  831. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  832. unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
  833. {
  834. struct vm_area_struct *vma;
  835. unsigned long addr, size;
  836. size = PAGE_SIZE;
  837. addr = gfn_to_hva(kvm, gfn);
  838. if (kvm_is_error_hva(addr))
  839. return PAGE_SIZE;
  840. down_read(&current->mm->mmap_sem);
  841. vma = find_vma(current->mm, addr);
  842. if (!vma)
  843. goto out;
  844. size = vma_kernel_pagesize(vma);
  845. out:
  846. up_read(&current->mm->mmap_sem);
  847. return size;
  848. }
  849. static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
  850. gfn_t *nr_pages)
  851. {
  852. if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
  853. return bad_hva();
  854. if (nr_pages)
  855. *nr_pages = slot->npages - (gfn - slot->base_gfn);
  856. return gfn_to_hva_memslot(slot, gfn);
  857. }
  858. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  859. {
  860. return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
  861. }
  862. EXPORT_SYMBOL_GPL(gfn_to_hva);
  863. pfn_t get_fault_pfn(void)
  864. {
  865. get_page(fault_page);
  866. return fault_pfn;
  867. }
  868. EXPORT_SYMBOL_GPL(get_fault_pfn);
  869. int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
  870. unsigned long start, int write, struct page **page)
  871. {
  872. int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
  873. if (write)
  874. flags |= FOLL_WRITE;
  875. return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
  876. }
  877. static inline int check_user_page_hwpoison(unsigned long addr)
  878. {
  879. int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
  880. rc = __get_user_pages(current, current->mm, addr, 1,
  881. flags, NULL, NULL, NULL);
  882. return rc == -EHWPOISON;
  883. }
  884. static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
  885. bool write_fault, bool *writable)
  886. {
  887. struct page *page[1];
  888. int npages = 0;
  889. pfn_t pfn;
  890. /* we can do it either atomically or asynchronously, not both */
  891. BUG_ON(atomic && async);
  892. BUG_ON(!write_fault && !writable);
  893. if (writable)
  894. *writable = true;
  895. if (atomic || async)
  896. npages = __get_user_pages_fast(addr, 1, 1, page);
  897. if (unlikely(npages != 1) && !atomic) {
  898. might_sleep();
  899. if (writable)
  900. *writable = write_fault;
  901. if (async) {
  902. down_read(&current->mm->mmap_sem);
  903. npages = get_user_page_nowait(current, current->mm,
  904. addr, write_fault, page);
  905. up_read(&current->mm->mmap_sem);
  906. } else
  907. npages = get_user_pages_fast(addr, 1, write_fault,
  908. page);
  909. /* map read fault as writable if possible */
  910. if (unlikely(!write_fault) && npages == 1) {
  911. struct page *wpage[1];
  912. npages = __get_user_pages_fast(addr, 1, 1, wpage);
  913. if (npages == 1) {
  914. *writable = true;
  915. put_page(page[0]);
  916. page[0] = wpage[0];
  917. }
  918. npages = 1;
  919. }
  920. }
  921. if (unlikely(npages != 1)) {
  922. struct vm_area_struct *vma;
  923. if (atomic)
  924. return get_fault_pfn();
  925. down_read(&current->mm->mmap_sem);
  926. if (npages == -EHWPOISON ||
  927. (!async && check_user_page_hwpoison(addr))) {
  928. up_read(&current->mm->mmap_sem);
  929. get_page(hwpoison_page);
  930. return page_to_pfn(hwpoison_page);
  931. }
  932. vma = find_vma_intersection(current->mm, addr, addr+1);
  933. if (vma == NULL)
  934. pfn = get_fault_pfn();
  935. else if ((vma->vm_flags & VM_PFNMAP)) {
  936. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
  937. vma->vm_pgoff;
  938. BUG_ON(!kvm_is_mmio_pfn(pfn));
  939. } else {
  940. if (async && (vma->vm_flags & VM_WRITE))
  941. *async = true;
  942. pfn = get_fault_pfn();
  943. }
  944. up_read(&current->mm->mmap_sem);
  945. } else
  946. pfn = page_to_pfn(page[0]);
  947. return pfn;
  948. }
  949. pfn_t hva_to_pfn_atomic(unsigned long addr)
  950. {
  951. return hva_to_pfn(addr, true, NULL, true, NULL);
  952. }
  953. EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
  954. static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
  955. bool write_fault, bool *writable)
  956. {
  957. unsigned long addr;
  958. if (async)
  959. *async = false;
  960. addr = gfn_to_hva(kvm, gfn);
  961. if (kvm_is_error_hva(addr)) {
  962. get_page(bad_page);
  963. return page_to_pfn(bad_page);
  964. }
  965. return hva_to_pfn(addr, atomic, async, write_fault, writable);
  966. }
  967. pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
  968. {
  969. return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
  970. }
  971. EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
  972. pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
  973. bool write_fault, bool *writable)
  974. {
  975. return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
  976. }
  977. EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
  978. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  979. {
  980. return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
  981. }
  982. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  983. pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
  984. bool *writable)
  985. {
  986. return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
  987. }
  988. EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
  989. pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
  990. {
  991. unsigned long addr = gfn_to_hva_memslot(slot, gfn);
  992. return hva_to_pfn(addr, false, NULL, true, NULL);
  993. }
  994. int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
  995. int nr_pages)
  996. {
  997. unsigned long addr;
  998. gfn_t entry;
  999. addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
  1000. if (kvm_is_error_hva(addr))
  1001. return -1;
  1002. if (entry < nr_pages)
  1003. return 0;
  1004. return __get_user_pages_fast(addr, nr_pages, 1, pages);
  1005. }
  1006. EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
  1007. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  1008. {
  1009. pfn_t pfn;
  1010. pfn = gfn_to_pfn(kvm, gfn);
  1011. if (!kvm_is_mmio_pfn(pfn))
  1012. return pfn_to_page(pfn);
  1013. WARN_ON(kvm_is_mmio_pfn(pfn));
  1014. get_page(bad_page);
  1015. return bad_page;
  1016. }
  1017. EXPORT_SYMBOL_GPL(gfn_to_page);
  1018. void kvm_release_page_clean(struct page *page)
  1019. {
  1020. kvm_release_pfn_clean(page_to_pfn(page));
  1021. }
  1022. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  1023. void kvm_release_pfn_clean(pfn_t pfn)
  1024. {
  1025. if (!kvm_is_mmio_pfn(pfn))
  1026. put_page(pfn_to_page(pfn));
  1027. }
  1028. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  1029. void kvm_release_page_dirty(struct page *page)
  1030. {
  1031. kvm_release_pfn_dirty(page_to_pfn(page));
  1032. }
  1033. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  1034. void kvm_release_pfn_dirty(pfn_t pfn)
  1035. {
  1036. kvm_set_pfn_dirty(pfn);
  1037. kvm_release_pfn_clean(pfn);
  1038. }
  1039. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  1040. void kvm_set_page_dirty(struct page *page)
  1041. {
  1042. kvm_set_pfn_dirty(page_to_pfn(page));
  1043. }
  1044. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  1045. void kvm_set_pfn_dirty(pfn_t pfn)
  1046. {
  1047. if (!kvm_is_mmio_pfn(pfn)) {
  1048. struct page *page = pfn_to_page(pfn);
  1049. if (!PageReserved(page))
  1050. SetPageDirty(page);
  1051. }
  1052. }
  1053. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  1054. void kvm_set_pfn_accessed(pfn_t pfn)
  1055. {
  1056. if (!kvm_is_mmio_pfn(pfn))
  1057. mark_page_accessed(pfn_to_page(pfn));
  1058. }
  1059. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  1060. void kvm_get_pfn(pfn_t pfn)
  1061. {
  1062. if (!kvm_is_mmio_pfn(pfn))
  1063. get_page(pfn_to_page(pfn));
  1064. }
  1065. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  1066. static int next_segment(unsigned long len, int offset)
  1067. {
  1068. if (len > PAGE_SIZE - offset)
  1069. return PAGE_SIZE - offset;
  1070. else
  1071. return len;
  1072. }
  1073. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  1074. int len)
  1075. {
  1076. int r;
  1077. unsigned long addr;
  1078. addr = gfn_to_hva(kvm, gfn);
  1079. if (kvm_is_error_hva(addr))
  1080. return -EFAULT;
  1081. r = __copy_from_user(data, (void __user *)addr + offset, len);
  1082. if (r)
  1083. return -EFAULT;
  1084. return 0;
  1085. }
  1086. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  1087. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  1088. {
  1089. gfn_t gfn = gpa >> PAGE_SHIFT;
  1090. int seg;
  1091. int offset = offset_in_page(gpa);
  1092. int ret;
  1093. while ((seg = next_segment(len, offset)) != 0) {
  1094. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  1095. if (ret < 0)
  1096. return ret;
  1097. offset = 0;
  1098. len -= seg;
  1099. data += seg;
  1100. ++gfn;
  1101. }
  1102. return 0;
  1103. }
  1104. EXPORT_SYMBOL_GPL(kvm_read_guest);
  1105. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  1106. unsigned long len)
  1107. {
  1108. int r;
  1109. unsigned long addr;
  1110. gfn_t gfn = gpa >> PAGE_SHIFT;
  1111. int offset = offset_in_page(gpa);
  1112. addr = gfn_to_hva(kvm, gfn);
  1113. if (kvm_is_error_hva(addr))
  1114. return -EFAULT;
  1115. pagefault_disable();
  1116. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  1117. pagefault_enable();
  1118. if (r)
  1119. return -EFAULT;
  1120. return 0;
  1121. }
  1122. EXPORT_SYMBOL(kvm_read_guest_atomic);
  1123. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  1124. int offset, int len)
  1125. {
  1126. int r;
  1127. unsigned long addr;
  1128. addr = gfn_to_hva(kvm, gfn);
  1129. if (kvm_is_error_hva(addr))
  1130. return -EFAULT;
  1131. r = __copy_to_user((void __user *)addr + offset, data, len);
  1132. if (r)
  1133. return -EFAULT;
  1134. mark_page_dirty(kvm, gfn);
  1135. return 0;
  1136. }
  1137. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  1138. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  1139. unsigned long len)
  1140. {
  1141. gfn_t gfn = gpa >> PAGE_SHIFT;
  1142. int seg;
  1143. int offset = offset_in_page(gpa);
  1144. int ret;
  1145. while ((seg = next_segment(len, offset)) != 0) {
  1146. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1147. if (ret < 0)
  1148. return ret;
  1149. offset = 0;
  1150. len -= seg;
  1151. data += seg;
  1152. ++gfn;
  1153. }
  1154. return 0;
  1155. }
  1156. int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1157. gpa_t gpa)
  1158. {
  1159. struct kvm_memslots *slots = kvm_memslots(kvm);
  1160. int offset = offset_in_page(gpa);
  1161. gfn_t gfn = gpa >> PAGE_SHIFT;
  1162. ghc->gpa = gpa;
  1163. ghc->generation = slots->generation;
  1164. ghc->memslot = gfn_to_memslot(kvm, gfn);
  1165. ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
  1166. if (!kvm_is_error_hva(ghc->hva))
  1167. ghc->hva += offset;
  1168. else
  1169. return -EFAULT;
  1170. return 0;
  1171. }
  1172. EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
  1173. int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1174. void *data, unsigned long len)
  1175. {
  1176. struct kvm_memslots *slots = kvm_memslots(kvm);
  1177. int r;
  1178. if (slots->generation != ghc->generation)
  1179. kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
  1180. if (kvm_is_error_hva(ghc->hva))
  1181. return -EFAULT;
  1182. r = __copy_to_user((void __user *)ghc->hva, data, len);
  1183. if (r)
  1184. return -EFAULT;
  1185. mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
  1186. return 0;
  1187. }
  1188. EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
  1189. int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1190. void *data, unsigned long len)
  1191. {
  1192. struct kvm_memslots *slots = kvm_memslots(kvm);
  1193. int r;
  1194. if (slots->generation != ghc->generation)
  1195. kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
  1196. if (kvm_is_error_hva(ghc->hva))
  1197. return -EFAULT;
  1198. r = __copy_from_user(data, (void __user *)ghc->hva, len);
  1199. if (r)
  1200. return -EFAULT;
  1201. return 0;
  1202. }
  1203. EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
  1204. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1205. {
  1206. return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
  1207. offset, len);
  1208. }
  1209. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1210. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1211. {
  1212. gfn_t gfn = gpa >> PAGE_SHIFT;
  1213. int seg;
  1214. int offset = offset_in_page(gpa);
  1215. int ret;
  1216. while ((seg = next_segment(len, offset)) != 0) {
  1217. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1218. if (ret < 0)
  1219. return ret;
  1220. offset = 0;
  1221. len -= seg;
  1222. ++gfn;
  1223. }
  1224. return 0;
  1225. }
  1226. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1227. void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
  1228. gfn_t gfn)
  1229. {
  1230. if (memslot && memslot->dirty_bitmap) {
  1231. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1232. /* TODO: introduce set_bit_le() and use it */
  1233. test_and_set_bit_le(rel_gfn, memslot->dirty_bitmap);
  1234. }
  1235. }
  1236. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1237. {
  1238. struct kvm_memory_slot *memslot;
  1239. memslot = gfn_to_memslot(kvm, gfn);
  1240. mark_page_dirty_in_slot(kvm, memslot, gfn);
  1241. }
  1242. /*
  1243. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1244. */
  1245. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1246. {
  1247. DEFINE_WAIT(wait);
  1248. for (;;) {
  1249. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1250. if (kvm_arch_vcpu_runnable(vcpu)) {
  1251. kvm_make_request(KVM_REQ_UNHALT, vcpu);
  1252. break;
  1253. }
  1254. if (kvm_cpu_has_pending_timer(vcpu))
  1255. break;
  1256. if (signal_pending(current))
  1257. break;
  1258. schedule();
  1259. }
  1260. finish_wait(&vcpu->wq, &wait);
  1261. }
  1262. #ifndef CONFIG_S390
  1263. /*
  1264. * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
  1265. */
  1266. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  1267. {
  1268. int me;
  1269. int cpu = vcpu->cpu;
  1270. wait_queue_head_t *wqp;
  1271. wqp = kvm_arch_vcpu_wq(vcpu);
  1272. if (waitqueue_active(wqp)) {
  1273. wake_up_interruptible(wqp);
  1274. ++vcpu->stat.halt_wakeup;
  1275. }
  1276. me = get_cpu();
  1277. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  1278. if (kvm_arch_vcpu_should_kick(vcpu))
  1279. smp_send_reschedule(cpu);
  1280. put_cpu();
  1281. }
  1282. #endif /* !CONFIG_S390 */
  1283. void kvm_resched(struct kvm_vcpu *vcpu)
  1284. {
  1285. if (!need_resched())
  1286. return;
  1287. cond_resched();
  1288. }
  1289. EXPORT_SYMBOL_GPL(kvm_resched);
  1290. bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
  1291. {
  1292. struct pid *pid;
  1293. struct task_struct *task = NULL;
  1294. rcu_read_lock();
  1295. pid = rcu_dereference(target->pid);
  1296. if (pid)
  1297. task = get_pid_task(target->pid, PIDTYPE_PID);
  1298. rcu_read_unlock();
  1299. if (!task)
  1300. return false;
  1301. if (task->flags & PF_VCPU) {
  1302. put_task_struct(task);
  1303. return false;
  1304. }
  1305. if (yield_to(task, 1)) {
  1306. put_task_struct(task);
  1307. return true;
  1308. }
  1309. put_task_struct(task);
  1310. return false;
  1311. }
  1312. EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
  1313. #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
  1314. /*
  1315. * Helper that checks whether a VCPU is eligible for directed yield.
  1316. * Most eligible candidate to yield is decided by following heuristics:
  1317. *
  1318. * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
  1319. * (preempted lock holder), indicated by @in_spin_loop.
  1320. * Set at the beiginning and cleared at the end of interception/PLE handler.
  1321. *
  1322. * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
  1323. * chance last time (mostly it has become eligible now since we have probably
  1324. * yielded to lockholder in last iteration. This is done by toggling
  1325. * @dy_eligible each time a VCPU checked for eligibility.)
  1326. *
  1327. * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
  1328. * to preempted lock-holder could result in wrong VCPU selection and CPU
  1329. * burning. Giving priority for a potential lock-holder increases lock
  1330. * progress.
  1331. *
  1332. * Since algorithm is based on heuristics, accessing another VCPU data without
  1333. * locking does not harm. It may result in trying to yield to same VCPU, fail
  1334. * and continue with next VCPU and so on.
  1335. */
  1336. bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
  1337. {
  1338. bool eligible;
  1339. eligible = !vcpu->spin_loop.in_spin_loop ||
  1340. (vcpu->spin_loop.in_spin_loop &&
  1341. vcpu->spin_loop.dy_eligible);
  1342. if (vcpu->spin_loop.in_spin_loop)
  1343. kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
  1344. return eligible;
  1345. }
  1346. #endif
  1347. void kvm_vcpu_on_spin(struct kvm_vcpu *me)
  1348. {
  1349. struct kvm *kvm = me->kvm;
  1350. struct kvm_vcpu *vcpu;
  1351. int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
  1352. int yielded = 0;
  1353. int pass;
  1354. int i;
  1355. kvm_vcpu_set_in_spin_loop(me, true);
  1356. /*
  1357. * We boost the priority of a VCPU that is runnable but not
  1358. * currently running, because it got preempted by something
  1359. * else and called schedule in __vcpu_run. Hopefully that
  1360. * VCPU is holding the lock that we need and will release it.
  1361. * We approximate round-robin by starting at the last boosted VCPU.
  1362. */
  1363. for (pass = 0; pass < 2 && !yielded; pass++) {
  1364. kvm_for_each_vcpu(i, vcpu, kvm) {
  1365. if (!pass && i <= last_boosted_vcpu) {
  1366. i = last_boosted_vcpu;
  1367. continue;
  1368. } else if (pass && i > last_boosted_vcpu)
  1369. break;
  1370. if (vcpu == me)
  1371. continue;
  1372. if (waitqueue_active(&vcpu->wq))
  1373. continue;
  1374. if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
  1375. continue;
  1376. if (kvm_vcpu_yield_to(vcpu)) {
  1377. kvm->last_boosted_vcpu = i;
  1378. yielded = 1;
  1379. break;
  1380. }
  1381. }
  1382. }
  1383. kvm_vcpu_set_in_spin_loop(me, false);
  1384. /* Ensure vcpu is not eligible during next spinloop */
  1385. kvm_vcpu_set_dy_eligible(me, false);
  1386. }
  1387. EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
  1388. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1389. {
  1390. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1391. struct page *page;
  1392. if (vmf->pgoff == 0)
  1393. page = virt_to_page(vcpu->run);
  1394. #ifdef CONFIG_X86
  1395. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1396. page = virt_to_page(vcpu->arch.pio_data);
  1397. #endif
  1398. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1399. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1400. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1401. #endif
  1402. else
  1403. return kvm_arch_vcpu_fault(vcpu, vmf);
  1404. get_page(page);
  1405. vmf->page = page;
  1406. return 0;
  1407. }
  1408. static const struct vm_operations_struct kvm_vcpu_vm_ops = {
  1409. .fault = kvm_vcpu_fault,
  1410. };
  1411. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1412. {
  1413. vma->vm_ops = &kvm_vcpu_vm_ops;
  1414. return 0;
  1415. }
  1416. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1417. {
  1418. struct kvm_vcpu *vcpu = filp->private_data;
  1419. kvm_put_kvm(vcpu->kvm);
  1420. return 0;
  1421. }
  1422. static struct file_operations kvm_vcpu_fops = {
  1423. .release = kvm_vcpu_release,
  1424. .unlocked_ioctl = kvm_vcpu_ioctl,
  1425. #ifdef CONFIG_COMPAT
  1426. .compat_ioctl = kvm_vcpu_compat_ioctl,
  1427. #endif
  1428. .mmap = kvm_vcpu_mmap,
  1429. .llseek = noop_llseek,
  1430. };
  1431. /*
  1432. * Allocates an inode for the vcpu.
  1433. */
  1434. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1435. {
  1436. return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
  1437. }
  1438. /*
  1439. * Creates some virtual cpus. Good luck creating more than one.
  1440. */
  1441. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
  1442. {
  1443. int r;
  1444. struct kvm_vcpu *vcpu, *v;
  1445. vcpu = kvm_arch_vcpu_create(kvm, id);
  1446. if (IS_ERR(vcpu))
  1447. return PTR_ERR(vcpu);
  1448. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1449. r = kvm_arch_vcpu_setup(vcpu);
  1450. if (r)
  1451. goto vcpu_destroy;
  1452. mutex_lock(&kvm->lock);
  1453. if (!kvm_vcpu_compatible(vcpu)) {
  1454. r = -EINVAL;
  1455. goto unlock_vcpu_destroy;
  1456. }
  1457. if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
  1458. r = -EINVAL;
  1459. goto unlock_vcpu_destroy;
  1460. }
  1461. kvm_for_each_vcpu(r, v, kvm)
  1462. if (v->vcpu_id == id) {
  1463. r = -EEXIST;
  1464. goto unlock_vcpu_destroy;
  1465. }
  1466. BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
  1467. /* Now it's all set up, let userspace reach it */
  1468. kvm_get_kvm(kvm);
  1469. r = create_vcpu_fd(vcpu);
  1470. if (r < 0) {
  1471. kvm_put_kvm(kvm);
  1472. goto unlock_vcpu_destroy;
  1473. }
  1474. kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
  1475. smp_wmb();
  1476. atomic_inc(&kvm->online_vcpus);
  1477. mutex_unlock(&kvm->lock);
  1478. return r;
  1479. unlock_vcpu_destroy:
  1480. mutex_unlock(&kvm->lock);
  1481. vcpu_destroy:
  1482. kvm_arch_vcpu_destroy(vcpu);
  1483. return r;
  1484. }
  1485. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1486. {
  1487. if (sigset) {
  1488. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1489. vcpu->sigset_active = 1;
  1490. vcpu->sigset = *sigset;
  1491. } else
  1492. vcpu->sigset_active = 0;
  1493. return 0;
  1494. }
  1495. static long kvm_vcpu_ioctl(struct file *filp,
  1496. unsigned int ioctl, unsigned long arg)
  1497. {
  1498. struct kvm_vcpu *vcpu = filp->private_data;
  1499. void __user *argp = (void __user *)arg;
  1500. int r;
  1501. struct kvm_fpu *fpu = NULL;
  1502. struct kvm_sregs *kvm_sregs = NULL;
  1503. if (vcpu->kvm->mm != current->mm)
  1504. return -EIO;
  1505. #if defined(CONFIG_S390) || defined(CONFIG_PPC)
  1506. /*
  1507. * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
  1508. * so vcpu_load() would break it.
  1509. */
  1510. if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
  1511. return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1512. #endif
  1513. vcpu_load(vcpu);
  1514. switch (ioctl) {
  1515. case KVM_RUN:
  1516. r = -EINVAL;
  1517. if (arg)
  1518. goto out;
  1519. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1520. trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
  1521. break;
  1522. case KVM_GET_REGS: {
  1523. struct kvm_regs *kvm_regs;
  1524. r = -ENOMEM;
  1525. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1526. if (!kvm_regs)
  1527. goto out;
  1528. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1529. if (r)
  1530. goto out_free1;
  1531. r = -EFAULT;
  1532. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1533. goto out_free1;
  1534. r = 0;
  1535. out_free1:
  1536. kfree(kvm_regs);
  1537. break;
  1538. }
  1539. case KVM_SET_REGS: {
  1540. struct kvm_regs *kvm_regs;
  1541. r = -ENOMEM;
  1542. kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
  1543. if (IS_ERR(kvm_regs)) {
  1544. r = PTR_ERR(kvm_regs);
  1545. goto out;
  1546. }
  1547. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1548. if (r)
  1549. goto out_free2;
  1550. r = 0;
  1551. out_free2:
  1552. kfree(kvm_regs);
  1553. break;
  1554. }
  1555. case KVM_GET_SREGS: {
  1556. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1557. r = -ENOMEM;
  1558. if (!kvm_sregs)
  1559. goto out;
  1560. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1561. if (r)
  1562. goto out;
  1563. r = -EFAULT;
  1564. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1565. goto out;
  1566. r = 0;
  1567. break;
  1568. }
  1569. case KVM_SET_SREGS: {
  1570. kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
  1571. if (IS_ERR(kvm_sregs)) {
  1572. r = PTR_ERR(kvm_sregs);
  1573. goto out;
  1574. }
  1575. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1576. if (r)
  1577. goto out;
  1578. r = 0;
  1579. break;
  1580. }
  1581. case KVM_GET_MP_STATE: {
  1582. struct kvm_mp_state mp_state;
  1583. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1584. if (r)
  1585. goto out;
  1586. r = -EFAULT;
  1587. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1588. goto out;
  1589. r = 0;
  1590. break;
  1591. }
  1592. case KVM_SET_MP_STATE: {
  1593. struct kvm_mp_state mp_state;
  1594. r = -EFAULT;
  1595. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1596. goto out;
  1597. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1598. if (r)
  1599. goto out;
  1600. r = 0;
  1601. break;
  1602. }
  1603. case KVM_TRANSLATE: {
  1604. struct kvm_translation tr;
  1605. r = -EFAULT;
  1606. if (copy_from_user(&tr, argp, sizeof tr))
  1607. goto out;
  1608. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1609. if (r)
  1610. goto out;
  1611. r = -EFAULT;
  1612. if (copy_to_user(argp, &tr, sizeof tr))
  1613. goto out;
  1614. r = 0;
  1615. break;
  1616. }
  1617. case KVM_SET_GUEST_DEBUG: {
  1618. struct kvm_guest_debug dbg;
  1619. r = -EFAULT;
  1620. if (copy_from_user(&dbg, argp, sizeof dbg))
  1621. goto out;
  1622. r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
  1623. if (r)
  1624. goto out;
  1625. r = 0;
  1626. break;
  1627. }
  1628. case KVM_SET_SIGNAL_MASK: {
  1629. struct kvm_signal_mask __user *sigmask_arg = argp;
  1630. struct kvm_signal_mask kvm_sigmask;
  1631. sigset_t sigset, *p;
  1632. p = NULL;
  1633. if (argp) {
  1634. r = -EFAULT;
  1635. if (copy_from_user(&kvm_sigmask, argp,
  1636. sizeof kvm_sigmask))
  1637. goto out;
  1638. r = -EINVAL;
  1639. if (kvm_sigmask.len != sizeof sigset)
  1640. goto out;
  1641. r = -EFAULT;
  1642. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1643. sizeof sigset))
  1644. goto out;
  1645. p = &sigset;
  1646. }
  1647. r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
  1648. break;
  1649. }
  1650. case KVM_GET_FPU: {
  1651. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1652. r = -ENOMEM;
  1653. if (!fpu)
  1654. goto out;
  1655. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1656. if (r)
  1657. goto out;
  1658. r = -EFAULT;
  1659. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1660. goto out;
  1661. r = 0;
  1662. break;
  1663. }
  1664. case KVM_SET_FPU: {
  1665. fpu = memdup_user(argp, sizeof(*fpu));
  1666. if (IS_ERR(fpu)) {
  1667. r = PTR_ERR(fpu);
  1668. goto out;
  1669. }
  1670. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1671. if (r)
  1672. goto out;
  1673. r = 0;
  1674. break;
  1675. }
  1676. default:
  1677. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1678. }
  1679. out:
  1680. vcpu_put(vcpu);
  1681. kfree(fpu);
  1682. kfree(kvm_sregs);
  1683. return r;
  1684. }
  1685. #ifdef CONFIG_COMPAT
  1686. static long kvm_vcpu_compat_ioctl(struct file *filp,
  1687. unsigned int ioctl, unsigned long arg)
  1688. {
  1689. struct kvm_vcpu *vcpu = filp->private_data;
  1690. void __user *argp = compat_ptr(arg);
  1691. int r;
  1692. if (vcpu->kvm->mm != current->mm)
  1693. return -EIO;
  1694. switch (ioctl) {
  1695. case KVM_SET_SIGNAL_MASK: {
  1696. struct kvm_signal_mask __user *sigmask_arg = argp;
  1697. struct kvm_signal_mask kvm_sigmask;
  1698. compat_sigset_t csigset;
  1699. sigset_t sigset;
  1700. if (argp) {
  1701. r = -EFAULT;
  1702. if (copy_from_user(&kvm_sigmask, argp,
  1703. sizeof kvm_sigmask))
  1704. goto out;
  1705. r = -EINVAL;
  1706. if (kvm_sigmask.len != sizeof csigset)
  1707. goto out;
  1708. r = -EFAULT;
  1709. if (copy_from_user(&csigset, sigmask_arg->sigset,
  1710. sizeof csigset))
  1711. goto out;
  1712. }
  1713. sigset_from_compat(&sigset, &csigset);
  1714. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  1715. break;
  1716. }
  1717. default:
  1718. r = kvm_vcpu_ioctl(filp, ioctl, arg);
  1719. }
  1720. out:
  1721. return r;
  1722. }
  1723. #endif
  1724. static long kvm_vm_ioctl(struct file *filp,
  1725. unsigned int ioctl, unsigned long arg)
  1726. {
  1727. struct kvm *kvm = filp->private_data;
  1728. void __user *argp = (void __user *)arg;
  1729. int r;
  1730. if (kvm->mm != current->mm)
  1731. return -EIO;
  1732. switch (ioctl) {
  1733. case KVM_CREATE_VCPU:
  1734. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1735. if (r < 0)
  1736. goto out;
  1737. break;
  1738. case KVM_SET_USER_MEMORY_REGION: {
  1739. struct kvm_userspace_memory_region kvm_userspace_mem;
  1740. r = -EFAULT;
  1741. if (copy_from_user(&kvm_userspace_mem, argp,
  1742. sizeof kvm_userspace_mem))
  1743. goto out;
  1744. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1745. if (r)
  1746. goto out;
  1747. break;
  1748. }
  1749. case KVM_GET_DIRTY_LOG: {
  1750. struct kvm_dirty_log log;
  1751. r = -EFAULT;
  1752. if (copy_from_user(&log, argp, sizeof log))
  1753. goto out;
  1754. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1755. if (r)
  1756. goto out;
  1757. break;
  1758. }
  1759. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1760. case KVM_REGISTER_COALESCED_MMIO: {
  1761. struct kvm_coalesced_mmio_zone zone;
  1762. r = -EFAULT;
  1763. if (copy_from_user(&zone, argp, sizeof zone))
  1764. goto out;
  1765. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1766. if (r)
  1767. goto out;
  1768. r = 0;
  1769. break;
  1770. }
  1771. case KVM_UNREGISTER_COALESCED_MMIO: {
  1772. struct kvm_coalesced_mmio_zone zone;
  1773. r = -EFAULT;
  1774. if (copy_from_user(&zone, argp, sizeof zone))
  1775. goto out;
  1776. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1777. if (r)
  1778. goto out;
  1779. r = 0;
  1780. break;
  1781. }
  1782. #endif
  1783. case KVM_IRQFD: {
  1784. struct kvm_irqfd data;
  1785. r = -EFAULT;
  1786. if (copy_from_user(&data, argp, sizeof data))
  1787. goto out;
  1788. r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
  1789. break;
  1790. }
  1791. case KVM_IOEVENTFD: {
  1792. struct kvm_ioeventfd data;
  1793. r = -EFAULT;
  1794. if (copy_from_user(&data, argp, sizeof data))
  1795. goto out;
  1796. r = kvm_ioeventfd(kvm, &data);
  1797. break;
  1798. }
  1799. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1800. case KVM_SET_BOOT_CPU_ID:
  1801. r = 0;
  1802. mutex_lock(&kvm->lock);
  1803. if (atomic_read(&kvm->online_vcpus) != 0)
  1804. r = -EBUSY;
  1805. else
  1806. kvm->bsp_vcpu_id = arg;
  1807. mutex_unlock(&kvm->lock);
  1808. break;
  1809. #endif
  1810. #ifdef CONFIG_HAVE_KVM_MSI
  1811. case KVM_SIGNAL_MSI: {
  1812. struct kvm_msi msi;
  1813. r = -EFAULT;
  1814. if (copy_from_user(&msi, argp, sizeof msi))
  1815. goto out;
  1816. r = kvm_send_userspace_msi(kvm, &msi);
  1817. break;
  1818. }
  1819. #endif
  1820. default:
  1821. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1822. if (r == -ENOTTY)
  1823. r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
  1824. }
  1825. out:
  1826. return r;
  1827. }
  1828. #ifdef CONFIG_COMPAT
  1829. struct compat_kvm_dirty_log {
  1830. __u32 slot;
  1831. __u32 padding1;
  1832. union {
  1833. compat_uptr_t dirty_bitmap; /* one bit per page */
  1834. __u64 padding2;
  1835. };
  1836. };
  1837. static long kvm_vm_compat_ioctl(struct file *filp,
  1838. unsigned int ioctl, unsigned long arg)
  1839. {
  1840. struct kvm *kvm = filp->private_data;
  1841. int r;
  1842. if (kvm->mm != current->mm)
  1843. return -EIO;
  1844. switch (ioctl) {
  1845. case KVM_GET_DIRTY_LOG: {
  1846. struct compat_kvm_dirty_log compat_log;
  1847. struct kvm_dirty_log log;
  1848. r = -EFAULT;
  1849. if (copy_from_user(&compat_log, (void __user *)arg,
  1850. sizeof(compat_log)))
  1851. goto out;
  1852. log.slot = compat_log.slot;
  1853. log.padding1 = compat_log.padding1;
  1854. log.padding2 = compat_log.padding2;
  1855. log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
  1856. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1857. if (r)
  1858. goto out;
  1859. break;
  1860. }
  1861. default:
  1862. r = kvm_vm_ioctl(filp, ioctl, arg);
  1863. }
  1864. out:
  1865. return r;
  1866. }
  1867. #endif
  1868. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1869. {
  1870. struct page *page[1];
  1871. unsigned long addr;
  1872. int npages;
  1873. gfn_t gfn = vmf->pgoff;
  1874. struct kvm *kvm = vma->vm_file->private_data;
  1875. addr = gfn_to_hva(kvm, gfn);
  1876. if (kvm_is_error_hva(addr))
  1877. return VM_FAULT_SIGBUS;
  1878. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1879. NULL);
  1880. if (unlikely(npages != 1))
  1881. return VM_FAULT_SIGBUS;
  1882. vmf->page = page[0];
  1883. return 0;
  1884. }
  1885. static const struct vm_operations_struct kvm_vm_vm_ops = {
  1886. .fault = kvm_vm_fault,
  1887. };
  1888. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1889. {
  1890. vma->vm_ops = &kvm_vm_vm_ops;
  1891. return 0;
  1892. }
  1893. static struct file_operations kvm_vm_fops = {
  1894. .release = kvm_vm_release,
  1895. .unlocked_ioctl = kvm_vm_ioctl,
  1896. #ifdef CONFIG_COMPAT
  1897. .compat_ioctl = kvm_vm_compat_ioctl,
  1898. #endif
  1899. .mmap = kvm_vm_mmap,
  1900. .llseek = noop_llseek,
  1901. };
  1902. static int kvm_dev_ioctl_create_vm(unsigned long type)
  1903. {
  1904. int r;
  1905. struct kvm *kvm;
  1906. kvm = kvm_create_vm(type);
  1907. if (IS_ERR(kvm))
  1908. return PTR_ERR(kvm);
  1909. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1910. r = kvm_coalesced_mmio_init(kvm);
  1911. if (r < 0) {
  1912. kvm_put_kvm(kvm);
  1913. return r;
  1914. }
  1915. #endif
  1916. r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
  1917. if (r < 0)
  1918. kvm_put_kvm(kvm);
  1919. return r;
  1920. }
  1921. static long kvm_dev_ioctl_check_extension_generic(long arg)
  1922. {
  1923. switch (arg) {
  1924. case KVM_CAP_USER_MEMORY:
  1925. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  1926. case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
  1927. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1928. case KVM_CAP_SET_BOOT_CPU_ID:
  1929. #endif
  1930. case KVM_CAP_INTERNAL_ERROR_DATA:
  1931. #ifdef CONFIG_HAVE_KVM_MSI
  1932. case KVM_CAP_SIGNAL_MSI:
  1933. #endif
  1934. return 1;
  1935. #ifdef KVM_CAP_IRQ_ROUTING
  1936. case KVM_CAP_IRQ_ROUTING:
  1937. return KVM_MAX_IRQ_ROUTES;
  1938. #endif
  1939. default:
  1940. break;
  1941. }
  1942. return kvm_dev_ioctl_check_extension(arg);
  1943. }
  1944. static long kvm_dev_ioctl(struct file *filp,
  1945. unsigned int ioctl, unsigned long arg)
  1946. {
  1947. long r = -EINVAL;
  1948. switch (ioctl) {
  1949. case KVM_GET_API_VERSION:
  1950. r = -EINVAL;
  1951. if (arg)
  1952. goto out;
  1953. r = KVM_API_VERSION;
  1954. break;
  1955. case KVM_CREATE_VM:
  1956. r = kvm_dev_ioctl_create_vm(arg);
  1957. break;
  1958. case KVM_CHECK_EXTENSION:
  1959. r = kvm_dev_ioctl_check_extension_generic(arg);
  1960. break;
  1961. case KVM_GET_VCPU_MMAP_SIZE:
  1962. r = -EINVAL;
  1963. if (arg)
  1964. goto out;
  1965. r = PAGE_SIZE; /* struct kvm_run */
  1966. #ifdef CONFIG_X86
  1967. r += PAGE_SIZE; /* pio data page */
  1968. #endif
  1969. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1970. r += PAGE_SIZE; /* coalesced mmio ring page */
  1971. #endif
  1972. break;
  1973. case KVM_TRACE_ENABLE:
  1974. case KVM_TRACE_PAUSE:
  1975. case KVM_TRACE_DISABLE:
  1976. r = -EOPNOTSUPP;
  1977. break;
  1978. default:
  1979. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1980. }
  1981. out:
  1982. return r;
  1983. }
  1984. static struct file_operations kvm_chardev_ops = {
  1985. .unlocked_ioctl = kvm_dev_ioctl,
  1986. .compat_ioctl = kvm_dev_ioctl,
  1987. .llseek = noop_llseek,
  1988. };
  1989. static struct miscdevice kvm_dev = {
  1990. KVM_MINOR,
  1991. "kvm",
  1992. &kvm_chardev_ops,
  1993. };
  1994. static void hardware_enable_nolock(void *junk)
  1995. {
  1996. int cpu = raw_smp_processor_id();
  1997. int r;
  1998. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1999. return;
  2000. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  2001. r = kvm_arch_hardware_enable(NULL);
  2002. if (r) {
  2003. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  2004. atomic_inc(&hardware_enable_failed);
  2005. printk(KERN_INFO "kvm: enabling virtualization on "
  2006. "CPU%d failed\n", cpu);
  2007. }
  2008. }
  2009. static void hardware_enable(void *junk)
  2010. {
  2011. raw_spin_lock(&kvm_lock);
  2012. hardware_enable_nolock(junk);
  2013. raw_spin_unlock(&kvm_lock);
  2014. }
  2015. static void hardware_disable_nolock(void *junk)
  2016. {
  2017. int cpu = raw_smp_processor_id();
  2018. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  2019. return;
  2020. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  2021. kvm_arch_hardware_disable(NULL);
  2022. }
  2023. static void hardware_disable(void *junk)
  2024. {
  2025. raw_spin_lock(&kvm_lock);
  2026. hardware_disable_nolock(junk);
  2027. raw_spin_unlock(&kvm_lock);
  2028. }
  2029. static void hardware_disable_all_nolock(void)
  2030. {
  2031. BUG_ON(!kvm_usage_count);
  2032. kvm_usage_count--;
  2033. if (!kvm_usage_count)
  2034. on_each_cpu(hardware_disable_nolock, NULL, 1);
  2035. }
  2036. static void hardware_disable_all(void)
  2037. {
  2038. raw_spin_lock(&kvm_lock);
  2039. hardware_disable_all_nolock();
  2040. raw_spin_unlock(&kvm_lock);
  2041. }
  2042. static int hardware_enable_all(void)
  2043. {
  2044. int r = 0;
  2045. raw_spin_lock(&kvm_lock);
  2046. kvm_usage_count++;
  2047. if (kvm_usage_count == 1) {
  2048. atomic_set(&hardware_enable_failed, 0);
  2049. on_each_cpu(hardware_enable_nolock, NULL, 1);
  2050. if (atomic_read(&hardware_enable_failed)) {
  2051. hardware_disable_all_nolock();
  2052. r = -EBUSY;
  2053. }
  2054. }
  2055. raw_spin_unlock(&kvm_lock);
  2056. return r;
  2057. }
  2058. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2059. void *v)
  2060. {
  2061. int cpu = (long)v;
  2062. if (!kvm_usage_count)
  2063. return NOTIFY_OK;
  2064. val &= ~CPU_TASKS_FROZEN;
  2065. switch (val) {
  2066. case CPU_DYING:
  2067. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2068. cpu);
  2069. hardware_disable(NULL);
  2070. break;
  2071. case CPU_STARTING:
  2072. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2073. cpu);
  2074. hardware_enable(NULL);
  2075. break;
  2076. }
  2077. return NOTIFY_OK;
  2078. }
  2079. asmlinkage void kvm_spurious_fault(void)
  2080. {
  2081. /* Fault while not rebooting. We want the trace. */
  2082. BUG();
  2083. }
  2084. EXPORT_SYMBOL_GPL(kvm_spurious_fault);
  2085. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2086. void *v)
  2087. {
  2088. /*
  2089. * Some (well, at least mine) BIOSes hang on reboot if
  2090. * in vmx root mode.
  2091. *
  2092. * And Intel TXT required VMX off for all cpu when system shutdown.
  2093. */
  2094. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2095. kvm_rebooting = true;
  2096. on_each_cpu(hardware_disable_nolock, NULL, 1);
  2097. return NOTIFY_OK;
  2098. }
  2099. static struct notifier_block kvm_reboot_notifier = {
  2100. .notifier_call = kvm_reboot,
  2101. .priority = 0,
  2102. };
  2103. static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2104. {
  2105. int i;
  2106. for (i = 0; i < bus->dev_count; i++) {
  2107. struct kvm_io_device *pos = bus->range[i].dev;
  2108. kvm_iodevice_destructor(pos);
  2109. }
  2110. kfree(bus);
  2111. }
  2112. int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
  2113. {
  2114. const struct kvm_io_range *r1 = p1;
  2115. const struct kvm_io_range *r2 = p2;
  2116. if (r1->addr < r2->addr)
  2117. return -1;
  2118. if (r1->addr + r1->len > r2->addr + r2->len)
  2119. return 1;
  2120. return 0;
  2121. }
  2122. int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
  2123. gpa_t addr, int len)
  2124. {
  2125. bus->range[bus->dev_count++] = (struct kvm_io_range) {
  2126. .addr = addr,
  2127. .len = len,
  2128. .dev = dev,
  2129. };
  2130. sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
  2131. kvm_io_bus_sort_cmp, NULL);
  2132. return 0;
  2133. }
  2134. int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
  2135. gpa_t addr, int len)
  2136. {
  2137. struct kvm_io_range *range, key;
  2138. int off;
  2139. key = (struct kvm_io_range) {
  2140. .addr = addr,
  2141. .len = len,
  2142. };
  2143. range = bsearch(&key, bus->range, bus->dev_count,
  2144. sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
  2145. if (range == NULL)
  2146. return -ENOENT;
  2147. off = range - bus->range;
  2148. while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
  2149. off--;
  2150. return off;
  2151. }
  2152. /* kvm_io_bus_write - called under kvm->slots_lock */
  2153. int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  2154. int len, const void *val)
  2155. {
  2156. int idx;
  2157. struct kvm_io_bus *bus;
  2158. struct kvm_io_range range;
  2159. range = (struct kvm_io_range) {
  2160. .addr = addr,
  2161. .len = len,
  2162. };
  2163. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  2164. idx = kvm_io_bus_get_first_dev(bus, addr, len);
  2165. if (idx < 0)
  2166. return -EOPNOTSUPP;
  2167. while (idx < bus->dev_count &&
  2168. kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
  2169. if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
  2170. return 0;
  2171. idx++;
  2172. }
  2173. return -EOPNOTSUPP;
  2174. }
  2175. /* kvm_io_bus_read - called under kvm->slots_lock */
  2176. int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  2177. int len, void *val)
  2178. {
  2179. int idx;
  2180. struct kvm_io_bus *bus;
  2181. struct kvm_io_range range;
  2182. range = (struct kvm_io_range) {
  2183. .addr = addr,
  2184. .len = len,
  2185. };
  2186. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  2187. idx = kvm_io_bus_get_first_dev(bus, addr, len);
  2188. if (idx < 0)
  2189. return -EOPNOTSUPP;
  2190. while (idx < bus->dev_count &&
  2191. kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
  2192. if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
  2193. return 0;
  2194. idx++;
  2195. }
  2196. return -EOPNOTSUPP;
  2197. }
  2198. /* Caller must hold slots_lock. */
  2199. int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  2200. int len, struct kvm_io_device *dev)
  2201. {
  2202. struct kvm_io_bus *new_bus, *bus;
  2203. bus = kvm->buses[bus_idx];
  2204. if (bus->dev_count > NR_IOBUS_DEVS - 1)
  2205. return -ENOSPC;
  2206. new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
  2207. sizeof(struct kvm_io_range)), GFP_KERNEL);
  2208. if (!new_bus)
  2209. return -ENOMEM;
  2210. memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
  2211. sizeof(struct kvm_io_range)));
  2212. kvm_io_bus_insert_dev(new_bus, dev, addr, len);
  2213. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  2214. synchronize_srcu_expedited(&kvm->srcu);
  2215. kfree(bus);
  2216. return 0;
  2217. }
  2218. /* Caller must hold slots_lock. */
  2219. int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  2220. struct kvm_io_device *dev)
  2221. {
  2222. int i, r;
  2223. struct kvm_io_bus *new_bus, *bus;
  2224. bus = kvm->buses[bus_idx];
  2225. r = -ENOENT;
  2226. for (i = 0; i < bus->dev_count; i++)
  2227. if (bus->range[i].dev == dev) {
  2228. r = 0;
  2229. break;
  2230. }
  2231. if (r)
  2232. return r;
  2233. new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
  2234. sizeof(struct kvm_io_range)), GFP_KERNEL);
  2235. if (!new_bus)
  2236. return -ENOMEM;
  2237. memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
  2238. new_bus->dev_count--;
  2239. memcpy(new_bus->range + i, bus->range + i + 1,
  2240. (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
  2241. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  2242. synchronize_srcu_expedited(&kvm->srcu);
  2243. kfree(bus);
  2244. return r;
  2245. }
  2246. static struct notifier_block kvm_cpu_notifier = {
  2247. .notifier_call = kvm_cpu_hotplug,
  2248. };
  2249. static int vm_stat_get(void *_offset, u64 *val)
  2250. {
  2251. unsigned offset = (long)_offset;
  2252. struct kvm *kvm;
  2253. *val = 0;
  2254. raw_spin_lock(&kvm_lock);
  2255. list_for_each_entry(kvm, &vm_list, vm_list)
  2256. *val += *(u32 *)((void *)kvm + offset);
  2257. raw_spin_unlock(&kvm_lock);
  2258. return 0;
  2259. }
  2260. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  2261. static int vcpu_stat_get(void *_offset, u64 *val)
  2262. {
  2263. unsigned offset = (long)_offset;
  2264. struct kvm *kvm;
  2265. struct kvm_vcpu *vcpu;
  2266. int i;
  2267. *val = 0;
  2268. raw_spin_lock(&kvm_lock);
  2269. list_for_each_entry(kvm, &vm_list, vm_list)
  2270. kvm_for_each_vcpu(i, vcpu, kvm)
  2271. *val += *(u32 *)((void *)vcpu + offset);
  2272. raw_spin_unlock(&kvm_lock);
  2273. return 0;
  2274. }
  2275. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  2276. static const struct file_operations *stat_fops[] = {
  2277. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  2278. [KVM_STAT_VM] = &vm_stat_fops,
  2279. };
  2280. static int kvm_init_debug(void)
  2281. {
  2282. int r = -EFAULT;
  2283. struct kvm_stats_debugfs_item *p;
  2284. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  2285. if (kvm_debugfs_dir == NULL)
  2286. goto out;
  2287. for (p = debugfs_entries; p->name; ++p) {
  2288. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  2289. (void *)(long)p->offset,
  2290. stat_fops[p->kind]);
  2291. if (p->dentry == NULL)
  2292. goto out_dir;
  2293. }
  2294. return 0;
  2295. out_dir:
  2296. debugfs_remove_recursive(kvm_debugfs_dir);
  2297. out:
  2298. return r;
  2299. }
  2300. static void kvm_exit_debug(void)
  2301. {
  2302. struct kvm_stats_debugfs_item *p;
  2303. for (p = debugfs_entries; p->name; ++p)
  2304. debugfs_remove(p->dentry);
  2305. debugfs_remove(kvm_debugfs_dir);
  2306. }
  2307. static int kvm_suspend(void)
  2308. {
  2309. if (kvm_usage_count)
  2310. hardware_disable_nolock(NULL);
  2311. return 0;
  2312. }
  2313. static void kvm_resume(void)
  2314. {
  2315. if (kvm_usage_count) {
  2316. WARN_ON(raw_spin_is_locked(&kvm_lock));
  2317. hardware_enable_nolock(NULL);
  2318. }
  2319. }
  2320. static struct syscore_ops kvm_syscore_ops = {
  2321. .suspend = kvm_suspend,
  2322. .resume = kvm_resume,
  2323. };
  2324. static inline
  2325. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2326. {
  2327. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2328. }
  2329. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2330. {
  2331. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2332. kvm_arch_vcpu_load(vcpu, cpu);
  2333. }
  2334. static void kvm_sched_out(struct preempt_notifier *pn,
  2335. struct task_struct *next)
  2336. {
  2337. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2338. kvm_arch_vcpu_put(vcpu);
  2339. }
  2340. int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
  2341. struct module *module)
  2342. {
  2343. int r;
  2344. int cpu;
  2345. r = kvm_arch_init(opaque);
  2346. if (r)
  2347. goto out_fail;
  2348. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2349. if (bad_page == NULL) {
  2350. r = -ENOMEM;
  2351. goto out;
  2352. }
  2353. bad_pfn = page_to_pfn(bad_page);
  2354. hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2355. if (hwpoison_page == NULL) {
  2356. r = -ENOMEM;
  2357. goto out_free_0;
  2358. }
  2359. hwpoison_pfn = page_to_pfn(hwpoison_page);
  2360. fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2361. if (fault_page == NULL) {
  2362. r = -ENOMEM;
  2363. goto out_free_0;
  2364. }
  2365. fault_pfn = page_to_pfn(fault_page);
  2366. if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  2367. r = -ENOMEM;
  2368. goto out_free_0;
  2369. }
  2370. r = kvm_arch_hardware_setup();
  2371. if (r < 0)
  2372. goto out_free_0a;
  2373. for_each_online_cpu(cpu) {
  2374. smp_call_function_single(cpu,
  2375. kvm_arch_check_processor_compat,
  2376. &r, 1);
  2377. if (r < 0)
  2378. goto out_free_1;
  2379. }
  2380. r = register_cpu_notifier(&kvm_cpu_notifier);
  2381. if (r)
  2382. goto out_free_2;
  2383. register_reboot_notifier(&kvm_reboot_notifier);
  2384. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2385. if (!vcpu_align)
  2386. vcpu_align = __alignof__(struct kvm_vcpu);
  2387. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
  2388. 0, NULL);
  2389. if (!kvm_vcpu_cache) {
  2390. r = -ENOMEM;
  2391. goto out_free_3;
  2392. }
  2393. r = kvm_async_pf_init();
  2394. if (r)
  2395. goto out_free;
  2396. kvm_chardev_ops.owner = module;
  2397. kvm_vm_fops.owner = module;
  2398. kvm_vcpu_fops.owner = module;
  2399. r = misc_register(&kvm_dev);
  2400. if (r) {
  2401. printk(KERN_ERR "kvm: misc device register failed\n");
  2402. goto out_unreg;
  2403. }
  2404. register_syscore_ops(&kvm_syscore_ops);
  2405. kvm_preempt_ops.sched_in = kvm_sched_in;
  2406. kvm_preempt_ops.sched_out = kvm_sched_out;
  2407. r = kvm_init_debug();
  2408. if (r) {
  2409. printk(KERN_ERR "kvm: create debugfs files failed\n");
  2410. goto out_undebugfs;
  2411. }
  2412. return 0;
  2413. out_undebugfs:
  2414. unregister_syscore_ops(&kvm_syscore_ops);
  2415. out_unreg:
  2416. kvm_async_pf_deinit();
  2417. out_free:
  2418. kmem_cache_destroy(kvm_vcpu_cache);
  2419. out_free_3:
  2420. unregister_reboot_notifier(&kvm_reboot_notifier);
  2421. unregister_cpu_notifier(&kvm_cpu_notifier);
  2422. out_free_2:
  2423. out_free_1:
  2424. kvm_arch_hardware_unsetup();
  2425. out_free_0a:
  2426. free_cpumask_var(cpus_hardware_enabled);
  2427. out_free_0:
  2428. if (fault_page)
  2429. __free_page(fault_page);
  2430. if (hwpoison_page)
  2431. __free_page(hwpoison_page);
  2432. __free_page(bad_page);
  2433. out:
  2434. kvm_arch_exit();
  2435. out_fail:
  2436. return r;
  2437. }
  2438. EXPORT_SYMBOL_GPL(kvm_init);
  2439. void kvm_exit(void)
  2440. {
  2441. kvm_exit_debug();
  2442. misc_deregister(&kvm_dev);
  2443. kmem_cache_destroy(kvm_vcpu_cache);
  2444. kvm_async_pf_deinit();
  2445. unregister_syscore_ops(&kvm_syscore_ops);
  2446. unregister_reboot_notifier(&kvm_reboot_notifier);
  2447. unregister_cpu_notifier(&kvm_cpu_notifier);
  2448. on_each_cpu(hardware_disable_nolock, NULL, 1);
  2449. kvm_arch_hardware_unsetup();
  2450. kvm_arch_exit();
  2451. free_cpumask_var(cpus_hardware_enabled);
  2452. __free_page(hwpoison_page);
  2453. __free_page(bad_page);
  2454. }
  2455. EXPORT_SYMBOL_GPL(kvm_exit);