x86.c 95 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. *
  8. * Authors:
  9. * Avi Kivity <avi@qumranet.com>
  10. * Yaniv Kamay <yaniv@qumranet.com>
  11. *
  12. * This work is licensed under the terms of the GNU GPL, version 2. See
  13. * the COPYING file in the top-level directory.
  14. *
  15. */
  16. #include <linux/kvm_host.h>
  17. #include "irq.h"
  18. #include "mmu.h"
  19. #include "i8254.h"
  20. #include "tss.h"
  21. #include <linux/clocksource.h>
  22. #include <linux/kvm.h>
  23. #include <linux/fs.h>
  24. #include <linux/vmalloc.h>
  25. #include <linux/module.h>
  26. #include <linux/mman.h>
  27. #include <linux/highmem.h>
  28. #include <asm/uaccess.h>
  29. #include <asm/msr.h>
  30. #include <asm/desc.h>
  31. #define MAX_IO_MSRS 256
  32. #define CR0_RESERVED_BITS \
  33. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  34. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  35. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  36. #define CR4_RESERVED_BITS \
  37. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  38. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  39. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  40. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  41. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  42. /* EFER defaults:
  43. * - enable syscall per default because its emulated by KVM
  44. * - enable LME and LMA per default on 64 bit KVM
  45. */
  46. #ifdef CONFIG_X86_64
  47. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  48. #else
  49. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  50. #endif
  51. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  52. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  53. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  54. struct kvm_cpuid_entry2 __user *entries);
  55. struct kvm_x86_ops *kvm_x86_ops;
  56. struct kvm_stats_debugfs_item debugfs_entries[] = {
  57. { "pf_fixed", VCPU_STAT(pf_fixed) },
  58. { "pf_guest", VCPU_STAT(pf_guest) },
  59. { "tlb_flush", VCPU_STAT(tlb_flush) },
  60. { "invlpg", VCPU_STAT(invlpg) },
  61. { "exits", VCPU_STAT(exits) },
  62. { "io_exits", VCPU_STAT(io_exits) },
  63. { "mmio_exits", VCPU_STAT(mmio_exits) },
  64. { "signal_exits", VCPU_STAT(signal_exits) },
  65. { "irq_window", VCPU_STAT(irq_window_exits) },
  66. { "halt_exits", VCPU_STAT(halt_exits) },
  67. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  68. { "hypercalls", VCPU_STAT(hypercalls) },
  69. { "request_irq", VCPU_STAT(request_irq_exits) },
  70. { "irq_exits", VCPU_STAT(irq_exits) },
  71. { "host_state_reload", VCPU_STAT(host_state_reload) },
  72. { "efer_reload", VCPU_STAT(efer_reload) },
  73. { "fpu_reload", VCPU_STAT(fpu_reload) },
  74. { "insn_emulation", VCPU_STAT(insn_emulation) },
  75. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  76. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  77. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  78. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  79. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  80. { "mmu_flooded", VM_STAT(mmu_flooded) },
  81. { "mmu_recycled", VM_STAT(mmu_recycled) },
  82. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  83. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  84. { "largepages", VM_STAT(lpages) },
  85. { NULL }
  86. };
  87. unsigned long segment_base(u16 selector)
  88. {
  89. struct descriptor_table gdt;
  90. struct desc_struct *d;
  91. unsigned long table_base;
  92. unsigned long v;
  93. if (selector == 0)
  94. return 0;
  95. asm("sgdt %0" : "=m"(gdt));
  96. table_base = gdt.base;
  97. if (selector & 4) { /* from ldt */
  98. u16 ldt_selector;
  99. asm("sldt %0" : "=g"(ldt_selector));
  100. table_base = segment_base(ldt_selector);
  101. }
  102. d = (struct desc_struct *)(table_base + (selector & ~7));
  103. v = d->base0 | ((unsigned long)d->base1 << 16) |
  104. ((unsigned long)d->base2 << 24);
  105. #ifdef CONFIG_X86_64
  106. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  107. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  108. #endif
  109. return v;
  110. }
  111. EXPORT_SYMBOL_GPL(segment_base);
  112. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  113. {
  114. if (irqchip_in_kernel(vcpu->kvm))
  115. return vcpu->arch.apic_base;
  116. else
  117. return vcpu->arch.apic_base;
  118. }
  119. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  120. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  121. {
  122. /* TODO: reserve bits check */
  123. if (irqchip_in_kernel(vcpu->kvm))
  124. kvm_lapic_set_base(vcpu, data);
  125. else
  126. vcpu->arch.apic_base = data;
  127. }
  128. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  129. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  130. {
  131. WARN_ON(vcpu->arch.exception.pending);
  132. vcpu->arch.exception.pending = true;
  133. vcpu->arch.exception.has_error_code = false;
  134. vcpu->arch.exception.nr = nr;
  135. }
  136. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  137. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  138. u32 error_code)
  139. {
  140. ++vcpu->stat.pf_guest;
  141. if (vcpu->arch.exception.pending) {
  142. if (vcpu->arch.exception.nr == PF_VECTOR) {
  143. printk(KERN_DEBUG "kvm: inject_page_fault:"
  144. " double fault 0x%lx\n", addr);
  145. vcpu->arch.exception.nr = DF_VECTOR;
  146. vcpu->arch.exception.error_code = 0;
  147. } else if (vcpu->arch.exception.nr == DF_VECTOR) {
  148. /* triple fault -> shutdown */
  149. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  150. }
  151. return;
  152. }
  153. vcpu->arch.cr2 = addr;
  154. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  155. }
  156. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  157. {
  158. WARN_ON(vcpu->arch.exception.pending);
  159. vcpu->arch.exception.pending = true;
  160. vcpu->arch.exception.has_error_code = true;
  161. vcpu->arch.exception.nr = nr;
  162. vcpu->arch.exception.error_code = error_code;
  163. }
  164. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  165. static void __queue_exception(struct kvm_vcpu *vcpu)
  166. {
  167. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  168. vcpu->arch.exception.has_error_code,
  169. vcpu->arch.exception.error_code);
  170. }
  171. /*
  172. * Load the pae pdptrs. Return true is they are all valid.
  173. */
  174. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  175. {
  176. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  177. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  178. int i;
  179. int ret;
  180. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  181. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  182. offset * sizeof(u64), sizeof(pdpte));
  183. if (ret < 0) {
  184. ret = 0;
  185. goto out;
  186. }
  187. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  188. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  189. ret = 0;
  190. goto out;
  191. }
  192. }
  193. ret = 1;
  194. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  195. out:
  196. return ret;
  197. }
  198. EXPORT_SYMBOL_GPL(load_pdptrs);
  199. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  200. {
  201. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  202. bool changed = true;
  203. int r;
  204. if (is_long_mode(vcpu) || !is_pae(vcpu))
  205. return false;
  206. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  207. if (r < 0)
  208. goto out;
  209. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  210. out:
  211. return changed;
  212. }
  213. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  214. {
  215. if (cr0 & CR0_RESERVED_BITS) {
  216. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  217. cr0, vcpu->arch.cr0);
  218. kvm_inject_gp(vcpu, 0);
  219. return;
  220. }
  221. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  222. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  223. kvm_inject_gp(vcpu, 0);
  224. return;
  225. }
  226. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  227. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  228. "and a clear PE flag\n");
  229. kvm_inject_gp(vcpu, 0);
  230. return;
  231. }
  232. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  233. #ifdef CONFIG_X86_64
  234. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  235. int cs_db, cs_l;
  236. if (!is_pae(vcpu)) {
  237. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  238. "in long mode while PAE is disabled\n");
  239. kvm_inject_gp(vcpu, 0);
  240. return;
  241. }
  242. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  243. if (cs_l) {
  244. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  245. "in long mode while CS.L == 1\n");
  246. kvm_inject_gp(vcpu, 0);
  247. return;
  248. }
  249. } else
  250. #endif
  251. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  252. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  253. "reserved bits\n");
  254. kvm_inject_gp(vcpu, 0);
  255. return;
  256. }
  257. }
  258. kvm_x86_ops->set_cr0(vcpu, cr0);
  259. vcpu->arch.cr0 = cr0;
  260. kvm_mmu_reset_context(vcpu);
  261. return;
  262. }
  263. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  264. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  265. {
  266. kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  267. KVMTRACE_1D(LMSW, vcpu,
  268. (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
  269. handler);
  270. }
  271. EXPORT_SYMBOL_GPL(kvm_lmsw);
  272. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  273. {
  274. if (cr4 & CR4_RESERVED_BITS) {
  275. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  276. kvm_inject_gp(vcpu, 0);
  277. return;
  278. }
  279. if (is_long_mode(vcpu)) {
  280. if (!(cr4 & X86_CR4_PAE)) {
  281. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  282. "in long mode\n");
  283. kvm_inject_gp(vcpu, 0);
  284. return;
  285. }
  286. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  287. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  288. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  289. kvm_inject_gp(vcpu, 0);
  290. return;
  291. }
  292. if (cr4 & X86_CR4_VMXE) {
  293. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  294. kvm_inject_gp(vcpu, 0);
  295. return;
  296. }
  297. kvm_x86_ops->set_cr4(vcpu, cr4);
  298. vcpu->arch.cr4 = cr4;
  299. kvm_mmu_reset_context(vcpu);
  300. }
  301. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  302. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  303. {
  304. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  305. kvm_mmu_flush_tlb(vcpu);
  306. return;
  307. }
  308. if (is_long_mode(vcpu)) {
  309. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  310. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  311. kvm_inject_gp(vcpu, 0);
  312. return;
  313. }
  314. } else {
  315. if (is_pae(vcpu)) {
  316. if (cr3 & CR3_PAE_RESERVED_BITS) {
  317. printk(KERN_DEBUG
  318. "set_cr3: #GP, reserved bits\n");
  319. kvm_inject_gp(vcpu, 0);
  320. return;
  321. }
  322. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  323. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  324. "reserved bits\n");
  325. kvm_inject_gp(vcpu, 0);
  326. return;
  327. }
  328. }
  329. /*
  330. * We don't check reserved bits in nonpae mode, because
  331. * this isn't enforced, and VMware depends on this.
  332. */
  333. }
  334. /*
  335. * Does the new cr3 value map to physical memory? (Note, we
  336. * catch an invalid cr3 even in real-mode, because it would
  337. * cause trouble later on when we turn on paging anyway.)
  338. *
  339. * A real CPU would silently accept an invalid cr3 and would
  340. * attempt to use it - with largely undefined (and often hard
  341. * to debug) behavior on the guest side.
  342. */
  343. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  344. kvm_inject_gp(vcpu, 0);
  345. else {
  346. vcpu->arch.cr3 = cr3;
  347. vcpu->arch.mmu.new_cr3(vcpu);
  348. }
  349. }
  350. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  351. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  352. {
  353. if (cr8 & CR8_RESERVED_BITS) {
  354. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  355. kvm_inject_gp(vcpu, 0);
  356. return;
  357. }
  358. if (irqchip_in_kernel(vcpu->kvm))
  359. kvm_lapic_set_tpr(vcpu, cr8);
  360. else
  361. vcpu->arch.cr8 = cr8;
  362. }
  363. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  364. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  365. {
  366. if (irqchip_in_kernel(vcpu->kvm))
  367. return kvm_lapic_get_cr8(vcpu);
  368. else
  369. return vcpu->arch.cr8;
  370. }
  371. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  372. /*
  373. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  374. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  375. *
  376. * This list is modified at module load time to reflect the
  377. * capabilities of the host cpu.
  378. */
  379. static u32 msrs_to_save[] = {
  380. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  381. MSR_K6_STAR,
  382. #ifdef CONFIG_X86_64
  383. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  384. #endif
  385. MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  386. MSR_IA32_PERF_STATUS,
  387. };
  388. static unsigned num_msrs_to_save;
  389. static u32 emulated_msrs[] = {
  390. MSR_IA32_MISC_ENABLE,
  391. };
  392. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  393. {
  394. if (efer & efer_reserved_bits) {
  395. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  396. efer);
  397. kvm_inject_gp(vcpu, 0);
  398. return;
  399. }
  400. if (is_paging(vcpu)
  401. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  402. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  403. kvm_inject_gp(vcpu, 0);
  404. return;
  405. }
  406. kvm_x86_ops->set_efer(vcpu, efer);
  407. efer &= ~EFER_LMA;
  408. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  409. vcpu->arch.shadow_efer = efer;
  410. }
  411. void kvm_enable_efer_bits(u64 mask)
  412. {
  413. efer_reserved_bits &= ~mask;
  414. }
  415. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  416. /*
  417. * Writes msr value into into the appropriate "register".
  418. * Returns 0 on success, non-0 otherwise.
  419. * Assumes vcpu_load() was already called.
  420. */
  421. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  422. {
  423. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  424. }
  425. /*
  426. * Adapt set_msr() to msr_io()'s calling convention
  427. */
  428. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  429. {
  430. return kvm_set_msr(vcpu, index, *data);
  431. }
  432. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  433. {
  434. static int version;
  435. struct kvm_wall_clock wc;
  436. struct timespec wc_ts;
  437. if (!wall_clock)
  438. return;
  439. version++;
  440. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  441. wc_ts = current_kernel_time();
  442. wc.wc_sec = wc_ts.tv_sec;
  443. wc.wc_nsec = wc_ts.tv_nsec;
  444. wc.wc_version = version;
  445. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  446. version++;
  447. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  448. }
  449. static void kvm_write_guest_time(struct kvm_vcpu *v)
  450. {
  451. struct timespec ts;
  452. unsigned long flags;
  453. struct kvm_vcpu_arch *vcpu = &v->arch;
  454. void *shared_kaddr;
  455. if ((!vcpu->time_page))
  456. return;
  457. /* Keep irq disabled to prevent changes to the clock */
  458. local_irq_save(flags);
  459. kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
  460. &vcpu->hv_clock.tsc_timestamp);
  461. ktime_get_ts(&ts);
  462. local_irq_restore(flags);
  463. /* With all the info we got, fill in the values */
  464. vcpu->hv_clock.system_time = ts.tv_nsec +
  465. (NSEC_PER_SEC * (u64)ts.tv_sec);
  466. /*
  467. * The interface expects us to write an even number signaling that the
  468. * update is finished. Since the guest won't see the intermediate
  469. * state, we just write "2" at the end
  470. */
  471. vcpu->hv_clock.version = 2;
  472. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  473. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  474. sizeof(vcpu->hv_clock));
  475. kunmap_atomic(shared_kaddr, KM_USER0);
  476. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  477. }
  478. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  479. {
  480. switch (msr) {
  481. case MSR_EFER:
  482. set_efer(vcpu, data);
  483. break;
  484. case MSR_IA32_MC0_STATUS:
  485. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  486. __func__, data);
  487. break;
  488. case MSR_IA32_MCG_STATUS:
  489. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  490. __func__, data);
  491. break;
  492. case MSR_IA32_MCG_CTL:
  493. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
  494. __func__, data);
  495. break;
  496. case MSR_IA32_UCODE_REV:
  497. case MSR_IA32_UCODE_WRITE:
  498. case 0x200 ... 0x2ff: /* MTRRs */
  499. break;
  500. case MSR_IA32_APICBASE:
  501. kvm_set_apic_base(vcpu, data);
  502. break;
  503. case MSR_IA32_MISC_ENABLE:
  504. vcpu->arch.ia32_misc_enable_msr = data;
  505. break;
  506. case MSR_KVM_WALL_CLOCK:
  507. vcpu->kvm->arch.wall_clock = data;
  508. kvm_write_wall_clock(vcpu->kvm, data);
  509. break;
  510. case MSR_KVM_SYSTEM_TIME: {
  511. if (vcpu->arch.time_page) {
  512. kvm_release_page_dirty(vcpu->arch.time_page);
  513. vcpu->arch.time_page = NULL;
  514. }
  515. vcpu->arch.time = data;
  516. /* we verify if the enable bit is set... */
  517. if (!(data & 1))
  518. break;
  519. /* ...but clean it before doing the actual write */
  520. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  521. vcpu->arch.hv_clock.tsc_to_system_mul =
  522. clocksource_khz2mult(tsc_khz, 22);
  523. vcpu->arch.hv_clock.tsc_shift = 22;
  524. down_read(&current->mm->mmap_sem);
  525. vcpu->arch.time_page =
  526. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  527. up_read(&current->mm->mmap_sem);
  528. if (is_error_page(vcpu->arch.time_page)) {
  529. kvm_release_page_clean(vcpu->arch.time_page);
  530. vcpu->arch.time_page = NULL;
  531. }
  532. kvm_write_guest_time(vcpu);
  533. break;
  534. }
  535. default:
  536. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
  537. return 1;
  538. }
  539. return 0;
  540. }
  541. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  542. /*
  543. * Reads an msr value (of 'msr_index') into 'pdata'.
  544. * Returns 0 on success, non-0 otherwise.
  545. * Assumes vcpu_load() was already called.
  546. */
  547. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  548. {
  549. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  550. }
  551. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  552. {
  553. u64 data;
  554. switch (msr) {
  555. case 0xc0010010: /* SYSCFG */
  556. case 0xc0010015: /* HWCR */
  557. case MSR_IA32_PLATFORM_ID:
  558. case MSR_IA32_P5_MC_ADDR:
  559. case MSR_IA32_P5_MC_TYPE:
  560. case MSR_IA32_MC0_CTL:
  561. case MSR_IA32_MCG_STATUS:
  562. case MSR_IA32_MCG_CAP:
  563. case MSR_IA32_MCG_CTL:
  564. case MSR_IA32_MC0_MISC:
  565. case MSR_IA32_MC0_MISC+4:
  566. case MSR_IA32_MC0_MISC+8:
  567. case MSR_IA32_MC0_MISC+12:
  568. case MSR_IA32_MC0_MISC+16:
  569. case MSR_IA32_UCODE_REV:
  570. case MSR_IA32_EBL_CR_POWERON:
  571. /* MTRR registers */
  572. case 0xfe:
  573. case 0x200 ... 0x2ff:
  574. data = 0;
  575. break;
  576. case 0xcd: /* fsb frequency */
  577. data = 3;
  578. break;
  579. case MSR_IA32_APICBASE:
  580. data = kvm_get_apic_base(vcpu);
  581. break;
  582. case MSR_IA32_MISC_ENABLE:
  583. data = vcpu->arch.ia32_misc_enable_msr;
  584. break;
  585. case MSR_IA32_PERF_STATUS:
  586. /* TSC increment by tick */
  587. data = 1000ULL;
  588. /* CPU multiplier */
  589. data |= (((uint64_t)4ULL) << 40);
  590. break;
  591. case MSR_EFER:
  592. data = vcpu->arch.shadow_efer;
  593. break;
  594. case MSR_KVM_WALL_CLOCK:
  595. data = vcpu->kvm->arch.wall_clock;
  596. break;
  597. case MSR_KVM_SYSTEM_TIME:
  598. data = vcpu->arch.time;
  599. break;
  600. default:
  601. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  602. return 1;
  603. }
  604. *pdata = data;
  605. return 0;
  606. }
  607. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  608. /*
  609. * Read or write a bunch of msrs. All parameters are kernel addresses.
  610. *
  611. * @return number of msrs set successfully.
  612. */
  613. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  614. struct kvm_msr_entry *entries,
  615. int (*do_msr)(struct kvm_vcpu *vcpu,
  616. unsigned index, u64 *data))
  617. {
  618. int i;
  619. vcpu_load(vcpu);
  620. down_read(&vcpu->kvm->slots_lock);
  621. for (i = 0; i < msrs->nmsrs; ++i)
  622. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  623. break;
  624. up_read(&vcpu->kvm->slots_lock);
  625. vcpu_put(vcpu);
  626. return i;
  627. }
  628. /*
  629. * Read or write a bunch of msrs. Parameters are user addresses.
  630. *
  631. * @return number of msrs set successfully.
  632. */
  633. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  634. int (*do_msr)(struct kvm_vcpu *vcpu,
  635. unsigned index, u64 *data),
  636. int writeback)
  637. {
  638. struct kvm_msrs msrs;
  639. struct kvm_msr_entry *entries;
  640. int r, n;
  641. unsigned size;
  642. r = -EFAULT;
  643. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  644. goto out;
  645. r = -E2BIG;
  646. if (msrs.nmsrs >= MAX_IO_MSRS)
  647. goto out;
  648. r = -ENOMEM;
  649. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  650. entries = vmalloc(size);
  651. if (!entries)
  652. goto out;
  653. r = -EFAULT;
  654. if (copy_from_user(entries, user_msrs->entries, size))
  655. goto out_free;
  656. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  657. if (r < 0)
  658. goto out_free;
  659. r = -EFAULT;
  660. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  661. goto out_free;
  662. r = n;
  663. out_free:
  664. vfree(entries);
  665. out:
  666. return r;
  667. }
  668. /*
  669. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  670. * cached on it.
  671. */
  672. void decache_vcpus_on_cpu(int cpu)
  673. {
  674. struct kvm *vm;
  675. struct kvm_vcpu *vcpu;
  676. int i;
  677. spin_lock(&kvm_lock);
  678. list_for_each_entry(vm, &vm_list, vm_list)
  679. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  680. vcpu = vm->vcpus[i];
  681. if (!vcpu)
  682. continue;
  683. /*
  684. * If the vcpu is locked, then it is running on some
  685. * other cpu and therefore it is not cached on the
  686. * cpu in question.
  687. *
  688. * If it's not locked, check the last cpu it executed
  689. * on.
  690. */
  691. if (mutex_trylock(&vcpu->mutex)) {
  692. if (vcpu->cpu == cpu) {
  693. kvm_x86_ops->vcpu_decache(vcpu);
  694. vcpu->cpu = -1;
  695. }
  696. mutex_unlock(&vcpu->mutex);
  697. }
  698. }
  699. spin_unlock(&kvm_lock);
  700. }
  701. int kvm_dev_ioctl_check_extension(long ext)
  702. {
  703. int r;
  704. switch (ext) {
  705. case KVM_CAP_IRQCHIP:
  706. case KVM_CAP_HLT:
  707. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  708. case KVM_CAP_USER_MEMORY:
  709. case KVM_CAP_SET_TSS_ADDR:
  710. case KVM_CAP_EXT_CPUID:
  711. case KVM_CAP_CLOCKSOURCE:
  712. case KVM_CAP_PIT:
  713. case KVM_CAP_NOP_IO_DELAY:
  714. case KVM_CAP_MP_STATE:
  715. r = 1;
  716. break;
  717. case KVM_CAP_VAPIC:
  718. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  719. break;
  720. case KVM_CAP_NR_VCPUS:
  721. r = KVM_MAX_VCPUS;
  722. break;
  723. case KVM_CAP_NR_MEMSLOTS:
  724. r = KVM_MEMORY_SLOTS;
  725. break;
  726. case KVM_CAP_PV_MMU:
  727. r = !tdp_enabled;
  728. break;
  729. default:
  730. r = 0;
  731. break;
  732. }
  733. return r;
  734. }
  735. long kvm_arch_dev_ioctl(struct file *filp,
  736. unsigned int ioctl, unsigned long arg)
  737. {
  738. void __user *argp = (void __user *)arg;
  739. long r;
  740. switch (ioctl) {
  741. case KVM_GET_MSR_INDEX_LIST: {
  742. struct kvm_msr_list __user *user_msr_list = argp;
  743. struct kvm_msr_list msr_list;
  744. unsigned n;
  745. r = -EFAULT;
  746. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  747. goto out;
  748. n = msr_list.nmsrs;
  749. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  750. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  751. goto out;
  752. r = -E2BIG;
  753. if (n < num_msrs_to_save)
  754. goto out;
  755. r = -EFAULT;
  756. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  757. num_msrs_to_save * sizeof(u32)))
  758. goto out;
  759. if (copy_to_user(user_msr_list->indices
  760. + num_msrs_to_save * sizeof(u32),
  761. &emulated_msrs,
  762. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  763. goto out;
  764. r = 0;
  765. break;
  766. }
  767. case KVM_GET_SUPPORTED_CPUID: {
  768. struct kvm_cpuid2 __user *cpuid_arg = argp;
  769. struct kvm_cpuid2 cpuid;
  770. r = -EFAULT;
  771. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  772. goto out;
  773. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  774. cpuid_arg->entries);
  775. if (r)
  776. goto out;
  777. r = -EFAULT;
  778. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  779. goto out;
  780. r = 0;
  781. break;
  782. }
  783. default:
  784. r = -EINVAL;
  785. }
  786. out:
  787. return r;
  788. }
  789. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  790. {
  791. kvm_x86_ops->vcpu_load(vcpu, cpu);
  792. kvm_write_guest_time(vcpu);
  793. }
  794. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  795. {
  796. kvm_x86_ops->vcpu_put(vcpu);
  797. kvm_put_guest_fpu(vcpu);
  798. }
  799. static int is_efer_nx(void)
  800. {
  801. u64 efer;
  802. rdmsrl(MSR_EFER, efer);
  803. return efer & EFER_NX;
  804. }
  805. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  806. {
  807. int i;
  808. struct kvm_cpuid_entry2 *e, *entry;
  809. entry = NULL;
  810. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  811. e = &vcpu->arch.cpuid_entries[i];
  812. if (e->function == 0x80000001) {
  813. entry = e;
  814. break;
  815. }
  816. }
  817. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  818. entry->edx &= ~(1 << 20);
  819. printk(KERN_INFO "kvm: guest NX capability removed\n");
  820. }
  821. }
  822. /* when an old userspace process fills a new kernel module */
  823. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  824. struct kvm_cpuid *cpuid,
  825. struct kvm_cpuid_entry __user *entries)
  826. {
  827. int r, i;
  828. struct kvm_cpuid_entry *cpuid_entries;
  829. r = -E2BIG;
  830. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  831. goto out;
  832. r = -ENOMEM;
  833. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  834. if (!cpuid_entries)
  835. goto out;
  836. r = -EFAULT;
  837. if (copy_from_user(cpuid_entries, entries,
  838. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  839. goto out_free;
  840. for (i = 0; i < cpuid->nent; i++) {
  841. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  842. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  843. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  844. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  845. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  846. vcpu->arch.cpuid_entries[i].index = 0;
  847. vcpu->arch.cpuid_entries[i].flags = 0;
  848. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  849. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  850. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  851. }
  852. vcpu->arch.cpuid_nent = cpuid->nent;
  853. cpuid_fix_nx_cap(vcpu);
  854. r = 0;
  855. out_free:
  856. vfree(cpuid_entries);
  857. out:
  858. return r;
  859. }
  860. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  861. struct kvm_cpuid2 *cpuid,
  862. struct kvm_cpuid_entry2 __user *entries)
  863. {
  864. int r;
  865. r = -E2BIG;
  866. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  867. goto out;
  868. r = -EFAULT;
  869. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  870. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  871. goto out;
  872. vcpu->arch.cpuid_nent = cpuid->nent;
  873. return 0;
  874. out:
  875. return r;
  876. }
  877. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  878. struct kvm_cpuid2 *cpuid,
  879. struct kvm_cpuid_entry2 __user *entries)
  880. {
  881. int r;
  882. r = -E2BIG;
  883. if (cpuid->nent < vcpu->arch.cpuid_nent)
  884. goto out;
  885. r = -EFAULT;
  886. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  887. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  888. goto out;
  889. return 0;
  890. out:
  891. cpuid->nent = vcpu->arch.cpuid_nent;
  892. return r;
  893. }
  894. static inline u32 bit(int bitno)
  895. {
  896. return 1 << (bitno & 31);
  897. }
  898. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  899. u32 index)
  900. {
  901. entry->function = function;
  902. entry->index = index;
  903. cpuid_count(entry->function, entry->index,
  904. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  905. entry->flags = 0;
  906. }
  907. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  908. u32 index, int *nent, int maxnent)
  909. {
  910. const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
  911. bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
  912. bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
  913. bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
  914. bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
  915. bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
  916. bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
  917. bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
  918. bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
  919. bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
  920. const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
  921. bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
  922. bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
  923. bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
  924. bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
  925. bit(X86_FEATURE_PGE) |
  926. bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
  927. bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
  928. bit(X86_FEATURE_SYSCALL) |
  929. (bit(X86_FEATURE_NX) && is_efer_nx()) |
  930. #ifdef CONFIG_X86_64
  931. bit(X86_FEATURE_LM) |
  932. #endif
  933. bit(X86_FEATURE_MMXEXT) |
  934. bit(X86_FEATURE_3DNOWEXT) |
  935. bit(X86_FEATURE_3DNOW);
  936. const u32 kvm_supported_word3_x86_features =
  937. bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
  938. const u32 kvm_supported_word6_x86_features =
  939. bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
  940. /* all func 2 cpuid_count() should be called on the same cpu */
  941. get_cpu();
  942. do_cpuid_1_ent(entry, function, index);
  943. ++*nent;
  944. switch (function) {
  945. case 0:
  946. entry->eax = min(entry->eax, (u32)0xb);
  947. break;
  948. case 1:
  949. entry->edx &= kvm_supported_word0_x86_features;
  950. entry->ecx &= kvm_supported_word3_x86_features;
  951. break;
  952. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  953. * may return different values. This forces us to get_cpu() before
  954. * issuing the first command, and also to emulate this annoying behavior
  955. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  956. case 2: {
  957. int t, times = entry->eax & 0xff;
  958. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  959. for (t = 1; t < times && *nent < maxnent; ++t) {
  960. do_cpuid_1_ent(&entry[t], function, 0);
  961. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  962. ++*nent;
  963. }
  964. break;
  965. }
  966. /* function 4 and 0xb have additional index. */
  967. case 4: {
  968. int i, cache_type;
  969. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  970. /* read more entries until cache_type is zero */
  971. for (i = 1; *nent < maxnent; ++i) {
  972. cache_type = entry[i - 1].eax & 0x1f;
  973. if (!cache_type)
  974. break;
  975. do_cpuid_1_ent(&entry[i], function, i);
  976. entry[i].flags |=
  977. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  978. ++*nent;
  979. }
  980. break;
  981. }
  982. case 0xb: {
  983. int i, level_type;
  984. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  985. /* read more entries until level_type is zero */
  986. for (i = 1; *nent < maxnent; ++i) {
  987. level_type = entry[i - 1].ecx & 0xff;
  988. if (!level_type)
  989. break;
  990. do_cpuid_1_ent(&entry[i], function, i);
  991. entry[i].flags |=
  992. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  993. ++*nent;
  994. }
  995. break;
  996. }
  997. case 0x80000000:
  998. entry->eax = min(entry->eax, 0x8000001a);
  999. break;
  1000. case 0x80000001:
  1001. entry->edx &= kvm_supported_word1_x86_features;
  1002. entry->ecx &= kvm_supported_word6_x86_features;
  1003. break;
  1004. }
  1005. put_cpu();
  1006. }
  1007. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1008. struct kvm_cpuid_entry2 __user *entries)
  1009. {
  1010. struct kvm_cpuid_entry2 *cpuid_entries;
  1011. int limit, nent = 0, r = -E2BIG;
  1012. u32 func;
  1013. if (cpuid->nent < 1)
  1014. goto out;
  1015. r = -ENOMEM;
  1016. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1017. if (!cpuid_entries)
  1018. goto out;
  1019. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1020. limit = cpuid_entries[0].eax;
  1021. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1022. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1023. &nent, cpuid->nent);
  1024. r = -E2BIG;
  1025. if (nent >= cpuid->nent)
  1026. goto out_free;
  1027. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1028. limit = cpuid_entries[nent - 1].eax;
  1029. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1030. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1031. &nent, cpuid->nent);
  1032. r = -EFAULT;
  1033. if (copy_to_user(entries, cpuid_entries,
  1034. nent * sizeof(struct kvm_cpuid_entry2)))
  1035. goto out_free;
  1036. cpuid->nent = nent;
  1037. r = 0;
  1038. out_free:
  1039. vfree(cpuid_entries);
  1040. out:
  1041. return r;
  1042. }
  1043. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1044. struct kvm_lapic_state *s)
  1045. {
  1046. vcpu_load(vcpu);
  1047. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1048. vcpu_put(vcpu);
  1049. return 0;
  1050. }
  1051. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1052. struct kvm_lapic_state *s)
  1053. {
  1054. vcpu_load(vcpu);
  1055. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1056. kvm_apic_post_state_restore(vcpu);
  1057. vcpu_put(vcpu);
  1058. return 0;
  1059. }
  1060. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1061. struct kvm_interrupt *irq)
  1062. {
  1063. if (irq->irq < 0 || irq->irq >= 256)
  1064. return -EINVAL;
  1065. if (irqchip_in_kernel(vcpu->kvm))
  1066. return -ENXIO;
  1067. vcpu_load(vcpu);
  1068. set_bit(irq->irq, vcpu->arch.irq_pending);
  1069. set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  1070. vcpu_put(vcpu);
  1071. return 0;
  1072. }
  1073. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1074. struct kvm_tpr_access_ctl *tac)
  1075. {
  1076. if (tac->flags)
  1077. return -EINVAL;
  1078. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1079. return 0;
  1080. }
  1081. long kvm_arch_vcpu_ioctl(struct file *filp,
  1082. unsigned int ioctl, unsigned long arg)
  1083. {
  1084. struct kvm_vcpu *vcpu = filp->private_data;
  1085. void __user *argp = (void __user *)arg;
  1086. int r;
  1087. switch (ioctl) {
  1088. case KVM_GET_LAPIC: {
  1089. struct kvm_lapic_state lapic;
  1090. memset(&lapic, 0, sizeof lapic);
  1091. r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
  1092. if (r)
  1093. goto out;
  1094. r = -EFAULT;
  1095. if (copy_to_user(argp, &lapic, sizeof lapic))
  1096. goto out;
  1097. r = 0;
  1098. break;
  1099. }
  1100. case KVM_SET_LAPIC: {
  1101. struct kvm_lapic_state lapic;
  1102. r = -EFAULT;
  1103. if (copy_from_user(&lapic, argp, sizeof lapic))
  1104. goto out;
  1105. r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
  1106. if (r)
  1107. goto out;
  1108. r = 0;
  1109. break;
  1110. }
  1111. case KVM_INTERRUPT: {
  1112. struct kvm_interrupt irq;
  1113. r = -EFAULT;
  1114. if (copy_from_user(&irq, argp, sizeof irq))
  1115. goto out;
  1116. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1117. if (r)
  1118. goto out;
  1119. r = 0;
  1120. break;
  1121. }
  1122. case KVM_SET_CPUID: {
  1123. struct kvm_cpuid __user *cpuid_arg = argp;
  1124. struct kvm_cpuid cpuid;
  1125. r = -EFAULT;
  1126. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1127. goto out;
  1128. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1129. if (r)
  1130. goto out;
  1131. break;
  1132. }
  1133. case KVM_SET_CPUID2: {
  1134. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1135. struct kvm_cpuid2 cpuid;
  1136. r = -EFAULT;
  1137. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1138. goto out;
  1139. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1140. cpuid_arg->entries);
  1141. if (r)
  1142. goto out;
  1143. break;
  1144. }
  1145. case KVM_GET_CPUID2: {
  1146. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1147. struct kvm_cpuid2 cpuid;
  1148. r = -EFAULT;
  1149. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1150. goto out;
  1151. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1152. cpuid_arg->entries);
  1153. if (r)
  1154. goto out;
  1155. r = -EFAULT;
  1156. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1157. goto out;
  1158. r = 0;
  1159. break;
  1160. }
  1161. case KVM_GET_MSRS:
  1162. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1163. break;
  1164. case KVM_SET_MSRS:
  1165. r = msr_io(vcpu, argp, do_set_msr, 0);
  1166. break;
  1167. case KVM_TPR_ACCESS_REPORTING: {
  1168. struct kvm_tpr_access_ctl tac;
  1169. r = -EFAULT;
  1170. if (copy_from_user(&tac, argp, sizeof tac))
  1171. goto out;
  1172. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1173. if (r)
  1174. goto out;
  1175. r = -EFAULT;
  1176. if (copy_to_user(argp, &tac, sizeof tac))
  1177. goto out;
  1178. r = 0;
  1179. break;
  1180. };
  1181. case KVM_SET_VAPIC_ADDR: {
  1182. struct kvm_vapic_addr va;
  1183. r = -EINVAL;
  1184. if (!irqchip_in_kernel(vcpu->kvm))
  1185. goto out;
  1186. r = -EFAULT;
  1187. if (copy_from_user(&va, argp, sizeof va))
  1188. goto out;
  1189. r = 0;
  1190. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1191. break;
  1192. }
  1193. default:
  1194. r = -EINVAL;
  1195. }
  1196. out:
  1197. return r;
  1198. }
  1199. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1200. {
  1201. int ret;
  1202. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1203. return -1;
  1204. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1205. return ret;
  1206. }
  1207. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1208. u32 kvm_nr_mmu_pages)
  1209. {
  1210. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1211. return -EINVAL;
  1212. down_write(&kvm->slots_lock);
  1213. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1214. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1215. up_write(&kvm->slots_lock);
  1216. return 0;
  1217. }
  1218. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1219. {
  1220. return kvm->arch.n_alloc_mmu_pages;
  1221. }
  1222. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1223. {
  1224. int i;
  1225. struct kvm_mem_alias *alias;
  1226. for (i = 0; i < kvm->arch.naliases; ++i) {
  1227. alias = &kvm->arch.aliases[i];
  1228. if (gfn >= alias->base_gfn
  1229. && gfn < alias->base_gfn + alias->npages)
  1230. return alias->target_gfn + gfn - alias->base_gfn;
  1231. }
  1232. return gfn;
  1233. }
  1234. /*
  1235. * Set a new alias region. Aliases map a portion of physical memory into
  1236. * another portion. This is useful for memory windows, for example the PC
  1237. * VGA region.
  1238. */
  1239. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1240. struct kvm_memory_alias *alias)
  1241. {
  1242. int r, n;
  1243. struct kvm_mem_alias *p;
  1244. r = -EINVAL;
  1245. /* General sanity checks */
  1246. if (alias->memory_size & (PAGE_SIZE - 1))
  1247. goto out;
  1248. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1249. goto out;
  1250. if (alias->slot >= KVM_ALIAS_SLOTS)
  1251. goto out;
  1252. if (alias->guest_phys_addr + alias->memory_size
  1253. < alias->guest_phys_addr)
  1254. goto out;
  1255. if (alias->target_phys_addr + alias->memory_size
  1256. < alias->target_phys_addr)
  1257. goto out;
  1258. down_write(&kvm->slots_lock);
  1259. p = &kvm->arch.aliases[alias->slot];
  1260. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  1261. p->npages = alias->memory_size >> PAGE_SHIFT;
  1262. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  1263. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  1264. if (kvm->arch.aliases[n - 1].npages)
  1265. break;
  1266. kvm->arch.naliases = n;
  1267. kvm_mmu_zap_all(kvm);
  1268. up_write(&kvm->slots_lock);
  1269. return 0;
  1270. out:
  1271. return r;
  1272. }
  1273. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1274. {
  1275. int r;
  1276. r = 0;
  1277. switch (chip->chip_id) {
  1278. case KVM_IRQCHIP_PIC_MASTER:
  1279. memcpy(&chip->chip.pic,
  1280. &pic_irqchip(kvm)->pics[0],
  1281. sizeof(struct kvm_pic_state));
  1282. break;
  1283. case KVM_IRQCHIP_PIC_SLAVE:
  1284. memcpy(&chip->chip.pic,
  1285. &pic_irqchip(kvm)->pics[1],
  1286. sizeof(struct kvm_pic_state));
  1287. break;
  1288. case KVM_IRQCHIP_IOAPIC:
  1289. memcpy(&chip->chip.ioapic,
  1290. ioapic_irqchip(kvm),
  1291. sizeof(struct kvm_ioapic_state));
  1292. break;
  1293. default:
  1294. r = -EINVAL;
  1295. break;
  1296. }
  1297. return r;
  1298. }
  1299. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1300. {
  1301. int r;
  1302. r = 0;
  1303. switch (chip->chip_id) {
  1304. case KVM_IRQCHIP_PIC_MASTER:
  1305. memcpy(&pic_irqchip(kvm)->pics[0],
  1306. &chip->chip.pic,
  1307. sizeof(struct kvm_pic_state));
  1308. break;
  1309. case KVM_IRQCHIP_PIC_SLAVE:
  1310. memcpy(&pic_irqchip(kvm)->pics[1],
  1311. &chip->chip.pic,
  1312. sizeof(struct kvm_pic_state));
  1313. break;
  1314. case KVM_IRQCHIP_IOAPIC:
  1315. memcpy(ioapic_irqchip(kvm),
  1316. &chip->chip.ioapic,
  1317. sizeof(struct kvm_ioapic_state));
  1318. break;
  1319. default:
  1320. r = -EINVAL;
  1321. break;
  1322. }
  1323. kvm_pic_update_irq(pic_irqchip(kvm));
  1324. return r;
  1325. }
  1326. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1327. {
  1328. int r = 0;
  1329. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  1330. return r;
  1331. }
  1332. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1333. {
  1334. int r = 0;
  1335. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  1336. kvm_pit_load_count(kvm, 0, ps->channels[0].count);
  1337. return r;
  1338. }
  1339. /*
  1340. * Get (and clear) the dirty memory log for a memory slot.
  1341. */
  1342. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1343. struct kvm_dirty_log *log)
  1344. {
  1345. int r;
  1346. int n;
  1347. struct kvm_memory_slot *memslot;
  1348. int is_dirty = 0;
  1349. down_write(&kvm->slots_lock);
  1350. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1351. if (r)
  1352. goto out;
  1353. /* If nothing is dirty, don't bother messing with page tables. */
  1354. if (is_dirty) {
  1355. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  1356. kvm_flush_remote_tlbs(kvm);
  1357. memslot = &kvm->memslots[log->slot];
  1358. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1359. memset(memslot->dirty_bitmap, 0, n);
  1360. }
  1361. r = 0;
  1362. out:
  1363. up_write(&kvm->slots_lock);
  1364. return r;
  1365. }
  1366. long kvm_arch_vm_ioctl(struct file *filp,
  1367. unsigned int ioctl, unsigned long arg)
  1368. {
  1369. struct kvm *kvm = filp->private_data;
  1370. void __user *argp = (void __user *)arg;
  1371. int r = -EINVAL;
  1372. switch (ioctl) {
  1373. case KVM_SET_TSS_ADDR:
  1374. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  1375. if (r < 0)
  1376. goto out;
  1377. break;
  1378. case KVM_SET_MEMORY_REGION: {
  1379. struct kvm_memory_region kvm_mem;
  1380. struct kvm_userspace_memory_region kvm_userspace_mem;
  1381. r = -EFAULT;
  1382. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  1383. goto out;
  1384. kvm_userspace_mem.slot = kvm_mem.slot;
  1385. kvm_userspace_mem.flags = kvm_mem.flags;
  1386. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  1387. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  1388. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1389. if (r)
  1390. goto out;
  1391. break;
  1392. }
  1393. case KVM_SET_NR_MMU_PAGES:
  1394. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  1395. if (r)
  1396. goto out;
  1397. break;
  1398. case KVM_GET_NR_MMU_PAGES:
  1399. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  1400. break;
  1401. case KVM_SET_MEMORY_ALIAS: {
  1402. struct kvm_memory_alias alias;
  1403. r = -EFAULT;
  1404. if (copy_from_user(&alias, argp, sizeof alias))
  1405. goto out;
  1406. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  1407. if (r)
  1408. goto out;
  1409. break;
  1410. }
  1411. case KVM_CREATE_IRQCHIP:
  1412. r = -ENOMEM;
  1413. kvm->arch.vpic = kvm_create_pic(kvm);
  1414. if (kvm->arch.vpic) {
  1415. r = kvm_ioapic_init(kvm);
  1416. if (r) {
  1417. kfree(kvm->arch.vpic);
  1418. kvm->arch.vpic = NULL;
  1419. goto out;
  1420. }
  1421. } else
  1422. goto out;
  1423. break;
  1424. case KVM_CREATE_PIT:
  1425. r = -ENOMEM;
  1426. kvm->arch.vpit = kvm_create_pit(kvm);
  1427. if (kvm->arch.vpit)
  1428. r = 0;
  1429. break;
  1430. case KVM_IRQ_LINE: {
  1431. struct kvm_irq_level irq_event;
  1432. r = -EFAULT;
  1433. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  1434. goto out;
  1435. if (irqchip_in_kernel(kvm)) {
  1436. mutex_lock(&kvm->lock);
  1437. if (irq_event.irq < 16)
  1438. kvm_pic_set_irq(pic_irqchip(kvm),
  1439. irq_event.irq,
  1440. irq_event.level);
  1441. kvm_ioapic_set_irq(kvm->arch.vioapic,
  1442. irq_event.irq,
  1443. irq_event.level);
  1444. mutex_unlock(&kvm->lock);
  1445. r = 0;
  1446. }
  1447. break;
  1448. }
  1449. case KVM_GET_IRQCHIP: {
  1450. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1451. struct kvm_irqchip chip;
  1452. r = -EFAULT;
  1453. if (copy_from_user(&chip, argp, sizeof chip))
  1454. goto out;
  1455. r = -ENXIO;
  1456. if (!irqchip_in_kernel(kvm))
  1457. goto out;
  1458. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  1459. if (r)
  1460. goto out;
  1461. r = -EFAULT;
  1462. if (copy_to_user(argp, &chip, sizeof chip))
  1463. goto out;
  1464. r = 0;
  1465. break;
  1466. }
  1467. case KVM_SET_IRQCHIP: {
  1468. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1469. struct kvm_irqchip chip;
  1470. r = -EFAULT;
  1471. if (copy_from_user(&chip, argp, sizeof chip))
  1472. goto out;
  1473. r = -ENXIO;
  1474. if (!irqchip_in_kernel(kvm))
  1475. goto out;
  1476. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  1477. if (r)
  1478. goto out;
  1479. r = 0;
  1480. break;
  1481. }
  1482. case KVM_GET_PIT: {
  1483. struct kvm_pit_state ps;
  1484. r = -EFAULT;
  1485. if (copy_from_user(&ps, argp, sizeof ps))
  1486. goto out;
  1487. r = -ENXIO;
  1488. if (!kvm->arch.vpit)
  1489. goto out;
  1490. r = kvm_vm_ioctl_get_pit(kvm, &ps);
  1491. if (r)
  1492. goto out;
  1493. r = -EFAULT;
  1494. if (copy_to_user(argp, &ps, sizeof ps))
  1495. goto out;
  1496. r = 0;
  1497. break;
  1498. }
  1499. case KVM_SET_PIT: {
  1500. struct kvm_pit_state ps;
  1501. r = -EFAULT;
  1502. if (copy_from_user(&ps, argp, sizeof ps))
  1503. goto out;
  1504. r = -ENXIO;
  1505. if (!kvm->arch.vpit)
  1506. goto out;
  1507. r = kvm_vm_ioctl_set_pit(kvm, &ps);
  1508. if (r)
  1509. goto out;
  1510. r = 0;
  1511. break;
  1512. }
  1513. default:
  1514. ;
  1515. }
  1516. out:
  1517. return r;
  1518. }
  1519. static void kvm_init_msr_list(void)
  1520. {
  1521. u32 dummy[2];
  1522. unsigned i, j;
  1523. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1524. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1525. continue;
  1526. if (j < i)
  1527. msrs_to_save[j] = msrs_to_save[i];
  1528. j++;
  1529. }
  1530. num_msrs_to_save = j;
  1531. }
  1532. /*
  1533. * Only apic need an MMIO device hook, so shortcut now..
  1534. */
  1535. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  1536. gpa_t addr)
  1537. {
  1538. struct kvm_io_device *dev;
  1539. if (vcpu->arch.apic) {
  1540. dev = &vcpu->arch.apic->dev;
  1541. if (dev->in_range(dev, addr))
  1542. return dev;
  1543. }
  1544. return NULL;
  1545. }
  1546. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  1547. gpa_t addr)
  1548. {
  1549. struct kvm_io_device *dev;
  1550. dev = vcpu_find_pervcpu_dev(vcpu, addr);
  1551. if (dev == NULL)
  1552. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  1553. return dev;
  1554. }
  1555. int emulator_read_std(unsigned long addr,
  1556. void *val,
  1557. unsigned int bytes,
  1558. struct kvm_vcpu *vcpu)
  1559. {
  1560. void *data = val;
  1561. int r = X86EMUL_CONTINUE;
  1562. while (bytes) {
  1563. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1564. unsigned offset = addr & (PAGE_SIZE-1);
  1565. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  1566. int ret;
  1567. if (gpa == UNMAPPED_GVA) {
  1568. r = X86EMUL_PROPAGATE_FAULT;
  1569. goto out;
  1570. }
  1571. ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
  1572. if (ret < 0) {
  1573. r = X86EMUL_UNHANDLEABLE;
  1574. goto out;
  1575. }
  1576. bytes -= tocopy;
  1577. data += tocopy;
  1578. addr += tocopy;
  1579. }
  1580. out:
  1581. return r;
  1582. }
  1583. EXPORT_SYMBOL_GPL(emulator_read_std);
  1584. static int emulator_read_emulated(unsigned long addr,
  1585. void *val,
  1586. unsigned int bytes,
  1587. struct kvm_vcpu *vcpu)
  1588. {
  1589. struct kvm_io_device *mmio_dev;
  1590. gpa_t gpa;
  1591. if (vcpu->mmio_read_completed) {
  1592. memcpy(val, vcpu->mmio_data, bytes);
  1593. vcpu->mmio_read_completed = 0;
  1594. return X86EMUL_CONTINUE;
  1595. }
  1596. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1597. /* For APIC access vmexit */
  1598. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1599. goto mmio;
  1600. if (emulator_read_std(addr, val, bytes, vcpu)
  1601. == X86EMUL_CONTINUE)
  1602. return X86EMUL_CONTINUE;
  1603. if (gpa == UNMAPPED_GVA)
  1604. return X86EMUL_PROPAGATE_FAULT;
  1605. mmio:
  1606. /*
  1607. * Is this MMIO handled locally?
  1608. */
  1609. mutex_lock(&vcpu->kvm->lock);
  1610. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1611. if (mmio_dev) {
  1612. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  1613. mutex_unlock(&vcpu->kvm->lock);
  1614. return X86EMUL_CONTINUE;
  1615. }
  1616. mutex_unlock(&vcpu->kvm->lock);
  1617. vcpu->mmio_needed = 1;
  1618. vcpu->mmio_phys_addr = gpa;
  1619. vcpu->mmio_size = bytes;
  1620. vcpu->mmio_is_write = 0;
  1621. return X86EMUL_UNHANDLEABLE;
  1622. }
  1623. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  1624. const void *val, int bytes)
  1625. {
  1626. int ret;
  1627. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  1628. if (ret < 0)
  1629. return 0;
  1630. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  1631. return 1;
  1632. }
  1633. static int emulator_write_emulated_onepage(unsigned long addr,
  1634. const void *val,
  1635. unsigned int bytes,
  1636. struct kvm_vcpu *vcpu)
  1637. {
  1638. struct kvm_io_device *mmio_dev;
  1639. gpa_t gpa;
  1640. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1641. if (gpa == UNMAPPED_GVA) {
  1642. kvm_inject_page_fault(vcpu, addr, 2);
  1643. return X86EMUL_PROPAGATE_FAULT;
  1644. }
  1645. /* For APIC access vmexit */
  1646. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1647. goto mmio;
  1648. if (emulator_write_phys(vcpu, gpa, val, bytes))
  1649. return X86EMUL_CONTINUE;
  1650. mmio:
  1651. /*
  1652. * Is this MMIO handled locally?
  1653. */
  1654. mutex_lock(&vcpu->kvm->lock);
  1655. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1656. if (mmio_dev) {
  1657. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  1658. mutex_unlock(&vcpu->kvm->lock);
  1659. return X86EMUL_CONTINUE;
  1660. }
  1661. mutex_unlock(&vcpu->kvm->lock);
  1662. vcpu->mmio_needed = 1;
  1663. vcpu->mmio_phys_addr = gpa;
  1664. vcpu->mmio_size = bytes;
  1665. vcpu->mmio_is_write = 1;
  1666. memcpy(vcpu->mmio_data, val, bytes);
  1667. return X86EMUL_CONTINUE;
  1668. }
  1669. int emulator_write_emulated(unsigned long addr,
  1670. const void *val,
  1671. unsigned int bytes,
  1672. struct kvm_vcpu *vcpu)
  1673. {
  1674. /* Crossing a page boundary? */
  1675. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  1676. int rc, now;
  1677. now = -addr & ~PAGE_MASK;
  1678. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  1679. if (rc != X86EMUL_CONTINUE)
  1680. return rc;
  1681. addr += now;
  1682. val += now;
  1683. bytes -= now;
  1684. }
  1685. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  1686. }
  1687. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  1688. static int emulator_cmpxchg_emulated(unsigned long addr,
  1689. const void *old,
  1690. const void *new,
  1691. unsigned int bytes,
  1692. struct kvm_vcpu *vcpu)
  1693. {
  1694. static int reported;
  1695. if (!reported) {
  1696. reported = 1;
  1697. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  1698. }
  1699. #ifndef CONFIG_X86_64
  1700. /* guests cmpxchg8b have to be emulated atomically */
  1701. if (bytes == 8) {
  1702. gpa_t gpa;
  1703. struct page *page;
  1704. char *kaddr;
  1705. u64 val;
  1706. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1707. if (gpa == UNMAPPED_GVA ||
  1708. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1709. goto emul_write;
  1710. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  1711. goto emul_write;
  1712. val = *(u64 *)new;
  1713. down_read(&current->mm->mmap_sem);
  1714. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1715. up_read(&current->mm->mmap_sem);
  1716. kaddr = kmap_atomic(page, KM_USER0);
  1717. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  1718. kunmap_atomic(kaddr, KM_USER0);
  1719. kvm_release_page_dirty(page);
  1720. }
  1721. emul_write:
  1722. #endif
  1723. return emulator_write_emulated(addr, new, bytes, vcpu);
  1724. }
  1725. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1726. {
  1727. return kvm_x86_ops->get_segment_base(vcpu, seg);
  1728. }
  1729. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  1730. {
  1731. return X86EMUL_CONTINUE;
  1732. }
  1733. int emulate_clts(struct kvm_vcpu *vcpu)
  1734. {
  1735. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  1736. return X86EMUL_CONTINUE;
  1737. }
  1738. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  1739. {
  1740. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1741. switch (dr) {
  1742. case 0 ... 3:
  1743. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  1744. return X86EMUL_CONTINUE;
  1745. default:
  1746. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
  1747. return X86EMUL_UNHANDLEABLE;
  1748. }
  1749. }
  1750. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1751. {
  1752. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1753. int exception;
  1754. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1755. if (exception) {
  1756. /* FIXME: better handling */
  1757. return X86EMUL_UNHANDLEABLE;
  1758. }
  1759. return X86EMUL_CONTINUE;
  1760. }
  1761. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  1762. {
  1763. static int reported;
  1764. u8 opcodes[4];
  1765. unsigned long rip = vcpu->arch.rip;
  1766. unsigned long rip_linear;
  1767. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  1768. if (reported)
  1769. return;
  1770. emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
  1771. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  1772. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1773. reported = 1;
  1774. }
  1775. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  1776. static struct x86_emulate_ops emulate_ops = {
  1777. .read_std = emulator_read_std,
  1778. .read_emulated = emulator_read_emulated,
  1779. .write_emulated = emulator_write_emulated,
  1780. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1781. };
  1782. int emulate_instruction(struct kvm_vcpu *vcpu,
  1783. struct kvm_run *run,
  1784. unsigned long cr2,
  1785. u16 error_code,
  1786. int emulation_type)
  1787. {
  1788. int r;
  1789. struct decode_cache *c;
  1790. vcpu->arch.mmio_fault_cr2 = cr2;
  1791. kvm_x86_ops->cache_regs(vcpu);
  1792. vcpu->mmio_is_write = 0;
  1793. vcpu->arch.pio.string = 0;
  1794. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  1795. int cs_db, cs_l;
  1796. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1797. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  1798. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  1799. vcpu->arch.emulate_ctxt.mode =
  1800. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  1801. ? X86EMUL_MODE_REAL : cs_l
  1802. ? X86EMUL_MODE_PROT64 : cs_db
  1803. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1804. if (vcpu->arch.emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1805. vcpu->arch.emulate_ctxt.cs_base = 0;
  1806. vcpu->arch.emulate_ctxt.ds_base = 0;
  1807. vcpu->arch.emulate_ctxt.es_base = 0;
  1808. vcpu->arch.emulate_ctxt.ss_base = 0;
  1809. } else {
  1810. vcpu->arch.emulate_ctxt.cs_base =
  1811. get_segment_base(vcpu, VCPU_SREG_CS);
  1812. vcpu->arch.emulate_ctxt.ds_base =
  1813. get_segment_base(vcpu, VCPU_SREG_DS);
  1814. vcpu->arch.emulate_ctxt.es_base =
  1815. get_segment_base(vcpu, VCPU_SREG_ES);
  1816. vcpu->arch.emulate_ctxt.ss_base =
  1817. get_segment_base(vcpu, VCPU_SREG_SS);
  1818. }
  1819. vcpu->arch.emulate_ctxt.gs_base =
  1820. get_segment_base(vcpu, VCPU_SREG_GS);
  1821. vcpu->arch.emulate_ctxt.fs_base =
  1822. get_segment_base(vcpu, VCPU_SREG_FS);
  1823. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  1824. /* Reject the instructions other than VMCALL/VMMCALL when
  1825. * try to emulate invalid opcode */
  1826. c = &vcpu->arch.emulate_ctxt.decode;
  1827. if ((emulation_type & EMULTYPE_TRAP_UD) &&
  1828. (!(c->twobyte && c->b == 0x01 &&
  1829. (c->modrm_reg == 0 || c->modrm_reg == 3) &&
  1830. c->modrm_mod == 3 && c->modrm_rm == 1)))
  1831. return EMULATE_FAIL;
  1832. ++vcpu->stat.insn_emulation;
  1833. if (r) {
  1834. ++vcpu->stat.insn_emulation_fail;
  1835. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1836. return EMULATE_DONE;
  1837. return EMULATE_FAIL;
  1838. }
  1839. }
  1840. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  1841. if (vcpu->arch.pio.string)
  1842. return EMULATE_DO_MMIO;
  1843. if ((r || vcpu->mmio_is_write) && run) {
  1844. run->exit_reason = KVM_EXIT_MMIO;
  1845. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1846. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1847. run->mmio.len = vcpu->mmio_size;
  1848. run->mmio.is_write = vcpu->mmio_is_write;
  1849. }
  1850. if (r) {
  1851. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1852. return EMULATE_DONE;
  1853. if (!vcpu->mmio_needed) {
  1854. kvm_report_emulation_failure(vcpu, "mmio");
  1855. return EMULATE_FAIL;
  1856. }
  1857. return EMULATE_DO_MMIO;
  1858. }
  1859. kvm_x86_ops->decache_regs(vcpu);
  1860. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  1861. if (vcpu->mmio_is_write) {
  1862. vcpu->mmio_needed = 0;
  1863. return EMULATE_DO_MMIO;
  1864. }
  1865. return EMULATE_DONE;
  1866. }
  1867. EXPORT_SYMBOL_GPL(emulate_instruction);
  1868. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  1869. {
  1870. int i;
  1871. for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
  1872. if (vcpu->arch.pio.guest_pages[i]) {
  1873. kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
  1874. vcpu->arch.pio.guest_pages[i] = NULL;
  1875. }
  1876. }
  1877. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1878. {
  1879. void *p = vcpu->arch.pio_data;
  1880. void *q;
  1881. unsigned bytes;
  1882. int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
  1883. q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1884. PAGE_KERNEL);
  1885. if (!q) {
  1886. free_pio_guest_pages(vcpu);
  1887. return -ENOMEM;
  1888. }
  1889. q += vcpu->arch.pio.guest_page_offset;
  1890. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  1891. if (vcpu->arch.pio.in)
  1892. memcpy(q, p, bytes);
  1893. else
  1894. memcpy(p, q, bytes);
  1895. q -= vcpu->arch.pio.guest_page_offset;
  1896. vunmap(q);
  1897. free_pio_guest_pages(vcpu);
  1898. return 0;
  1899. }
  1900. int complete_pio(struct kvm_vcpu *vcpu)
  1901. {
  1902. struct kvm_pio_request *io = &vcpu->arch.pio;
  1903. long delta;
  1904. int r;
  1905. kvm_x86_ops->cache_regs(vcpu);
  1906. if (!io->string) {
  1907. if (io->in)
  1908. memcpy(&vcpu->arch.regs[VCPU_REGS_RAX], vcpu->arch.pio_data,
  1909. io->size);
  1910. } else {
  1911. if (io->in) {
  1912. r = pio_copy_data(vcpu);
  1913. if (r) {
  1914. kvm_x86_ops->cache_regs(vcpu);
  1915. return r;
  1916. }
  1917. }
  1918. delta = 1;
  1919. if (io->rep) {
  1920. delta *= io->cur_count;
  1921. /*
  1922. * The size of the register should really depend on
  1923. * current address size.
  1924. */
  1925. vcpu->arch.regs[VCPU_REGS_RCX] -= delta;
  1926. }
  1927. if (io->down)
  1928. delta = -delta;
  1929. delta *= io->size;
  1930. if (io->in)
  1931. vcpu->arch.regs[VCPU_REGS_RDI] += delta;
  1932. else
  1933. vcpu->arch.regs[VCPU_REGS_RSI] += delta;
  1934. }
  1935. kvm_x86_ops->decache_regs(vcpu);
  1936. io->count -= io->cur_count;
  1937. io->cur_count = 0;
  1938. return 0;
  1939. }
  1940. static void kernel_pio(struct kvm_io_device *pio_dev,
  1941. struct kvm_vcpu *vcpu,
  1942. void *pd)
  1943. {
  1944. /* TODO: String I/O for in kernel device */
  1945. mutex_lock(&vcpu->kvm->lock);
  1946. if (vcpu->arch.pio.in)
  1947. kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
  1948. vcpu->arch.pio.size,
  1949. pd);
  1950. else
  1951. kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
  1952. vcpu->arch.pio.size,
  1953. pd);
  1954. mutex_unlock(&vcpu->kvm->lock);
  1955. }
  1956. static void pio_string_write(struct kvm_io_device *pio_dev,
  1957. struct kvm_vcpu *vcpu)
  1958. {
  1959. struct kvm_pio_request *io = &vcpu->arch.pio;
  1960. void *pd = vcpu->arch.pio_data;
  1961. int i;
  1962. mutex_lock(&vcpu->kvm->lock);
  1963. for (i = 0; i < io->cur_count; i++) {
  1964. kvm_iodevice_write(pio_dev, io->port,
  1965. io->size,
  1966. pd);
  1967. pd += io->size;
  1968. }
  1969. mutex_unlock(&vcpu->kvm->lock);
  1970. }
  1971. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  1972. gpa_t addr)
  1973. {
  1974. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  1975. }
  1976. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1977. int size, unsigned port)
  1978. {
  1979. struct kvm_io_device *pio_dev;
  1980. vcpu->run->exit_reason = KVM_EXIT_IO;
  1981. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1982. vcpu->run->io.size = vcpu->arch.pio.size = size;
  1983. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1984. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  1985. vcpu->run->io.port = vcpu->arch.pio.port = port;
  1986. vcpu->arch.pio.in = in;
  1987. vcpu->arch.pio.string = 0;
  1988. vcpu->arch.pio.down = 0;
  1989. vcpu->arch.pio.guest_page_offset = 0;
  1990. vcpu->arch.pio.rep = 0;
  1991. if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
  1992. KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
  1993. handler);
  1994. else
  1995. KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
  1996. handler);
  1997. kvm_x86_ops->cache_regs(vcpu);
  1998. memcpy(vcpu->arch.pio_data, &vcpu->arch.regs[VCPU_REGS_RAX], 4);
  1999. kvm_x86_ops->decache_regs(vcpu);
  2000. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2001. pio_dev = vcpu_find_pio_dev(vcpu, port);
  2002. if (pio_dev) {
  2003. kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
  2004. complete_pio(vcpu);
  2005. return 1;
  2006. }
  2007. return 0;
  2008. }
  2009. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  2010. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2011. int size, unsigned long count, int down,
  2012. gva_t address, int rep, unsigned port)
  2013. {
  2014. unsigned now, in_page;
  2015. int i, ret = 0;
  2016. int nr_pages = 1;
  2017. struct page *page;
  2018. struct kvm_io_device *pio_dev;
  2019. vcpu->run->exit_reason = KVM_EXIT_IO;
  2020. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2021. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2022. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2023. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  2024. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2025. vcpu->arch.pio.in = in;
  2026. vcpu->arch.pio.string = 1;
  2027. vcpu->arch.pio.down = down;
  2028. vcpu->arch.pio.guest_page_offset = offset_in_page(address);
  2029. vcpu->arch.pio.rep = rep;
  2030. if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
  2031. KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
  2032. handler);
  2033. else
  2034. KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
  2035. handler);
  2036. if (!count) {
  2037. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2038. return 1;
  2039. }
  2040. if (!down)
  2041. in_page = PAGE_SIZE - offset_in_page(address);
  2042. else
  2043. in_page = offset_in_page(address) + size;
  2044. now = min(count, (unsigned long)in_page / size);
  2045. if (!now) {
  2046. /*
  2047. * String I/O straddles page boundary. Pin two guest pages
  2048. * so that we satisfy atomicity constraints. Do just one
  2049. * transaction to avoid complexity.
  2050. */
  2051. nr_pages = 2;
  2052. now = 1;
  2053. }
  2054. if (down) {
  2055. /*
  2056. * String I/O in reverse. Yuck. Kill the guest, fix later.
  2057. */
  2058. pr_unimpl(vcpu, "guest string pio down\n");
  2059. kvm_inject_gp(vcpu, 0);
  2060. return 1;
  2061. }
  2062. vcpu->run->io.count = now;
  2063. vcpu->arch.pio.cur_count = now;
  2064. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  2065. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2066. for (i = 0; i < nr_pages; ++i) {
  2067. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  2068. vcpu->arch.pio.guest_pages[i] = page;
  2069. if (!page) {
  2070. kvm_inject_gp(vcpu, 0);
  2071. free_pio_guest_pages(vcpu);
  2072. return 1;
  2073. }
  2074. }
  2075. pio_dev = vcpu_find_pio_dev(vcpu, port);
  2076. if (!vcpu->arch.pio.in) {
  2077. /* string PIO write */
  2078. ret = pio_copy_data(vcpu);
  2079. if (ret >= 0 && pio_dev) {
  2080. pio_string_write(pio_dev, vcpu);
  2081. complete_pio(vcpu);
  2082. if (vcpu->arch.pio.count == 0)
  2083. ret = 1;
  2084. }
  2085. } else if (pio_dev)
  2086. pr_unimpl(vcpu, "no string pio read support yet, "
  2087. "port %x size %d count %ld\n",
  2088. port, size, count);
  2089. return ret;
  2090. }
  2091. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  2092. int kvm_arch_init(void *opaque)
  2093. {
  2094. int r;
  2095. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  2096. if (kvm_x86_ops) {
  2097. printk(KERN_ERR "kvm: already loaded the other module\n");
  2098. r = -EEXIST;
  2099. goto out;
  2100. }
  2101. if (!ops->cpu_has_kvm_support()) {
  2102. printk(KERN_ERR "kvm: no hardware support\n");
  2103. r = -EOPNOTSUPP;
  2104. goto out;
  2105. }
  2106. if (ops->disabled_by_bios()) {
  2107. printk(KERN_ERR "kvm: disabled by bios\n");
  2108. r = -EOPNOTSUPP;
  2109. goto out;
  2110. }
  2111. r = kvm_mmu_module_init();
  2112. if (r)
  2113. goto out;
  2114. kvm_init_msr_list();
  2115. kvm_x86_ops = ops;
  2116. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2117. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  2118. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  2119. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  2120. return 0;
  2121. out:
  2122. return r;
  2123. }
  2124. void kvm_arch_exit(void)
  2125. {
  2126. kvm_x86_ops = NULL;
  2127. kvm_mmu_module_exit();
  2128. }
  2129. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  2130. {
  2131. ++vcpu->stat.halt_exits;
  2132. KVMTRACE_0D(HLT, vcpu, handler);
  2133. if (irqchip_in_kernel(vcpu->kvm)) {
  2134. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  2135. up_read(&vcpu->kvm->slots_lock);
  2136. kvm_vcpu_block(vcpu);
  2137. down_read(&vcpu->kvm->slots_lock);
  2138. if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
  2139. return -EINTR;
  2140. return 1;
  2141. } else {
  2142. vcpu->run->exit_reason = KVM_EXIT_HLT;
  2143. return 0;
  2144. }
  2145. }
  2146. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  2147. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  2148. unsigned long a1)
  2149. {
  2150. if (is_long_mode(vcpu))
  2151. return a0;
  2152. else
  2153. return a0 | ((gpa_t)a1 << 32);
  2154. }
  2155. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  2156. {
  2157. unsigned long nr, a0, a1, a2, a3, ret;
  2158. int r = 1;
  2159. kvm_x86_ops->cache_regs(vcpu);
  2160. nr = vcpu->arch.regs[VCPU_REGS_RAX];
  2161. a0 = vcpu->arch.regs[VCPU_REGS_RBX];
  2162. a1 = vcpu->arch.regs[VCPU_REGS_RCX];
  2163. a2 = vcpu->arch.regs[VCPU_REGS_RDX];
  2164. a3 = vcpu->arch.regs[VCPU_REGS_RSI];
  2165. KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
  2166. if (!is_long_mode(vcpu)) {
  2167. nr &= 0xFFFFFFFF;
  2168. a0 &= 0xFFFFFFFF;
  2169. a1 &= 0xFFFFFFFF;
  2170. a2 &= 0xFFFFFFFF;
  2171. a3 &= 0xFFFFFFFF;
  2172. }
  2173. switch (nr) {
  2174. case KVM_HC_VAPIC_POLL_IRQ:
  2175. ret = 0;
  2176. break;
  2177. case KVM_HC_MMU_OP:
  2178. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  2179. break;
  2180. default:
  2181. ret = -KVM_ENOSYS;
  2182. break;
  2183. }
  2184. vcpu->arch.regs[VCPU_REGS_RAX] = ret;
  2185. kvm_x86_ops->decache_regs(vcpu);
  2186. ++vcpu->stat.hypercalls;
  2187. return r;
  2188. }
  2189. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  2190. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  2191. {
  2192. char instruction[3];
  2193. int ret = 0;
  2194. /*
  2195. * Blow out the MMU to ensure that no other VCPU has an active mapping
  2196. * to ensure that the updated hypercall appears atomically across all
  2197. * VCPUs.
  2198. */
  2199. kvm_mmu_zap_all(vcpu->kvm);
  2200. kvm_x86_ops->cache_regs(vcpu);
  2201. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  2202. if (emulator_write_emulated(vcpu->arch.rip, instruction, 3, vcpu)
  2203. != X86EMUL_CONTINUE)
  2204. ret = -EFAULT;
  2205. return ret;
  2206. }
  2207. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  2208. {
  2209. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  2210. }
  2211. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2212. {
  2213. struct descriptor_table dt = { limit, base };
  2214. kvm_x86_ops->set_gdt(vcpu, &dt);
  2215. }
  2216. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2217. {
  2218. struct descriptor_table dt = { limit, base };
  2219. kvm_x86_ops->set_idt(vcpu, &dt);
  2220. }
  2221. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  2222. unsigned long *rflags)
  2223. {
  2224. kvm_lmsw(vcpu, msw);
  2225. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2226. }
  2227. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  2228. {
  2229. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2230. switch (cr) {
  2231. case 0:
  2232. return vcpu->arch.cr0;
  2233. case 2:
  2234. return vcpu->arch.cr2;
  2235. case 3:
  2236. return vcpu->arch.cr3;
  2237. case 4:
  2238. return vcpu->arch.cr4;
  2239. case 8:
  2240. return kvm_get_cr8(vcpu);
  2241. default:
  2242. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2243. return 0;
  2244. }
  2245. }
  2246. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  2247. unsigned long *rflags)
  2248. {
  2249. switch (cr) {
  2250. case 0:
  2251. kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  2252. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2253. break;
  2254. case 2:
  2255. vcpu->arch.cr2 = val;
  2256. break;
  2257. case 3:
  2258. kvm_set_cr3(vcpu, val);
  2259. break;
  2260. case 4:
  2261. kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
  2262. break;
  2263. case 8:
  2264. kvm_set_cr8(vcpu, val & 0xfUL);
  2265. break;
  2266. default:
  2267. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2268. }
  2269. }
  2270. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  2271. {
  2272. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  2273. int j, nent = vcpu->arch.cpuid_nent;
  2274. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  2275. /* when no next entry is found, the current entry[i] is reselected */
  2276. for (j = i + 1; j == i; j = (j + 1) % nent) {
  2277. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  2278. if (ej->function == e->function) {
  2279. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2280. return j;
  2281. }
  2282. }
  2283. return 0; /* silence gcc, even though control never reaches here */
  2284. }
  2285. /* find an entry with matching function, matching index (if needed), and that
  2286. * should be read next (if it's stateful) */
  2287. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  2288. u32 function, u32 index)
  2289. {
  2290. if (e->function != function)
  2291. return 0;
  2292. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  2293. return 0;
  2294. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  2295. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  2296. return 0;
  2297. return 1;
  2298. }
  2299. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  2300. {
  2301. int i;
  2302. u32 function, index;
  2303. struct kvm_cpuid_entry2 *e, *best;
  2304. kvm_x86_ops->cache_regs(vcpu);
  2305. function = vcpu->arch.regs[VCPU_REGS_RAX];
  2306. index = vcpu->arch.regs[VCPU_REGS_RCX];
  2307. vcpu->arch.regs[VCPU_REGS_RAX] = 0;
  2308. vcpu->arch.regs[VCPU_REGS_RBX] = 0;
  2309. vcpu->arch.regs[VCPU_REGS_RCX] = 0;
  2310. vcpu->arch.regs[VCPU_REGS_RDX] = 0;
  2311. best = NULL;
  2312. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  2313. e = &vcpu->arch.cpuid_entries[i];
  2314. if (is_matching_cpuid_entry(e, function, index)) {
  2315. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  2316. move_to_next_stateful_cpuid_entry(vcpu, i);
  2317. best = e;
  2318. break;
  2319. }
  2320. /*
  2321. * Both basic or both extended?
  2322. */
  2323. if (((e->function ^ function) & 0x80000000) == 0)
  2324. if (!best || e->function > best->function)
  2325. best = e;
  2326. }
  2327. if (best) {
  2328. vcpu->arch.regs[VCPU_REGS_RAX] = best->eax;
  2329. vcpu->arch.regs[VCPU_REGS_RBX] = best->ebx;
  2330. vcpu->arch.regs[VCPU_REGS_RCX] = best->ecx;
  2331. vcpu->arch.regs[VCPU_REGS_RDX] = best->edx;
  2332. }
  2333. kvm_x86_ops->decache_regs(vcpu);
  2334. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2335. KVMTRACE_5D(CPUID, vcpu, function,
  2336. (u32)vcpu->arch.regs[VCPU_REGS_RAX],
  2337. (u32)vcpu->arch.regs[VCPU_REGS_RBX],
  2338. (u32)vcpu->arch.regs[VCPU_REGS_RCX],
  2339. (u32)vcpu->arch.regs[VCPU_REGS_RDX], handler);
  2340. }
  2341. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  2342. /*
  2343. * Check if userspace requested an interrupt window, and that the
  2344. * interrupt window is open.
  2345. *
  2346. * No need to exit to userspace if we already have an interrupt queued.
  2347. */
  2348. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  2349. struct kvm_run *kvm_run)
  2350. {
  2351. return (!vcpu->arch.irq_summary &&
  2352. kvm_run->request_interrupt_window &&
  2353. vcpu->arch.interrupt_window_open &&
  2354. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  2355. }
  2356. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  2357. struct kvm_run *kvm_run)
  2358. {
  2359. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  2360. kvm_run->cr8 = kvm_get_cr8(vcpu);
  2361. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  2362. if (irqchip_in_kernel(vcpu->kvm))
  2363. kvm_run->ready_for_interrupt_injection = 1;
  2364. else
  2365. kvm_run->ready_for_interrupt_injection =
  2366. (vcpu->arch.interrupt_window_open &&
  2367. vcpu->arch.irq_summary == 0);
  2368. }
  2369. static void vapic_enter(struct kvm_vcpu *vcpu)
  2370. {
  2371. struct kvm_lapic *apic = vcpu->arch.apic;
  2372. struct page *page;
  2373. if (!apic || !apic->vapic_addr)
  2374. return;
  2375. down_read(&current->mm->mmap_sem);
  2376. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2377. up_read(&current->mm->mmap_sem);
  2378. vcpu->arch.apic->vapic_page = page;
  2379. }
  2380. static void vapic_exit(struct kvm_vcpu *vcpu)
  2381. {
  2382. struct kvm_lapic *apic = vcpu->arch.apic;
  2383. if (!apic || !apic->vapic_addr)
  2384. return;
  2385. kvm_release_page_dirty(apic->vapic_page);
  2386. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2387. }
  2388. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2389. {
  2390. int r;
  2391. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  2392. pr_debug("vcpu %d received sipi with vector # %x\n",
  2393. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  2394. kvm_lapic_reset(vcpu);
  2395. r = kvm_x86_ops->vcpu_reset(vcpu);
  2396. if (r)
  2397. return r;
  2398. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  2399. }
  2400. down_read(&vcpu->kvm->slots_lock);
  2401. vapic_enter(vcpu);
  2402. preempted:
  2403. if (vcpu->guest_debug.enabled)
  2404. kvm_x86_ops->guest_debug_pre(vcpu);
  2405. again:
  2406. if (vcpu->requests)
  2407. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  2408. kvm_mmu_unload(vcpu);
  2409. r = kvm_mmu_reload(vcpu);
  2410. if (unlikely(r))
  2411. goto out;
  2412. if (vcpu->requests) {
  2413. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  2414. __kvm_migrate_timers(vcpu);
  2415. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  2416. kvm_x86_ops->tlb_flush(vcpu);
  2417. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  2418. &vcpu->requests)) {
  2419. kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
  2420. r = 0;
  2421. goto out;
  2422. }
  2423. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  2424. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  2425. r = 0;
  2426. goto out;
  2427. }
  2428. }
  2429. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  2430. kvm_inject_pending_timer_irqs(vcpu);
  2431. preempt_disable();
  2432. kvm_x86_ops->prepare_guest_switch(vcpu);
  2433. kvm_load_guest_fpu(vcpu);
  2434. local_irq_disable();
  2435. if (vcpu->requests || need_resched()) {
  2436. local_irq_enable();
  2437. preempt_enable();
  2438. r = 1;
  2439. goto out;
  2440. }
  2441. if (signal_pending(current)) {
  2442. local_irq_enable();
  2443. preempt_enable();
  2444. r = -EINTR;
  2445. kvm_run->exit_reason = KVM_EXIT_INTR;
  2446. ++vcpu->stat.signal_exits;
  2447. goto out;
  2448. }
  2449. vcpu->guest_mode = 1;
  2450. /*
  2451. * Make sure that guest_mode assignment won't happen after
  2452. * testing the pending IRQ vector bitmap.
  2453. */
  2454. smp_wmb();
  2455. if (vcpu->arch.exception.pending)
  2456. __queue_exception(vcpu);
  2457. else if (irqchip_in_kernel(vcpu->kvm))
  2458. kvm_x86_ops->inject_pending_irq(vcpu);
  2459. else
  2460. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  2461. kvm_lapic_sync_to_vapic(vcpu);
  2462. up_read(&vcpu->kvm->slots_lock);
  2463. kvm_guest_enter();
  2464. KVMTRACE_0D(VMENTRY, vcpu, entryexit);
  2465. kvm_x86_ops->run(vcpu, kvm_run);
  2466. vcpu->guest_mode = 0;
  2467. local_irq_enable();
  2468. ++vcpu->stat.exits;
  2469. /*
  2470. * We must have an instruction between local_irq_enable() and
  2471. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  2472. * the interrupt shadow. The stat.exits increment will do nicely.
  2473. * But we need to prevent reordering, hence this barrier():
  2474. */
  2475. barrier();
  2476. kvm_guest_exit();
  2477. preempt_enable();
  2478. down_read(&vcpu->kvm->slots_lock);
  2479. /*
  2480. * Profile KVM exit RIPs:
  2481. */
  2482. if (unlikely(prof_on == KVM_PROFILING)) {
  2483. kvm_x86_ops->cache_regs(vcpu);
  2484. profile_hit(KVM_PROFILING, (void *)vcpu->arch.rip);
  2485. }
  2486. if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
  2487. vcpu->arch.exception.pending = false;
  2488. kvm_lapic_sync_from_vapic(vcpu);
  2489. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  2490. if (r > 0) {
  2491. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  2492. r = -EINTR;
  2493. kvm_run->exit_reason = KVM_EXIT_INTR;
  2494. ++vcpu->stat.request_irq_exits;
  2495. goto out;
  2496. }
  2497. if (!need_resched())
  2498. goto again;
  2499. }
  2500. out:
  2501. up_read(&vcpu->kvm->slots_lock);
  2502. if (r > 0) {
  2503. kvm_resched(vcpu);
  2504. down_read(&vcpu->kvm->slots_lock);
  2505. goto preempted;
  2506. }
  2507. post_kvm_run_save(vcpu, kvm_run);
  2508. down_read(&vcpu->kvm->slots_lock);
  2509. vapic_exit(vcpu);
  2510. up_read(&vcpu->kvm->slots_lock);
  2511. return r;
  2512. }
  2513. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2514. {
  2515. int r;
  2516. sigset_t sigsaved;
  2517. vcpu_load(vcpu);
  2518. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  2519. kvm_vcpu_block(vcpu);
  2520. vcpu_put(vcpu);
  2521. return -EAGAIN;
  2522. }
  2523. if (vcpu->sigset_active)
  2524. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  2525. /* re-sync apic's tpr */
  2526. if (!irqchip_in_kernel(vcpu->kvm))
  2527. kvm_set_cr8(vcpu, kvm_run->cr8);
  2528. if (vcpu->arch.pio.cur_count) {
  2529. r = complete_pio(vcpu);
  2530. if (r)
  2531. goto out;
  2532. }
  2533. #if CONFIG_HAS_IOMEM
  2534. if (vcpu->mmio_needed) {
  2535. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  2536. vcpu->mmio_read_completed = 1;
  2537. vcpu->mmio_needed = 0;
  2538. down_read(&vcpu->kvm->slots_lock);
  2539. r = emulate_instruction(vcpu, kvm_run,
  2540. vcpu->arch.mmio_fault_cr2, 0,
  2541. EMULTYPE_NO_DECODE);
  2542. up_read(&vcpu->kvm->slots_lock);
  2543. if (r == EMULATE_DO_MMIO) {
  2544. /*
  2545. * Read-modify-write. Back to userspace.
  2546. */
  2547. r = 0;
  2548. goto out;
  2549. }
  2550. }
  2551. #endif
  2552. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  2553. kvm_x86_ops->cache_regs(vcpu);
  2554. vcpu->arch.regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  2555. kvm_x86_ops->decache_regs(vcpu);
  2556. }
  2557. r = __vcpu_run(vcpu, kvm_run);
  2558. out:
  2559. if (vcpu->sigset_active)
  2560. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  2561. vcpu_put(vcpu);
  2562. return r;
  2563. }
  2564. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  2565. {
  2566. vcpu_load(vcpu);
  2567. kvm_x86_ops->cache_regs(vcpu);
  2568. regs->rax = vcpu->arch.regs[VCPU_REGS_RAX];
  2569. regs->rbx = vcpu->arch.regs[VCPU_REGS_RBX];
  2570. regs->rcx = vcpu->arch.regs[VCPU_REGS_RCX];
  2571. regs->rdx = vcpu->arch.regs[VCPU_REGS_RDX];
  2572. regs->rsi = vcpu->arch.regs[VCPU_REGS_RSI];
  2573. regs->rdi = vcpu->arch.regs[VCPU_REGS_RDI];
  2574. regs->rsp = vcpu->arch.regs[VCPU_REGS_RSP];
  2575. regs->rbp = vcpu->arch.regs[VCPU_REGS_RBP];
  2576. #ifdef CONFIG_X86_64
  2577. regs->r8 = vcpu->arch.regs[VCPU_REGS_R8];
  2578. regs->r9 = vcpu->arch.regs[VCPU_REGS_R9];
  2579. regs->r10 = vcpu->arch.regs[VCPU_REGS_R10];
  2580. regs->r11 = vcpu->arch.regs[VCPU_REGS_R11];
  2581. regs->r12 = vcpu->arch.regs[VCPU_REGS_R12];
  2582. regs->r13 = vcpu->arch.regs[VCPU_REGS_R13];
  2583. regs->r14 = vcpu->arch.regs[VCPU_REGS_R14];
  2584. regs->r15 = vcpu->arch.regs[VCPU_REGS_R15];
  2585. #endif
  2586. regs->rip = vcpu->arch.rip;
  2587. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  2588. /*
  2589. * Don't leak debug flags in case they were set for guest debugging
  2590. */
  2591. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  2592. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  2593. vcpu_put(vcpu);
  2594. return 0;
  2595. }
  2596. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  2597. {
  2598. vcpu_load(vcpu);
  2599. vcpu->arch.regs[VCPU_REGS_RAX] = regs->rax;
  2600. vcpu->arch.regs[VCPU_REGS_RBX] = regs->rbx;
  2601. vcpu->arch.regs[VCPU_REGS_RCX] = regs->rcx;
  2602. vcpu->arch.regs[VCPU_REGS_RDX] = regs->rdx;
  2603. vcpu->arch.regs[VCPU_REGS_RSI] = regs->rsi;
  2604. vcpu->arch.regs[VCPU_REGS_RDI] = regs->rdi;
  2605. vcpu->arch.regs[VCPU_REGS_RSP] = regs->rsp;
  2606. vcpu->arch.regs[VCPU_REGS_RBP] = regs->rbp;
  2607. #ifdef CONFIG_X86_64
  2608. vcpu->arch.regs[VCPU_REGS_R8] = regs->r8;
  2609. vcpu->arch.regs[VCPU_REGS_R9] = regs->r9;
  2610. vcpu->arch.regs[VCPU_REGS_R10] = regs->r10;
  2611. vcpu->arch.regs[VCPU_REGS_R11] = regs->r11;
  2612. vcpu->arch.regs[VCPU_REGS_R12] = regs->r12;
  2613. vcpu->arch.regs[VCPU_REGS_R13] = regs->r13;
  2614. vcpu->arch.regs[VCPU_REGS_R14] = regs->r14;
  2615. vcpu->arch.regs[VCPU_REGS_R15] = regs->r15;
  2616. #endif
  2617. vcpu->arch.rip = regs->rip;
  2618. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  2619. kvm_x86_ops->decache_regs(vcpu);
  2620. vcpu->arch.exception.pending = false;
  2621. vcpu_put(vcpu);
  2622. return 0;
  2623. }
  2624. static void get_segment(struct kvm_vcpu *vcpu,
  2625. struct kvm_segment *var, int seg)
  2626. {
  2627. kvm_x86_ops->get_segment(vcpu, var, seg);
  2628. }
  2629. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2630. {
  2631. struct kvm_segment cs;
  2632. get_segment(vcpu, &cs, VCPU_SREG_CS);
  2633. *db = cs.db;
  2634. *l = cs.l;
  2635. }
  2636. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  2637. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  2638. struct kvm_sregs *sregs)
  2639. {
  2640. struct descriptor_table dt;
  2641. int pending_vec;
  2642. vcpu_load(vcpu);
  2643. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2644. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2645. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2646. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2647. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2648. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2649. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2650. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2651. kvm_x86_ops->get_idt(vcpu, &dt);
  2652. sregs->idt.limit = dt.limit;
  2653. sregs->idt.base = dt.base;
  2654. kvm_x86_ops->get_gdt(vcpu, &dt);
  2655. sregs->gdt.limit = dt.limit;
  2656. sregs->gdt.base = dt.base;
  2657. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2658. sregs->cr0 = vcpu->arch.cr0;
  2659. sregs->cr2 = vcpu->arch.cr2;
  2660. sregs->cr3 = vcpu->arch.cr3;
  2661. sregs->cr4 = vcpu->arch.cr4;
  2662. sregs->cr8 = kvm_get_cr8(vcpu);
  2663. sregs->efer = vcpu->arch.shadow_efer;
  2664. sregs->apic_base = kvm_get_apic_base(vcpu);
  2665. if (irqchip_in_kernel(vcpu->kvm)) {
  2666. memset(sregs->interrupt_bitmap, 0,
  2667. sizeof sregs->interrupt_bitmap);
  2668. pending_vec = kvm_x86_ops->get_irq(vcpu);
  2669. if (pending_vec >= 0)
  2670. set_bit(pending_vec,
  2671. (unsigned long *)sregs->interrupt_bitmap);
  2672. } else
  2673. memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
  2674. sizeof sregs->interrupt_bitmap);
  2675. vcpu_put(vcpu);
  2676. return 0;
  2677. }
  2678. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  2679. struct kvm_mp_state *mp_state)
  2680. {
  2681. vcpu_load(vcpu);
  2682. mp_state->mp_state = vcpu->arch.mp_state;
  2683. vcpu_put(vcpu);
  2684. return 0;
  2685. }
  2686. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  2687. struct kvm_mp_state *mp_state)
  2688. {
  2689. vcpu_load(vcpu);
  2690. vcpu->arch.mp_state = mp_state->mp_state;
  2691. vcpu_put(vcpu);
  2692. return 0;
  2693. }
  2694. static void set_segment(struct kvm_vcpu *vcpu,
  2695. struct kvm_segment *var, int seg)
  2696. {
  2697. kvm_x86_ops->set_segment(vcpu, var, seg);
  2698. }
  2699. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  2700. struct kvm_segment *kvm_desct)
  2701. {
  2702. kvm_desct->base = seg_desc->base0;
  2703. kvm_desct->base |= seg_desc->base1 << 16;
  2704. kvm_desct->base |= seg_desc->base2 << 24;
  2705. kvm_desct->limit = seg_desc->limit0;
  2706. kvm_desct->limit |= seg_desc->limit << 16;
  2707. kvm_desct->selector = selector;
  2708. kvm_desct->type = seg_desc->type;
  2709. kvm_desct->present = seg_desc->p;
  2710. kvm_desct->dpl = seg_desc->dpl;
  2711. kvm_desct->db = seg_desc->d;
  2712. kvm_desct->s = seg_desc->s;
  2713. kvm_desct->l = seg_desc->l;
  2714. kvm_desct->g = seg_desc->g;
  2715. kvm_desct->avl = seg_desc->avl;
  2716. if (!selector)
  2717. kvm_desct->unusable = 1;
  2718. else
  2719. kvm_desct->unusable = 0;
  2720. kvm_desct->padding = 0;
  2721. }
  2722. static void get_segment_descritptor_dtable(struct kvm_vcpu *vcpu,
  2723. u16 selector,
  2724. struct descriptor_table *dtable)
  2725. {
  2726. if (selector & 1 << 2) {
  2727. struct kvm_segment kvm_seg;
  2728. get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  2729. if (kvm_seg.unusable)
  2730. dtable->limit = 0;
  2731. else
  2732. dtable->limit = kvm_seg.limit;
  2733. dtable->base = kvm_seg.base;
  2734. }
  2735. else
  2736. kvm_x86_ops->get_gdt(vcpu, dtable);
  2737. }
  2738. /* allowed just for 8 bytes segments */
  2739. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  2740. struct desc_struct *seg_desc)
  2741. {
  2742. struct descriptor_table dtable;
  2743. u16 index = selector >> 3;
  2744. get_segment_descritptor_dtable(vcpu, selector, &dtable);
  2745. if (dtable.limit < index * 8 + 7) {
  2746. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  2747. return 1;
  2748. }
  2749. return kvm_read_guest(vcpu->kvm, dtable.base + index * 8, seg_desc, 8);
  2750. }
  2751. /* allowed just for 8 bytes segments */
  2752. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  2753. struct desc_struct *seg_desc)
  2754. {
  2755. struct descriptor_table dtable;
  2756. u16 index = selector >> 3;
  2757. get_segment_descritptor_dtable(vcpu, selector, &dtable);
  2758. if (dtable.limit < index * 8 + 7)
  2759. return 1;
  2760. return kvm_write_guest(vcpu->kvm, dtable.base + index * 8, seg_desc, 8);
  2761. }
  2762. static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
  2763. struct desc_struct *seg_desc)
  2764. {
  2765. u32 base_addr;
  2766. base_addr = seg_desc->base0;
  2767. base_addr |= (seg_desc->base1 << 16);
  2768. base_addr |= (seg_desc->base2 << 24);
  2769. return base_addr;
  2770. }
  2771. static int load_tss_segment32(struct kvm_vcpu *vcpu,
  2772. struct desc_struct *seg_desc,
  2773. struct tss_segment_32 *tss)
  2774. {
  2775. u32 base_addr;
  2776. base_addr = get_tss_base_addr(vcpu, seg_desc);
  2777. return kvm_read_guest(vcpu->kvm, base_addr, tss,
  2778. sizeof(struct tss_segment_32));
  2779. }
  2780. static int save_tss_segment32(struct kvm_vcpu *vcpu,
  2781. struct desc_struct *seg_desc,
  2782. struct tss_segment_32 *tss)
  2783. {
  2784. u32 base_addr;
  2785. base_addr = get_tss_base_addr(vcpu, seg_desc);
  2786. return kvm_write_guest(vcpu->kvm, base_addr, tss,
  2787. sizeof(struct tss_segment_32));
  2788. }
  2789. static int load_tss_segment16(struct kvm_vcpu *vcpu,
  2790. struct desc_struct *seg_desc,
  2791. struct tss_segment_16 *tss)
  2792. {
  2793. u32 base_addr;
  2794. base_addr = get_tss_base_addr(vcpu, seg_desc);
  2795. return kvm_read_guest(vcpu->kvm, base_addr, tss,
  2796. sizeof(struct tss_segment_16));
  2797. }
  2798. static int save_tss_segment16(struct kvm_vcpu *vcpu,
  2799. struct desc_struct *seg_desc,
  2800. struct tss_segment_16 *tss)
  2801. {
  2802. u32 base_addr;
  2803. base_addr = get_tss_base_addr(vcpu, seg_desc);
  2804. return kvm_write_guest(vcpu->kvm, base_addr, tss,
  2805. sizeof(struct tss_segment_16));
  2806. }
  2807. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  2808. {
  2809. struct kvm_segment kvm_seg;
  2810. get_segment(vcpu, &kvm_seg, seg);
  2811. return kvm_seg.selector;
  2812. }
  2813. static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
  2814. u16 selector,
  2815. struct kvm_segment *kvm_seg)
  2816. {
  2817. struct desc_struct seg_desc;
  2818. if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
  2819. return 1;
  2820. seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
  2821. return 0;
  2822. }
  2823. static int load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  2824. int type_bits, int seg)
  2825. {
  2826. struct kvm_segment kvm_seg;
  2827. if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
  2828. return 1;
  2829. kvm_seg.type |= type_bits;
  2830. if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
  2831. seg != VCPU_SREG_LDTR)
  2832. if (!kvm_seg.s)
  2833. kvm_seg.unusable = 1;
  2834. set_segment(vcpu, &kvm_seg, seg);
  2835. return 0;
  2836. }
  2837. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  2838. struct tss_segment_32 *tss)
  2839. {
  2840. tss->cr3 = vcpu->arch.cr3;
  2841. tss->eip = vcpu->arch.rip;
  2842. tss->eflags = kvm_x86_ops->get_rflags(vcpu);
  2843. tss->eax = vcpu->arch.regs[VCPU_REGS_RAX];
  2844. tss->ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2845. tss->edx = vcpu->arch.regs[VCPU_REGS_RDX];
  2846. tss->ebx = vcpu->arch.regs[VCPU_REGS_RBX];
  2847. tss->esp = vcpu->arch.regs[VCPU_REGS_RSP];
  2848. tss->ebp = vcpu->arch.regs[VCPU_REGS_RBP];
  2849. tss->esi = vcpu->arch.regs[VCPU_REGS_RSI];
  2850. tss->edi = vcpu->arch.regs[VCPU_REGS_RDI];
  2851. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  2852. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  2853. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  2854. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  2855. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  2856. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  2857. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  2858. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  2859. }
  2860. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  2861. struct tss_segment_32 *tss)
  2862. {
  2863. kvm_set_cr3(vcpu, tss->cr3);
  2864. vcpu->arch.rip = tss->eip;
  2865. kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
  2866. vcpu->arch.regs[VCPU_REGS_RAX] = tss->eax;
  2867. vcpu->arch.regs[VCPU_REGS_RCX] = tss->ecx;
  2868. vcpu->arch.regs[VCPU_REGS_RDX] = tss->edx;
  2869. vcpu->arch.regs[VCPU_REGS_RBX] = tss->ebx;
  2870. vcpu->arch.regs[VCPU_REGS_RSP] = tss->esp;
  2871. vcpu->arch.regs[VCPU_REGS_RBP] = tss->ebp;
  2872. vcpu->arch.regs[VCPU_REGS_RSI] = tss->esi;
  2873. vcpu->arch.regs[VCPU_REGS_RDI] = tss->edi;
  2874. if (load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
  2875. return 1;
  2876. if (load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  2877. return 1;
  2878. if (load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  2879. return 1;
  2880. if (load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  2881. return 1;
  2882. if (load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  2883. return 1;
  2884. if (load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
  2885. return 1;
  2886. if (load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
  2887. return 1;
  2888. return 0;
  2889. }
  2890. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  2891. struct tss_segment_16 *tss)
  2892. {
  2893. tss->ip = vcpu->arch.rip;
  2894. tss->flag = kvm_x86_ops->get_rflags(vcpu);
  2895. tss->ax = vcpu->arch.regs[VCPU_REGS_RAX];
  2896. tss->cx = vcpu->arch.regs[VCPU_REGS_RCX];
  2897. tss->dx = vcpu->arch.regs[VCPU_REGS_RDX];
  2898. tss->bx = vcpu->arch.regs[VCPU_REGS_RBX];
  2899. tss->sp = vcpu->arch.regs[VCPU_REGS_RSP];
  2900. tss->bp = vcpu->arch.regs[VCPU_REGS_RBP];
  2901. tss->si = vcpu->arch.regs[VCPU_REGS_RSI];
  2902. tss->di = vcpu->arch.regs[VCPU_REGS_RDI];
  2903. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  2904. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  2905. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  2906. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  2907. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  2908. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  2909. }
  2910. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  2911. struct tss_segment_16 *tss)
  2912. {
  2913. vcpu->arch.rip = tss->ip;
  2914. kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
  2915. vcpu->arch.regs[VCPU_REGS_RAX] = tss->ax;
  2916. vcpu->arch.regs[VCPU_REGS_RCX] = tss->cx;
  2917. vcpu->arch.regs[VCPU_REGS_RDX] = tss->dx;
  2918. vcpu->arch.regs[VCPU_REGS_RBX] = tss->bx;
  2919. vcpu->arch.regs[VCPU_REGS_RSP] = tss->sp;
  2920. vcpu->arch.regs[VCPU_REGS_RBP] = tss->bp;
  2921. vcpu->arch.regs[VCPU_REGS_RSI] = tss->si;
  2922. vcpu->arch.regs[VCPU_REGS_RDI] = tss->di;
  2923. if (load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
  2924. return 1;
  2925. if (load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  2926. return 1;
  2927. if (load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  2928. return 1;
  2929. if (load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  2930. return 1;
  2931. if (load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  2932. return 1;
  2933. return 0;
  2934. }
  2935. int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  2936. struct desc_struct *cseg_desc,
  2937. struct desc_struct *nseg_desc)
  2938. {
  2939. struct tss_segment_16 tss_segment_16;
  2940. int ret = 0;
  2941. if (load_tss_segment16(vcpu, cseg_desc, &tss_segment_16))
  2942. goto out;
  2943. save_state_to_tss16(vcpu, &tss_segment_16);
  2944. save_tss_segment16(vcpu, cseg_desc, &tss_segment_16);
  2945. if (load_tss_segment16(vcpu, nseg_desc, &tss_segment_16))
  2946. goto out;
  2947. if (load_state_from_tss16(vcpu, &tss_segment_16))
  2948. goto out;
  2949. ret = 1;
  2950. out:
  2951. return ret;
  2952. }
  2953. int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  2954. struct desc_struct *cseg_desc,
  2955. struct desc_struct *nseg_desc)
  2956. {
  2957. struct tss_segment_32 tss_segment_32;
  2958. int ret = 0;
  2959. if (load_tss_segment32(vcpu, cseg_desc, &tss_segment_32))
  2960. goto out;
  2961. save_state_to_tss32(vcpu, &tss_segment_32);
  2962. save_tss_segment32(vcpu, cseg_desc, &tss_segment_32);
  2963. if (load_tss_segment32(vcpu, nseg_desc, &tss_segment_32))
  2964. goto out;
  2965. if (load_state_from_tss32(vcpu, &tss_segment_32))
  2966. goto out;
  2967. ret = 1;
  2968. out:
  2969. return ret;
  2970. }
  2971. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  2972. {
  2973. struct kvm_segment tr_seg;
  2974. struct desc_struct cseg_desc;
  2975. struct desc_struct nseg_desc;
  2976. int ret = 0;
  2977. get_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  2978. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  2979. goto out;
  2980. if (load_guest_segment_descriptor(vcpu, tr_seg.selector, &cseg_desc))
  2981. goto out;
  2982. if (reason != TASK_SWITCH_IRET) {
  2983. int cpl;
  2984. cpl = kvm_x86_ops->get_cpl(vcpu);
  2985. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  2986. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  2987. return 1;
  2988. }
  2989. }
  2990. if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
  2991. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  2992. return 1;
  2993. }
  2994. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  2995. cseg_desc.type &= ~(1 << 1); //clear the B flag
  2996. save_guest_segment_descriptor(vcpu, tr_seg.selector,
  2997. &cseg_desc);
  2998. }
  2999. if (reason == TASK_SWITCH_IRET) {
  3000. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3001. kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  3002. }
  3003. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3004. kvm_x86_ops->cache_regs(vcpu);
  3005. if (nseg_desc.type & 8)
  3006. ret = kvm_task_switch_32(vcpu, tss_selector, &cseg_desc,
  3007. &nseg_desc);
  3008. else
  3009. ret = kvm_task_switch_16(vcpu, tss_selector, &cseg_desc,
  3010. &nseg_desc);
  3011. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  3012. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3013. kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  3014. }
  3015. if (reason != TASK_SWITCH_IRET) {
  3016. nseg_desc.type |= (1 << 1);
  3017. save_guest_segment_descriptor(vcpu, tss_selector,
  3018. &nseg_desc);
  3019. }
  3020. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
  3021. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  3022. tr_seg.type = 11;
  3023. set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  3024. out:
  3025. kvm_x86_ops->decache_regs(vcpu);
  3026. return ret;
  3027. }
  3028. EXPORT_SYMBOL_GPL(kvm_task_switch);
  3029. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  3030. struct kvm_sregs *sregs)
  3031. {
  3032. int mmu_reset_needed = 0;
  3033. int i, pending_vec, max_bits;
  3034. struct descriptor_table dt;
  3035. vcpu_load(vcpu);
  3036. dt.limit = sregs->idt.limit;
  3037. dt.base = sregs->idt.base;
  3038. kvm_x86_ops->set_idt(vcpu, &dt);
  3039. dt.limit = sregs->gdt.limit;
  3040. dt.base = sregs->gdt.base;
  3041. kvm_x86_ops->set_gdt(vcpu, &dt);
  3042. vcpu->arch.cr2 = sregs->cr2;
  3043. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  3044. vcpu->arch.cr3 = sregs->cr3;
  3045. kvm_set_cr8(vcpu, sregs->cr8);
  3046. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  3047. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  3048. kvm_set_apic_base(vcpu, sregs->apic_base);
  3049. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3050. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  3051. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  3052. vcpu->arch.cr0 = sregs->cr0;
  3053. mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
  3054. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  3055. if (!is_long_mode(vcpu) && is_pae(vcpu))
  3056. load_pdptrs(vcpu, vcpu->arch.cr3);
  3057. if (mmu_reset_needed)
  3058. kvm_mmu_reset_context(vcpu);
  3059. if (!irqchip_in_kernel(vcpu->kvm)) {
  3060. memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
  3061. sizeof vcpu->arch.irq_pending);
  3062. vcpu->arch.irq_summary = 0;
  3063. for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
  3064. if (vcpu->arch.irq_pending[i])
  3065. __set_bit(i, &vcpu->arch.irq_summary);
  3066. } else {
  3067. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  3068. pending_vec = find_first_bit(
  3069. (const unsigned long *)sregs->interrupt_bitmap,
  3070. max_bits);
  3071. /* Only pending external irq is handled here */
  3072. if (pending_vec < max_bits) {
  3073. kvm_x86_ops->set_irq(vcpu, pending_vec);
  3074. pr_debug("Set back pending irq %d\n",
  3075. pending_vec);
  3076. }
  3077. }
  3078. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3079. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3080. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3081. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3082. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3083. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3084. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3085. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3086. vcpu_put(vcpu);
  3087. return 0;
  3088. }
  3089. int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  3090. struct kvm_debug_guest *dbg)
  3091. {
  3092. int r;
  3093. vcpu_load(vcpu);
  3094. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  3095. vcpu_put(vcpu);
  3096. return r;
  3097. }
  3098. /*
  3099. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  3100. * we have asm/x86/processor.h
  3101. */
  3102. struct fxsave {
  3103. u16 cwd;
  3104. u16 swd;
  3105. u16 twd;
  3106. u16 fop;
  3107. u64 rip;
  3108. u64 rdp;
  3109. u32 mxcsr;
  3110. u32 mxcsr_mask;
  3111. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  3112. #ifdef CONFIG_X86_64
  3113. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  3114. #else
  3115. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  3116. #endif
  3117. };
  3118. /*
  3119. * Translate a guest virtual address to a guest physical address.
  3120. */
  3121. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  3122. struct kvm_translation *tr)
  3123. {
  3124. unsigned long vaddr = tr->linear_address;
  3125. gpa_t gpa;
  3126. vcpu_load(vcpu);
  3127. down_read(&vcpu->kvm->slots_lock);
  3128. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  3129. up_read(&vcpu->kvm->slots_lock);
  3130. tr->physical_address = gpa;
  3131. tr->valid = gpa != UNMAPPED_GVA;
  3132. tr->writeable = 1;
  3133. tr->usermode = 0;
  3134. vcpu_put(vcpu);
  3135. return 0;
  3136. }
  3137. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3138. {
  3139. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3140. vcpu_load(vcpu);
  3141. memcpy(fpu->fpr, fxsave->st_space, 128);
  3142. fpu->fcw = fxsave->cwd;
  3143. fpu->fsw = fxsave->swd;
  3144. fpu->ftwx = fxsave->twd;
  3145. fpu->last_opcode = fxsave->fop;
  3146. fpu->last_ip = fxsave->rip;
  3147. fpu->last_dp = fxsave->rdp;
  3148. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  3149. vcpu_put(vcpu);
  3150. return 0;
  3151. }
  3152. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3153. {
  3154. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3155. vcpu_load(vcpu);
  3156. memcpy(fxsave->st_space, fpu->fpr, 128);
  3157. fxsave->cwd = fpu->fcw;
  3158. fxsave->swd = fpu->fsw;
  3159. fxsave->twd = fpu->ftwx;
  3160. fxsave->fop = fpu->last_opcode;
  3161. fxsave->rip = fpu->last_ip;
  3162. fxsave->rdp = fpu->last_dp;
  3163. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  3164. vcpu_put(vcpu);
  3165. return 0;
  3166. }
  3167. void fx_init(struct kvm_vcpu *vcpu)
  3168. {
  3169. unsigned after_mxcsr_mask;
  3170. /*
  3171. * Touch the fpu the first time in non atomic context as if
  3172. * this is the first fpu instruction the exception handler
  3173. * will fire before the instruction returns and it'll have to
  3174. * allocate ram with GFP_KERNEL.
  3175. */
  3176. if (!used_math())
  3177. fx_save(&vcpu->arch.host_fx_image);
  3178. /* Initialize guest FPU by resetting ours and saving into guest's */
  3179. preempt_disable();
  3180. fx_save(&vcpu->arch.host_fx_image);
  3181. fx_finit();
  3182. fx_save(&vcpu->arch.guest_fx_image);
  3183. fx_restore(&vcpu->arch.host_fx_image);
  3184. preempt_enable();
  3185. vcpu->arch.cr0 |= X86_CR0_ET;
  3186. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  3187. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  3188. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  3189. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  3190. }
  3191. EXPORT_SYMBOL_GPL(fx_init);
  3192. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  3193. {
  3194. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  3195. return;
  3196. vcpu->guest_fpu_loaded = 1;
  3197. fx_save(&vcpu->arch.host_fx_image);
  3198. fx_restore(&vcpu->arch.guest_fx_image);
  3199. }
  3200. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  3201. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  3202. {
  3203. if (!vcpu->guest_fpu_loaded)
  3204. return;
  3205. vcpu->guest_fpu_loaded = 0;
  3206. fx_save(&vcpu->arch.guest_fx_image);
  3207. fx_restore(&vcpu->arch.host_fx_image);
  3208. ++vcpu->stat.fpu_reload;
  3209. }
  3210. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  3211. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  3212. {
  3213. kvm_x86_ops->vcpu_free(vcpu);
  3214. }
  3215. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  3216. unsigned int id)
  3217. {
  3218. return kvm_x86_ops->vcpu_create(kvm, id);
  3219. }
  3220. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  3221. {
  3222. int r;
  3223. /* We do fxsave: this must be aligned. */
  3224. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  3225. vcpu_load(vcpu);
  3226. r = kvm_arch_vcpu_reset(vcpu);
  3227. if (r == 0)
  3228. r = kvm_mmu_setup(vcpu);
  3229. vcpu_put(vcpu);
  3230. if (r < 0)
  3231. goto free_vcpu;
  3232. return 0;
  3233. free_vcpu:
  3234. kvm_x86_ops->vcpu_free(vcpu);
  3235. return r;
  3236. }
  3237. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  3238. {
  3239. vcpu_load(vcpu);
  3240. kvm_mmu_unload(vcpu);
  3241. vcpu_put(vcpu);
  3242. kvm_x86_ops->vcpu_free(vcpu);
  3243. }
  3244. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  3245. {
  3246. return kvm_x86_ops->vcpu_reset(vcpu);
  3247. }
  3248. void kvm_arch_hardware_enable(void *garbage)
  3249. {
  3250. kvm_x86_ops->hardware_enable(garbage);
  3251. }
  3252. void kvm_arch_hardware_disable(void *garbage)
  3253. {
  3254. kvm_x86_ops->hardware_disable(garbage);
  3255. }
  3256. int kvm_arch_hardware_setup(void)
  3257. {
  3258. return kvm_x86_ops->hardware_setup();
  3259. }
  3260. void kvm_arch_hardware_unsetup(void)
  3261. {
  3262. kvm_x86_ops->hardware_unsetup();
  3263. }
  3264. void kvm_arch_check_processor_compat(void *rtn)
  3265. {
  3266. kvm_x86_ops->check_processor_compatibility(rtn);
  3267. }
  3268. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  3269. {
  3270. struct page *page;
  3271. struct kvm *kvm;
  3272. int r;
  3273. BUG_ON(vcpu->kvm == NULL);
  3274. kvm = vcpu->kvm;
  3275. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3276. if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
  3277. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3278. else
  3279. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  3280. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  3281. if (!page) {
  3282. r = -ENOMEM;
  3283. goto fail;
  3284. }
  3285. vcpu->arch.pio_data = page_address(page);
  3286. r = kvm_mmu_create(vcpu);
  3287. if (r < 0)
  3288. goto fail_free_pio_data;
  3289. if (irqchip_in_kernel(kvm)) {
  3290. r = kvm_create_lapic(vcpu);
  3291. if (r < 0)
  3292. goto fail_mmu_destroy;
  3293. }
  3294. return 0;
  3295. fail_mmu_destroy:
  3296. kvm_mmu_destroy(vcpu);
  3297. fail_free_pio_data:
  3298. free_page((unsigned long)vcpu->arch.pio_data);
  3299. fail:
  3300. return r;
  3301. }
  3302. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  3303. {
  3304. kvm_free_lapic(vcpu);
  3305. down_read(&vcpu->kvm->slots_lock);
  3306. kvm_mmu_destroy(vcpu);
  3307. up_read(&vcpu->kvm->slots_lock);
  3308. free_page((unsigned long)vcpu->arch.pio_data);
  3309. }
  3310. struct kvm *kvm_arch_create_vm(void)
  3311. {
  3312. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  3313. if (!kvm)
  3314. return ERR_PTR(-ENOMEM);
  3315. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  3316. return kvm;
  3317. }
  3318. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  3319. {
  3320. vcpu_load(vcpu);
  3321. kvm_mmu_unload(vcpu);
  3322. vcpu_put(vcpu);
  3323. }
  3324. static void kvm_free_vcpus(struct kvm *kvm)
  3325. {
  3326. unsigned int i;
  3327. /*
  3328. * Unpin any mmu pages first.
  3329. */
  3330. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  3331. if (kvm->vcpus[i])
  3332. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  3333. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  3334. if (kvm->vcpus[i]) {
  3335. kvm_arch_vcpu_free(kvm->vcpus[i]);
  3336. kvm->vcpus[i] = NULL;
  3337. }
  3338. }
  3339. }
  3340. void kvm_arch_destroy_vm(struct kvm *kvm)
  3341. {
  3342. kvm_free_pit(kvm);
  3343. kfree(kvm->arch.vpic);
  3344. kfree(kvm->arch.vioapic);
  3345. kvm_free_vcpus(kvm);
  3346. kvm_free_physmem(kvm);
  3347. if (kvm->arch.apic_access_page)
  3348. put_page(kvm->arch.apic_access_page);
  3349. if (kvm->arch.ept_identity_pagetable)
  3350. put_page(kvm->arch.ept_identity_pagetable);
  3351. kfree(kvm);
  3352. }
  3353. int kvm_arch_set_memory_region(struct kvm *kvm,
  3354. struct kvm_userspace_memory_region *mem,
  3355. struct kvm_memory_slot old,
  3356. int user_alloc)
  3357. {
  3358. int npages = mem->memory_size >> PAGE_SHIFT;
  3359. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  3360. /*To keep backward compatibility with older userspace,
  3361. *x86 needs to hanlde !user_alloc case.
  3362. */
  3363. if (!user_alloc) {
  3364. if (npages && !old.rmap) {
  3365. down_write(&current->mm->mmap_sem);
  3366. memslot->userspace_addr = do_mmap(NULL, 0,
  3367. npages * PAGE_SIZE,
  3368. PROT_READ | PROT_WRITE,
  3369. MAP_SHARED | MAP_ANONYMOUS,
  3370. 0);
  3371. up_write(&current->mm->mmap_sem);
  3372. if (IS_ERR((void *)memslot->userspace_addr))
  3373. return PTR_ERR((void *)memslot->userspace_addr);
  3374. } else {
  3375. if (!old.user_alloc && old.rmap) {
  3376. int ret;
  3377. down_write(&current->mm->mmap_sem);
  3378. ret = do_munmap(current->mm, old.userspace_addr,
  3379. old.npages * PAGE_SIZE);
  3380. up_write(&current->mm->mmap_sem);
  3381. if (ret < 0)
  3382. printk(KERN_WARNING
  3383. "kvm_vm_ioctl_set_memory_region: "
  3384. "failed to munmap memory\n");
  3385. }
  3386. }
  3387. }
  3388. if (!kvm->arch.n_requested_mmu_pages) {
  3389. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  3390. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  3391. }
  3392. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  3393. kvm_flush_remote_tlbs(kvm);
  3394. return 0;
  3395. }
  3396. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  3397. {
  3398. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  3399. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED;
  3400. }
  3401. static void vcpu_kick_intr(void *info)
  3402. {
  3403. #ifdef DEBUG
  3404. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
  3405. printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
  3406. #endif
  3407. }
  3408. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  3409. {
  3410. int ipi_pcpu = vcpu->cpu;
  3411. int cpu = get_cpu();
  3412. if (waitqueue_active(&vcpu->wq)) {
  3413. wake_up_interruptible(&vcpu->wq);
  3414. ++vcpu->stat.halt_wakeup;
  3415. }
  3416. /*
  3417. * We may be called synchronously with irqs disabled in guest mode,
  3418. * So need not to call smp_call_function_single() in that case.
  3419. */
  3420. if (vcpu->guest_mode && vcpu->cpu != cpu)
  3421. smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0, 0);
  3422. put_cpu();
  3423. }