wl.c 42 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607
  1. /*
  2. * Copyright (c) International Business Machines Corp., 2006
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  12. * the GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  17. *
  18. * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
  19. */
  20. /*
  21. * UBI wear-leveling unit.
  22. *
  23. * This unit is responsible for wear-leveling. It works in terms of physical
  24. * eraseblocks and erase counters and knows nothing about logical eraseblocks,
  25. * volumes, etc. From this unit's perspective all physical eraseblocks are of
  26. * two types - used and free. Used physical eraseblocks are those that were
  27. * "get" by the 'ubi_wl_get_peb()' function, and free physical eraseblocks are
  28. * those that were put by the 'ubi_wl_put_peb()' function.
  29. *
  30. * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
  31. * header. The rest of the physical eraseblock contains only 0xFF bytes.
  32. *
  33. * When physical eraseblocks are returned to the WL unit by means of the
  34. * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
  35. * done asynchronously in context of the per-UBI device background thread,
  36. * which is also managed by the WL unit.
  37. *
  38. * The wear-leveling is ensured by means of moving the contents of used
  39. * physical eraseblocks with low erase counter to free physical eraseblocks
  40. * with high erase counter.
  41. *
  42. * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick
  43. * an "optimal" physical eraseblock. For example, when it is known that the
  44. * physical eraseblock will be "put" soon because it contains short-term data,
  45. * the WL unit may pick a free physical eraseblock with low erase counter, and
  46. * so forth.
  47. *
  48. * If the WL unit fails to erase a physical eraseblock, it marks it as bad.
  49. *
  50. * This unit is also responsible for scrubbing. If a bit-flip is detected in a
  51. * physical eraseblock, it has to be moved. Technically this is the same as
  52. * moving it for wear-leveling reasons.
  53. *
  54. * As it was said, for the UBI unit all physical eraseblocks are either "free"
  55. * or "used". Free eraseblock are kept in the @wl->free RB-tree, while used
  56. * eraseblocks are kept in a set of different RB-trees: @wl->used,
  57. * @wl->prot.pnum, @wl->prot.aec, and @wl->scrub.
  58. *
  59. * Note, in this implementation, we keep a small in-RAM object for each physical
  60. * eraseblock. This is surely not a scalable solution. But it appears to be good
  61. * enough for moderately large flashes and it is simple. In future, one may
  62. * re-work this unit and make it more scalable.
  63. *
  64. * At the moment this unit does not utilize the sequence number, which was
  65. * introduced relatively recently. But it would be wise to do this because the
  66. * sequence number of a logical eraseblock characterizes how old is it. For
  67. * example, when we move a PEB with low erase counter, and we need to pick the
  68. * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
  69. * pick target PEB with an average EC if our PEB is not very "old". This is a
  70. * room for future re-works of the WL unit.
  71. *
  72. * FIXME: looks too complex, should be simplified (later).
  73. */
  74. #include <linux/slab.h>
  75. #include <linux/crc32.h>
  76. #include <linux/freezer.h>
  77. #include <linux/kthread.h>
  78. #include "ubi.h"
  79. /* Number of physical eraseblocks reserved for wear-leveling purposes */
  80. #define WL_RESERVED_PEBS 1
  81. /*
  82. * How many erase cycles are short term, unknown, and long term physical
  83. * eraseblocks protected.
  84. */
  85. #define ST_PROTECTION 16
  86. #define U_PROTECTION 10
  87. #define LT_PROTECTION 4
  88. /*
  89. * Maximum difference between two erase counters. If this threshold is
  90. * exceeded, the WL unit starts moving data from used physical eraseblocks with
  91. * low erase counter to free physical eraseblocks with high erase counter.
  92. */
  93. #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
  94. /*
  95. * When a physical eraseblock is moved, the WL unit has to pick the target
  96. * physical eraseblock to move to. The simplest way would be just to pick the
  97. * one with the highest erase counter. But in certain workloads this could lead
  98. * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
  99. * situation when the picked physical eraseblock is constantly erased after the
  100. * data is written to it. So, we have a constant which limits the highest erase
  101. * counter of the free physical eraseblock to pick. Namely, the WL unit does
  102. * not pick eraseblocks with erase counter greater then the lowest erase
  103. * counter plus %WL_FREE_MAX_DIFF.
  104. */
  105. #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
  106. /*
  107. * Maximum number of consecutive background thread failures which is enough to
  108. * switch to read-only mode.
  109. */
  110. #define WL_MAX_FAILURES 32
  111. /**
  112. * struct ubi_wl_prot_entry - PEB protection entry.
  113. * @rb_pnum: link in the @wl->prot.pnum RB-tree
  114. * @rb_aec: link in the @wl->prot.aec RB-tree
  115. * @abs_ec: the absolute erase counter value when the protection ends
  116. * @e: the wear-leveling entry of the physical eraseblock under protection
  117. *
  118. * When the WL unit returns a physical eraseblock, the physical eraseblock is
  119. * protected from being moved for some "time". For this reason, the physical
  120. * eraseblock is not directly moved from the @wl->free tree to the @wl->used
  121. * tree. There is one more tree in between where this physical eraseblock is
  122. * temporarily stored (@wl->prot).
  123. *
  124. * All this protection stuff is needed because:
  125. * o we don't want to move physical eraseblocks just after we have given them
  126. * to the user; instead, we first want to let users fill them up with data;
  127. *
  128. * o there is a chance that the user will put the physical eraseblock very
  129. * soon, so it makes sense not to move it for some time, but wait; this is
  130. * especially important in case of "short term" physical eraseblocks.
  131. *
  132. * Physical eraseblocks stay protected only for limited time. But the "time" is
  133. * measured in erase cycles in this case. This is implemented with help of the
  134. * absolute erase counter (@wl->abs_ec). When it reaches certain value, the
  135. * physical eraseblocks are moved from the protection trees (@wl->prot.*) to
  136. * the @wl->used tree.
  137. *
  138. * Protected physical eraseblocks are searched by physical eraseblock number
  139. * (when they are put) and by the absolute erase counter (to check if it is
  140. * time to move them to the @wl->used tree). So there are actually 2 RB-trees
  141. * storing the protected physical eraseblocks: @wl->prot.pnum and
  142. * @wl->prot.aec. They are referred to as the "protection" trees. The
  143. * first one is indexed by the physical eraseblock number. The second one is
  144. * indexed by the absolute erase counter. Both trees store
  145. * &struct ubi_wl_prot_entry objects.
  146. *
  147. * Each physical eraseblock has 2 main states: free and used. The former state
  148. * corresponds to the @wl->free tree. The latter state is split up on several
  149. * sub-states:
  150. * o the WL movement is allowed (@wl->used tree);
  151. * o the WL movement is temporarily prohibited (@wl->prot.pnum and
  152. * @wl->prot.aec trees);
  153. * o scrubbing is needed (@wl->scrub tree).
  154. *
  155. * Depending on the sub-state, wear-leveling entries of the used physical
  156. * eraseblocks may be kept in one of those trees.
  157. */
  158. struct ubi_wl_prot_entry {
  159. struct rb_node rb_pnum;
  160. struct rb_node rb_aec;
  161. unsigned long long abs_ec;
  162. struct ubi_wl_entry *e;
  163. };
  164. /**
  165. * struct ubi_work - UBI work description data structure.
  166. * @list: a link in the list of pending works
  167. * @func: worker function
  168. * @priv: private data of the worker function
  169. *
  170. * @e: physical eraseblock to erase
  171. * @torture: if the physical eraseblock has to be tortured
  172. *
  173. * The @func pointer points to the worker function. If the @cancel argument is
  174. * not zero, the worker has to free the resources and exit immediately. The
  175. * worker has to return zero in case of success and a negative error code in
  176. * case of failure.
  177. */
  178. struct ubi_work {
  179. struct list_head list;
  180. int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel);
  181. /* The below fields are only relevant to erasure works */
  182. struct ubi_wl_entry *e;
  183. int torture;
  184. };
  185. #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
  186. static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec);
  187. static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
  188. struct rb_root *root);
  189. #else
  190. #define paranoid_check_ec(ubi, pnum, ec) 0
  191. #define paranoid_check_in_wl_tree(e, root)
  192. #endif
  193. /**
  194. * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
  195. * @e: the wear-leveling entry to add
  196. * @root: the root of the tree
  197. *
  198. * Note, we use (erase counter, physical eraseblock number) pairs as keys in
  199. * the @ubi->used and @ubi->free RB-trees.
  200. */
  201. static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
  202. {
  203. struct rb_node **p, *parent = NULL;
  204. p = &root->rb_node;
  205. while (*p) {
  206. struct ubi_wl_entry *e1;
  207. parent = *p;
  208. e1 = rb_entry(parent, struct ubi_wl_entry, rb);
  209. if (e->ec < e1->ec)
  210. p = &(*p)->rb_left;
  211. else if (e->ec > e1->ec)
  212. p = &(*p)->rb_right;
  213. else {
  214. ubi_assert(e->pnum != e1->pnum);
  215. if (e->pnum < e1->pnum)
  216. p = &(*p)->rb_left;
  217. else
  218. p = &(*p)->rb_right;
  219. }
  220. }
  221. rb_link_node(&e->rb, parent, p);
  222. rb_insert_color(&e->rb, root);
  223. }
  224. /**
  225. * do_work - do one pending work.
  226. * @ubi: UBI device description object
  227. *
  228. * This function returns zero in case of success and a negative error code in
  229. * case of failure.
  230. */
  231. static int do_work(struct ubi_device *ubi)
  232. {
  233. int err;
  234. struct ubi_work *wrk;
  235. spin_lock(&ubi->wl_lock);
  236. if (list_empty(&ubi->works)) {
  237. spin_unlock(&ubi->wl_lock);
  238. return 0;
  239. }
  240. wrk = list_entry(ubi->works.next, struct ubi_work, list);
  241. list_del(&wrk->list);
  242. spin_unlock(&ubi->wl_lock);
  243. /*
  244. * Call the worker function. Do not touch the work structure
  245. * after this call as it will have been freed or reused by that
  246. * time by the worker function.
  247. */
  248. err = wrk->func(ubi, wrk, 0);
  249. if (err)
  250. ubi_err("work failed with error code %d", err);
  251. spin_lock(&ubi->wl_lock);
  252. ubi->works_count -= 1;
  253. ubi_assert(ubi->works_count >= 0);
  254. spin_unlock(&ubi->wl_lock);
  255. return err;
  256. }
  257. /**
  258. * produce_free_peb - produce a free physical eraseblock.
  259. * @ubi: UBI device description object
  260. *
  261. * This function tries to make a free PEB by means of synchronous execution of
  262. * pending works. This may be needed if, for example the background thread is
  263. * disabled. Returns zero in case of success and a negative error code in case
  264. * of failure.
  265. */
  266. static int produce_free_peb(struct ubi_device *ubi)
  267. {
  268. int err;
  269. spin_lock(&ubi->wl_lock);
  270. while (!ubi->free.rb_node) {
  271. spin_unlock(&ubi->wl_lock);
  272. dbg_wl("do one work synchronously");
  273. err = do_work(ubi);
  274. if (err)
  275. return err;
  276. spin_lock(&ubi->wl_lock);
  277. }
  278. spin_unlock(&ubi->wl_lock);
  279. return 0;
  280. }
  281. /**
  282. * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
  283. * @e: the wear-leveling entry to check
  284. * @root: the root of the tree
  285. *
  286. * This function returns non-zero if @e is in the @root RB-tree and zero if it
  287. * is not.
  288. */
  289. static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
  290. {
  291. struct rb_node *p;
  292. p = root->rb_node;
  293. while (p) {
  294. struct ubi_wl_entry *e1;
  295. e1 = rb_entry(p, struct ubi_wl_entry, rb);
  296. if (e->pnum == e1->pnum) {
  297. ubi_assert(e == e1);
  298. return 1;
  299. }
  300. if (e->ec < e1->ec)
  301. p = p->rb_left;
  302. else if (e->ec > e1->ec)
  303. p = p->rb_right;
  304. else {
  305. ubi_assert(e->pnum != e1->pnum);
  306. if (e->pnum < e1->pnum)
  307. p = p->rb_left;
  308. else
  309. p = p->rb_right;
  310. }
  311. }
  312. return 0;
  313. }
  314. /**
  315. * prot_tree_add - add physical eraseblock to protection trees.
  316. * @ubi: UBI device description object
  317. * @e: the physical eraseblock to add
  318. * @pe: protection entry object to use
  319. * @abs_ec: absolute erase counter value when this physical eraseblock has
  320. * to be removed from the protection trees.
  321. *
  322. * @wl->lock has to be locked.
  323. */
  324. static void prot_tree_add(struct ubi_device *ubi, struct ubi_wl_entry *e,
  325. struct ubi_wl_prot_entry *pe, int abs_ec)
  326. {
  327. struct rb_node **p, *parent = NULL;
  328. struct ubi_wl_prot_entry *pe1;
  329. pe->e = e;
  330. pe->abs_ec = ubi->abs_ec + abs_ec;
  331. p = &ubi->prot.pnum.rb_node;
  332. while (*p) {
  333. parent = *p;
  334. pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_pnum);
  335. if (e->pnum < pe1->e->pnum)
  336. p = &(*p)->rb_left;
  337. else
  338. p = &(*p)->rb_right;
  339. }
  340. rb_link_node(&pe->rb_pnum, parent, p);
  341. rb_insert_color(&pe->rb_pnum, &ubi->prot.pnum);
  342. p = &ubi->prot.aec.rb_node;
  343. parent = NULL;
  344. while (*p) {
  345. parent = *p;
  346. pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_aec);
  347. if (pe->abs_ec < pe1->abs_ec)
  348. p = &(*p)->rb_left;
  349. else
  350. p = &(*p)->rb_right;
  351. }
  352. rb_link_node(&pe->rb_aec, parent, p);
  353. rb_insert_color(&pe->rb_aec, &ubi->prot.aec);
  354. }
  355. /**
  356. * find_wl_entry - find wear-leveling entry closest to certain erase counter.
  357. * @root: the RB-tree where to look for
  358. * @max: highest possible erase counter
  359. *
  360. * This function looks for a wear leveling entry with erase counter closest to
  361. * @max and less then @max.
  362. */
  363. static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max)
  364. {
  365. struct rb_node *p;
  366. struct ubi_wl_entry *e;
  367. e = rb_entry(rb_first(root), struct ubi_wl_entry, rb);
  368. max += e->ec;
  369. p = root->rb_node;
  370. while (p) {
  371. struct ubi_wl_entry *e1;
  372. e1 = rb_entry(p, struct ubi_wl_entry, rb);
  373. if (e1->ec >= max)
  374. p = p->rb_left;
  375. else {
  376. p = p->rb_right;
  377. e = e1;
  378. }
  379. }
  380. return e;
  381. }
  382. /**
  383. * ubi_wl_get_peb - get a physical eraseblock.
  384. * @ubi: UBI device description object
  385. * @dtype: type of data which will be stored in this physical eraseblock
  386. *
  387. * This function returns a physical eraseblock in case of success and a
  388. * negative error code in case of failure. Might sleep.
  389. */
  390. int ubi_wl_get_peb(struct ubi_device *ubi, int dtype)
  391. {
  392. int err, protect, medium_ec;
  393. struct ubi_wl_entry *e, *first, *last;
  394. struct ubi_wl_prot_entry *pe;
  395. ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM ||
  396. dtype == UBI_UNKNOWN);
  397. pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_NOFS);
  398. if (!pe)
  399. return -ENOMEM;
  400. retry:
  401. spin_lock(&ubi->wl_lock);
  402. if (!ubi->free.rb_node) {
  403. if (ubi->works_count == 0) {
  404. ubi_assert(list_empty(&ubi->works));
  405. ubi_err("no free eraseblocks");
  406. spin_unlock(&ubi->wl_lock);
  407. kfree(pe);
  408. return -ENOSPC;
  409. }
  410. spin_unlock(&ubi->wl_lock);
  411. err = produce_free_peb(ubi);
  412. if (err < 0) {
  413. kfree(pe);
  414. return err;
  415. }
  416. goto retry;
  417. }
  418. switch (dtype) {
  419. case UBI_LONGTERM:
  420. /*
  421. * For long term data we pick a physical eraseblock
  422. * with high erase counter. But the highest erase
  423. * counter we can pick is bounded by the the lowest
  424. * erase counter plus %WL_FREE_MAX_DIFF.
  425. */
  426. e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
  427. protect = LT_PROTECTION;
  428. break;
  429. case UBI_UNKNOWN:
  430. /*
  431. * For unknown data we pick a physical eraseblock with
  432. * medium erase counter. But we by no means can pick a
  433. * physical eraseblock with erase counter greater or
  434. * equivalent than the lowest erase counter plus
  435. * %WL_FREE_MAX_DIFF.
  436. */
  437. first = rb_entry(rb_first(&ubi->free),
  438. struct ubi_wl_entry, rb);
  439. last = rb_entry(rb_last(&ubi->free),
  440. struct ubi_wl_entry, rb);
  441. if (last->ec - first->ec < WL_FREE_MAX_DIFF)
  442. e = rb_entry(ubi->free.rb_node,
  443. struct ubi_wl_entry, rb);
  444. else {
  445. medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2;
  446. e = find_wl_entry(&ubi->free, medium_ec);
  447. }
  448. protect = U_PROTECTION;
  449. break;
  450. case UBI_SHORTTERM:
  451. /*
  452. * For short term data we pick a physical eraseblock
  453. * with the lowest erase counter as we expect it will
  454. * be erased soon.
  455. */
  456. e = rb_entry(rb_first(&ubi->free),
  457. struct ubi_wl_entry, rb);
  458. protect = ST_PROTECTION;
  459. break;
  460. default:
  461. protect = 0;
  462. e = NULL;
  463. BUG();
  464. }
  465. /*
  466. * Move the physical eraseblock to the protection trees where it will
  467. * be protected from being moved for some time.
  468. */
  469. paranoid_check_in_wl_tree(e, &ubi->free);
  470. rb_erase(&e->rb, &ubi->free);
  471. prot_tree_add(ubi, e, pe, protect);
  472. dbg_wl("PEB %d EC %d, protection %d", e->pnum, e->ec, protect);
  473. spin_unlock(&ubi->wl_lock);
  474. return e->pnum;
  475. }
  476. /**
  477. * prot_tree_del - remove a physical eraseblock from the protection trees
  478. * @ubi: UBI device description object
  479. * @pnum: the physical eraseblock to remove
  480. */
  481. static void prot_tree_del(struct ubi_device *ubi, int pnum)
  482. {
  483. struct rb_node *p;
  484. struct ubi_wl_prot_entry *pe = NULL;
  485. p = ubi->prot.pnum.rb_node;
  486. while (p) {
  487. pe = rb_entry(p, struct ubi_wl_prot_entry, rb_pnum);
  488. if (pnum == pe->e->pnum)
  489. break;
  490. if (pnum < pe->e->pnum)
  491. p = p->rb_left;
  492. else
  493. p = p->rb_right;
  494. }
  495. ubi_assert(pe->e->pnum == pnum);
  496. rb_erase(&pe->rb_aec, &ubi->prot.aec);
  497. rb_erase(&pe->rb_pnum, &ubi->prot.pnum);
  498. kfree(pe);
  499. }
  500. /**
  501. * sync_erase - synchronously erase a physical eraseblock.
  502. * @ubi: UBI device description object
  503. * @e: the the physical eraseblock to erase
  504. * @torture: if the physical eraseblock has to be tortured
  505. *
  506. * This function returns zero in case of success and a negative error code in
  507. * case of failure.
  508. */
  509. static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, int torture)
  510. {
  511. int err;
  512. struct ubi_ec_hdr *ec_hdr;
  513. unsigned long long ec = e->ec;
  514. dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
  515. err = paranoid_check_ec(ubi, e->pnum, e->ec);
  516. if (err > 0)
  517. return -EINVAL;
  518. ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
  519. if (!ec_hdr)
  520. return -ENOMEM;
  521. err = ubi_io_sync_erase(ubi, e->pnum, torture);
  522. if (err < 0)
  523. goto out_free;
  524. ec += err;
  525. if (ec > UBI_MAX_ERASECOUNTER) {
  526. /*
  527. * Erase counter overflow. Upgrade UBI and use 64-bit
  528. * erase counters internally.
  529. */
  530. ubi_err("erase counter overflow at PEB %d, EC %llu",
  531. e->pnum, ec);
  532. err = -EINVAL;
  533. goto out_free;
  534. }
  535. dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
  536. ec_hdr->ec = cpu_to_be64(ec);
  537. err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
  538. if (err)
  539. goto out_free;
  540. e->ec = ec;
  541. spin_lock(&ubi->wl_lock);
  542. if (e->ec > ubi->max_ec)
  543. ubi->max_ec = e->ec;
  544. spin_unlock(&ubi->wl_lock);
  545. out_free:
  546. kfree(ec_hdr);
  547. return err;
  548. }
  549. /**
  550. * check_protection_over - check if it is time to stop protecting some
  551. * physical eraseblocks.
  552. * @ubi: UBI device description object
  553. *
  554. * This function is called after each erase operation, when the absolute erase
  555. * counter is incremented, to check if some physical eraseblock have not to be
  556. * protected any longer. These physical eraseblocks are moved from the
  557. * protection trees to the used tree.
  558. */
  559. static void check_protection_over(struct ubi_device *ubi)
  560. {
  561. struct ubi_wl_prot_entry *pe;
  562. /*
  563. * There may be several protected physical eraseblock to remove,
  564. * process them all.
  565. */
  566. while (1) {
  567. spin_lock(&ubi->wl_lock);
  568. if (!ubi->prot.aec.rb_node) {
  569. spin_unlock(&ubi->wl_lock);
  570. break;
  571. }
  572. pe = rb_entry(rb_first(&ubi->prot.aec),
  573. struct ubi_wl_prot_entry, rb_aec);
  574. if (pe->abs_ec > ubi->abs_ec) {
  575. spin_unlock(&ubi->wl_lock);
  576. break;
  577. }
  578. dbg_wl("PEB %d protection over, abs_ec %llu, PEB abs_ec %llu",
  579. pe->e->pnum, ubi->abs_ec, pe->abs_ec);
  580. rb_erase(&pe->rb_aec, &ubi->prot.aec);
  581. rb_erase(&pe->rb_pnum, &ubi->prot.pnum);
  582. wl_tree_add(pe->e, &ubi->used);
  583. spin_unlock(&ubi->wl_lock);
  584. kfree(pe);
  585. cond_resched();
  586. }
  587. }
  588. /**
  589. * schedule_ubi_work - schedule a work.
  590. * @ubi: UBI device description object
  591. * @wrk: the work to schedule
  592. *
  593. * This function enqueues a work defined by @wrk to the tail of the pending
  594. * works list.
  595. */
  596. static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
  597. {
  598. spin_lock(&ubi->wl_lock);
  599. list_add_tail(&wrk->list, &ubi->works);
  600. ubi_assert(ubi->works_count >= 0);
  601. ubi->works_count += 1;
  602. if (ubi->thread_enabled)
  603. wake_up_process(ubi->bgt_thread);
  604. spin_unlock(&ubi->wl_lock);
  605. }
  606. static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
  607. int cancel);
  608. /**
  609. * schedule_erase - schedule an erase work.
  610. * @ubi: UBI device description object
  611. * @e: the WL entry of the physical eraseblock to erase
  612. * @torture: if the physical eraseblock has to be tortured
  613. *
  614. * This function returns zero in case of success and a %-ENOMEM in case of
  615. * failure.
  616. */
  617. static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
  618. int torture)
  619. {
  620. struct ubi_work *wl_wrk;
  621. dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
  622. e->pnum, e->ec, torture);
  623. wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
  624. if (!wl_wrk)
  625. return -ENOMEM;
  626. wl_wrk->func = &erase_worker;
  627. wl_wrk->e = e;
  628. wl_wrk->torture = torture;
  629. schedule_ubi_work(ubi, wl_wrk);
  630. return 0;
  631. }
  632. /**
  633. * wear_leveling_worker - wear-leveling worker function.
  634. * @ubi: UBI device description object
  635. * @wrk: the work object
  636. * @cancel: non-zero if the worker has to free memory and exit
  637. *
  638. * This function copies a more worn out physical eraseblock to a less worn out
  639. * one. Returns zero in case of success and a negative error code in case of
  640. * failure.
  641. */
  642. static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
  643. int cancel)
  644. {
  645. int err, put = 0;
  646. struct ubi_wl_entry *e1, *e2;
  647. struct ubi_vid_hdr *vid_hdr;
  648. kfree(wrk);
  649. if (cancel)
  650. return 0;
  651. vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
  652. if (!vid_hdr)
  653. return -ENOMEM;
  654. spin_lock(&ubi->wl_lock);
  655. /*
  656. * Only one WL worker at a time is supported at this implementation, so
  657. * make sure a PEB is not being moved already.
  658. */
  659. if (ubi->move_to || !ubi->free.rb_node ||
  660. (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
  661. /*
  662. * Only one WL worker at a time is supported at this
  663. * implementation, so if a LEB is already being moved, cancel.
  664. *
  665. * No free physical eraseblocks? Well, we cancel wear-leveling
  666. * then. It will be triggered again when a free physical
  667. * eraseblock appears.
  668. *
  669. * No used physical eraseblocks? They must be temporarily
  670. * protected from being moved. They will be moved to the
  671. * @ubi->used tree later and the wear-leveling will be
  672. * triggered again.
  673. */
  674. dbg_wl("cancel WL, a list is empty: free %d, used %d",
  675. !ubi->free.rb_node, !ubi->used.rb_node);
  676. ubi->wl_scheduled = 0;
  677. spin_unlock(&ubi->wl_lock);
  678. ubi_free_vid_hdr(ubi, vid_hdr);
  679. return 0;
  680. }
  681. if (!ubi->scrub.rb_node) {
  682. /*
  683. * Now pick the least worn-out used physical eraseblock and a
  684. * highly worn-out free physical eraseblock. If the erase
  685. * counters differ much enough, start wear-leveling.
  686. */
  687. e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb);
  688. e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
  689. if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
  690. dbg_wl("no WL needed: min used EC %d, max free EC %d",
  691. e1->ec, e2->ec);
  692. ubi->wl_scheduled = 0;
  693. spin_unlock(&ubi->wl_lock);
  694. ubi_free_vid_hdr(ubi, vid_hdr);
  695. return 0;
  696. }
  697. paranoid_check_in_wl_tree(e1, &ubi->used);
  698. rb_erase(&e1->rb, &ubi->used);
  699. dbg_wl("move PEB %d EC %d to PEB %d EC %d",
  700. e1->pnum, e1->ec, e2->pnum, e2->ec);
  701. } else {
  702. e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, rb);
  703. e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
  704. paranoid_check_in_wl_tree(e1, &ubi->scrub);
  705. rb_erase(&e1->rb, &ubi->scrub);
  706. dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
  707. }
  708. paranoid_check_in_wl_tree(e2, &ubi->free);
  709. rb_erase(&e2->rb, &ubi->free);
  710. ubi_assert(!ubi->move_from && !ubi->move_to);
  711. ubi_assert(!ubi->move_to_put && !ubi->move_from_put);
  712. ubi->move_from = e1;
  713. ubi->move_to = e2;
  714. spin_unlock(&ubi->wl_lock);
  715. /*
  716. * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
  717. * We so far do not know which logical eraseblock our physical
  718. * eraseblock (@e1) belongs to. We have to read the volume identifier
  719. * header first.
  720. */
  721. err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
  722. if (err && err != UBI_IO_BITFLIPS) {
  723. if (err == UBI_IO_PEB_FREE) {
  724. /*
  725. * We are trying to move PEB without a VID header. UBI
  726. * always write VID headers shortly after the PEB was
  727. * given, so we have a situation when it did not have
  728. * chance to write it down because it was preempted.
  729. * Just re-schedule the work, so that next time it will
  730. * likely have the VID header in place.
  731. */
  732. dbg_wl("PEB %d has no VID header", e1->pnum);
  733. err = 0;
  734. } else {
  735. ubi_err("error %d while reading VID header from PEB %d",
  736. err, e1->pnum);
  737. if (err > 0)
  738. err = -EIO;
  739. }
  740. goto error;
  741. }
  742. err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
  743. if (err) {
  744. if (err == UBI_IO_BITFLIPS)
  745. err = 0;
  746. goto error;
  747. }
  748. ubi_free_vid_hdr(ubi, vid_hdr);
  749. spin_lock(&ubi->wl_lock);
  750. if (!ubi->move_to_put)
  751. wl_tree_add(e2, &ubi->used);
  752. else
  753. put = 1;
  754. ubi->move_from = ubi->move_to = NULL;
  755. ubi->move_from_put = ubi->move_to_put = 0;
  756. ubi->wl_scheduled = 0;
  757. spin_unlock(&ubi->wl_lock);
  758. if (put) {
  759. /*
  760. * Well, the target PEB was put meanwhile, schedule it for
  761. * erasure.
  762. */
  763. dbg_wl("PEB %d was put meanwhile, erase", e2->pnum);
  764. err = schedule_erase(ubi, e2, 0);
  765. if (err) {
  766. kmem_cache_free(ubi_wl_entry_slab, e2);
  767. ubi_ro_mode(ubi);
  768. }
  769. }
  770. err = schedule_erase(ubi, e1, 0);
  771. if (err) {
  772. kmem_cache_free(ubi_wl_entry_slab, e1);
  773. ubi_ro_mode(ubi);
  774. }
  775. dbg_wl("done");
  776. return err;
  777. /*
  778. * Some error occurred. @e1 was not changed, so return it back. @e2
  779. * might be changed, schedule it for erasure.
  780. */
  781. error:
  782. if (err)
  783. dbg_wl("error %d occurred, cancel operation", err);
  784. ubi_assert(err <= 0);
  785. ubi_free_vid_hdr(ubi, vid_hdr);
  786. spin_lock(&ubi->wl_lock);
  787. ubi->wl_scheduled = 0;
  788. if (ubi->move_from_put)
  789. put = 1;
  790. else
  791. wl_tree_add(e1, &ubi->used);
  792. ubi->move_from = ubi->move_to = NULL;
  793. ubi->move_from_put = ubi->move_to_put = 0;
  794. spin_unlock(&ubi->wl_lock);
  795. if (put) {
  796. /*
  797. * Well, the target PEB was put meanwhile, schedule it for
  798. * erasure.
  799. */
  800. dbg_wl("PEB %d was put meanwhile, erase", e1->pnum);
  801. err = schedule_erase(ubi, e1, 0);
  802. if (err) {
  803. kmem_cache_free(ubi_wl_entry_slab, e1);
  804. ubi_ro_mode(ubi);
  805. }
  806. }
  807. err = schedule_erase(ubi, e2, 0);
  808. if (err) {
  809. kmem_cache_free(ubi_wl_entry_slab, e2);
  810. ubi_ro_mode(ubi);
  811. }
  812. yield();
  813. return err;
  814. }
  815. /**
  816. * ensure_wear_leveling - schedule wear-leveling if it is needed.
  817. * @ubi: UBI device description object
  818. *
  819. * This function checks if it is time to start wear-leveling and schedules it
  820. * if yes. This function returns zero in case of success and a negative error
  821. * code in case of failure.
  822. */
  823. static int ensure_wear_leveling(struct ubi_device *ubi)
  824. {
  825. int err = 0;
  826. struct ubi_wl_entry *e1;
  827. struct ubi_wl_entry *e2;
  828. struct ubi_work *wrk;
  829. spin_lock(&ubi->wl_lock);
  830. if (ubi->wl_scheduled)
  831. /* Wear-leveling is already in the work queue */
  832. goto out_unlock;
  833. /*
  834. * If the ubi->scrub tree is not empty, scrubbing is needed, and the
  835. * the WL worker has to be scheduled anyway.
  836. */
  837. if (!ubi->scrub.rb_node) {
  838. if (!ubi->used.rb_node || !ubi->free.rb_node)
  839. /* No physical eraseblocks - no deal */
  840. goto out_unlock;
  841. /*
  842. * We schedule wear-leveling only if the difference between the
  843. * lowest erase counter of used physical eraseblocks and a high
  844. * erase counter of free physical eraseblocks is greater then
  845. * %UBI_WL_THRESHOLD.
  846. */
  847. e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb);
  848. e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
  849. if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
  850. goto out_unlock;
  851. dbg_wl("schedule wear-leveling");
  852. } else
  853. dbg_wl("schedule scrubbing");
  854. ubi->wl_scheduled = 1;
  855. spin_unlock(&ubi->wl_lock);
  856. wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
  857. if (!wrk) {
  858. err = -ENOMEM;
  859. goto out_cancel;
  860. }
  861. wrk->func = &wear_leveling_worker;
  862. schedule_ubi_work(ubi, wrk);
  863. return err;
  864. out_cancel:
  865. spin_lock(&ubi->wl_lock);
  866. ubi->wl_scheduled = 0;
  867. out_unlock:
  868. spin_unlock(&ubi->wl_lock);
  869. return err;
  870. }
  871. /**
  872. * erase_worker - physical eraseblock erase worker function.
  873. * @ubi: UBI device description object
  874. * @wl_wrk: the work object
  875. * @cancel: non-zero if the worker has to free memory and exit
  876. *
  877. * This function erases a physical eraseblock and perform torture testing if
  878. * needed. It also takes care about marking the physical eraseblock bad if
  879. * needed. Returns zero in case of success and a negative error code in case of
  880. * failure.
  881. */
  882. static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
  883. int cancel)
  884. {
  885. struct ubi_wl_entry *e = wl_wrk->e;
  886. int pnum = e->pnum, err, need;
  887. if (cancel) {
  888. dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
  889. kfree(wl_wrk);
  890. kmem_cache_free(ubi_wl_entry_slab, e);
  891. return 0;
  892. }
  893. dbg_wl("erase PEB %d EC %d", pnum, e->ec);
  894. err = sync_erase(ubi, e, wl_wrk->torture);
  895. if (!err) {
  896. /* Fine, we've erased it successfully */
  897. kfree(wl_wrk);
  898. spin_lock(&ubi->wl_lock);
  899. ubi->abs_ec += 1;
  900. wl_tree_add(e, &ubi->free);
  901. spin_unlock(&ubi->wl_lock);
  902. /*
  903. * One more erase operation has happened, take care about protected
  904. * physical eraseblocks.
  905. */
  906. check_protection_over(ubi);
  907. /* And take care about wear-leveling */
  908. err = ensure_wear_leveling(ubi);
  909. return err;
  910. }
  911. ubi_err("failed to erase PEB %d, error %d", pnum, err);
  912. kfree(wl_wrk);
  913. kmem_cache_free(ubi_wl_entry_slab, e);
  914. if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
  915. err == -EBUSY) {
  916. int err1;
  917. /* Re-schedule the LEB for erasure */
  918. err1 = schedule_erase(ubi, e, 0);
  919. if (err1) {
  920. err = err1;
  921. goto out_ro;
  922. }
  923. return err;
  924. } else if (err != -EIO) {
  925. /*
  926. * If this is not %-EIO, we have no idea what to do. Scheduling
  927. * this physical eraseblock for erasure again would cause
  928. * errors again and again. Well, lets switch to RO mode.
  929. */
  930. goto out_ro;
  931. }
  932. /* It is %-EIO, the PEB went bad */
  933. if (!ubi->bad_allowed) {
  934. ubi_err("bad physical eraseblock %d detected", pnum);
  935. goto out_ro;
  936. }
  937. spin_lock(&ubi->volumes_lock);
  938. need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1;
  939. if (need > 0) {
  940. need = ubi->avail_pebs >= need ? need : ubi->avail_pebs;
  941. ubi->avail_pebs -= need;
  942. ubi->rsvd_pebs += need;
  943. ubi->beb_rsvd_pebs += need;
  944. if (need > 0)
  945. ubi_msg("reserve more %d PEBs", need);
  946. }
  947. if (ubi->beb_rsvd_pebs == 0) {
  948. spin_unlock(&ubi->volumes_lock);
  949. ubi_err("no reserved physical eraseblocks");
  950. goto out_ro;
  951. }
  952. spin_unlock(&ubi->volumes_lock);
  953. ubi_msg("mark PEB %d as bad", pnum);
  954. err = ubi_io_mark_bad(ubi, pnum);
  955. if (err)
  956. goto out_ro;
  957. spin_lock(&ubi->volumes_lock);
  958. ubi->beb_rsvd_pebs -= 1;
  959. ubi->bad_peb_count += 1;
  960. ubi->good_peb_count -= 1;
  961. ubi_calculate_reserved(ubi);
  962. if (ubi->beb_rsvd_pebs == 0)
  963. ubi_warn("last PEB from the reserved pool was used");
  964. spin_unlock(&ubi->volumes_lock);
  965. return err;
  966. out_ro:
  967. ubi_ro_mode(ubi);
  968. return err;
  969. }
  970. /**
  971. * ubi_wl_put_peb - return a physical eraseblock to the wear-leveling
  972. * unit.
  973. * @ubi: UBI device description object
  974. * @pnum: physical eraseblock to return
  975. * @torture: if this physical eraseblock has to be tortured
  976. *
  977. * This function is called to return physical eraseblock @pnum to the pool of
  978. * free physical eraseblocks. The @torture flag has to be set if an I/O error
  979. * occurred to this @pnum and it has to be tested. This function returns zero
  980. * in case of success and a negative error code in case of failure.
  981. */
  982. int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture)
  983. {
  984. int err;
  985. struct ubi_wl_entry *e;
  986. dbg_wl("PEB %d", pnum);
  987. ubi_assert(pnum >= 0);
  988. ubi_assert(pnum < ubi->peb_count);
  989. spin_lock(&ubi->wl_lock);
  990. e = ubi->lookuptbl[pnum];
  991. if (e == ubi->move_from) {
  992. /*
  993. * User is putting the physical eraseblock which was selected to
  994. * be moved. It will be scheduled for erasure in the
  995. * wear-leveling worker.
  996. */
  997. dbg_wl("PEB %d is being moved", pnum);
  998. ubi_assert(!ubi->move_from_put);
  999. ubi->move_from_put = 1;
  1000. spin_unlock(&ubi->wl_lock);
  1001. return 0;
  1002. } else if (e == ubi->move_to) {
  1003. /*
  1004. * User is putting the physical eraseblock which was selected
  1005. * as the target the data is moved to. It may happen if the EBA
  1006. * unit already re-mapped the LEB but the WL unit did has not
  1007. * put the PEB to the "used" tree.
  1008. */
  1009. dbg_wl("PEB %d is the target of data moving", pnum);
  1010. ubi_assert(!ubi->move_to_put);
  1011. ubi->move_to_put = 1;
  1012. spin_unlock(&ubi->wl_lock);
  1013. return 0;
  1014. } else {
  1015. if (in_wl_tree(e, &ubi->used)) {
  1016. paranoid_check_in_wl_tree(e, &ubi->used);
  1017. rb_erase(&e->rb, &ubi->used);
  1018. } else if (in_wl_tree(e, &ubi->scrub)) {
  1019. paranoid_check_in_wl_tree(e, &ubi->scrub);
  1020. rb_erase(&e->rb, &ubi->scrub);
  1021. } else
  1022. prot_tree_del(ubi, e->pnum);
  1023. }
  1024. spin_unlock(&ubi->wl_lock);
  1025. err = schedule_erase(ubi, e, torture);
  1026. if (err) {
  1027. spin_lock(&ubi->wl_lock);
  1028. wl_tree_add(e, &ubi->used);
  1029. spin_unlock(&ubi->wl_lock);
  1030. }
  1031. return err;
  1032. }
  1033. /**
  1034. * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
  1035. * @ubi: UBI device description object
  1036. * @pnum: the physical eraseblock to schedule
  1037. *
  1038. * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
  1039. * needs scrubbing. This function schedules a physical eraseblock for
  1040. * scrubbing which is done in background. This function returns zero in case of
  1041. * success and a negative error code in case of failure.
  1042. */
  1043. int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
  1044. {
  1045. struct ubi_wl_entry *e;
  1046. ubi_msg("schedule PEB %d for scrubbing", pnum);
  1047. retry:
  1048. spin_lock(&ubi->wl_lock);
  1049. e = ubi->lookuptbl[pnum];
  1050. if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub)) {
  1051. spin_unlock(&ubi->wl_lock);
  1052. return 0;
  1053. }
  1054. if (e == ubi->move_to) {
  1055. /*
  1056. * This physical eraseblock was used to move data to. The data
  1057. * was moved but the PEB was not yet inserted to the proper
  1058. * tree. We should just wait a little and let the WL worker
  1059. * proceed.
  1060. */
  1061. spin_unlock(&ubi->wl_lock);
  1062. dbg_wl("the PEB %d is not in proper tree, retry", pnum);
  1063. yield();
  1064. goto retry;
  1065. }
  1066. if (in_wl_tree(e, &ubi->used)) {
  1067. paranoid_check_in_wl_tree(e, &ubi->used);
  1068. rb_erase(&e->rb, &ubi->used);
  1069. } else
  1070. prot_tree_del(ubi, pnum);
  1071. wl_tree_add(e, &ubi->scrub);
  1072. spin_unlock(&ubi->wl_lock);
  1073. /*
  1074. * Technically scrubbing is the same as wear-leveling, so it is done
  1075. * by the WL worker.
  1076. */
  1077. return ensure_wear_leveling(ubi);
  1078. }
  1079. /**
  1080. * ubi_wl_flush - flush all pending works.
  1081. * @ubi: UBI device description object
  1082. *
  1083. * This function returns zero in case of success and a negative error code in
  1084. * case of failure.
  1085. */
  1086. int ubi_wl_flush(struct ubi_device *ubi)
  1087. {
  1088. int err, pending_count;
  1089. pending_count = ubi->works_count;
  1090. dbg_wl("flush (%d pending works)", pending_count);
  1091. /*
  1092. * Erase while the pending works queue is not empty, but not more then
  1093. * the number of currently pending works.
  1094. */
  1095. while (pending_count-- > 0) {
  1096. err = do_work(ubi);
  1097. if (err)
  1098. return err;
  1099. }
  1100. return 0;
  1101. }
  1102. /**
  1103. * tree_destroy - destroy an RB-tree.
  1104. * @root: the root of the tree to destroy
  1105. */
  1106. static void tree_destroy(struct rb_root *root)
  1107. {
  1108. struct rb_node *rb;
  1109. struct ubi_wl_entry *e;
  1110. rb = root->rb_node;
  1111. while (rb) {
  1112. if (rb->rb_left)
  1113. rb = rb->rb_left;
  1114. else if (rb->rb_right)
  1115. rb = rb->rb_right;
  1116. else {
  1117. e = rb_entry(rb, struct ubi_wl_entry, rb);
  1118. rb = rb_parent(rb);
  1119. if (rb) {
  1120. if (rb->rb_left == &e->rb)
  1121. rb->rb_left = NULL;
  1122. else
  1123. rb->rb_right = NULL;
  1124. }
  1125. kmem_cache_free(ubi_wl_entry_slab, e);
  1126. }
  1127. }
  1128. }
  1129. /**
  1130. * ubi_thread - UBI background thread.
  1131. * @u: the UBI device description object pointer
  1132. */
  1133. static int ubi_thread(void *u)
  1134. {
  1135. int failures = 0;
  1136. struct ubi_device *ubi = u;
  1137. ubi_msg("background thread \"%s\" started, PID %d",
  1138. ubi->bgt_name, task_pid_nr(current));
  1139. set_freezable();
  1140. for (;;) {
  1141. int err;
  1142. if (kthread_should_stop())
  1143. goto out;
  1144. if (try_to_freeze())
  1145. continue;
  1146. spin_lock(&ubi->wl_lock);
  1147. if (list_empty(&ubi->works) || ubi->ro_mode ||
  1148. !ubi->thread_enabled) {
  1149. set_current_state(TASK_INTERRUPTIBLE);
  1150. spin_unlock(&ubi->wl_lock);
  1151. schedule();
  1152. continue;
  1153. }
  1154. spin_unlock(&ubi->wl_lock);
  1155. err = do_work(ubi);
  1156. if (err) {
  1157. ubi_err("%s: work failed with error code %d",
  1158. ubi->bgt_name, err);
  1159. if (failures++ > WL_MAX_FAILURES) {
  1160. /*
  1161. * Too many failures, disable the thread and
  1162. * switch to read-only mode.
  1163. */
  1164. ubi_msg("%s: %d consecutive failures",
  1165. ubi->bgt_name, WL_MAX_FAILURES);
  1166. ubi_ro_mode(ubi);
  1167. break;
  1168. }
  1169. } else
  1170. failures = 0;
  1171. cond_resched();
  1172. }
  1173. out:
  1174. dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
  1175. return 0;
  1176. }
  1177. /**
  1178. * cancel_pending - cancel all pending works.
  1179. * @ubi: UBI device description object
  1180. */
  1181. static void cancel_pending(struct ubi_device *ubi)
  1182. {
  1183. while (!list_empty(&ubi->works)) {
  1184. struct ubi_work *wrk;
  1185. wrk = list_entry(ubi->works.next, struct ubi_work, list);
  1186. list_del(&wrk->list);
  1187. wrk->func(ubi, wrk, 1);
  1188. ubi->works_count -= 1;
  1189. ubi_assert(ubi->works_count >= 0);
  1190. }
  1191. }
  1192. /**
  1193. * ubi_wl_init_scan - initialize the wear-leveling unit using scanning
  1194. * information.
  1195. * @ubi: UBI device description object
  1196. * @si: scanning information
  1197. *
  1198. * This function returns zero in case of success, and a negative error code in
  1199. * case of failure.
  1200. */
  1201. int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
  1202. {
  1203. int err;
  1204. struct rb_node *rb1, *rb2;
  1205. struct ubi_scan_volume *sv;
  1206. struct ubi_scan_leb *seb, *tmp;
  1207. struct ubi_wl_entry *e;
  1208. ubi->used = ubi->free = ubi->scrub = RB_ROOT;
  1209. ubi->prot.pnum = ubi->prot.aec = RB_ROOT;
  1210. spin_lock_init(&ubi->wl_lock);
  1211. ubi->max_ec = si->max_ec;
  1212. INIT_LIST_HEAD(&ubi->works);
  1213. sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
  1214. ubi->bgt_thread = kthread_create(ubi_thread, ubi, ubi->bgt_name);
  1215. if (IS_ERR(ubi->bgt_thread)) {
  1216. err = PTR_ERR(ubi->bgt_thread);
  1217. ubi_err("cannot spawn \"%s\", error %d", ubi->bgt_name,
  1218. err);
  1219. return err;
  1220. }
  1221. err = -ENOMEM;
  1222. ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
  1223. if (!ubi->lookuptbl)
  1224. goto out_free;
  1225. list_for_each_entry_safe(seb, tmp, &si->erase, u.list) {
  1226. cond_resched();
  1227. e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
  1228. if (!e)
  1229. goto out_free;
  1230. e->pnum = seb->pnum;
  1231. e->ec = seb->ec;
  1232. ubi->lookuptbl[e->pnum] = e;
  1233. if (schedule_erase(ubi, e, 0)) {
  1234. kmem_cache_free(ubi_wl_entry_slab, e);
  1235. goto out_free;
  1236. }
  1237. }
  1238. list_for_each_entry(seb, &si->free, u.list) {
  1239. cond_resched();
  1240. e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
  1241. if (!e)
  1242. goto out_free;
  1243. e->pnum = seb->pnum;
  1244. e->ec = seb->ec;
  1245. ubi_assert(e->ec >= 0);
  1246. wl_tree_add(e, &ubi->free);
  1247. ubi->lookuptbl[e->pnum] = e;
  1248. }
  1249. list_for_each_entry(seb, &si->corr, u.list) {
  1250. cond_resched();
  1251. e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
  1252. if (!e)
  1253. goto out_free;
  1254. e->pnum = seb->pnum;
  1255. e->ec = seb->ec;
  1256. ubi->lookuptbl[e->pnum] = e;
  1257. if (schedule_erase(ubi, e, 0)) {
  1258. kmem_cache_free(ubi_wl_entry_slab, e);
  1259. goto out_free;
  1260. }
  1261. }
  1262. ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
  1263. ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
  1264. cond_resched();
  1265. e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
  1266. if (!e)
  1267. goto out_free;
  1268. e->pnum = seb->pnum;
  1269. e->ec = seb->ec;
  1270. ubi->lookuptbl[e->pnum] = e;
  1271. if (!seb->scrub) {
  1272. dbg_wl("add PEB %d EC %d to the used tree",
  1273. e->pnum, e->ec);
  1274. wl_tree_add(e, &ubi->used);
  1275. } else {
  1276. dbg_wl("add PEB %d EC %d to the scrub tree",
  1277. e->pnum, e->ec);
  1278. wl_tree_add(e, &ubi->scrub);
  1279. }
  1280. }
  1281. }
  1282. if (ubi->avail_pebs < WL_RESERVED_PEBS) {
  1283. ubi_err("no enough physical eraseblocks (%d, need %d)",
  1284. ubi->avail_pebs, WL_RESERVED_PEBS);
  1285. goto out_free;
  1286. }
  1287. ubi->avail_pebs -= WL_RESERVED_PEBS;
  1288. ubi->rsvd_pebs += WL_RESERVED_PEBS;
  1289. /* Schedule wear-leveling if needed */
  1290. err = ensure_wear_leveling(ubi);
  1291. if (err)
  1292. goto out_free;
  1293. return 0;
  1294. out_free:
  1295. cancel_pending(ubi);
  1296. tree_destroy(&ubi->used);
  1297. tree_destroy(&ubi->free);
  1298. tree_destroy(&ubi->scrub);
  1299. kfree(ubi->lookuptbl);
  1300. return err;
  1301. }
  1302. /**
  1303. * protection_trees_destroy - destroy the protection RB-trees.
  1304. * @ubi: UBI device description object
  1305. */
  1306. static void protection_trees_destroy(struct ubi_device *ubi)
  1307. {
  1308. struct rb_node *rb;
  1309. struct ubi_wl_prot_entry *pe;
  1310. rb = ubi->prot.aec.rb_node;
  1311. while (rb) {
  1312. if (rb->rb_left)
  1313. rb = rb->rb_left;
  1314. else if (rb->rb_right)
  1315. rb = rb->rb_right;
  1316. else {
  1317. pe = rb_entry(rb, struct ubi_wl_prot_entry, rb_aec);
  1318. rb = rb_parent(rb);
  1319. if (rb) {
  1320. if (rb->rb_left == &pe->rb_aec)
  1321. rb->rb_left = NULL;
  1322. else
  1323. rb->rb_right = NULL;
  1324. }
  1325. kmem_cache_free(ubi_wl_entry_slab, pe->e);
  1326. kfree(pe);
  1327. }
  1328. }
  1329. }
  1330. /**
  1331. * ubi_wl_close - close the wear-leveling unit.
  1332. * @ubi: UBI device description object
  1333. */
  1334. void ubi_wl_close(struct ubi_device *ubi)
  1335. {
  1336. dbg_wl("disable \"%s\"", ubi->bgt_name);
  1337. if (ubi->bgt_thread)
  1338. kthread_stop(ubi->bgt_thread);
  1339. dbg_wl("close the UBI wear-leveling unit");
  1340. cancel_pending(ubi);
  1341. protection_trees_destroy(ubi);
  1342. tree_destroy(&ubi->used);
  1343. tree_destroy(&ubi->free);
  1344. tree_destroy(&ubi->scrub);
  1345. kfree(ubi->lookuptbl);
  1346. }
  1347. #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
  1348. /**
  1349. * paranoid_check_ec - make sure that the erase counter of a physical eraseblock
  1350. * is correct.
  1351. * @ubi: UBI device description object
  1352. * @pnum: the physical eraseblock number to check
  1353. * @ec: the erase counter to check
  1354. *
  1355. * This function returns zero if the erase counter of physical eraseblock @pnum
  1356. * is equivalent to @ec, %1 if not, and a negative error code if an error
  1357. * occurred.
  1358. */
  1359. static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec)
  1360. {
  1361. int err;
  1362. long long read_ec;
  1363. struct ubi_ec_hdr *ec_hdr;
  1364. ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
  1365. if (!ec_hdr)
  1366. return -ENOMEM;
  1367. err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
  1368. if (err && err != UBI_IO_BITFLIPS) {
  1369. /* The header does not have to exist */
  1370. err = 0;
  1371. goto out_free;
  1372. }
  1373. read_ec = be64_to_cpu(ec_hdr->ec);
  1374. if (ec != read_ec) {
  1375. ubi_err("paranoid check failed for PEB %d", pnum);
  1376. ubi_err("read EC is %lld, should be %d", read_ec, ec);
  1377. ubi_dbg_dump_stack();
  1378. err = 1;
  1379. } else
  1380. err = 0;
  1381. out_free:
  1382. kfree(ec_hdr);
  1383. return err;
  1384. }
  1385. /**
  1386. * paranoid_check_in_wl_tree - make sure that a wear-leveling entry is present
  1387. * in a WL RB-tree.
  1388. * @e: the wear-leveling entry to check
  1389. * @root: the root of the tree
  1390. *
  1391. * This function returns zero if @e is in the @root RB-tree and %1 if it
  1392. * is not.
  1393. */
  1394. static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
  1395. struct rb_root *root)
  1396. {
  1397. if (in_wl_tree(e, root))
  1398. return 0;
  1399. ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ",
  1400. e->pnum, e->ec, root);
  1401. ubi_dbg_dump_stack();
  1402. return 1;
  1403. }
  1404. #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */