forcedeth.c 188 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey.
  7. *
  8. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  9. * trademarks of NVIDIA Corporation in the United States and other
  10. * countries.
  11. *
  12. * Copyright (C) 2003,4,5 Manfred Spraul
  13. * Copyright (C) 2004 Andrew de Quincey (wol support)
  14. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  15. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  16. * Copyright (c) 2004,2005,2006,2007,2008 NVIDIA Corporation
  17. *
  18. * This program is free software; you can redistribute it and/or modify
  19. * it under the terms of the GNU General Public License as published by
  20. * the Free Software Foundation; either version 2 of the License, or
  21. * (at your option) any later version.
  22. *
  23. * This program is distributed in the hope that it will be useful,
  24. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  25. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  26. * GNU General Public License for more details.
  27. *
  28. * You should have received a copy of the GNU General Public License
  29. * along with this program; if not, write to the Free Software
  30. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  31. *
  32. * Known bugs:
  33. * We suspect that on some hardware no TX done interrupts are generated.
  34. * This means recovery from netif_stop_queue only happens if the hw timer
  35. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  36. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  37. * If your hardware reliably generates tx done interrupts, then you can remove
  38. * DEV_NEED_TIMERIRQ from the driver_data flags.
  39. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  40. * superfluous timer interrupts from the nic.
  41. */
  42. #define FORCEDETH_VERSION "0.61"
  43. #define DRV_NAME "forcedeth"
  44. #include <linux/module.h>
  45. #include <linux/types.h>
  46. #include <linux/pci.h>
  47. #include <linux/interrupt.h>
  48. #include <linux/netdevice.h>
  49. #include <linux/etherdevice.h>
  50. #include <linux/delay.h>
  51. #include <linux/spinlock.h>
  52. #include <linux/ethtool.h>
  53. #include <linux/timer.h>
  54. #include <linux/skbuff.h>
  55. #include <linux/mii.h>
  56. #include <linux/random.h>
  57. #include <linux/init.h>
  58. #include <linux/if_vlan.h>
  59. #include <linux/dma-mapping.h>
  60. #include <asm/irq.h>
  61. #include <asm/io.h>
  62. #include <asm/uaccess.h>
  63. #include <asm/system.h>
  64. #if 0
  65. #define dprintk printk
  66. #else
  67. #define dprintk(x...) do { } while (0)
  68. #endif
  69. #define TX_WORK_PER_LOOP 64
  70. #define RX_WORK_PER_LOOP 64
  71. /*
  72. * Hardware access:
  73. */
  74. #define DEV_NEED_TIMERIRQ 0x000001 /* set the timer irq flag in the irq mask */
  75. #define DEV_NEED_LINKTIMER 0x000002 /* poll link settings. Relies on the timer irq */
  76. #define DEV_HAS_LARGEDESC 0x000004 /* device supports jumbo frames and needs packet format 2 */
  77. #define DEV_HAS_HIGH_DMA 0x000008 /* device supports 64bit dma */
  78. #define DEV_HAS_CHECKSUM 0x000010 /* device supports tx and rx checksum offloads */
  79. #define DEV_HAS_VLAN 0x000020 /* device supports vlan tagging and striping */
  80. #define DEV_HAS_MSI 0x000040 /* device supports MSI */
  81. #define DEV_HAS_MSI_X 0x000080 /* device supports MSI-X */
  82. #define DEV_HAS_POWER_CNTRL 0x000100 /* device supports power savings */
  83. #define DEV_HAS_STATISTICS_V1 0x000200 /* device supports hw statistics version 1 */
  84. #define DEV_HAS_STATISTICS_V2 0x000400 /* device supports hw statistics version 2 */
  85. #define DEV_HAS_STATISTICS_V3 0x000800 /* device supports hw statistics version 3 */
  86. #define DEV_HAS_TEST_EXTENDED 0x001000 /* device supports extended diagnostic test */
  87. #define DEV_HAS_MGMT_UNIT 0x002000 /* device supports management unit */
  88. #define DEV_HAS_CORRECT_MACADDR 0x004000 /* device supports correct mac address order */
  89. #define DEV_HAS_COLLISION_FIX 0x008000 /* device supports tx collision fix */
  90. #define DEV_HAS_PAUSEFRAME_TX_V1 0x010000 /* device supports tx pause frames version 1 */
  91. #define DEV_HAS_PAUSEFRAME_TX_V2 0x020000 /* device supports tx pause frames version 2 */
  92. #define DEV_HAS_PAUSEFRAME_TX_V3 0x040000 /* device supports tx pause frames version 3 */
  93. #define DEV_NEED_TX_LIMIT 0x080000 /* device needs to limit tx */
  94. #define DEV_HAS_GEAR_MODE 0x100000 /* device supports gear mode */
  95. enum {
  96. NvRegIrqStatus = 0x000,
  97. #define NVREG_IRQSTAT_MIIEVENT 0x040
  98. #define NVREG_IRQSTAT_MASK 0x81ff
  99. NvRegIrqMask = 0x004,
  100. #define NVREG_IRQ_RX_ERROR 0x0001
  101. #define NVREG_IRQ_RX 0x0002
  102. #define NVREG_IRQ_RX_NOBUF 0x0004
  103. #define NVREG_IRQ_TX_ERR 0x0008
  104. #define NVREG_IRQ_TX_OK 0x0010
  105. #define NVREG_IRQ_TIMER 0x0020
  106. #define NVREG_IRQ_LINK 0x0040
  107. #define NVREG_IRQ_RX_FORCED 0x0080
  108. #define NVREG_IRQ_TX_FORCED 0x0100
  109. #define NVREG_IRQ_RECOVER_ERROR 0x8000
  110. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  111. #define NVREG_IRQMASK_CPU 0x0060
  112. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  113. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  114. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
  115. #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
  116. NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
  117. NVREG_IRQ_TX_FORCED|NVREG_IRQ_RECOVER_ERROR))
  118. NvRegUnknownSetupReg6 = 0x008,
  119. #define NVREG_UNKSETUP6_VAL 3
  120. /*
  121. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  122. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  123. */
  124. NvRegPollingInterval = 0x00c,
  125. #define NVREG_POLL_DEFAULT_THROUGHPUT 970 /* backup tx cleanup if loop max reached */
  126. #define NVREG_POLL_DEFAULT_CPU 13
  127. NvRegMSIMap0 = 0x020,
  128. NvRegMSIMap1 = 0x024,
  129. NvRegMSIIrqMask = 0x030,
  130. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  131. NvRegMisc1 = 0x080,
  132. #define NVREG_MISC1_PAUSE_TX 0x01
  133. #define NVREG_MISC1_HD 0x02
  134. #define NVREG_MISC1_FORCE 0x3b0f3c
  135. NvRegMacReset = 0x34,
  136. #define NVREG_MAC_RESET_ASSERT 0x0F3
  137. NvRegTransmitterControl = 0x084,
  138. #define NVREG_XMITCTL_START 0x01
  139. #define NVREG_XMITCTL_MGMT_ST 0x40000000
  140. #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
  141. #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
  142. #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
  143. #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
  144. #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
  145. #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
  146. #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
  147. #define NVREG_XMITCTL_HOST_LOADED 0x00004000
  148. #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
  149. NvRegTransmitterStatus = 0x088,
  150. #define NVREG_XMITSTAT_BUSY 0x01
  151. NvRegPacketFilterFlags = 0x8c,
  152. #define NVREG_PFF_PAUSE_RX 0x08
  153. #define NVREG_PFF_ALWAYS 0x7F0000
  154. #define NVREG_PFF_PROMISC 0x80
  155. #define NVREG_PFF_MYADDR 0x20
  156. #define NVREG_PFF_LOOPBACK 0x10
  157. NvRegOffloadConfig = 0x90,
  158. #define NVREG_OFFLOAD_HOMEPHY 0x601
  159. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  160. NvRegReceiverControl = 0x094,
  161. #define NVREG_RCVCTL_START 0x01
  162. #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
  163. NvRegReceiverStatus = 0x98,
  164. #define NVREG_RCVSTAT_BUSY 0x01
  165. NvRegSlotTime = 0x9c,
  166. #define NVREG_SLOTTIME_LEGBF_ENABLED 0x80000000
  167. #define NVREG_SLOTTIME_10_100_FULL 0x00007f00
  168. #define NVREG_SLOTTIME_1000_FULL 0x0003ff00
  169. #define NVREG_SLOTTIME_HALF 0x0000ff00
  170. #define NVREG_SLOTTIME_DEFAULT 0x00007f00
  171. #define NVREG_SLOTTIME_MASK 0x000000ff
  172. NvRegTxDeferral = 0xA0,
  173. #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
  174. #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
  175. #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
  176. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f
  177. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f
  178. #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000
  179. NvRegRxDeferral = 0xA4,
  180. #define NVREG_RX_DEFERRAL_DEFAULT 0x16
  181. NvRegMacAddrA = 0xA8,
  182. NvRegMacAddrB = 0xAC,
  183. NvRegMulticastAddrA = 0xB0,
  184. #define NVREG_MCASTADDRA_FORCE 0x01
  185. NvRegMulticastAddrB = 0xB4,
  186. NvRegMulticastMaskA = 0xB8,
  187. #define NVREG_MCASTMASKA_NONE 0xffffffff
  188. NvRegMulticastMaskB = 0xBC,
  189. #define NVREG_MCASTMASKB_NONE 0xffff
  190. NvRegPhyInterface = 0xC0,
  191. #define PHY_RGMII 0x10000000
  192. NvRegBackOffControl = 0xC4,
  193. #define NVREG_BKOFFCTRL_DEFAULT 0x70000000
  194. #define NVREG_BKOFFCTRL_SEED_MASK 0x000003ff
  195. #define NVREG_BKOFFCTRL_SELECT 24
  196. #define NVREG_BKOFFCTRL_GEAR 12
  197. NvRegTxRingPhysAddr = 0x100,
  198. NvRegRxRingPhysAddr = 0x104,
  199. NvRegRingSizes = 0x108,
  200. #define NVREG_RINGSZ_TXSHIFT 0
  201. #define NVREG_RINGSZ_RXSHIFT 16
  202. NvRegTransmitPoll = 0x10c,
  203. #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
  204. NvRegLinkSpeed = 0x110,
  205. #define NVREG_LINKSPEED_FORCE 0x10000
  206. #define NVREG_LINKSPEED_10 1000
  207. #define NVREG_LINKSPEED_100 100
  208. #define NVREG_LINKSPEED_1000 50
  209. #define NVREG_LINKSPEED_MASK (0xFFF)
  210. NvRegUnknownSetupReg5 = 0x130,
  211. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  212. NvRegTxWatermark = 0x13c,
  213. #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
  214. #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
  215. #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
  216. NvRegTxRxControl = 0x144,
  217. #define NVREG_TXRXCTL_KICK 0x0001
  218. #define NVREG_TXRXCTL_BIT1 0x0002
  219. #define NVREG_TXRXCTL_BIT2 0x0004
  220. #define NVREG_TXRXCTL_IDLE 0x0008
  221. #define NVREG_TXRXCTL_RESET 0x0010
  222. #define NVREG_TXRXCTL_RXCHECK 0x0400
  223. #define NVREG_TXRXCTL_DESC_1 0
  224. #define NVREG_TXRXCTL_DESC_2 0x002100
  225. #define NVREG_TXRXCTL_DESC_3 0xc02200
  226. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  227. #define NVREG_TXRXCTL_VLANINS 0x00080
  228. NvRegTxRingPhysAddrHigh = 0x148,
  229. NvRegRxRingPhysAddrHigh = 0x14C,
  230. NvRegTxPauseFrame = 0x170,
  231. #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080
  232. #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010
  233. #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0
  234. #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880
  235. NvRegMIIStatus = 0x180,
  236. #define NVREG_MIISTAT_ERROR 0x0001
  237. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  238. #define NVREG_MIISTAT_MASK_RW 0x0007
  239. #define NVREG_MIISTAT_MASK_ALL 0x000f
  240. NvRegMIIMask = 0x184,
  241. #define NVREG_MII_LINKCHANGE 0x0008
  242. NvRegAdapterControl = 0x188,
  243. #define NVREG_ADAPTCTL_START 0x02
  244. #define NVREG_ADAPTCTL_LINKUP 0x04
  245. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  246. #define NVREG_ADAPTCTL_RUNNING 0x100000
  247. #define NVREG_ADAPTCTL_PHYSHIFT 24
  248. NvRegMIISpeed = 0x18c,
  249. #define NVREG_MIISPEED_BIT8 (1<<8)
  250. #define NVREG_MIIDELAY 5
  251. NvRegMIIControl = 0x190,
  252. #define NVREG_MIICTL_INUSE 0x08000
  253. #define NVREG_MIICTL_WRITE 0x00400
  254. #define NVREG_MIICTL_ADDRSHIFT 5
  255. NvRegMIIData = 0x194,
  256. NvRegTxUnicast = 0x1a0,
  257. NvRegTxMulticast = 0x1a4,
  258. NvRegTxBroadcast = 0x1a8,
  259. NvRegWakeUpFlags = 0x200,
  260. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  261. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  262. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  263. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  264. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  265. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  266. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  267. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  268. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  269. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  270. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  271. NvRegPatternCRC = 0x204,
  272. NvRegPatternMask = 0x208,
  273. NvRegPowerCap = 0x268,
  274. #define NVREG_POWERCAP_D3SUPP (1<<30)
  275. #define NVREG_POWERCAP_D2SUPP (1<<26)
  276. #define NVREG_POWERCAP_D1SUPP (1<<25)
  277. NvRegPowerState = 0x26c,
  278. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  279. #define NVREG_POWERSTATE_VALID 0x0100
  280. #define NVREG_POWERSTATE_MASK 0x0003
  281. #define NVREG_POWERSTATE_D0 0x0000
  282. #define NVREG_POWERSTATE_D1 0x0001
  283. #define NVREG_POWERSTATE_D2 0x0002
  284. #define NVREG_POWERSTATE_D3 0x0003
  285. NvRegTxCnt = 0x280,
  286. NvRegTxZeroReXmt = 0x284,
  287. NvRegTxOneReXmt = 0x288,
  288. NvRegTxManyReXmt = 0x28c,
  289. NvRegTxLateCol = 0x290,
  290. NvRegTxUnderflow = 0x294,
  291. NvRegTxLossCarrier = 0x298,
  292. NvRegTxExcessDef = 0x29c,
  293. NvRegTxRetryErr = 0x2a0,
  294. NvRegRxFrameErr = 0x2a4,
  295. NvRegRxExtraByte = 0x2a8,
  296. NvRegRxLateCol = 0x2ac,
  297. NvRegRxRunt = 0x2b0,
  298. NvRegRxFrameTooLong = 0x2b4,
  299. NvRegRxOverflow = 0x2b8,
  300. NvRegRxFCSErr = 0x2bc,
  301. NvRegRxFrameAlignErr = 0x2c0,
  302. NvRegRxLenErr = 0x2c4,
  303. NvRegRxUnicast = 0x2c8,
  304. NvRegRxMulticast = 0x2cc,
  305. NvRegRxBroadcast = 0x2d0,
  306. NvRegTxDef = 0x2d4,
  307. NvRegTxFrame = 0x2d8,
  308. NvRegRxCnt = 0x2dc,
  309. NvRegTxPause = 0x2e0,
  310. NvRegRxPause = 0x2e4,
  311. NvRegRxDropFrame = 0x2e8,
  312. NvRegVlanControl = 0x300,
  313. #define NVREG_VLANCONTROL_ENABLE 0x2000
  314. NvRegMSIXMap0 = 0x3e0,
  315. NvRegMSIXMap1 = 0x3e4,
  316. NvRegMSIXIrqStatus = 0x3f0,
  317. NvRegPowerState2 = 0x600,
  318. #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F11
  319. #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
  320. #define NVREG_POWERSTATE2_PHY_RESET 0x0004
  321. };
  322. /* Big endian: should work, but is untested */
  323. struct ring_desc {
  324. __le32 buf;
  325. __le32 flaglen;
  326. };
  327. struct ring_desc_ex {
  328. __le32 bufhigh;
  329. __le32 buflow;
  330. __le32 txvlan;
  331. __le32 flaglen;
  332. };
  333. union ring_type {
  334. struct ring_desc* orig;
  335. struct ring_desc_ex* ex;
  336. };
  337. #define FLAG_MASK_V1 0xffff0000
  338. #define FLAG_MASK_V2 0xffffc000
  339. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  340. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  341. #define NV_TX_LASTPACKET (1<<16)
  342. #define NV_TX_RETRYERROR (1<<19)
  343. #define NV_TX_RETRYCOUNT_MASK (0xF<<20)
  344. #define NV_TX_FORCED_INTERRUPT (1<<24)
  345. #define NV_TX_DEFERRED (1<<26)
  346. #define NV_TX_CARRIERLOST (1<<27)
  347. #define NV_TX_LATECOLLISION (1<<28)
  348. #define NV_TX_UNDERFLOW (1<<29)
  349. #define NV_TX_ERROR (1<<30)
  350. #define NV_TX_VALID (1<<31)
  351. #define NV_TX2_LASTPACKET (1<<29)
  352. #define NV_TX2_RETRYERROR (1<<18)
  353. #define NV_TX2_RETRYCOUNT_MASK (0xF<<19)
  354. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  355. #define NV_TX2_DEFERRED (1<<25)
  356. #define NV_TX2_CARRIERLOST (1<<26)
  357. #define NV_TX2_LATECOLLISION (1<<27)
  358. #define NV_TX2_UNDERFLOW (1<<28)
  359. /* error and valid are the same for both */
  360. #define NV_TX2_ERROR (1<<30)
  361. #define NV_TX2_VALID (1<<31)
  362. #define NV_TX2_TSO (1<<28)
  363. #define NV_TX2_TSO_SHIFT 14
  364. #define NV_TX2_TSO_MAX_SHIFT 14
  365. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  366. #define NV_TX2_CHECKSUM_L3 (1<<27)
  367. #define NV_TX2_CHECKSUM_L4 (1<<26)
  368. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  369. #define NV_RX_DESCRIPTORVALID (1<<16)
  370. #define NV_RX_MISSEDFRAME (1<<17)
  371. #define NV_RX_SUBSTRACT1 (1<<18)
  372. #define NV_RX_ERROR1 (1<<23)
  373. #define NV_RX_ERROR2 (1<<24)
  374. #define NV_RX_ERROR3 (1<<25)
  375. #define NV_RX_ERROR4 (1<<26)
  376. #define NV_RX_CRCERR (1<<27)
  377. #define NV_RX_OVERFLOW (1<<28)
  378. #define NV_RX_FRAMINGERR (1<<29)
  379. #define NV_RX_ERROR (1<<30)
  380. #define NV_RX_AVAIL (1<<31)
  381. #define NV_RX_ERROR_MASK (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3|NV_RX_ERROR4|NV_RX_CRCERR|NV_RX_OVERFLOW|NV_RX_FRAMINGERR)
  382. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  383. #define NV_RX2_CHECKSUM_IP (0x10000000)
  384. #define NV_RX2_CHECKSUM_IP_TCP (0x14000000)
  385. #define NV_RX2_CHECKSUM_IP_UDP (0x18000000)
  386. #define NV_RX2_DESCRIPTORVALID (1<<29)
  387. #define NV_RX2_SUBSTRACT1 (1<<25)
  388. #define NV_RX2_ERROR1 (1<<18)
  389. #define NV_RX2_ERROR2 (1<<19)
  390. #define NV_RX2_ERROR3 (1<<20)
  391. #define NV_RX2_ERROR4 (1<<21)
  392. #define NV_RX2_CRCERR (1<<22)
  393. #define NV_RX2_OVERFLOW (1<<23)
  394. #define NV_RX2_FRAMINGERR (1<<24)
  395. /* error and avail are the same for both */
  396. #define NV_RX2_ERROR (1<<30)
  397. #define NV_RX2_AVAIL (1<<31)
  398. #define NV_RX2_ERROR_MASK (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3|NV_RX2_ERROR4|NV_RX2_CRCERR|NV_RX2_OVERFLOW|NV_RX2_FRAMINGERR)
  399. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  400. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  401. /* Miscelaneous hardware related defines: */
  402. #define NV_PCI_REGSZ_VER1 0x270
  403. #define NV_PCI_REGSZ_VER2 0x2d4
  404. #define NV_PCI_REGSZ_VER3 0x604
  405. #define NV_PCI_REGSZ_MAX 0x604
  406. /* various timeout delays: all in usec */
  407. #define NV_TXRX_RESET_DELAY 4
  408. #define NV_TXSTOP_DELAY1 10
  409. #define NV_TXSTOP_DELAY1MAX 500000
  410. #define NV_TXSTOP_DELAY2 100
  411. #define NV_RXSTOP_DELAY1 10
  412. #define NV_RXSTOP_DELAY1MAX 500000
  413. #define NV_RXSTOP_DELAY2 100
  414. #define NV_SETUP5_DELAY 5
  415. #define NV_SETUP5_DELAYMAX 50000
  416. #define NV_POWERUP_DELAY 5
  417. #define NV_POWERUP_DELAYMAX 5000
  418. #define NV_MIIBUSY_DELAY 50
  419. #define NV_MIIPHY_DELAY 10
  420. #define NV_MIIPHY_DELAYMAX 10000
  421. #define NV_MAC_RESET_DELAY 64
  422. #define NV_WAKEUPPATTERNS 5
  423. #define NV_WAKEUPMASKENTRIES 4
  424. /* General driver defaults */
  425. #define NV_WATCHDOG_TIMEO (5*HZ)
  426. #define RX_RING_DEFAULT 128
  427. #define TX_RING_DEFAULT 256
  428. #define RX_RING_MIN 128
  429. #define TX_RING_MIN 64
  430. #define RING_MAX_DESC_VER_1 1024
  431. #define RING_MAX_DESC_VER_2_3 16384
  432. /* rx/tx mac addr + type + vlan + align + slack*/
  433. #define NV_RX_HEADERS (64)
  434. /* even more slack. */
  435. #define NV_RX_ALLOC_PAD (64)
  436. /* maximum mtu size */
  437. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  438. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  439. #define OOM_REFILL (1+HZ/20)
  440. #define POLL_WAIT (1+HZ/100)
  441. #define LINK_TIMEOUT (3*HZ)
  442. #define STATS_INTERVAL (10*HZ)
  443. /*
  444. * desc_ver values:
  445. * The nic supports three different descriptor types:
  446. * - DESC_VER_1: Original
  447. * - DESC_VER_2: support for jumbo frames.
  448. * - DESC_VER_3: 64-bit format.
  449. */
  450. #define DESC_VER_1 1
  451. #define DESC_VER_2 2
  452. #define DESC_VER_3 3
  453. /* PHY defines */
  454. #define PHY_OUI_MARVELL 0x5043
  455. #define PHY_OUI_CICADA 0x03f1
  456. #define PHY_OUI_VITESSE 0x01c1
  457. #define PHY_OUI_REALTEK 0x0732
  458. #define PHY_OUI_REALTEK2 0x0020
  459. #define PHYID1_OUI_MASK 0x03ff
  460. #define PHYID1_OUI_SHFT 6
  461. #define PHYID2_OUI_MASK 0xfc00
  462. #define PHYID2_OUI_SHFT 10
  463. #define PHYID2_MODEL_MASK 0x03f0
  464. #define PHY_MODEL_REALTEK_8211 0x0110
  465. #define PHY_REV_MASK 0x0001
  466. #define PHY_REV_REALTEK_8211B 0x0000
  467. #define PHY_REV_REALTEK_8211C 0x0001
  468. #define PHY_MODEL_REALTEK_8201 0x0200
  469. #define PHY_MODEL_MARVELL_E3016 0x0220
  470. #define PHY_MARVELL_E3016_INITMASK 0x0300
  471. #define PHY_CICADA_INIT1 0x0f000
  472. #define PHY_CICADA_INIT2 0x0e00
  473. #define PHY_CICADA_INIT3 0x01000
  474. #define PHY_CICADA_INIT4 0x0200
  475. #define PHY_CICADA_INIT5 0x0004
  476. #define PHY_CICADA_INIT6 0x02000
  477. #define PHY_VITESSE_INIT_REG1 0x1f
  478. #define PHY_VITESSE_INIT_REG2 0x10
  479. #define PHY_VITESSE_INIT_REG3 0x11
  480. #define PHY_VITESSE_INIT_REG4 0x12
  481. #define PHY_VITESSE_INIT_MSK1 0xc
  482. #define PHY_VITESSE_INIT_MSK2 0x0180
  483. #define PHY_VITESSE_INIT1 0x52b5
  484. #define PHY_VITESSE_INIT2 0xaf8a
  485. #define PHY_VITESSE_INIT3 0x8
  486. #define PHY_VITESSE_INIT4 0x8f8a
  487. #define PHY_VITESSE_INIT5 0xaf86
  488. #define PHY_VITESSE_INIT6 0x8f86
  489. #define PHY_VITESSE_INIT7 0xaf82
  490. #define PHY_VITESSE_INIT8 0x0100
  491. #define PHY_VITESSE_INIT9 0x8f82
  492. #define PHY_VITESSE_INIT10 0x0
  493. #define PHY_REALTEK_INIT_REG1 0x1f
  494. #define PHY_REALTEK_INIT_REG2 0x19
  495. #define PHY_REALTEK_INIT_REG3 0x13
  496. #define PHY_REALTEK_INIT_REG4 0x14
  497. #define PHY_REALTEK_INIT_REG5 0x18
  498. #define PHY_REALTEK_INIT_REG6 0x11
  499. #define PHY_REALTEK_INIT_REG7 0x01
  500. #define PHY_REALTEK_INIT1 0x0000
  501. #define PHY_REALTEK_INIT2 0x8e00
  502. #define PHY_REALTEK_INIT3 0x0001
  503. #define PHY_REALTEK_INIT4 0xad17
  504. #define PHY_REALTEK_INIT5 0xfb54
  505. #define PHY_REALTEK_INIT6 0xf5c7
  506. #define PHY_REALTEK_INIT7 0x1000
  507. #define PHY_REALTEK_INIT8 0x0003
  508. #define PHY_REALTEK_INIT9 0x0008
  509. #define PHY_REALTEK_INIT10 0x0005
  510. #define PHY_REALTEK_INIT11 0x0200
  511. #define PHY_REALTEK_INIT_MSK1 0x0003
  512. #define PHY_GIGABIT 0x0100
  513. #define PHY_TIMEOUT 0x1
  514. #define PHY_ERROR 0x2
  515. #define PHY_100 0x1
  516. #define PHY_1000 0x2
  517. #define PHY_HALF 0x100
  518. #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
  519. #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
  520. #define NV_PAUSEFRAME_RX_ENABLE 0x0004
  521. #define NV_PAUSEFRAME_TX_ENABLE 0x0008
  522. #define NV_PAUSEFRAME_RX_REQ 0x0010
  523. #define NV_PAUSEFRAME_TX_REQ 0x0020
  524. #define NV_PAUSEFRAME_AUTONEG 0x0040
  525. /* MSI/MSI-X defines */
  526. #define NV_MSI_X_MAX_VECTORS 8
  527. #define NV_MSI_X_VECTORS_MASK 0x000f
  528. #define NV_MSI_CAPABLE 0x0010
  529. #define NV_MSI_X_CAPABLE 0x0020
  530. #define NV_MSI_ENABLED 0x0040
  531. #define NV_MSI_X_ENABLED 0x0080
  532. #define NV_MSI_X_VECTOR_ALL 0x0
  533. #define NV_MSI_X_VECTOR_RX 0x0
  534. #define NV_MSI_X_VECTOR_TX 0x1
  535. #define NV_MSI_X_VECTOR_OTHER 0x2
  536. #define NV_RESTART_TX 0x1
  537. #define NV_RESTART_RX 0x2
  538. #define NV_TX_LIMIT_COUNT 16
  539. /* statistics */
  540. struct nv_ethtool_str {
  541. char name[ETH_GSTRING_LEN];
  542. };
  543. static const struct nv_ethtool_str nv_estats_str[] = {
  544. { "tx_bytes" },
  545. { "tx_zero_rexmt" },
  546. { "tx_one_rexmt" },
  547. { "tx_many_rexmt" },
  548. { "tx_late_collision" },
  549. { "tx_fifo_errors" },
  550. { "tx_carrier_errors" },
  551. { "tx_excess_deferral" },
  552. { "tx_retry_error" },
  553. { "rx_frame_error" },
  554. { "rx_extra_byte" },
  555. { "rx_late_collision" },
  556. { "rx_runt" },
  557. { "rx_frame_too_long" },
  558. { "rx_over_errors" },
  559. { "rx_crc_errors" },
  560. { "rx_frame_align_error" },
  561. { "rx_length_error" },
  562. { "rx_unicast" },
  563. { "rx_multicast" },
  564. { "rx_broadcast" },
  565. { "rx_packets" },
  566. { "rx_errors_total" },
  567. { "tx_errors_total" },
  568. /* version 2 stats */
  569. { "tx_deferral" },
  570. { "tx_packets" },
  571. { "rx_bytes" },
  572. { "tx_pause" },
  573. { "rx_pause" },
  574. { "rx_drop_frame" },
  575. /* version 3 stats */
  576. { "tx_unicast" },
  577. { "tx_multicast" },
  578. { "tx_broadcast" }
  579. };
  580. struct nv_ethtool_stats {
  581. u64 tx_bytes;
  582. u64 tx_zero_rexmt;
  583. u64 tx_one_rexmt;
  584. u64 tx_many_rexmt;
  585. u64 tx_late_collision;
  586. u64 tx_fifo_errors;
  587. u64 tx_carrier_errors;
  588. u64 tx_excess_deferral;
  589. u64 tx_retry_error;
  590. u64 rx_frame_error;
  591. u64 rx_extra_byte;
  592. u64 rx_late_collision;
  593. u64 rx_runt;
  594. u64 rx_frame_too_long;
  595. u64 rx_over_errors;
  596. u64 rx_crc_errors;
  597. u64 rx_frame_align_error;
  598. u64 rx_length_error;
  599. u64 rx_unicast;
  600. u64 rx_multicast;
  601. u64 rx_broadcast;
  602. u64 rx_packets;
  603. u64 rx_errors_total;
  604. u64 tx_errors_total;
  605. /* version 2 stats */
  606. u64 tx_deferral;
  607. u64 tx_packets;
  608. u64 rx_bytes;
  609. u64 tx_pause;
  610. u64 rx_pause;
  611. u64 rx_drop_frame;
  612. /* version 3 stats */
  613. u64 tx_unicast;
  614. u64 tx_multicast;
  615. u64 tx_broadcast;
  616. };
  617. #define NV_DEV_STATISTICS_V3_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
  618. #define NV_DEV_STATISTICS_V2_COUNT (NV_DEV_STATISTICS_V3_COUNT - 3)
  619. #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
  620. /* diagnostics */
  621. #define NV_TEST_COUNT_BASE 3
  622. #define NV_TEST_COUNT_EXTENDED 4
  623. static const struct nv_ethtool_str nv_etests_str[] = {
  624. { "link (online/offline)" },
  625. { "register (offline) " },
  626. { "interrupt (offline) " },
  627. { "loopback (offline) " }
  628. };
  629. struct register_test {
  630. __u32 reg;
  631. __u32 mask;
  632. };
  633. static const struct register_test nv_registers_test[] = {
  634. { NvRegUnknownSetupReg6, 0x01 },
  635. { NvRegMisc1, 0x03c },
  636. { NvRegOffloadConfig, 0x03ff },
  637. { NvRegMulticastAddrA, 0xffffffff },
  638. { NvRegTxWatermark, 0x0ff },
  639. { NvRegWakeUpFlags, 0x07777 },
  640. { 0,0 }
  641. };
  642. struct nv_skb_map {
  643. struct sk_buff *skb;
  644. dma_addr_t dma;
  645. unsigned int dma_len;
  646. struct ring_desc_ex *first_tx_desc;
  647. struct nv_skb_map *next_tx_ctx;
  648. };
  649. /*
  650. * SMP locking:
  651. * All hardware access under dev->priv->lock, except the performance
  652. * critical parts:
  653. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  654. * by the arch code for interrupts.
  655. * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
  656. * needs dev->priv->lock :-(
  657. * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
  658. */
  659. /* in dev: base, irq */
  660. struct fe_priv {
  661. spinlock_t lock;
  662. struct net_device *dev;
  663. struct napi_struct napi;
  664. /* General data:
  665. * Locking: spin_lock(&np->lock); */
  666. struct nv_ethtool_stats estats;
  667. int in_shutdown;
  668. u32 linkspeed;
  669. int duplex;
  670. int autoneg;
  671. int fixed_mode;
  672. int phyaddr;
  673. int wolenabled;
  674. unsigned int phy_oui;
  675. unsigned int phy_model;
  676. unsigned int phy_rev;
  677. u16 gigabit;
  678. int intr_test;
  679. int recover_error;
  680. /* General data: RO fields */
  681. dma_addr_t ring_addr;
  682. struct pci_dev *pci_dev;
  683. u32 orig_mac[2];
  684. u32 irqmask;
  685. u32 desc_ver;
  686. u32 txrxctl_bits;
  687. u32 vlanctl_bits;
  688. u32 driver_data;
  689. u32 device_id;
  690. u32 register_size;
  691. int rx_csum;
  692. u32 mac_in_use;
  693. void __iomem *base;
  694. /* rx specific fields.
  695. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  696. */
  697. union ring_type get_rx, put_rx, first_rx, last_rx;
  698. struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
  699. struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
  700. struct nv_skb_map *rx_skb;
  701. union ring_type rx_ring;
  702. unsigned int rx_buf_sz;
  703. unsigned int pkt_limit;
  704. struct timer_list oom_kick;
  705. struct timer_list nic_poll;
  706. struct timer_list stats_poll;
  707. u32 nic_poll_irq;
  708. int rx_ring_size;
  709. /* media detection workaround.
  710. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  711. */
  712. int need_linktimer;
  713. unsigned long link_timeout;
  714. /*
  715. * tx specific fields.
  716. */
  717. union ring_type get_tx, put_tx, first_tx, last_tx;
  718. struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
  719. struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
  720. struct nv_skb_map *tx_skb;
  721. union ring_type tx_ring;
  722. u32 tx_flags;
  723. int tx_ring_size;
  724. int tx_limit;
  725. u32 tx_pkts_in_progress;
  726. struct nv_skb_map *tx_change_owner;
  727. struct nv_skb_map *tx_end_flip;
  728. int tx_stop;
  729. /* vlan fields */
  730. struct vlan_group *vlangrp;
  731. /* msi/msi-x fields */
  732. u32 msi_flags;
  733. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  734. /* flow control */
  735. u32 pause_flags;
  736. /* power saved state */
  737. u32 saved_config_space[NV_PCI_REGSZ_MAX/4];
  738. };
  739. /*
  740. * Maximum number of loops until we assume that a bit in the irq mask
  741. * is stuck. Overridable with module param.
  742. */
  743. static int max_interrupt_work = 5;
  744. /*
  745. * Optimization can be either throuput mode or cpu mode
  746. *
  747. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  748. * CPU Mode: Interrupts are controlled by a timer.
  749. */
  750. enum {
  751. NV_OPTIMIZATION_MODE_THROUGHPUT,
  752. NV_OPTIMIZATION_MODE_CPU
  753. };
  754. static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  755. /*
  756. * Poll interval for timer irq
  757. *
  758. * This interval determines how frequent an interrupt is generated.
  759. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  760. * Min = 0, and Max = 65535
  761. */
  762. static int poll_interval = -1;
  763. /*
  764. * MSI interrupts
  765. */
  766. enum {
  767. NV_MSI_INT_DISABLED,
  768. NV_MSI_INT_ENABLED
  769. };
  770. static int msi = NV_MSI_INT_ENABLED;
  771. /*
  772. * MSIX interrupts
  773. */
  774. enum {
  775. NV_MSIX_INT_DISABLED,
  776. NV_MSIX_INT_ENABLED
  777. };
  778. static int msix = NV_MSIX_INT_DISABLED;
  779. /*
  780. * DMA 64bit
  781. */
  782. enum {
  783. NV_DMA_64BIT_DISABLED,
  784. NV_DMA_64BIT_ENABLED
  785. };
  786. static int dma_64bit = NV_DMA_64BIT_ENABLED;
  787. /*
  788. * Crossover Detection
  789. * Realtek 8201 phy + some OEM boards do not work properly.
  790. */
  791. enum {
  792. NV_CROSSOVER_DETECTION_DISABLED,
  793. NV_CROSSOVER_DETECTION_ENABLED
  794. };
  795. static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED;
  796. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  797. {
  798. return netdev_priv(dev);
  799. }
  800. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  801. {
  802. return ((struct fe_priv *)netdev_priv(dev))->base;
  803. }
  804. static inline void pci_push(u8 __iomem *base)
  805. {
  806. /* force out pending posted writes */
  807. readl(base);
  808. }
  809. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  810. {
  811. return le32_to_cpu(prd->flaglen)
  812. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  813. }
  814. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  815. {
  816. return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
  817. }
  818. static bool nv_optimized(struct fe_priv *np)
  819. {
  820. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  821. return false;
  822. return true;
  823. }
  824. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  825. int delay, int delaymax, const char *msg)
  826. {
  827. u8 __iomem *base = get_hwbase(dev);
  828. pci_push(base);
  829. do {
  830. udelay(delay);
  831. delaymax -= delay;
  832. if (delaymax < 0) {
  833. if (msg)
  834. printk(msg);
  835. return 1;
  836. }
  837. } while ((readl(base + offset) & mask) != target);
  838. return 0;
  839. }
  840. #define NV_SETUP_RX_RING 0x01
  841. #define NV_SETUP_TX_RING 0x02
  842. static inline u32 dma_low(dma_addr_t addr)
  843. {
  844. return addr;
  845. }
  846. static inline u32 dma_high(dma_addr_t addr)
  847. {
  848. return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */
  849. }
  850. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  851. {
  852. struct fe_priv *np = get_nvpriv(dev);
  853. u8 __iomem *base = get_hwbase(dev);
  854. if (!nv_optimized(np)) {
  855. if (rxtx_flags & NV_SETUP_RX_RING) {
  856. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  857. }
  858. if (rxtx_flags & NV_SETUP_TX_RING) {
  859. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  860. }
  861. } else {
  862. if (rxtx_flags & NV_SETUP_RX_RING) {
  863. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  864. writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
  865. }
  866. if (rxtx_flags & NV_SETUP_TX_RING) {
  867. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  868. writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
  869. }
  870. }
  871. }
  872. static void free_rings(struct net_device *dev)
  873. {
  874. struct fe_priv *np = get_nvpriv(dev);
  875. if (!nv_optimized(np)) {
  876. if (np->rx_ring.orig)
  877. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  878. np->rx_ring.orig, np->ring_addr);
  879. } else {
  880. if (np->rx_ring.ex)
  881. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  882. np->rx_ring.ex, np->ring_addr);
  883. }
  884. if (np->rx_skb)
  885. kfree(np->rx_skb);
  886. if (np->tx_skb)
  887. kfree(np->tx_skb);
  888. }
  889. static int using_multi_irqs(struct net_device *dev)
  890. {
  891. struct fe_priv *np = get_nvpriv(dev);
  892. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  893. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  894. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
  895. return 0;
  896. else
  897. return 1;
  898. }
  899. static void nv_enable_irq(struct net_device *dev)
  900. {
  901. struct fe_priv *np = get_nvpriv(dev);
  902. if (!using_multi_irqs(dev)) {
  903. if (np->msi_flags & NV_MSI_X_ENABLED)
  904. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  905. else
  906. enable_irq(np->pci_dev->irq);
  907. } else {
  908. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  909. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  910. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  911. }
  912. }
  913. static void nv_disable_irq(struct net_device *dev)
  914. {
  915. struct fe_priv *np = get_nvpriv(dev);
  916. if (!using_multi_irqs(dev)) {
  917. if (np->msi_flags & NV_MSI_X_ENABLED)
  918. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  919. else
  920. disable_irq(np->pci_dev->irq);
  921. } else {
  922. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  923. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  924. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  925. }
  926. }
  927. /* In MSIX mode, a write to irqmask behaves as XOR */
  928. static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
  929. {
  930. u8 __iomem *base = get_hwbase(dev);
  931. writel(mask, base + NvRegIrqMask);
  932. }
  933. static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
  934. {
  935. struct fe_priv *np = get_nvpriv(dev);
  936. u8 __iomem *base = get_hwbase(dev);
  937. if (np->msi_flags & NV_MSI_X_ENABLED) {
  938. writel(mask, base + NvRegIrqMask);
  939. } else {
  940. if (np->msi_flags & NV_MSI_ENABLED)
  941. writel(0, base + NvRegMSIIrqMask);
  942. writel(0, base + NvRegIrqMask);
  943. }
  944. }
  945. #define MII_READ (-1)
  946. /* mii_rw: read/write a register on the PHY.
  947. *
  948. * Caller must guarantee serialization
  949. */
  950. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  951. {
  952. u8 __iomem *base = get_hwbase(dev);
  953. u32 reg;
  954. int retval;
  955. writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus);
  956. reg = readl(base + NvRegMIIControl);
  957. if (reg & NVREG_MIICTL_INUSE) {
  958. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  959. udelay(NV_MIIBUSY_DELAY);
  960. }
  961. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  962. if (value != MII_READ) {
  963. writel(value, base + NvRegMIIData);
  964. reg |= NVREG_MIICTL_WRITE;
  965. }
  966. writel(reg, base + NvRegMIIControl);
  967. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  968. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
  969. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
  970. dev->name, miireg, addr);
  971. retval = -1;
  972. } else if (value != MII_READ) {
  973. /* it was a write operation - fewer failures are detectable */
  974. dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
  975. dev->name, value, miireg, addr);
  976. retval = 0;
  977. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  978. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
  979. dev->name, miireg, addr);
  980. retval = -1;
  981. } else {
  982. retval = readl(base + NvRegMIIData);
  983. dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
  984. dev->name, miireg, addr, retval);
  985. }
  986. return retval;
  987. }
  988. static int phy_reset(struct net_device *dev, u32 bmcr_setup)
  989. {
  990. struct fe_priv *np = netdev_priv(dev);
  991. u32 miicontrol;
  992. unsigned int tries = 0;
  993. miicontrol = BMCR_RESET | bmcr_setup;
  994. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
  995. return -1;
  996. }
  997. /* wait for 500ms */
  998. msleep(500);
  999. /* must wait till reset is deasserted */
  1000. while (miicontrol & BMCR_RESET) {
  1001. msleep(10);
  1002. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1003. /* FIXME: 100 tries seem excessive */
  1004. if (tries++ > 100)
  1005. return -1;
  1006. }
  1007. return 0;
  1008. }
  1009. static int phy_init(struct net_device *dev)
  1010. {
  1011. struct fe_priv *np = get_nvpriv(dev);
  1012. u8 __iomem *base = get_hwbase(dev);
  1013. u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
  1014. /* phy errata for E3016 phy */
  1015. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  1016. reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1017. reg &= ~PHY_MARVELL_E3016_INITMASK;
  1018. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
  1019. printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
  1020. return PHY_ERROR;
  1021. }
  1022. }
  1023. if (np->phy_oui == PHY_OUI_REALTEK) {
  1024. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1025. np->phy_rev == PHY_REV_REALTEK_8211B) {
  1026. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1027. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1028. return PHY_ERROR;
  1029. }
  1030. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1031. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1032. return PHY_ERROR;
  1033. }
  1034. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1035. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1036. return PHY_ERROR;
  1037. }
  1038. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1039. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1040. return PHY_ERROR;
  1041. }
  1042. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
  1043. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1044. return PHY_ERROR;
  1045. }
  1046. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
  1047. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1048. return PHY_ERROR;
  1049. }
  1050. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1051. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1052. return PHY_ERROR;
  1053. }
  1054. }
  1055. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1056. np->phy_rev == PHY_REV_REALTEK_8211C) {
  1057. u32 powerstate = readl(base + NvRegPowerState2);
  1058. /* need to perform hw phy reset */
  1059. powerstate |= NVREG_POWERSTATE2_PHY_RESET;
  1060. writel(powerstate, base + NvRegPowerState2);
  1061. msleep(25);
  1062. powerstate &= ~NVREG_POWERSTATE2_PHY_RESET;
  1063. writel(powerstate, base + NvRegPowerState2);
  1064. msleep(25);
  1065. reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1066. reg |= PHY_REALTEK_INIT9;
  1067. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, reg)) {
  1068. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1069. return PHY_ERROR;
  1070. }
  1071. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT10)) {
  1072. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1073. return PHY_ERROR;
  1074. }
  1075. reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, MII_READ);
  1076. if (!(reg & PHY_REALTEK_INIT11)) {
  1077. reg |= PHY_REALTEK_INIT11;
  1078. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, reg)) {
  1079. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1080. return PHY_ERROR;
  1081. }
  1082. }
  1083. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1084. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1085. return PHY_ERROR;
  1086. }
  1087. }
  1088. if (np->phy_model == PHY_MODEL_REALTEK_8201) {
  1089. if (np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
  1090. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
  1091. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
  1092. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
  1093. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
  1094. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
  1095. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
  1096. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_39) {
  1097. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1098. phy_reserved |= PHY_REALTEK_INIT7;
  1099. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
  1100. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1101. return PHY_ERROR;
  1102. }
  1103. }
  1104. }
  1105. }
  1106. /* set advertise register */
  1107. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1108. reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
  1109. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  1110. printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
  1111. return PHY_ERROR;
  1112. }
  1113. /* get phy interface type */
  1114. phyinterface = readl(base + NvRegPhyInterface);
  1115. /* see if gigabit phy */
  1116. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1117. if (mii_status & PHY_GIGABIT) {
  1118. np->gigabit = PHY_GIGABIT;
  1119. mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  1120. mii_control_1000 &= ~ADVERTISE_1000HALF;
  1121. if (phyinterface & PHY_RGMII)
  1122. mii_control_1000 |= ADVERTISE_1000FULL;
  1123. else
  1124. mii_control_1000 &= ~ADVERTISE_1000FULL;
  1125. if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
  1126. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1127. return PHY_ERROR;
  1128. }
  1129. }
  1130. else
  1131. np->gigabit = 0;
  1132. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1133. mii_control |= BMCR_ANENABLE;
  1134. if (np->phy_oui == PHY_OUI_REALTEK &&
  1135. np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1136. np->phy_rev == PHY_REV_REALTEK_8211C) {
  1137. /* start autoneg since we already performed hw reset above */
  1138. mii_control |= BMCR_ANRESTART;
  1139. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1140. printk(KERN_INFO "%s: phy init failed\n", pci_name(np->pci_dev));
  1141. return PHY_ERROR;
  1142. }
  1143. } else {
  1144. /* reset the phy
  1145. * (certain phys need bmcr to be setup with reset)
  1146. */
  1147. if (phy_reset(dev, mii_control)) {
  1148. printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
  1149. return PHY_ERROR;
  1150. }
  1151. }
  1152. /* phy vendor specific configuration */
  1153. if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
  1154. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  1155. phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
  1156. phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
  1157. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
  1158. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1159. return PHY_ERROR;
  1160. }
  1161. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1162. phy_reserved |= PHY_CICADA_INIT5;
  1163. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
  1164. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1165. return PHY_ERROR;
  1166. }
  1167. }
  1168. if (np->phy_oui == PHY_OUI_CICADA) {
  1169. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  1170. phy_reserved |= PHY_CICADA_INIT6;
  1171. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
  1172. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1173. return PHY_ERROR;
  1174. }
  1175. }
  1176. if (np->phy_oui == PHY_OUI_VITESSE) {
  1177. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) {
  1178. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1179. return PHY_ERROR;
  1180. }
  1181. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) {
  1182. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1183. return PHY_ERROR;
  1184. }
  1185. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1186. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1187. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1188. return PHY_ERROR;
  1189. }
  1190. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1191. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1192. phy_reserved |= PHY_VITESSE_INIT3;
  1193. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1194. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1195. return PHY_ERROR;
  1196. }
  1197. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) {
  1198. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1199. return PHY_ERROR;
  1200. }
  1201. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) {
  1202. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1203. return PHY_ERROR;
  1204. }
  1205. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1206. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1207. phy_reserved |= PHY_VITESSE_INIT3;
  1208. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1209. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1210. return PHY_ERROR;
  1211. }
  1212. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1213. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1214. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1215. return PHY_ERROR;
  1216. }
  1217. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) {
  1218. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1219. return PHY_ERROR;
  1220. }
  1221. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) {
  1222. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1223. return PHY_ERROR;
  1224. }
  1225. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1226. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1227. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1228. return PHY_ERROR;
  1229. }
  1230. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1231. phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
  1232. phy_reserved |= PHY_VITESSE_INIT8;
  1233. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1234. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1235. return PHY_ERROR;
  1236. }
  1237. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) {
  1238. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1239. return PHY_ERROR;
  1240. }
  1241. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) {
  1242. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1243. return PHY_ERROR;
  1244. }
  1245. }
  1246. if (np->phy_oui == PHY_OUI_REALTEK) {
  1247. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1248. np->phy_rev == PHY_REV_REALTEK_8211B) {
  1249. /* reset could have cleared these out, set them back */
  1250. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1251. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1252. return PHY_ERROR;
  1253. }
  1254. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1255. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1256. return PHY_ERROR;
  1257. }
  1258. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1259. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1260. return PHY_ERROR;
  1261. }
  1262. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1263. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1264. return PHY_ERROR;
  1265. }
  1266. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
  1267. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1268. return PHY_ERROR;
  1269. }
  1270. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
  1271. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1272. return PHY_ERROR;
  1273. }
  1274. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1275. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1276. return PHY_ERROR;
  1277. }
  1278. }
  1279. if (np->phy_model == PHY_MODEL_REALTEK_8201) {
  1280. if (np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
  1281. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
  1282. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
  1283. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
  1284. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
  1285. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
  1286. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
  1287. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_39) {
  1288. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1289. phy_reserved |= PHY_REALTEK_INIT7;
  1290. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
  1291. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1292. return PHY_ERROR;
  1293. }
  1294. }
  1295. if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
  1296. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1297. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1298. return PHY_ERROR;
  1299. }
  1300. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
  1301. phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
  1302. phy_reserved |= PHY_REALTEK_INIT3;
  1303. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved)) {
  1304. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1305. return PHY_ERROR;
  1306. }
  1307. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1308. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1309. return PHY_ERROR;
  1310. }
  1311. }
  1312. }
  1313. }
  1314. /* some phys clear out pause advertisment on reset, set it back */
  1315. mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
  1316. /* restart auto negotiation */
  1317. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1318. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  1319. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1320. return PHY_ERROR;
  1321. }
  1322. return 0;
  1323. }
  1324. static void nv_start_rx(struct net_device *dev)
  1325. {
  1326. struct fe_priv *np = netdev_priv(dev);
  1327. u8 __iomem *base = get_hwbase(dev);
  1328. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1329. dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
  1330. /* Already running? Stop it. */
  1331. if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
  1332. rx_ctrl &= ~NVREG_RCVCTL_START;
  1333. writel(rx_ctrl, base + NvRegReceiverControl);
  1334. pci_push(base);
  1335. }
  1336. writel(np->linkspeed, base + NvRegLinkSpeed);
  1337. pci_push(base);
  1338. rx_ctrl |= NVREG_RCVCTL_START;
  1339. if (np->mac_in_use)
  1340. rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
  1341. writel(rx_ctrl, base + NvRegReceiverControl);
  1342. dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
  1343. dev->name, np->duplex, np->linkspeed);
  1344. pci_push(base);
  1345. }
  1346. static void nv_stop_rx(struct net_device *dev)
  1347. {
  1348. struct fe_priv *np = netdev_priv(dev);
  1349. u8 __iomem *base = get_hwbase(dev);
  1350. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1351. dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
  1352. if (!np->mac_in_use)
  1353. rx_ctrl &= ~NVREG_RCVCTL_START;
  1354. else
  1355. rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
  1356. writel(rx_ctrl, base + NvRegReceiverControl);
  1357. reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  1358. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
  1359. KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
  1360. udelay(NV_RXSTOP_DELAY2);
  1361. if (!np->mac_in_use)
  1362. writel(0, base + NvRegLinkSpeed);
  1363. }
  1364. static void nv_start_tx(struct net_device *dev)
  1365. {
  1366. struct fe_priv *np = netdev_priv(dev);
  1367. u8 __iomem *base = get_hwbase(dev);
  1368. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1369. dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
  1370. tx_ctrl |= NVREG_XMITCTL_START;
  1371. if (np->mac_in_use)
  1372. tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
  1373. writel(tx_ctrl, base + NvRegTransmitterControl);
  1374. pci_push(base);
  1375. }
  1376. static void nv_stop_tx(struct net_device *dev)
  1377. {
  1378. struct fe_priv *np = netdev_priv(dev);
  1379. u8 __iomem *base = get_hwbase(dev);
  1380. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1381. dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
  1382. if (!np->mac_in_use)
  1383. tx_ctrl &= ~NVREG_XMITCTL_START;
  1384. else
  1385. tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
  1386. writel(tx_ctrl, base + NvRegTransmitterControl);
  1387. reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  1388. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
  1389. KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
  1390. udelay(NV_TXSTOP_DELAY2);
  1391. if (!np->mac_in_use)
  1392. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  1393. base + NvRegTransmitPoll);
  1394. }
  1395. static void nv_start_rxtx(struct net_device *dev)
  1396. {
  1397. nv_start_rx(dev);
  1398. nv_start_tx(dev);
  1399. }
  1400. static void nv_stop_rxtx(struct net_device *dev)
  1401. {
  1402. nv_stop_rx(dev);
  1403. nv_stop_tx(dev);
  1404. }
  1405. static void nv_txrx_reset(struct net_device *dev)
  1406. {
  1407. struct fe_priv *np = netdev_priv(dev);
  1408. u8 __iomem *base = get_hwbase(dev);
  1409. dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
  1410. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1411. pci_push(base);
  1412. udelay(NV_TXRX_RESET_DELAY);
  1413. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1414. pci_push(base);
  1415. }
  1416. static void nv_mac_reset(struct net_device *dev)
  1417. {
  1418. struct fe_priv *np = netdev_priv(dev);
  1419. u8 __iomem *base = get_hwbase(dev);
  1420. u32 temp1, temp2, temp3;
  1421. dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
  1422. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1423. pci_push(base);
  1424. /* save registers since they will be cleared on reset */
  1425. temp1 = readl(base + NvRegMacAddrA);
  1426. temp2 = readl(base + NvRegMacAddrB);
  1427. temp3 = readl(base + NvRegTransmitPoll);
  1428. writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
  1429. pci_push(base);
  1430. udelay(NV_MAC_RESET_DELAY);
  1431. writel(0, base + NvRegMacReset);
  1432. pci_push(base);
  1433. udelay(NV_MAC_RESET_DELAY);
  1434. /* restore saved registers */
  1435. writel(temp1, base + NvRegMacAddrA);
  1436. writel(temp2, base + NvRegMacAddrB);
  1437. writel(temp3, base + NvRegTransmitPoll);
  1438. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1439. pci_push(base);
  1440. }
  1441. static void nv_get_hw_stats(struct net_device *dev)
  1442. {
  1443. struct fe_priv *np = netdev_priv(dev);
  1444. u8 __iomem *base = get_hwbase(dev);
  1445. np->estats.tx_bytes += readl(base + NvRegTxCnt);
  1446. np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
  1447. np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
  1448. np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
  1449. np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
  1450. np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
  1451. np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
  1452. np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
  1453. np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
  1454. np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
  1455. np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
  1456. np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
  1457. np->estats.rx_runt += readl(base + NvRegRxRunt);
  1458. np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
  1459. np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
  1460. np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
  1461. np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
  1462. np->estats.rx_length_error += readl(base + NvRegRxLenErr);
  1463. np->estats.rx_unicast += readl(base + NvRegRxUnicast);
  1464. np->estats.rx_multicast += readl(base + NvRegRxMulticast);
  1465. np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
  1466. np->estats.rx_packets =
  1467. np->estats.rx_unicast +
  1468. np->estats.rx_multicast +
  1469. np->estats.rx_broadcast;
  1470. np->estats.rx_errors_total =
  1471. np->estats.rx_crc_errors +
  1472. np->estats.rx_over_errors +
  1473. np->estats.rx_frame_error +
  1474. (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
  1475. np->estats.rx_late_collision +
  1476. np->estats.rx_runt +
  1477. np->estats.rx_frame_too_long;
  1478. np->estats.tx_errors_total =
  1479. np->estats.tx_late_collision +
  1480. np->estats.tx_fifo_errors +
  1481. np->estats.tx_carrier_errors +
  1482. np->estats.tx_excess_deferral +
  1483. np->estats.tx_retry_error;
  1484. if (np->driver_data & DEV_HAS_STATISTICS_V2) {
  1485. np->estats.tx_deferral += readl(base + NvRegTxDef);
  1486. np->estats.tx_packets += readl(base + NvRegTxFrame);
  1487. np->estats.rx_bytes += readl(base + NvRegRxCnt);
  1488. np->estats.tx_pause += readl(base + NvRegTxPause);
  1489. np->estats.rx_pause += readl(base + NvRegRxPause);
  1490. np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
  1491. }
  1492. if (np->driver_data & DEV_HAS_STATISTICS_V3) {
  1493. np->estats.tx_unicast += readl(base + NvRegTxUnicast);
  1494. np->estats.tx_multicast += readl(base + NvRegTxMulticast);
  1495. np->estats.tx_broadcast += readl(base + NvRegTxBroadcast);
  1496. }
  1497. }
  1498. /*
  1499. * nv_get_stats: dev->get_stats function
  1500. * Get latest stats value from the nic.
  1501. * Called with read_lock(&dev_base_lock) held for read -
  1502. * only synchronized against unregister_netdevice.
  1503. */
  1504. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  1505. {
  1506. struct fe_priv *np = netdev_priv(dev);
  1507. /* If the nic supports hw counters then retrieve latest values */
  1508. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3)) {
  1509. nv_get_hw_stats(dev);
  1510. /* copy to net_device stats */
  1511. dev->stats.tx_bytes = np->estats.tx_bytes;
  1512. dev->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
  1513. dev->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
  1514. dev->stats.rx_crc_errors = np->estats.rx_crc_errors;
  1515. dev->stats.rx_over_errors = np->estats.rx_over_errors;
  1516. dev->stats.rx_errors = np->estats.rx_errors_total;
  1517. dev->stats.tx_errors = np->estats.tx_errors_total;
  1518. }
  1519. return &dev->stats;
  1520. }
  1521. /*
  1522. * nv_alloc_rx: fill rx ring entries.
  1523. * Return 1 if the allocations for the skbs failed and the
  1524. * rx engine is without Available descriptors
  1525. */
  1526. static int nv_alloc_rx(struct net_device *dev)
  1527. {
  1528. struct fe_priv *np = netdev_priv(dev);
  1529. struct ring_desc* less_rx;
  1530. less_rx = np->get_rx.orig;
  1531. if (less_rx-- == np->first_rx.orig)
  1532. less_rx = np->last_rx.orig;
  1533. while (np->put_rx.orig != less_rx) {
  1534. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1535. if (skb) {
  1536. np->put_rx_ctx->skb = skb;
  1537. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1538. skb->data,
  1539. skb_tailroom(skb),
  1540. PCI_DMA_FROMDEVICE);
  1541. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1542. np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
  1543. wmb();
  1544. np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  1545. if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
  1546. np->put_rx.orig = np->first_rx.orig;
  1547. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1548. np->put_rx_ctx = np->first_rx_ctx;
  1549. } else {
  1550. return 1;
  1551. }
  1552. }
  1553. return 0;
  1554. }
  1555. static int nv_alloc_rx_optimized(struct net_device *dev)
  1556. {
  1557. struct fe_priv *np = netdev_priv(dev);
  1558. struct ring_desc_ex* less_rx;
  1559. less_rx = np->get_rx.ex;
  1560. if (less_rx-- == np->first_rx.ex)
  1561. less_rx = np->last_rx.ex;
  1562. while (np->put_rx.ex != less_rx) {
  1563. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1564. if (skb) {
  1565. np->put_rx_ctx->skb = skb;
  1566. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1567. skb->data,
  1568. skb_tailroom(skb),
  1569. PCI_DMA_FROMDEVICE);
  1570. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1571. np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
  1572. np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
  1573. wmb();
  1574. np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  1575. if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
  1576. np->put_rx.ex = np->first_rx.ex;
  1577. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1578. np->put_rx_ctx = np->first_rx_ctx;
  1579. } else {
  1580. return 1;
  1581. }
  1582. }
  1583. return 0;
  1584. }
  1585. /* If rx bufs are exhausted called after 50ms to attempt to refresh */
  1586. #ifdef CONFIG_FORCEDETH_NAPI
  1587. static void nv_do_rx_refill(unsigned long data)
  1588. {
  1589. struct net_device *dev = (struct net_device *) data;
  1590. struct fe_priv *np = netdev_priv(dev);
  1591. /* Just reschedule NAPI rx processing */
  1592. netif_rx_schedule(dev, &np->napi);
  1593. }
  1594. #else
  1595. static void nv_do_rx_refill(unsigned long data)
  1596. {
  1597. struct net_device *dev = (struct net_device *) data;
  1598. struct fe_priv *np = netdev_priv(dev);
  1599. int retcode;
  1600. if (!using_multi_irqs(dev)) {
  1601. if (np->msi_flags & NV_MSI_X_ENABLED)
  1602. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1603. else
  1604. disable_irq(np->pci_dev->irq);
  1605. } else {
  1606. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1607. }
  1608. if (!nv_optimized(np))
  1609. retcode = nv_alloc_rx(dev);
  1610. else
  1611. retcode = nv_alloc_rx_optimized(dev);
  1612. if (retcode) {
  1613. spin_lock_irq(&np->lock);
  1614. if (!np->in_shutdown)
  1615. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1616. spin_unlock_irq(&np->lock);
  1617. }
  1618. if (!using_multi_irqs(dev)) {
  1619. if (np->msi_flags & NV_MSI_X_ENABLED)
  1620. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1621. else
  1622. enable_irq(np->pci_dev->irq);
  1623. } else {
  1624. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1625. }
  1626. }
  1627. #endif
  1628. static void nv_init_rx(struct net_device *dev)
  1629. {
  1630. struct fe_priv *np = netdev_priv(dev);
  1631. int i;
  1632. np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
  1633. if (!nv_optimized(np))
  1634. np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
  1635. else
  1636. np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
  1637. np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
  1638. np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
  1639. for (i = 0; i < np->rx_ring_size; i++) {
  1640. if (!nv_optimized(np)) {
  1641. np->rx_ring.orig[i].flaglen = 0;
  1642. np->rx_ring.orig[i].buf = 0;
  1643. } else {
  1644. np->rx_ring.ex[i].flaglen = 0;
  1645. np->rx_ring.ex[i].txvlan = 0;
  1646. np->rx_ring.ex[i].bufhigh = 0;
  1647. np->rx_ring.ex[i].buflow = 0;
  1648. }
  1649. np->rx_skb[i].skb = NULL;
  1650. np->rx_skb[i].dma = 0;
  1651. }
  1652. }
  1653. static void nv_init_tx(struct net_device *dev)
  1654. {
  1655. struct fe_priv *np = netdev_priv(dev);
  1656. int i;
  1657. np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
  1658. if (!nv_optimized(np))
  1659. np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
  1660. else
  1661. np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
  1662. np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
  1663. np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
  1664. np->tx_pkts_in_progress = 0;
  1665. np->tx_change_owner = NULL;
  1666. np->tx_end_flip = NULL;
  1667. for (i = 0; i < np->tx_ring_size; i++) {
  1668. if (!nv_optimized(np)) {
  1669. np->tx_ring.orig[i].flaglen = 0;
  1670. np->tx_ring.orig[i].buf = 0;
  1671. } else {
  1672. np->tx_ring.ex[i].flaglen = 0;
  1673. np->tx_ring.ex[i].txvlan = 0;
  1674. np->tx_ring.ex[i].bufhigh = 0;
  1675. np->tx_ring.ex[i].buflow = 0;
  1676. }
  1677. np->tx_skb[i].skb = NULL;
  1678. np->tx_skb[i].dma = 0;
  1679. np->tx_skb[i].dma_len = 0;
  1680. np->tx_skb[i].first_tx_desc = NULL;
  1681. np->tx_skb[i].next_tx_ctx = NULL;
  1682. }
  1683. }
  1684. static int nv_init_ring(struct net_device *dev)
  1685. {
  1686. struct fe_priv *np = netdev_priv(dev);
  1687. nv_init_tx(dev);
  1688. nv_init_rx(dev);
  1689. if (!nv_optimized(np))
  1690. return nv_alloc_rx(dev);
  1691. else
  1692. return nv_alloc_rx_optimized(dev);
  1693. }
  1694. static int nv_release_txskb(struct net_device *dev, struct nv_skb_map* tx_skb)
  1695. {
  1696. struct fe_priv *np = netdev_priv(dev);
  1697. if (tx_skb->dma) {
  1698. pci_unmap_page(np->pci_dev, tx_skb->dma,
  1699. tx_skb->dma_len,
  1700. PCI_DMA_TODEVICE);
  1701. tx_skb->dma = 0;
  1702. }
  1703. if (tx_skb->skb) {
  1704. dev_kfree_skb_any(tx_skb->skb);
  1705. tx_skb->skb = NULL;
  1706. return 1;
  1707. } else {
  1708. return 0;
  1709. }
  1710. }
  1711. static void nv_drain_tx(struct net_device *dev)
  1712. {
  1713. struct fe_priv *np = netdev_priv(dev);
  1714. unsigned int i;
  1715. for (i = 0; i < np->tx_ring_size; i++) {
  1716. if (!nv_optimized(np)) {
  1717. np->tx_ring.orig[i].flaglen = 0;
  1718. np->tx_ring.orig[i].buf = 0;
  1719. } else {
  1720. np->tx_ring.ex[i].flaglen = 0;
  1721. np->tx_ring.ex[i].txvlan = 0;
  1722. np->tx_ring.ex[i].bufhigh = 0;
  1723. np->tx_ring.ex[i].buflow = 0;
  1724. }
  1725. if (nv_release_txskb(dev, &np->tx_skb[i]))
  1726. dev->stats.tx_dropped++;
  1727. np->tx_skb[i].dma = 0;
  1728. np->tx_skb[i].dma_len = 0;
  1729. np->tx_skb[i].first_tx_desc = NULL;
  1730. np->tx_skb[i].next_tx_ctx = NULL;
  1731. }
  1732. np->tx_pkts_in_progress = 0;
  1733. np->tx_change_owner = NULL;
  1734. np->tx_end_flip = NULL;
  1735. }
  1736. static void nv_drain_rx(struct net_device *dev)
  1737. {
  1738. struct fe_priv *np = netdev_priv(dev);
  1739. int i;
  1740. for (i = 0; i < np->rx_ring_size; i++) {
  1741. if (!nv_optimized(np)) {
  1742. np->rx_ring.orig[i].flaglen = 0;
  1743. np->rx_ring.orig[i].buf = 0;
  1744. } else {
  1745. np->rx_ring.ex[i].flaglen = 0;
  1746. np->rx_ring.ex[i].txvlan = 0;
  1747. np->rx_ring.ex[i].bufhigh = 0;
  1748. np->rx_ring.ex[i].buflow = 0;
  1749. }
  1750. wmb();
  1751. if (np->rx_skb[i].skb) {
  1752. pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
  1753. (skb_end_pointer(np->rx_skb[i].skb) -
  1754. np->rx_skb[i].skb->data),
  1755. PCI_DMA_FROMDEVICE);
  1756. dev_kfree_skb(np->rx_skb[i].skb);
  1757. np->rx_skb[i].skb = NULL;
  1758. }
  1759. }
  1760. }
  1761. static void nv_drain_rxtx(struct net_device *dev)
  1762. {
  1763. nv_drain_tx(dev);
  1764. nv_drain_rx(dev);
  1765. }
  1766. static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
  1767. {
  1768. return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
  1769. }
  1770. static void nv_legacybackoff_reseed(struct net_device *dev)
  1771. {
  1772. u8 __iomem *base = get_hwbase(dev);
  1773. u32 reg;
  1774. u32 low;
  1775. int tx_status = 0;
  1776. reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK;
  1777. get_random_bytes(&low, sizeof(low));
  1778. reg |= low & NVREG_SLOTTIME_MASK;
  1779. /* Need to stop tx before change takes effect.
  1780. * Caller has already gained np->lock.
  1781. */
  1782. tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START;
  1783. if (tx_status)
  1784. nv_stop_tx(dev);
  1785. nv_stop_rx(dev);
  1786. writel(reg, base + NvRegSlotTime);
  1787. if (tx_status)
  1788. nv_start_tx(dev);
  1789. nv_start_rx(dev);
  1790. }
  1791. /* Gear Backoff Seeds */
  1792. #define BACKOFF_SEEDSET_ROWS 8
  1793. #define BACKOFF_SEEDSET_LFSRS 15
  1794. /* Known Good seed sets */
  1795. static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
  1796. {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
  1797. {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974},
  1798. {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
  1799. {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974},
  1800. {266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984},
  1801. {266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984},
  1802. {366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800, 84},
  1803. {466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184}};
  1804. static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
  1805. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1806. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1807. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397},
  1808. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1809. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1810. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1811. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1812. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}};
  1813. static void nv_gear_backoff_reseed(struct net_device *dev)
  1814. {
  1815. u8 __iomem *base = get_hwbase(dev);
  1816. u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed;
  1817. u32 temp, seedset, combinedSeed;
  1818. int i;
  1819. /* Setup seed for free running LFSR */
  1820. /* We are going to read the time stamp counter 3 times
  1821. and swizzle bits around to increase randomness */
  1822. get_random_bytes(&miniseed1, sizeof(miniseed1));
  1823. miniseed1 &= 0x0fff;
  1824. if (miniseed1 == 0)
  1825. miniseed1 = 0xabc;
  1826. get_random_bytes(&miniseed2, sizeof(miniseed2));
  1827. miniseed2 &= 0x0fff;
  1828. if (miniseed2 == 0)
  1829. miniseed2 = 0xabc;
  1830. miniseed2_reversed =
  1831. ((miniseed2 & 0xF00) >> 8) |
  1832. (miniseed2 & 0x0F0) |
  1833. ((miniseed2 & 0x00F) << 8);
  1834. get_random_bytes(&miniseed3, sizeof(miniseed3));
  1835. miniseed3 &= 0x0fff;
  1836. if (miniseed3 == 0)
  1837. miniseed3 = 0xabc;
  1838. miniseed3_reversed =
  1839. ((miniseed3 & 0xF00) >> 8) |
  1840. (miniseed3 & 0x0F0) |
  1841. ((miniseed3 & 0x00F) << 8);
  1842. combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) |
  1843. (miniseed2 ^ miniseed3_reversed);
  1844. /* Seeds can not be zero */
  1845. if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0)
  1846. combinedSeed |= 0x08;
  1847. if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0)
  1848. combinedSeed |= 0x8000;
  1849. /* No need to disable tx here */
  1850. temp = NVREG_BKOFFCTRL_DEFAULT | (0 << NVREG_BKOFFCTRL_SELECT);
  1851. temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK;
  1852. temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR;
  1853. writel(temp,base + NvRegBackOffControl);
  1854. /* Setup seeds for all gear LFSRs. */
  1855. get_random_bytes(&seedset, sizeof(seedset));
  1856. seedset = seedset % BACKOFF_SEEDSET_ROWS;
  1857. for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++)
  1858. {
  1859. temp = NVREG_BKOFFCTRL_DEFAULT | (i << NVREG_BKOFFCTRL_SELECT);
  1860. temp |= main_seedset[seedset][i-1] & 0x3ff;
  1861. temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR);
  1862. writel(temp, base + NvRegBackOffControl);
  1863. }
  1864. }
  1865. /*
  1866. * nv_start_xmit: dev->hard_start_xmit function
  1867. * Called with netif_tx_lock held.
  1868. */
  1869. static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1870. {
  1871. struct fe_priv *np = netdev_priv(dev);
  1872. u32 tx_flags = 0;
  1873. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1874. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1875. unsigned int i;
  1876. u32 offset = 0;
  1877. u32 bcnt;
  1878. u32 size = skb->len-skb->data_len;
  1879. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1880. u32 empty_slots;
  1881. struct ring_desc* put_tx;
  1882. struct ring_desc* start_tx;
  1883. struct ring_desc* prev_tx;
  1884. struct nv_skb_map* prev_tx_ctx;
  1885. unsigned long flags;
  1886. /* add fragments to entries count */
  1887. for (i = 0; i < fragments; i++) {
  1888. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1889. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1890. }
  1891. empty_slots = nv_get_empty_tx_slots(np);
  1892. if (unlikely(empty_slots <= entries)) {
  1893. spin_lock_irqsave(&np->lock, flags);
  1894. netif_stop_queue(dev);
  1895. np->tx_stop = 1;
  1896. spin_unlock_irqrestore(&np->lock, flags);
  1897. return NETDEV_TX_BUSY;
  1898. }
  1899. start_tx = put_tx = np->put_tx.orig;
  1900. /* setup the header buffer */
  1901. do {
  1902. prev_tx = put_tx;
  1903. prev_tx_ctx = np->put_tx_ctx;
  1904. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1905. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1906. PCI_DMA_TODEVICE);
  1907. np->put_tx_ctx->dma_len = bcnt;
  1908. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1909. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1910. tx_flags = np->tx_flags;
  1911. offset += bcnt;
  1912. size -= bcnt;
  1913. if (unlikely(put_tx++ == np->last_tx.orig))
  1914. put_tx = np->first_tx.orig;
  1915. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1916. np->put_tx_ctx = np->first_tx_ctx;
  1917. } while (size);
  1918. /* setup the fragments */
  1919. for (i = 0; i < fragments; i++) {
  1920. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1921. u32 size = frag->size;
  1922. offset = 0;
  1923. do {
  1924. prev_tx = put_tx;
  1925. prev_tx_ctx = np->put_tx_ctx;
  1926. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1927. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1928. PCI_DMA_TODEVICE);
  1929. np->put_tx_ctx->dma_len = bcnt;
  1930. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1931. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1932. offset += bcnt;
  1933. size -= bcnt;
  1934. if (unlikely(put_tx++ == np->last_tx.orig))
  1935. put_tx = np->first_tx.orig;
  1936. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1937. np->put_tx_ctx = np->first_tx_ctx;
  1938. } while (size);
  1939. }
  1940. /* set last fragment flag */
  1941. prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
  1942. /* save skb in this slot's context area */
  1943. prev_tx_ctx->skb = skb;
  1944. if (skb_is_gso(skb))
  1945. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  1946. else
  1947. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  1948. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  1949. spin_lock_irqsave(&np->lock, flags);
  1950. /* set tx flags */
  1951. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1952. np->put_tx.orig = put_tx;
  1953. spin_unlock_irqrestore(&np->lock, flags);
  1954. dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
  1955. dev->name, entries, tx_flags_extra);
  1956. {
  1957. int j;
  1958. for (j=0; j<64; j++) {
  1959. if ((j%16) == 0)
  1960. dprintk("\n%03x:", j);
  1961. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1962. }
  1963. dprintk("\n");
  1964. }
  1965. dev->trans_start = jiffies;
  1966. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1967. return NETDEV_TX_OK;
  1968. }
  1969. static int nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev)
  1970. {
  1971. struct fe_priv *np = netdev_priv(dev);
  1972. u32 tx_flags = 0;
  1973. u32 tx_flags_extra;
  1974. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1975. unsigned int i;
  1976. u32 offset = 0;
  1977. u32 bcnt;
  1978. u32 size = skb->len-skb->data_len;
  1979. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1980. u32 empty_slots;
  1981. struct ring_desc_ex* put_tx;
  1982. struct ring_desc_ex* start_tx;
  1983. struct ring_desc_ex* prev_tx;
  1984. struct nv_skb_map* prev_tx_ctx;
  1985. struct nv_skb_map* start_tx_ctx;
  1986. unsigned long flags;
  1987. /* add fragments to entries count */
  1988. for (i = 0; i < fragments; i++) {
  1989. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1990. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1991. }
  1992. empty_slots = nv_get_empty_tx_slots(np);
  1993. if (unlikely(empty_slots <= entries)) {
  1994. spin_lock_irqsave(&np->lock, flags);
  1995. netif_stop_queue(dev);
  1996. np->tx_stop = 1;
  1997. spin_unlock_irqrestore(&np->lock, flags);
  1998. return NETDEV_TX_BUSY;
  1999. }
  2000. start_tx = put_tx = np->put_tx.ex;
  2001. start_tx_ctx = np->put_tx_ctx;
  2002. /* setup the header buffer */
  2003. do {
  2004. prev_tx = put_tx;
  2005. prev_tx_ctx = np->put_tx_ctx;
  2006. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  2007. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  2008. PCI_DMA_TODEVICE);
  2009. np->put_tx_ctx->dma_len = bcnt;
  2010. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  2011. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  2012. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2013. tx_flags = NV_TX2_VALID;
  2014. offset += bcnt;
  2015. size -= bcnt;
  2016. if (unlikely(put_tx++ == np->last_tx.ex))
  2017. put_tx = np->first_tx.ex;
  2018. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2019. np->put_tx_ctx = np->first_tx_ctx;
  2020. } while (size);
  2021. /* setup the fragments */
  2022. for (i = 0; i < fragments; i++) {
  2023. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2024. u32 size = frag->size;
  2025. offset = 0;
  2026. do {
  2027. prev_tx = put_tx;
  2028. prev_tx_ctx = np->put_tx_ctx;
  2029. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  2030. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  2031. PCI_DMA_TODEVICE);
  2032. np->put_tx_ctx->dma_len = bcnt;
  2033. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  2034. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  2035. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2036. offset += bcnt;
  2037. size -= bcnt;
  2038. if (unlikely(put_tx++ == np->last_tx.ex))
  2039. put_tx = np->first_tx.ex;
  2040. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2041. np->put_tx_ctx = np->first_tx_ctx;
  2042. } while (size);
  2043. }
  2044. /* set last fragment flag */
  2045. prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
  2046. /* save skb in this slot's context area */
  2047. prev_tx_ctx->skb = skb;
  2048. if (skb_is_gso(skb))
  2049. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  2050. else
  2051. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  2052. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  2053. /* vlan tag */
  2054. if (likely(!np->vlangrp)) {
  2055. start_tx->txvlan = 0;
  2056. } else {
  2057. if (vlan_tx_tag_present(skb))
  2058. start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
  2059. else
  2060. start_tx->txvlan = 0;
  2061. }
  2062. spin_lock_irqsave(&np->lock, flags);
  2063. if (np->tx_limit) {
  2064. /* Limit the number of outstanding tx. Setup all fragments, but
  2065. * do not set the VALID bit on the first descriptor. Save a pointer
  2066. * to that descriptor and also for next skb_map element.
  2067. */
  2068. if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) {
  2069. if (!np->tx_change_owner)
  2070. np->tx_change_owner = start_tx_ctx;
  2071. /* remove VALID bit */
  2072. tx_flags &= ~NV_TX2_VALID;
  2073. start_tx_ctx->first_tx_desc = start_tx;
  2074. start_tx_ctx->next_tx_ctx = np->put_tx_ctx;
  2075. np->tx_end_flip = np->put_tx_ctx;
  2076. } else {
  2077. np->tx_pkts_in_progress++;
  2078. }
  2079. }
  2080. /* set tx flags */
  2081. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  2082. np->put_tx.ex = put_tx;
  2083. spin_unlock_irqrestore(&np->lock, flags);
  2084. dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
  2085. dev->name, entries, tx_flags_extra);
  2086. {
  2087. int j;
  2088. for (j=0; j<64; j++) {
  2089. if ((j%16) == 0)
  2090. dprintk("\n%03x:", j);
  2091. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2092. }
  2093. dprintk("\n");
  2094. }
  2095. dev->trans_start = jiffies;
  2096. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2097. return NETDEV_TX_OK;
  2098. }
  2099. static inline void nv_tx_flip_ownership(struct net_device *dev)
  2100. {
  2101. struct fe_priv *np = netdev_priv(dev);
  2102. np->tx_pkts_in_progress--;
  2103. if (np->tx_change_owner) {
  2104. np->tx_change_owner->first_tx_desc->flaglen |=
  2105. cpu_to_le32(NV_TX2_VALID);
  2106. np->tx_pkts_in_progress++;
  2107. np->tx_change_owner = np->tx_change_owner->next_tx_ctx;
  2108. if (np->tx_change_owner == np->tx_end_flip)
  2109. np->tx_change_owner = NULL;
  2110. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2111. }
  2112. }
  2113. /*
  2114. * nv_tx_done: check for completed packets, release the skbs.
  2115. *
  2116. * Caller must own np->lock.
  2117. */
  2118. static void nv_tx_done(struct net_device *dev)
  2119. {
  2120. struct fe_priv *np = netdev_priv(dev);
  2121. u32 flags;
  2122. struct ring_desc* orig_get_tx = np->get_tx.orig;
  2123. while ((np->get_tx.orig != np->put_tx.orig) &&
  2124. !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID)) {
  2125. dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
  2126. dev->name, flags);
  2127. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  2128. np->get_tx_ctx->dma_len,
  2129. PCI_DMA_TODEVICE);
  2130. np->get_tx_ctx->dma = 0;
  2131. if (np->desc_ver == DESC_VER_1) {
  2132. if (flags & NV_TX_LASTPACKET) {
  2133. if (flags & NV_TX_ERROR) {
  2134. if (flags & NV_TX_UNDERFLOW)
  2135. dev->stats.tx_fifo_errors++;
  2136. if (flags & NV_TX_CARRIERLOST)
  2137. dev->stats.tx_carrier_errors++;
  2138. if ((flags & NV_TX_RETRYERROR) && !(flags & NV_TX_RETRYCOUNT_MASK))
  2139. nv_legacybackoff_reseed(dev);
  2140. dev->stats.tx_errors++;
  2141. } else {
  2142. dev->stats.tx_packets++;
  2143. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  2144. }
  2145. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2146. np->get_tx_ctx->skb = NULL;
  2147. }
  2148. } else {
  2149. if (flags & NV_TX2_LASTPACKET) {
  2150. if (flags & NV_TX2_ERROR) {
  2151. if (flags & NV_TX2_UNDERFLOW)
  2152. dev->stats.tx_fifo_errors++;
  2153. if (flags & NV_TX2_CARRIERLOST)
  2154. dev->stats.tx_carrier_errors++;
  2155. if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK))
  2156. nv_legacybackoff_reseed(dev);
  2157. dev->stats.tx_errors++;
  2158. } else {
  2159. dev->stats.tx_packets++;
  2160. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  2161. }
  2162. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2163. np->get_tx_ctx->skb = NULL;
  2164. }
  2165. }
  2166. if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
  2167. np->get_tx.orig = np->first_tx.orig;
  2168. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  2169. np->get_tx_ctx = np->first_tx_ctx;
  2170. }
  2171. if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
  2172. np->tx_stop = 0;
  2173. netif_wake_queue(dev);
  2174. }
  2175. }
  2176. static void nv_tx_done_optimized(struct net_device *dev, int limit)
  2177. {
  2178. struct fe_priv *np = netdev_priv(dev);
  2179. u32 flags;
  2180. struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
  2181. while ((np->get_tx.ex != np->put_tx.ex) &&
  2182. !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX_VALID) &&
  2183. (limit-- > 0)) {
  2184. dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
  2185. dev->name, flags);
  2186. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  2187. np->get_tx_ctx->dma_len,
  2188. PCI_DMA_TODEVICE);
  2189. np->get_tx_ctx->dma = 0;
  2190. if (flags & NV_TX2_LASTPACKET) {
  2191. if (!(flags & NV_TX2_ERROR))
  2192. dev->stats.tx_packets++;
  2193. else {
  2194. if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK)) {
  2195. if (np->driver_data & DEV_HAS_GEAR_MODE)
  2196. nv_gear_backoff_reseed(dev);
  2197. else
  2198. nv_legacybackoff_reseed(dev);
  2199. }
  2200. }
  2201. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2202. np->get_tx_ctx->skb = NULL;
  2203. if (np->tx_limit) {
  2204. nv_tx_flip_ownership(dev);
  2205. }
  2206. }
  2207. if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
  2208. np->get_tx.ex = np->first_tx.ex;
  2209. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  2210. np->get_tx_ctx = np->first_tx_ctx;
  2211. }
  2212. if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
  2213. np->tx_stop = 0;
  2214. netif_wake_queue(dev);
  2215. }
  2216. }
  2217. /*
  2218. * nv_tx_timeout: dev->tx_timeout function
  2219. * Called with netif_tx_lock held.
  2220. */
  2221. static void nv_tx_timeout(struct net_device *dev)
  2222. {
  2223. struct fe_priv *np = netdev_priv(dev);
  2224. u8 __iomem *base = get_hwbase(dev);
  2225. u32 status;
  2226. if (np->msi_flags & NV_MSI_X_ENABLED)
  2227. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2228. else
  2229. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2230. printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
  2231. {
  2232. int i;
  2233. printk(KERN_INFO "%s: Ring at %lx\n",
  2234. dev->name, (unsigned long)np->ring_addr);
  2235. printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
  2236. for (i=0;i<=np->register_size;i+= 32) {
  2237. printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
  2238. i,
  2239. readl(base + i + 0), readl(base + i + 4),
  2240. readl(base + i + 8), readl(base + i + 12),
  2241. readl(base + i + 16), readl(base + i + 20),
  2242. readl(base + i + 24), readl(base + i + 28));
  2243. }
  2244. printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
  2245. for (i=0;i<np->tx_ring_size;i+= 4) {
  2246. if (!nv_optimized(np)) {
  2247. printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
  2248. i,
  2249. le32_to_cpu(np->tx_ring.orig[i].buf),
  2250. le32_to_cpu(np->tx_ring.orig[i].flaglen),
  2251. le32_to_cpu(np->tx_ring.orig[i+1].buf),
  2252. le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
  2253. le32_to_cpu(np->tx_ring.orig[i+2].buf),
  2254. le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
  2255. le32_to_cpu(np->tx_ring.orig[i+3].buf),
  2256. le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
  2257. } else {
  2258. printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
  2259. i,
  2260. le32_to_cpu(np->tx_ring.ex[i].bufhigh),
  2261. le32_to_cpu(np->tx_ring.ex[i].buflow),
  2262. le32_to_cpu(np->tx_ring.ex[i].flaglen),
  2263. le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
  2264. le32_to_cpu(np->tx_ring.ex[i+1].buflow),
  2265. le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
  2266. le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
  2267. le32_to_cpu(np->tx_ring.ex[i+2].buflow),
  2268. le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
  2269. le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
  2270. le32_to_cpu(np->tx_ring.ex[i+3].buflow),
  2271. le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
  2272. }
  2273. }
  2274. }
  2275. spin_lock_irq(&np->lock);
  2276. /* 1) stop tx engine */
  2277. nv_stop_tx(dev);
  2278. /* 2) check that the packets were not sent already: */
  2279. if (!nv_optimized(np))
  2280. nv_tx_done(dev);
  2281. else
  2282. nv_tx_done_optimized(dev, np->tx_ring_size);
  2283. /* 3) if there are dead entries: clear everything */
  2284. if (np->get_tx_ctx != np->put_tx_ctx) {
  2285. printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
  2286. nv_drain_tx(dev);
  2287. nv_init_tx(dev);
  2288. setup_hw_rings(dev, NV_SETUP_TX_RING);
  2289. }
  2290. netif_wake_queue(dev);
  2291. /* 4) restart tx engine */
  2292. nv_start_tx(dev);
  2293. spin_unlock_irq(&np->lock);
  2294. }
  2295. /*
  2296. * Called when the nic notices a mismatch between the actual data len on the
  2297. * wire and the len indicated in the 802 header
  2298. */
  2299. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  2300. {
  2301. int hdrlen; /* length of the 802 header */
  2302. int protolen; /* length as stored in the proto field */
  2303. /* 1) calculate len according to header */
  2304. if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
  2305. protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
  2306. hdrlen = VLAN_HLEN;
  2307. } else {
  2308. protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
  2309. hdrlen = ETH_HLEN;
  2310. }
  2311. dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
  2312. dev->name, datalen, protolen, hdrlen);
  2313. if (protolen > ETH_DATA_LEN)
  2314. return datalen; /* Value in proto field not a len, no checks possible */
  2315. protolen += hdrlen;
  2316. /* consistency checks: */
  2317. if (datalen > ETH_ZLEN) {
  2318. if (datalen >= protolen) {
  2319. /* more data on wire than in 802 header, trim of
  2320. * additional data.
  2321. */
  2322. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2323. dev->name, protolen);
  2324. return protolen;
  2325. } else {
  2326. /* less data on wire than mentioned in header.
  2327. * Discard the packet.
  2328. */
  2329. dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
  2330. dev->name);
  2331. return -1;
  2332. }
  2333. } else {
  2334. /* short packet. Accept only if 802 values are also short */
  2335. if (protolen > ETH_ZLEN) {
  2336. dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
  2337. dev->name);
  2338. return -1;
  2339. }
  2340. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2341. dev->name, datalen);
  2342. return datalen;
  2343. }
  2344. }
  2345. static int nv_rx_process(struct net_device *dev, int limit)
  2346. {
  2347. struct fe_priv *np = netdev_priv(dev);
  2348. u32 flags;
  2349. int rx_work = 0;
  2350. struct sk_buff *skb;
  2351. int len;
  2352. while((np->get_rx.orig != np->put_rx.orig) &&
  2353. !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
  2354. (rx_work < limit)) {
  2355. dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
  2356. dev->name, flags);
  2357. /*
  2358. * the packet is for us - immediately tear down the pci mapping.
  2359. * TODO: check if a prefetch of the first cacheline improves
  2360. * the performance.
  2361. */
  2362. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2363. np->get_rx_ctx->dma_len,
  2364. PCI_DMA_FROMDEVICE);
  2365. skb = np->get_rx_ctx->skb;
  2366. np->get_rx_ctx->skb = NULL;
  2367. {
  2368. int j;
  2369. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2370. for (j=0; j<64; j++) {
  2371. if ((j%16) == 0)
  2372. dprintk("\n%03x:", j);
  2373. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2374. }
  2375. dprintk("\n");
  2376. }
  2377. /* look at what we actually got: */
  2378. if (np->desc_ver == DESC_VER_1) {
  2379. if (likely(flags & NV_RX_DESCRIPTORVALID)) {
  2380. len = flags & LEN_MASK_V1;
  2381. if (unlikely(flags & NV_RX_ERROR)) {
  2382. if ((flags & NV_RX_ERROR_MASK) == NV_RX_ERROR4) {
  2383. len = nv_getlen(dev, skb->data, len);
  2384. if (len < 0) {
  2385. dev->stats.rx_errors++;
  2386. dev_kfree_skb(skb);
  2387. goto next_pkt;
  2388. }
  2389. }
  2390. /* framing errors are soft errors */
  2391. else if ((flags & NV_RX_ERROR_MASK) == NV_RX_FRAMINGERR) {
  2392. if (flags & NV_RX_SUBSTRACT1) {
  2393. len--;
  2394. }
  2395. }
  2396. /* the rest are hard errors */
  2397. else {
  2398. if (flags & NV_RX_MISSEDFRAME)
  2399. dev->stats.rx_missed_errors++;
  2400. if (flags & NV_RX_CRCERR)
  2401. dev->stats.rx_crc_errors++;
  2402. if (flags & NV_RX_OVERFLOW)
  2403. dev->stats.rx_over_errors++;
  2404. dev->stats.rx_errors++;
  2405. dev_kfree_skb(skb);
  2406. goto next_pkt;
  2407. }
  2408. }
  2409. } else {
  2410. dev_kfree_skb(skb);
  2411. goto next_pkt;
  2412. }
  2413. } else {
  2414. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2415. len = flags & LEN_MASK_V2;
  2416. if (unlikely(flags & NV_RX2_ERROR)) {
  2417. if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
  2418. len = nv_getlen(dev, skb->data, len);
  2419. if (len < 0) {
  2420. dev->stats.rx_errors++;
  2421. dev_kfree_skb(skb);
  2422. goto next_pkt;
  2423. }
  2424. }
  2425. /* framing errors are soft errors */
  2426. else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
  2427. if (flags & NV_RX2_SUBSTRACT1) {
  2428. len--;
  2429. }
  2430. }
  2431. /* the rest are hard errors */
  2432. else {
  2433. if (flags & NV_RX2_CRCERR)
  2434. dev->stats.rx_crc_errors++;
  2435. if (flags & NV_RX2_OVERFLOW)
  2436. dev->stats.rx_over_errors++;
  2437. dev->stats.rx_errors++;
  2438. dev_kfree_skb(skb);
  2439. goto next_pkt;
  2440. }
  2441. }
  2442. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2443. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2444. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2445. } else {
  2446. dev_kfree_skb(skb);
  2447. goto next_pkt;
  2448. }
  2449. }
  2450. /* got a valid packet - forward it to the network core */
  2451. skb_put(skb, len);
  2452. skb->protocol = eth_type_trans(skb, dev);
  2453. dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
  2454. dev->name, len, skb->protocol);
  2455. #ifdef CONFIG_FORCEDETH_NAPI
  2456. netif_receive_skb(skb);
  2457. #else
  2458. netif_rx(skb);
  2459. #endif
  2460. dev->last_rx = jiffies;
  2461. dev->stats.rx_packets++;
  2462. dev->stats.rx_bytes += len;
  2463. next_pkt:
  2464. if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
  2465. np->get_rx.orig = np->first_rx.orig;
  2466. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2467. np->get_rx_ctx = np->first_rx_ctx;
  2468. rx_work++;
  2469. }
  2470. return rx_work;
  2471. }
  2472. static int nv_rx_process_optimized(struct net_device *dev, int limit)
  2473. {
  2474. struct fe_priv *np = netdev_priv(dev);
  2475. u32 flags;
  2476. u32 vlanflags = 0;
  2477. int rx_work = 0;
  2478. struct sk_buff *skb;
  2479. int len;
  2480. while((np->get_rx.ex != np->put_rx.ex) &&
  2481. !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
  2482. (rx_work < limit)) {
  2483. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
  2484. dev->name, flags);
  2485. /*
  2486. * the packet is for us - immediately tear down the pci mapping.
  2487. * TODO: check if a prefetch of the first cacheline improves
  2488. * the performance.
  2489. */
  2490. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2491. np->get_rx_ctx->dma_len,
  2492. PCI_DMA_FROMDEVICE);
  2493. skb = np->get_rx_ctx->skb;
  2494. np->get_rx_ctx->skb = NULL;
  2495. {
  2496. int j;
  2497. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2498. for (j=0; j<64; j++) {
  2499. if ((j%16) == 0)
  2500. dprintk("\n%03x:", j);
  2501. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2502. }
  2503. dprintk("\n");
  2504. }
  2505. /* look at what we actually got: */
  2506. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2507. len = flags & LEN_MASK_V2;
  2508. if (unlikely(flags & NV_RX2_ERROR)) {
  2509. if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
  2510. len = nv_getlen(dev, skb->data, len);
  2511. if (len < 0) {
  2512. dev_kfree_skb(skb);
  2513. goto next_pkt;
  2514. }
  2515. }
  2516. /* framing errors are soft errors */
  2517. else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
  2518. if (flags & NV_RX2_SUBSTRACT1) {
  2519. len--;
  2520. }
  2521. }
  2522. /* the rest are hard errors */
  2523. else {
  2524. dev_kfree_skb(skb);
  2525. goto next_pkt;
  2526. }
  2527. }
  2528. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2529. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2530. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2531. /* got a valid packet - forward it to the network core */
  2532. skb_put(skb, len);
  2533. skb->protocol = eth_type_trans(skb, dev);
  2534. prefetch(skb->data);
  2535. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
  2536. dev->name, len, skb->protocol);
  2537. if (likely(!np->vlangrp)) {
  2538. #ifdef CONFIG_FORCEDETH_NAPI
  2539. netif_receive_skb(skb);
  2540. #else
  2541. netif_rx(skb);
  2542. #endif
  2543. } else {
  2544. vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
  2545. if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
  2546. #ifdef CONFIG_FORCEDETH_NAPI
  2547. vlan_hwaccel_receive_skb(skb, np->vlangrp,
  2548. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2549. #else
  2550. vlan_hwaccel_rx(skb, np->vlangrp,
  2551. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2552. #endif
  2553. } else {
  2554. #ifdef CONFIG_FORCEDETH_NAPI
  2555. netif_receive_skb(skb);
  2556. #else
  2557. netif_rx(skb);
  2558. #endif
  2559. }
  2560. }
  2561. dev->last_rx = jiffies;
  2562. dev->stats.rx_packets++;
  2563. dev->stats.rx_bytes += len;
  2564. } else {
  2565. dev_kfree_skb(skb);
  2566. }
  2567. next_pkt:
  2568. if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
  2569. np->get_rx.ex = np->first_rx.ex;
  2570. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2571. np->get_rx_ctx = np->first_rx_ctx;
  2572. rx_work++;
  2573. }
  2574. return rx_work;
  2575. }
  2576. static void set_bufsize(struct net_device *dev)
  2577. {
  2578. struct fe_priv *np = netdev_priv(dev);
  2579. if (dev->mtu <= ETH_DATA_LEN)
  2580. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  2581. else
  2582. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  2583. }
  2584. /*
  2585. * nv_change_mtu: dev->change_mtu function
  2586. * Called with dev_base_lock held for read.
  2587. */
  2588. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  2589. {
  2590. struct fe_priv *np = netdev_priv(dev);
  2591. int old_mtu;
  2592. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  2593. return -EINVAL;
  2594. old_mtu = dev->mtu;
  2595. dev->mtu = new_mtu;
  2596. /* return early if the buffer sizes will not change */
  2597. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  2598. return 0;
  2599. if (old_mtu == new_mtu)
  2600. return 0;
  2601. /* synchronized against open : rtnl_lock() held by caller */
  2602. if (netif_running(dev)) {
  2603. u8 __iomem *base = get_hwbase(dev);
  2604. /*
  2605. * It seems that the nic preloads valid ring entries into an
  2606. * internal buffer. The procedure for flushing everything is
  2607. * guessed, there is probably a simpler approach.
  2608. * Changing the MTU is a rare event, it shouldn't matter.
  2609. */
  2610. nv_disable_irq(dev);
  2611. netif_tx_lock_bh(dev);
  2612. netif_addr_lock(dev);
  2613. spin_lock(&np->lock);
  2614. /* stop engines */
  2615. nv_stop_rxtx(dev);
  2616. nv_txrx_reset(dev);
  2617. /* drain rx queue */
  2618. nv_drain_rxtx(dev);
  2619. /* reinit driver view of the rx queue */
  2620. set_bufsize(dev);
  2621. if (nv_init_ring(dev)) {
  2622. if (!np->in_shutdown)
  2623. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2624. }
  2625. /* reinit nic view of the rx queue */
  2626. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2627. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2628. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  2629. base + NvRegRingSizes);
  2630. pci_push(base);
  2631. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2632. pci_push(base);
  2633. /* restart rx engine */
  2634. nv_start_rxtx(dev);
  2635. spin_unlock(&np->lock);
  2636. netif_addr_unlock(dev);
  2637. netif_tx_unlock_bh(dev);
  2638. nv_enable_irq(dev);
  2639. }
  2640. return 0;
  2641. }
  2642. static void nv_copy_mac_to_hw(struct net_device *dev)
  2643. {
  2644. u8 __iomem *base = get_hwbase(dev);
  2645. u32 mac[2];
  2646. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  2647. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  2648. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  2649. writel(mac[0], base + NvRegMacAddrA);
  2650. writel(mac[1], base + NvRegMacAddrB);
  2651. }
  2652. /*
  2653. * nv_set_mac_address: dev->set_mac_address function
  2654. * Called with rtnl_lock() held.
  2655. */
  2656. static int nv_set_mac_address(struct net_device *dev, void *addr)
  2657. {
  2658. struct fe_priv *np = netdev_priv(dev);
  2659. struct sockaddr *macaddr = (struct sockaddr*)addr;
  2660. if (!is_valid_ether_addr(macaddr->sa_data))
  2661. return -EADDRNOTAVAIL;
  2662. /* synchronized against open : rtnl_lock() held by caller */
  2663. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  2664. if (netif_running(dev)) {
  2665. netif_tx_lock_bh(dev);
  2666. netif_addr_lock(dev);
  2667. spin_lock_irq(&np->lock);
  2668. /* stop rx engine */
  2669. nv_stop_rx(dev);
  2670. /* set mac address */
  2671. nv_copy_mac_to_hw(dev);
  2672. /* restart rx engine */
  2673. nv_start_rx(dev);
  2674. spin_unlock_irq(&np->lock);
  2675. netif_addr_unlock(dev);
  2676. netif_tx_unlock_bh(dev);
  2677. } else {
  2678. nv_copy_mac_to_hw(dev);
  2679. }
  2680. return 0;
  2681. }
  2682. /*
  2683. * nv_set_multicast: dev->set_multicast function
  2684. * Called with netif_tx_lock held.
  2685. */
  2686. static void nv_set_multicast(struct net_device *dev)
  2687. {
  2688. struct fe_priv *np = netdev_priv(dev);
  2689. u8 __iomem *base = get_hwbase(dev);
  2690. u32 addr[2];
  2691. u32 mask[2];
  2692. u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
  2693. memset(addr, 0, sizeof(addr));
  2694. memset(mask, 0, sizeof(mask));
  2695. if (dev->flags & IFF_PROMISC) {
  2696. pff |= NVREG_PFF_PROMISC;
  2697. } else {
  2698. pff |= NVREG_PFF_MYADDR;
  2699. if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
  2700. u32 alwaysOff[2];
  2701. u32 alwaysOn[2];
  2702. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  2703. if (dev->flags & IFF_ALLMULTI) {
  2704. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  2705. } else {
  2706. struct dev_mc_list *walk;
  2707. walk = dev->mc_list;
  2708. while (walk != NULL) {
  2709. u32 a, b;
  2710. a = le32_to_cpu(*(__le32 *) walk->dmi_addr);
  2711. b = le16_to_cpu(*(__le16 *) (&walk->dmi_addr[4]));
  2712. alwaysOn[0] &= a;
  2713. alwaysOff[0] &= ~a;
  2714. alwaysOn[1] &= b;
  2715. alwaysOff[1] &= ~b;
  2716. walk = walk->next;
  2717. }
  2718. }
  2719. addr[0] = alwaysOn[0];
  2720. addr[1] = alwaysOn[1];
  2721. mask[0] = alwaysOn[0] | alwaysOff[0];
  2722. mask[1] = alwaysOn[1] | alwaysOff[1];
  2723. } else {
  2724. mask[0] = NVREG_MCASTMASKA_NONE;
  2725. mask[1] = NVREG_MCASTMASKB_NONE;
  2726. }
  2727. }
  2728. addr[0] |= NVREG_MCASTADDRA_FORCE;
  2729. pff |= NVREG_PFF_ALWAYS;
  2730. spin_lock_irq(&np->lock);
  2731. nv_stop_rx(dev);
  2732. writel(addr[0], base + NvRegMulticastAddrA);
  2733. writel(addr[1], base + NvRegMulticastAddrB);
  2734. writel(mask[0], base + NvRegMulticastMaskA);
  2735. writel(mask[1], base + NvRegMulticastMaskB);
  2736. writel(pff, base + NvRegPacketFilterFlags);
  2737. dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
  2738. dev->name);
  2739. nv_start_rx(dev);
  2740. spin_unlock_irq(&np->lock);
  2741. }
  2742. static void nv_update_pause(struct net_device *dev, u32 pause_flags)
  2743. {
  2744. struct fe_priv *np = netdev_priv(dev);
  2745. u8 __iomem *base = get_hwbase(dev);
  2746. np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
  2747. if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
  2748. u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
  2749. if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
  2750. writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
  2751. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2752. } else {
  2753. writel(pff, base + NvRegPacketFilterFlags);
  2754. }
  2755. }
  2756. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
  2757. u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
  2758. if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
  2759. u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1;
  2760. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2)
  2761. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2;
  2762. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)
  2763. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3;
  2764. writel(pause_enable, base + NvRegTxPauseFrame);
  2765. writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
  2766. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2767. } else {
  2768. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  2769. writel(regmisc, base + NvRegMisc1);
  2770. }
  2771. }
  2772. }
  2773. /**
  2774. * nv_update_linkspeed: Setup the MAC according to the link partner
  2775. * @dev: Network device to be configured
  2776. *
  2777. * The function queries the PHY and checks if there is a link partner.
  2778. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  2779. * set to 10 MBit HD.
  2780. *
  2781. * The function returns 0 if there is no link partner and 1 if there is
  2782. * a good link partner.
  2783. */
  2784. static int nv_update_linkspeed(struct net_device *dev)
  2785. {
  2786. struct fe_priv *np = netdev_priv(dev);
  2787. u8 __iomem *base = get_hwbase(dev);
  2788. int adv = 0;
  2789. int lpa = 0;
  2790. int adv_lpa, adv_pause, lpa_pause;
  2791. int newls = np->linkspeed;
  2792. int newdup = np->duplex;
  2793. int mii_status;
  2794. int retval = 0;
  2795. u32 control_1000, status_1000, phyreg, pause_flags, txreg;
  2796. u32 txrxFlags = 0;
  2797. u32 phy_exp;
  2798. /* BMSR_LSTATUS is latched, read it twice:
  2799. * we want the current value.
  2800. */
  2801. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2802. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2803. if (!(mii_status & BMSR_LSTATUS)) {
  2804. dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
  2805. dev->name);
  2806. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2807. newdup = 0;
  2808. retval = 0;
  2809. goto set_speed;
  2810. }
  2811. if (np->autoneg == 0) {
  2812. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
  2813. dev->name, np->fixed_mode);
  2814. if (np->fixed_mode & LPA_100FULL) {
  2815. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2816. newdup = 1;
  2817. } else if (np->fixed_mode & LPA_100HALF) {
  2818. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2819. newdup = 0;
  2820. } else if (np->fixed_mode & LPA_10FULL) {
  2821. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2822. newdup = 1;
  2823. } else {
  2824. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2825. newdup = 0;
  2826. }
  2827. retval = 1;
  2828. goto set_speed;
  2829. }
  2830. /* check auto negotiation is complete */
  2831. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  2832. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  2833. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2834. newdup = 0;
  2835. retval = 0;
  2836. dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
  2837. goto set_speed;
  2838. }
  2839. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2840. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  2841. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
  2842. dev->name, adv, lpa);
  2843. retval = 1;
  2844. if (np->gigabit == PHY_GIGABIT) {
  2845. control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2846. status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
  2847. if ((control_1000 & ADVERTISE_1000FULL) &&
  2848. (status_1000 & LPA_1000FULL)) {
  2849. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
  2850. dev->name);
  2851. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  2852. newdup = 1;
  2853. goto set_speed;
  2854. }
  2855. }
  2856. /* FIXME: handle parallel detection properly */
  2857. adv_lpa = lpa & adv;
  2858. if (adv_lpa & LPA_100FULL) {
  2859. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2860. newdup = 1;
  2861. } else if (adv_lpa & LPA_100HALF) {
  2862. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2863. newdup = 0;
  2864. } else if (adv_lpa & LPA_10FULL) {
  2865. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2866. newdup = 1;
  2867. } else if (adv_lpa & LPA_10HALF) {
  2868. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2869. newdup = 0;
  2870. } else {
  2871. dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
  2872. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2873. newdup = 0;
  2874. }
  2875. set_speed:
  2876. if (np->duplex == newdup && np->linkspeed == newls)
  2877. return retval;
  2878. dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
  2879. dev->name, np->linkspeed, np->duplex, newls, newdup);
  2880. np->duplex = newdup;
  2881. np->linkspeed = newls;
  2882. /* The transmitter and receiver must be restarted for safe update */
  2883. if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) {
  2884. txrxFlags |= NV_RESTART_TX;
  2885. nv_stop_tx(dev);
  2886. }
  2887. if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
  2888. txrxFlags |= NV_RESTART_RX;
  2889. nv_stop_rx(dev);
  2890. }
  2891. if (np->gigabit == PHY_GIGABIT) {
  2892. phyreg = readl(base + NvRegSlotTime);
  2893. phyreg &= ~(0x3FF00);
  2894. if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) ||
  2895. ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100))
  2896. phyreg |= NVREG_SLOTTIME_10_100_FULL;
  2897. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  2898. phyreg |= NVREG_SLOTTIME_1000_FULL;
  2899. writel(phyreg, base + NvRegSlotTime);
  2900. }
  2901. phyreg = readl(base + NvRegPhyInterface);
  2902. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  2903. if (np->duplex == 0)
  2904. phyreg |= PHY_HALF;
  2905. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  2906. phyreg |= PHY_100;
  2907. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2908. phyreg |= PHY_1000;
  2909. writel(phyreg, base + NvRegPhyInterface);
  2910. phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */
  2911. if (phyreg & PHY_RGMII) {
  2912. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) {
  2913. txreg = NVREG_TX_DEFERRAL_RGMII_1000;
  2914. } else {
  2915. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) {
  2916. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10)
  2917. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10;
  2918. else
  2919. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100;
  2920. } else {
  2921. txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
  2922. }
  2923. }
  2924. } else {
  2925. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX))
  2926. txreg = NVREG_TX_DEFERRAL_MII_STRETCH;
  2927. else
  2928. txreg = NVREG_TX_DEFERRAL_DEFAULT;
  2929. }
  2930. writel(txreg, base + NvRegTxDeferral);
  2931. if (np->desc_ver == DESC_VER_1) {
  2932. txreg = NVREG_TX_WM_DESC1_DEFAULT;
  2933. } else {
  2934. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2935. txreg = NVREG_TX_WM_DESC2_3_1000;
  2936. else
  2937. txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
  2938. }
  2939. writel(txreg, base + NvRegTxWatermark);
  2940. writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
  2941. base + NvRegMisc1);
  2942. pci_push(base);
  2943. writel(np->linkspeed, base + NvRegLinkSpeed);
  2944. pci_push(base);
  2945. pause_flags = 0;
  2946. /* setup pause frame */
  2947. if (np->duplex != 0) {
  2948. if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
  2949. adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
  2950. lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
  2951. switch (adv_pause) {
  2952. case ADVERTISE_PAUSE_CAP:
  2953. if (lpa_pause & LPA_PAUSE_CAP) {
  2954. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2955. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2956. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2957. }
  2958. break;
  2959. case ADVERTISE_PAUSE_ASYM:
  2960. if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
  2961. {
  2962. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2963. }
  2964. break;
  2965. case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
  2966. if (lpa_pause & LPA_PAUSE_CAP)
  2967. {
  2968. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2969. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2970. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2971. }
  2972. if (lpa_pause == LPA_PAUSE_ASYM)
  2973. {
  2974. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2975. }
  2976. break;
  2977. }
  2978. } else {
  2979. pause_flags = np->pause_flags;
  2980. }
  2981. }
  2982. nv_update_pause(dev, pause_flags);
  2983. if (txrxFlags & NV_RESTART_TX)
  2984. nv_start_tx(dev);
  2985. if (txrxFlags & NV_RESTART_RX)
  2986. nv_start_rx(dev);
  2987. return retval;
  2988. }
  2989. static void nv_linkchange(struct net_device *dev)
  2990. {
  2991. if (nv_update_linkspeed(dev)) {
  2992. if (!netif_carrier_ok(dev)) {
  2993. netif_carrier_on(dev);
  2994. printk(KERN_INFO "%s: link up.\n", dev->name);
  2995. nv_start_rx(dev);
  2996. }
  2997. } else {
  2998. if (netif_carrier_ok(dev)) {
  2999. netif_carrier_off(dev);
  3000. printk(KERN_INFO "%s: link down.\n", dev->name);
  3001. nv_stop_rx(dev);
  3002. }
  3003. }
  3004. }
  3005. static void nv_link_irq(struct net_device *dev)
  3006. {
  3007. u8 __iomem *base = get_hwbase(dev);
  3008. u32 miistat;
  3009. miistat = readl(base + NvRegMIIStatus);
  3010. writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus);
  3011. dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
  3012. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  3013. nv_linkchange(dev);
  3014. dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
  3015. }
  3016. static void nv_msi_workaround(struct fe_priv *np)
  3017. {
  3018. /* Need to toggle the msi irq mask within the ethernet device,
  3019. * otherwise, future interrupts will not be detected.
  3020. */
  3021. if (np->msi_flags & NV_MSI_ENABLED) {
  3022. u8 __iomem *base = np->base;
  3023. writel(0, base + NvRegMSIIrqMask);
  3024. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3025. }
  3026. }
  3027. static irqreturn_t nv_nic_irq(int foo, void *data)
  3028. {
  3029. struct net_device *dev = (struct net_device *) data;
  3030. struct fe_priv *np = netdev_priv(dev);
  3031. u8 __iomem *base = get_hwbase(dev);
  3032. u32 events;
  3033. int i;
  3034. dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
  3035. for (i=0; ; i++) {
  3036. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3037. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  3038. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3039. } else {
  3040. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  3041. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3042. }
  3043. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3044. if (!(events & np->irqmask))
  3045. break;
  3046. nv_msi_workaround(np);
  3047. spin_lock(&np->lock);
  3048. nv_tx_done(dev);
  3049. spin_unlock(&np->lock);
  3050. #ifdef CONFIG_FORCEDETH_NAPI
  3051. if (events & NVREG_IRQ_RX_ALL) {
  3052. netif_rx_schedule(dev, &np->napi);
  3053. /* Disable furthur receive irq's */
  3054. spin_lock(&np->lock);
  3055. np->irqmask &= ~NVREG_IRQ_RX_ALL;
  3056. if (np->msi_flags & NV_MSI_X_ENABLED)
  3057. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3058. else
  3059. writel(np->irqmask, base + NvRegIrqMask);
  3060. spin_unlock(&np->lock);
  3061. }
  3062. #else
  3063. if (nv_rx_process(dev, RX_WORK_PER_LOOP)) {
  3064. if (unlikely(nv_alloc_rx(dev))) {
  3065. spin_lock(&np->lock);
  3066. if (!np->in_shutdown)
  3067. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3068. spin_unlock(&np->lock);
  3069. }
  3070. }
  3071. #endif
  3072. if (unlikely(events & NVREG_IRQ_LINK)) {
  3073. spin_lock(&np->lock);
  3074. nv_link_irq(dev);
  3075. spin_unlock(&np->lock);
  3076. }
  3077. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  3078. spin_lock(&np->lock);
  3079. nv_linkchange(dev);
  3080. spin_unlock(&np->lock);
  3081. np->link_timeout = jiffies + LINK_TIMEOUT;
  3082. }
  3083. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  3084. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  3085. dev->name, events);
  3086. }
  3087. if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
  3088. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  3089. dev->name, events);
  3090. }
  3091. if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
  3092. spin_lock(&np->lock);
  3093. /* disable interrupts on the nic */
  3094. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3095. writel(0, base + NvRegIrqMask);
  3096. else
  3097. writel(np->irqmask, base + NvRegIrqMask);
  3098. pci_push(base);
  3099. if (!np->in_shutdown) {
  3100. np->nic_poll_irq = np->irqmask;
  3101. np->recover_error = 1;
  3102. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3103. }
  3104. spin_unlock(&np->lock);
  3105. break;
  3106. }
  3107. if (unlikely(i > max_interrupt_work)) {
  3108. spin_lock(&np->lock);
  3109. /* disable interrupts on the nic */
  3110. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3111. writel(0, base + NvRegIrqMask);
  3112. else
  3113. writel(np->irqmask, base + NvRegIrqMask);
  3114. pci_push(base);
  3115. if (!np->in_shutdown) {
  3116. np->nic_poll_irq = np->irqmask;
  3117. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3118. }
  3119. spin_unlock(&np->lock);
  3120. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  3121. break;
  3122. }
  3123. }
  3124. dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
  3125. return IRQ_RETVAL(i);
  3126. }
  3127. /**
  3128. * All _optimized functions are used to help increase performance
  3129. * (reduce CPU and increase throughput). They use descripter version 3,
  3130. * compiler directives, and reduce memory accesses.
  3131. */
  3132. static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
  3133. {
  3134. struct net_device *dev = (struct net_device *) data;
  3135. struct fe_priv *np = netdev_priv(dev);
  3136. u8 __iomem *base = get_hwbase(dev);
  3137. u32 events;
  3138. int i;
  3139. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
  3140. for (i=0; ; i++) {
  3141. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3142. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  3143. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3144. } else {
  3145. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  3146. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3147. }
  3148. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3149. if (!(events & np->irqmask))
  3150. break;
  3151. nv_msi_workaround(np);
  3152. spin_lock(&np->lock);
  3153. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3154. spin_unlock(&np->lock);
  3155. #ifdef CONFIG_FORCEDETH_NAPI
  3156. if (events & NVREG_IRQ_RX_ALL) {
  3157. netif_rx_schedule(dev, &np->napi);
  3158. /* Disable furthur receive irq's */
  3159. spin_lock(&np->lock);
  3160. np->irqmask &= ~NVREG_IRQ_RX_ALL;
  3161. if (np->msi_flags & NV_MSI_X_ENABLED)
  3162. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3163. else
  3164. writel(np->irqmask, base + NvRegIrqMask);
  3165. spin_unlock(&np->lock);
  3166. }
  3167. #else
  3168. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  3169. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3170. spin_lock(&np->lock);
  3171. if (!np->in_shutdown)
  3172. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3173. spin_unlock(&np->lock);
  3174. }
  3175. }
  3176. #endif
  3177. if (unlikely(events & NVREG_IRQ_LINK)) {
  3178. spin_lock(&np->lock);
  3179. nv_link_irq(dev);
  3180. spin_unlock(&np->lock);
  3181. }
  3182. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  3183. spin_lock(&np->lock);
  3184. nv_linkchange(dev);
  3185. spin_unlock(&np->lock);
  3186. np->link_timeout = jiffies + LINK_TIMEOUT;
  3187. }
  3188. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  3189. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  3190. dev->name, events);
  3191. }
  3192. if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
  3193. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  3194. dev->name, events);
  3195. }
  3196. if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
  3197. spin_lock(&np->lock);
  3198. /* disable interrupts on the nic */
  3199. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3200. writel(0, base + NvRegIrqMask);
  3201. else
  3202. writel(np->irqmask, base + NvRegIrqMask);
  3203. pci_push(base);
  3204. if (!np->in_shutdown) {
  3205. np->nic_poll_irq = np->irqmask;
  3206. np->recover_error = 1;
  3207. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3208. }
  3209. spin_unlock(&np->lock);
  3210. break;
  3211. }
  3212. if (unlikely(i > max_interrupt_work)) {
  3213. spin_lock(&np->lock);
  3214. /* disable interrupts on the nic */
  3215. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3216. writel(0, base + NvRegIrqMask);
  3217. else
  3218. writel(np->irqmask, base + NvRegIrqMask);
  3219. pci_push(base);
  3220. if (!np->in_shutdown) {
  3221. np->nic_poll_irq = np->irqmask;
  3222. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3223. }
  3224. spin_unlock(&np->lock);
  3225. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  3226. break;
  3227. }
  3228. }
  3229. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
  3230. return IRQ_RETVAL(i);
  3231. }
  3232. static irqreturn_t nv_nic_irq_tx(int foo, void *data)
  3233. {
  3234. struct net_device *dev = (struct net_device *) data;
  3235. struct fe_priv *np = netdev_priv(dev);
  3236. u8 __iomem *base = get_hwbase(dev);
  3237. u32 events;
  3238. int i;
  3239. unsigned long flags;
  3240. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
  3241. for (i=0; ; i++) {
  3242. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  3243. writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
  3244. dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
  3245. if (!(events & np->irqmask))
  3246. break;
  3247. spin_lock_irqsave(&np->lock, flags);
  3248. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3249. spin_unlock_irqrestore(&np->lock, flags);
  3250. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  3251. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  3252. dev->name, events);
  3253. }
  3254. if (unlikely(i > max_interrupt_work)) {
  3255. spin_lock_irqsave(&np->lock, flags);
  3256. /* disable interrupts on the nic */
  3257. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  3258. pci_push(base);
  3259. if (!np->in_shutdown) {
  3260. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  3261. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3262. }
  3263. spin_unlock_irqrestore(&np->lock, flags);
  3264. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
  3265. break;
  3266. }
  3267. }
  3268. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
  3269. return IRQ_RETVAL(i);
  3270. }
  3271. #ifdef CONFIG_FORCEDETH_NAPI
  3272. static int nv_napi_poll(struct napi_struct *napi, int budget)
  3273. {
  3274. struct fe_priv *np = container_of(napi, struct fe_priv, napi);
  3275. struct net_device *dev = np->dev;
  3276. u8 __iomem *base = get_hwbase(dev);
  3277. unsigned long flags;
  3278. int pkts, retcode;
  3279. if (!nv_optimized(np)) {
  3280. pkts = nv_rx_process(dev, budget);
  3281. retcode = nv_alloc_rx(dev);
  3282. } else {
  3283. pkts = nv_rx_process_optimized(dev, budget);
  3284. retcode = nv_alloc_rx_optimized(dev);
  3285. }
  3286. if (retcode) {
  3287. spin_lock_irqsave(&np->lock, flags);
  3288. if (!np->in_shutdown)
  3289. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3290. spin_unlock_irqrestore(&np->lock, flags);
  3291. }
  3292. if (pkts < budget) {
  3293. /* re-enable receive interrupts */
  3294. spin_lock_irqsave(&np->lock, flags);
  3295. __netif_rx_complete(dev, napi);
  3296. np->irqmask |= NVREG_IRQ_RX_ALL;
  3297. if (np->msi_flags & NV_MSI_X_ENABLED)
  3298. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3299. else
  3300. writel(np->irqmask, base + NvRegIrqMask);
  3301. spin_unlock_irqrestore(&np->lock, flags);
  3302. }
  3303. return pkts;
  3304. }
  3305. #endif
  3306. #ifdef CONFIG_FORCEDETH_NAPI
  3307. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  3308. {
  3309. struct net_device *dev = (struct net_device *) data;
  3310. struct fe_priv *np = netdev_priv(dev);
  3311. u8 __iomem *base = get_hwbase(dev);
  3312. u32 events;
  3313. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  3314. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  3315. if (events) {
  3316. netif_rx_schedule(dev, &np->napi);
  3317. /* disable receive interrupts on the nic */
  3318. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3319. pci_push(base);
  3320. }
  3321. return IRQ_HANDLED;
  3322. }
  3323. #else
  3324. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  3325. {
  3326. struct net_device *dev = (struct net_device *) data;
  3327. struct fe_priv *np = netdev_priv(dev);
  3328. u8 __iomem *base = get_hwbase(dev);
  3329. u32 events;
  3330. int i;
  3331. unsigned long flags;
  3332. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
  3333. for (i=0; ; i++) {
  3334. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  3335. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  3336. dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
  3337. if (!(events & np->irqmask))
  3338. break;
  3339. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  3340. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3341. spin_lock_irqsave(&np->lock, flags);
  3342. if (!np->in_shutdown)
  3343. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3344. spin_unlock_irqrestore(&np->lock, flags);
  3345. }
  3346. }
  3347. if (unlikely(i > max_interrupt_work)) {
  3348. spin_lock_irqsave(&np->lock, flags);
  3349. /* disable interrupts on the nic */
  3350. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3351. pci_push(base);
  3352. if (!np->in_shutdown) {
  3353. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  3354. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3355. }
  3356. spin_unlock_irqrestore(&np->lock, flags);
  3357. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
  3358. break;
  3359. }
  3360. }
  3361. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
  3362. return IRQ_RETVAL(i);
  3363. }
  3364. #endif
  3365. static irqreturn_t nv_nic_irq_other(int foo, void *data)
  3366. {
  3367. struct net_device *dev = (struct net_device *) data;
  3368. struct fe_priv *np = netdev_priv(dev);
  3369. u8 __iomem *base = get_hwbase(dev);
  3370. u32 events;
  3371. int i;
  3372. unsigned long flags;
  3373. dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
  3374. for (i=0; ; i++) {
  3375. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  3376. writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
  3377. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3378. if (!(events & np->irqmask))
  3379. break;
  3380. /* check tx in case we reached max loop limit in tx isr */
  3381. spin_lock_irqsave(&np->lock, flags);
  3382. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3383. spin_unlock_irqrestore(&np->lock, flags);
  3384. if (events & NVREG_IRQ_LINK) {
  3385. spin_lock_irqsave(&np->lock, flags);
  3386. nv_link_irq(dev);
  3387. spin_unlock_irqrestore(&np->lock, flags);
  3388. }
  3389. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  3390. spin_lock_irqsave(&np->lock, flags);
  3391. nv_linkchange(dev);
  3392. spin_unlock_irqrestore(&np->lock, flags);
  3393. np->link_timeout = jiffies + LINK_TIMEOUT;
  3394. }
  3395. if (events & NVREG_IRQ_RECOVER_ERROR) {
  3396. spin_lock_irq(&np->lock);
  3397. /* disable interrupts on the nic */
  3398. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3399. pci_push(base);
  3400. if (!np->in_shutdown) {
  3401. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3402. np->recover_error = 1;
  3403. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3404. }
  3405. spin_unlock_irq(&np->lock);
  3406. break;
  3407. }
  3408. if (events & (NVREG_IRQ_UNKNOWN)) {
  3409. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  3410. dev->name, events);
  3411. }
  3412. if (unlikely(i > max_interrupt_work)) {
  3413. spin_lock_irqsave(&np->lock, flags);
  3414. /* disable interrupts on the nic */
  3415. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3416. pci_push(base);
  3417. if (!np->in_shutdown) {
  3418. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3419. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3420. }
  3421. spin_unlock_irqrestore(&np->lock, flags);
  3422. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
  3423. break;
  3424. }
  3425. }
  3426. dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
  3427. return IRQ_RETVAL(i);
  3428. }
  3429. static irqreturn_t nv_nic_irq_test(int foo, void *data)
  3430. {
  3431. struct net_device *dev = (struct net_device *) data;
  3432. struct fe_priv *np = netdev_priv(dev);
  3433. u8 __iomem *base = get_hwbase(dev);
  3434. u32 events;
  3435. dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
  3436. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3437. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  3438. writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
  3439. } else {
  3440. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  3441. writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
  3442. }
  3443. pci_push(base);
  3444. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3445. if (!(events & NVREG_IRQ_TIMER))
  3446. return IRQ_RETVAL(0);
  3447. nv_msi_workaround(np);
  3448. spin_lock(&np->lock);
  3449. np->intr_test = 1;
  3450. spin_unlock(&np->lock);
  3451. dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
  3452. return IRQ_RETVAL(1);
  3453. }
  3454. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  3455. {
  3456. u8 __iomem *base = get_hwbase(dev);
  3457. int i;
  3458. u32 msixmap = 0;
  3459. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  3460. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  3461. * the remaining 8 interrupts.
  3462. */
  3463. for (i = 0; i < 8; i++) {
  3464. if ((irqmask >> i) & 0x1) {
  3465. msixmap |= vector << (i << 2);
  3466. }
  3467. }
  3468. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  3469. msixmap = 0;
  3470. for (i = 0; i < 8; i++) {
  3471. if ((irqmask >> (i + 8)) & 0x1) {
  3472. msixmap |= vector << (i << 2);
  3473. }
  3474. }
  3475. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  3476. }
  3477. static int nv_request_irq(struct net_device *dev, int intr_test)
  3478. {
  3479. struct fe_priv *np = get_nvpriv(dev);
  3480. u8 __iomem *base = get_hwbase(dev);
  3481. int ret = 1;
  3482. int i;
  3483. irqreturn_t (*handler)(int foo, void *data);
  3484. if (intr_test) {
  3485. handler = nv_nic_irq_test;
  3486. } else {
  3487. if (nv_optimized(np))
  3488. handler = nv_nic_irq_optimized;
  3489. else
  3490. handler = nv_nic_irq;
  3491. }
  3492. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  3493. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3494. np->msi_x_entry[i].entry = i;
  3495. }
  3496. if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
  3497. np->msi_flags |= NV_MSI_X_ENABLED;
  3498. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
  3499. /* Request irq for rx handling */
  3500. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, IRQF_SHARED, dev->name, dev) != 0) {
  3501. printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
  3502. pci_disable_msix(np->pci_dev);
  3503. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3504. goto out_err;
  3505. }
  3506. /* Request irq for tx handling */
  3507. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, IRQF_SHARED, dev->name, dev) != 0) {
  3508. printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
  3509. pci_disable_msix(np->pci_dev);
  3510. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3511. goto out_free_rx;
  3512. }
  3513. /* Request irq for link and timer handling */
  3514. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, IRQF_SHARED, dev->name, dev) != 0) {
  3515. printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
  3516. pci_disable_msix(np->pci_dev);
  3517. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3518. goto out_free_tx;
  3519. }
  3520. /* map interrupts to their respective vector */
  3521. writel(0, base + NvRegMSIXMap0);
  3522. writel(0, base + NvRegMSIXMap1);
  3523. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  3524. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  3525. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  3526. } else {
  3527. /* Request irq for all interrupts */
  3528. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3529. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3530. pci_disable_msix(np->pci_dev);
  3531. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3532. goto out_err;
  3533. }
  3534. /* map interrupts to vector 0 */
  3535. writel(0, base + NvRegMSIXMap0);
  3536. writel(0, base + NvRegMSIXMap1);
  3537. }
  3538. }
  3539. }
  3540. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  3541. if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
  3542. np->msi_flags |= NV_MSI_ENABLED;
  3543. dev->irq = np->pci_dev->irq;
  3544. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3545. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3546. pci_disable_msi(np->pci_dev);
  3547. np->msi_flags &= ~NV_MSI_ENABLED;
  3548. dev->irq = np->pci_dev->irq;
  3549. goto out_err;
  3550. }
  3551. /* map interrupts to vector 0 */
  3552. writel(0, base + NvRegMSIMap0);
  3553. writel(0, base + NvRegMSIMap1);
  3554. /* enable msi vector 0 */
  3555. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3556. }
  3557. }
  3558. if (ret != 0) {
  3559. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
  3560. goto out_err;
  3561. }
  3562. return 0;
  3563. out_free_tx:
  3564. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
  3565. out_free_rx:
  3566. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
  3567. out_err:
  3568. return 1;
  3569. }
  3570. static void nv_free_irq(struct net_device *dev)
  3571. {
  3572. struct fe_priv *np = get_nvpriv(dev);
  3573. int i;
  3574. if (np->msi_flags & NV_MSI_X_ENABLED) {
  3575. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3576. free_irq(np->msi_x_entry[i].vector, dev);
  3577. }
  3578. pci_disable_msix(np->pci_dev);
  3579. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3580. } else {
  3581. free_irq(np->pci_dev->irq, dev);
  3582. if (np->msi_flags & NV_MSI_ENABLED) {
  3583. pci_disable_msi(np->pci_dev);
  3584. np->msi_flags &= ~NV_MSI_ENABLED;
  3585. }
  3586. }
  3587. }
  3588. static void nv_do_nic_poll(unsigned long data)
  3589. {
  3590. struct net_device *dev = (struct net_device *) data;
  3591. struct fe_priv *np = netdev_priv(dev);
  3592. u8 __iomem *base = get_hwbase(dev);
  3593. u32 mask = 0;
  3594. /*
  3595. * First disable irq(s) and then
  3596. * reenable interrupts on the nic, we have to do this before calling
  3597. * nv_nic_irq because that may decide to do otherwise
  3598. */
  3599. if (!using_multi_irqs(dev)) {
  3600. if (np->msi_flags & NV_MSI_X_ENABLED)
  3601. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3602. else
  3603. disable_irq_lockdep(np->pci_dev->irq);
  3604. mask = np->irqmask;
  3605. } else {
  3606. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3607. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3608. mask |= NVREG_IRQ_RX_ALL;
  3609. }
  3610. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3611. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3612. mask |= NVREG_IRQ_TX_ALL;
  3613. }
  3614. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3615. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3616. mask |= NVREG_IRQ_OTHER;
  3617. }
  3618. }
  3619. np->nic_poll_irq = 0;
  3620. /* disable_irq() contains synchronize_irq, thus no irq handler can run now */
  3621. if (np->recover_error) {
  3622. np->recover_error = 0;
  3623. printk(KERN_INFO "forcedeth: MAC in recoverable error state\n");
  3624. if (netif_running(dev)) {
  3625. netif_tx_lock_bh(dev);
  3626. netif_addr_lock(dev);
  3627. spin_lock(&np->lock);
  3628. /* stop engines */
  3629. nv_stop_rxtx(dev);
  3630. nv_txrx_reset(dev);
  3631. /* drain rx queue */
  3632. nv_drain_rxtx(dev);
  3633. /* reinit driver view of the rx queue */
  3634. set_bufsize(dev);
  3635. if (nv_init_ring(dev)) {
  3636. if (!np->in_shutdown)
  3637. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3638. }
  3639. /* reinit nic view of the rx queue */
  3640. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3641. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3642. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3643. base + NvRegRingSizes);
  3644. pci_push(base);
  3645. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3646. pci_push(base);
  3647. /* restart rx engine */
  3648. nv_start_rxtx(dev);
  3649. spin_unlock(&np->lock);
  3650. netif_addr_unlock(dev);
  3651. netif_tx_unlock_bh(dev);
  3652. }
  3653. }
  3654. writel(mask, base + NvRegIrqMask);
  3655. pci_push(base);
  3656. if (!using_multi_irqs(dev)) {
  3657. if (nv_optimized(np))
  3658. nv_nic_irq_optimized(0, dev);
  3659. else
  3660. nv_nic_irq(0, dev);
  3661. if (np->msi_flags & NV_MSI_X_ENABLED)
  3662. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3663. else
  3664. enable_irq_lockdep(np->pci_dev->irq);
  3665. } else {
  3666. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3667. nv_nic_irq_rx(0, dev);
  3668. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3669. }
  3670. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3671. nv_nic_irq_tx(0, dev);
  3672. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3673. }
  3674. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3675. nv_nic_irq_other(0, dev);
  3676. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3677. }
  3678. }
  3679. }
  3680. #ifdef CONFIG_NET_POLL_CONTROLLER
  3681. static void nv_poll_controller(struct net_device *dev)
  3682. {
  3683. nv_do_nic_poll((unsigned long) dev);
  3684. }
  3685. #endif
  3686. static void nv_do_stats_poll(unsigned long data)
  3687. {
  3688. struct net_device *dev = (struct net_device *) data;
  3689. struct fe_priv *np = netdev_priv(dev);
  3690. nv_get_hw_stats(dev);
  3691. if (!np->in_shutdown)
  3692. mod_timer(&np->stats_poll,
  3693. round_jiffies(jiffies + STATS_INTERVAL));
  3694. }
  3695. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  3696. {
  3697. struct fe_priv *np = netdev_priv(dev);
  3698. strcpy(info->driver, DRV_NAME);
  3699. strcpy(info->version, FORCEDETH_VERSION);
  3700. strcpy(info->bus_info, pci_name(np->pci_dev));
  3701. }
  3702. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3703. {
  3704. struct fe_priv *np = netdev_priv(dev);
  3705. wolinfo->supported = WAKE_MAGIC;
  3706. spin_lock_irq(&np->lock);
  3707. if (np->wolenabled)
  3708. wolinfo->wolopts = WAKE_MAGIC;
  3709. spin_unlock_irq(&np->lock);
  3710. }
  3711. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3712. {
  3713. struct fe_priv *np = netdev_priv(dev);
  3714. u8 __iomem *base = get_hwbase(dev);
  3715. u32 flags = 0;
  3716. if (wolinfo->wolopts == 0) {
  3717. np->wolenabled = 0;
  3718. } else if (wolinfo->wolopts & WAKE_MAGIC) {
  3719. np->wolenabled = 1;
  3720. flags = NVREG_WAKEUPFLAGS_ENABLE;
  3721. }
  3722. if (netif_running(dev)) {
  3723. spin_lock_irq(&np->lock);
  3724. writel(flags, base + NvRegWakeUpFlags);
  3725. spin_unlock_irq(&np->lock);
  3726. }
  3727. return 0;
  3728. }
  3729. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3730. {
  3731. struct fe_priv *np = netdev_priv(dev);
  3732. int adv;
  3733. spin_lock_irq(&np->lock);
  3734. ecmd->port = PORT_MII;
  3735. if (!netif_running(dev)) {
  3736. /* We do not track link speed / duplex setting if the
  3737. * interface is disabled. Force a link check */
  3738. if (nv_update_linkspeed(dev)) {
  3739. if (!netif_carrier_ok(dev))
  3740. netif_carrier_on(dev);
  3741. } else {
  3742. if (netif_carrier_ok(dev))
  3743. netif_carrier_off(dev);
  3744. }
  3745. }
  3746. if (netif_carrier_ok(dev)) {
  3747. switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  3748. case NVREG_LINKSPEED_10:
  3749. ecmd->speed = SPEED_10;
  3750. break;
  3751. case NVREG_LINKSPEED_100:
  3752. ecmd->speed = SPEED_100;
  3753. break;
  3754. case NVREG_LINKSPEED_1000:
  3755. ecmd->speed = SPEED_1000;
  3756. break;
  3757. }
  3758. ecmd->duplex = DUPLEX_HALF;
  3759. if (np->duplex)
  3760. ecmd->duplex = DUPLEX_FULL;
  3761. } else {
  3762. ecmd->speed = -1;
  3763. ecmd->duplex = -1;
  3764. }
  3765. ecmd->autoneg = np->autoneg;
  3766. ecmd->advertising = ADVERTISED_MII;
  3767. if (np->autoneg) {
  3768. ecmd->advertising |= ADVERTISED_Autoneg;
  3769. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3770. if (adv & ADVERTISE_10HALF)
  3771. ecmd->advertising |= ADVERTISED_10baseT_Half;
  3772. if (adv & ADVERTISE_10FULL)
  3773. ecmd->advertising |= ADVERTISED_10baseT_Full;
  3774. if (adv & ADVERTISE_100HALF)
  3775. ecmd->advertising |= ADVERTISED_100baseT_Half;
  3776. if (adv & ADVERTISE_100FULL)
  3777. ecmd->advertising |= ADVERTISED_100baseT_Full;
  3778. if (np->gigabit == PHY_GIGABIT) {
  3779. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3780. if (adv & ADVERTISE_1000FULL)
  3781. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  3782. }
  3783. }
  3784. ecmd->supported = (SUPPORTED_Autoneg |
  3785. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  3786. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  3787. SUPPORTED_MII);
  3788. if (np->gigabit == PHY_GIGABIT)
  3789. ecmd->supported |= SUPPORTED_1000baseT_Full;
  3790. ecmd->phy_address = np->phyaddr;
  3791. ecmd->transceiver = XCVR_EXTERNAL;
  3792. /* ignore maxtxpkt, maxrxpkt for now */
  3793. spin_unlock_irq(&np->lock);
  3794. return 0;
  3795. }
  3796. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3797. {
  3798. struct fe_priv *np = netdev_priv(dev);
  3799. if (ecmd->port != PORT_MII)
  3800. return -EINVAL;
  3801. if (ecmd->transceiver != XCVR_EXTERNAL)
  3802. return -EINVAL;
  3803. if (ecmd->phy_address != np->phyaddr) {
  3804. /* TODO: support switching between multiple phys. Should be
  3805. * trivial, but not enabled due to lack of test hardware. */
  3806. return -EINVAL;
  3807. }
  3808. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3809. u32 mask;
  3810. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  3811. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  3812. if (np->gigabit == PHY_GIGABIT)
  3813. mask |= ADVERTISED_1000baseT_Full;
  3814. if ((ecmd->advertising & mask) == 0)
  3815. return -EINVAL;
  3816. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  3817. /* Note: autonegotiation disable, speed 1000 intentionally
  3818. * forbidden - noone should need that. */
  3819. if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
  3820. return -EINVAL;
  3821. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  3822. return -EINVAL;
  3823. } else {
  3824. return -EINVAL;
  3825. }
  3826. netif_carrier_off(dev);
  3827. if (netif_running(dev)) {
  3828. unsigned long flags;
  3829. nv_disable_irq(dev);
  3830. netif_tx_lock_bh(dev);
  3831. netif_addr_lock(dev);
  3832. /* with plain spinlock lockdep complains */
  3833. spin_lock_irqsave(&np->lock, flags);
  3834. /* stop engines */
  3835. /* FIXME:
  3836. * this can take some time, and interrupts are disabled
  3837. * due to spin_lock_irqsave, but let's hope no daemon
  3838. * is going to change the settings very often...
  3839. * Worst case:
  3840. * NV_RXSTOP_DELAY1MAX + NV_TXSTOP_DELAY1MAX
  3841. * + some minor delays, which is up to a second approximately
  3842. */
  3843. nv_stop_rxtx(dev);
  3844. spin_unlock_irqrestore(&np->lock, flags);
  3845. netif_addr_unlock(dev);
  3846. netif_tx_unlock_bh(dev);
  3847. }
  3848. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3849. int adv, bmcr;
  3850. np->autoneg = 1;
  3851. /* advertise only what has been requested */
  3852. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3853. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3854. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  3855. adv |= ADVERTISE_10HALF;
  3856. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  3857. adv |= ADVERTISE_10FULL;
  3858. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  3859. adv |= ADVERTISE_100HALF;
  3860. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  3861. adv |= ADVERTISE_100FULL;
  3862. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3863. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3864. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3865. adv |= ADVERTISE_PAUSE_ASYM;
  3866. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3867. if (np->gigabit == PHY_GIGABIT) {
  3868. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3869. adv &= ~ADVERTISE_1000FULL;
  3870. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  3871. adv |= ADVERTISE_1000FULL;
  3872. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3873. }
  3874. if (netif_running(dev))
  3875. printk(KERN_INFO "%s: link down.\n", dev->name);
  3876. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3877. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3878. bmcr |= BMCR_ANENABLE;
  3879. /* reset the phy in order for settings to stick,
  3880. * and cause autoneg to start */
  3881. if (phy_reset(dev, bmcr)) {
  3882. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3883. return -EINVAL;
  3884. }
  3885. } else {
  3886. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3887. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3888. }
  3889. } else {
  3890. int adv, bmcr;
  3891. np->autoneg = 0;
  3892. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3893. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3894. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  3895. adv |= ADVERTISE_10HALF;
  3896. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  3897. adv |= ADVERTISE_10FULL;
  3898. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  3899. adv |= ADVERTISE_100HALF;
  3900. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  3901. adv |= ADVERTISE_100FULL;
  3902. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3903. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
  3904. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3905. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3906. }
  3907. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
  3908. adv |= ADVERTISE_PAUSE_ASYM;
  3909. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3910. }
  3911. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3912. np->fixed_mode = adv;
  3913. if (np->gigabit == PHY_GIGABIT) {
  3914. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3915. adv &= ~ADVERTISE_1000FULL;
  3916. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3917. }
  3918. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3919. bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
  3920. if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  3921. bmcr |= BMCR_FULLDPLX;
  3922. if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  3923. bmcr |= BMCR_SPEED100;
  3924. if (np->phy_oui == PHY_OUI_MARVELL) {
  3925. /* reset the phy in order for forced mode settings to stick */
  3926. if (phy_reset(dev, bmcr)) {
  3927. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3928. return -EINVAL;
  3929. }
  3930. } else {
  3931. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3932. if (netif_running(dev)) {
  3933. /* Wait a bit and then reconfigure the nic. */
  3934. udelay(10);
  3935. nv_linkchange(dev);
  3936. }
  3937. }
  3938. }
  3939. if (netif_running(dev)) {
  3940. nv_start_rxtx(dev);
  3941. nv_enable_irq(dev);
  3942. }
  3943. return 0;
  3944. }
  3945. #define FORCEDETH_REGS_VER 1
  3946. static int nv_get_regs_len(struct net_device *dev)
  3947. {
  3948. struct fe_priv *np = netdev_priv(dev);
  3949. return np->register_size;
  3950. }
  3951. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  3952. {
  3953. struct fe_priv *np = netdev_priv(dev);
  3954. u8 __iomem *base = get_hwbase(dev);
  3955. u32 *rbuf = buf;
  3956. int i;
  3957. regs->version = FORCEDETH_REGS_VER;
  3958. spin_lock_irq(&np->lock);
  3959. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  3960. rbuf[i] = readl(base + i*sizeof(u32));
  3961. spin_unlock_irq(&np->lock);
  3962. }
  3963. static int nv_nway_reset(struct net_device *dev)
  3964. {
  3965. struct fe_priv *np = netdev_priv(dev);
  3966. int ret;
  3967. if (np->autoneg) {
  3968. int bmcr;
  3969. netif_carrier_off(dev);
  3970. if (netif_running(dev)) {
  3971. nv_disable_irq(dev);
  3972. netif_tx_lock_bh(dev);
  3973. netif_addr_lock(dev);
  3974. spin_lock(&np->lock);
  3975. /* stop engines */
  3976. nv_stop_rxtx(dev);
  3977. spin_unlock(&np->lock);
  3978. netif_addr_unlock(dev);
  3979. netif_tx_unlock_bh(dev);
  3980. printk(KERN_INFO "%s: link down.\n", dev->name);
  3981. }
  3982. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3983. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3984. bmcr |= BMCR_ANENABLE;
  3985. /* reset the phy in order for settings to stick*/
  3986. if (phy_reset(dev, bmcr)) {
  3987. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3988. return -EINVAL;
  3989. }
  3990. } else {
  3991. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3992. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3993. }
  3994. if (netif_running(dev)) {
  3995. nv_start_rxtx(dev);
  3996. nv_enable_irq(dev);
  3997. }
  3998. ret = 0;
  3999. } else {
  4000. ret = -EINVAL;
  4001. }
  4002. return ret;
  4003. }
  4004. static int nv_set_tso(struct net_device *dev, u32 value)
  4005. {
  4006. struct fe_priv *np = netdev_priv(dev);
  4007. if ((np->driver_data & DEV_HAS_CHECKSUM))
  4008. return ethtool_op_set_tso(dev, value);
  4009. else
  4010. return -EOPNOTSUPP;
  4011. }
  4012. static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  4013. {
  4014. struct fe_priv *np = netdev_priv(dev);
  4015. ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  4016. ring->rx_mini_max_pending = 0;
  4017. ring->rx_jumbo_max_pending = 0;
  4018. ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  4019. ring->rx_pending = np->rx_ring_size;
  4020. ring->rx_mini_pending = 0;
  4021. ring->rx_jumbo_pending = 0;
  4022. ring->tx_pending = np->tx_ring_size;
  4023. }
  4024. static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  4025. {
  4026. struct fe_priv *np = netdev_priv(dev);
  4027. u8 __iomem *base = get_hwbase(dev);
  4028. u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
  4029. dma_addr_t ring_addr;
  4030. if (ring->rx_pending < RX_RING_MIN ||
  4031. ring->tx_pending < TX_RING_MIN ||
  4032. ring->rx_mini_pending != 0 ||
  4033. ring->rx_jumbo_pending != 0 ||
  4034. (np->desc_ver == DESC_VER_1 &&
  4035. (ring->rx_pending > RING_MAX_DESC_VER_1 ||
  4036. ring->tx_pending > RING_MAX_DESC_VER_1)) ||
  4037. (np->desc_ver != DESC_VER_1 &&
  4038. (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
  4039. ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
  4040. return -EINVAL;
  4041. }
  4042. /* allocate new rings */
  4043. if (!nv_optimized(np)) {
  4044. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  4045. sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  4046. &ring_addr);
  4047. } else {
  4048. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  4049. sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  4050. &ring_addr);
  4051. }
  4052. rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
  4053. tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
  4054. if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
  4055. /* fall back to old rings */
  4056. if (!nv_optimized(np)) {
  4057. if (rxtx_ring)
  4058. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  4059. rxtx_ring, ring_addr);
  4060. } else {
  4061. if (rxtx_ring)
  4062. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  4063. rxtx_ring, ring_addr);
  4064. }
  4065. if (rx_skbuff)
  4066. kfree(rx_skbuff);
  4067. if (tx_skbuff)
  4068. kfree(tx_skbuff);
  4069. goto exit;
  4070. }
  4071. if (netif_running(dev)) {
  4072. nv_disable_irq(dev);
  4073. netif_tx_lock_bh(dev);
  4074. netif_addr_lock(dev);
  4075. spin_lock(&np->lock);
  4076. /* stop engines */
  4077. nv_stop_rxtx(dev);
  4078. nv_txrx_reset(dev);
  4079. /* drain queues */
  4080. nv_drain_rxtx(dev);
  4081. /* delete queues */
  4082. free_rings(dev);
  4083. }
  4084. /* set new values */
  4085. np->rx_ring_size = ring->rx_pending;
  4086. np->tx_ring_size = ring->tx_pending;
  4087. if (!nv_optimized(np)) {
  4088. np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
  4089. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  4090. } else {
  4091. np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
  4092. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  4093. }
  4094. np->rx_skb = (struct nv_skb_map*)rx_skbuff;
  4095. np->tx_skb = (struct nv_skb_map*)tx_skbuff;
  4096. np->ring_addr = ring_addr;
  4097. memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
  4098. memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
  4099. if (netif_running(dev)) {
  4100. /* reinit driver view of the queues */
  4101. set_bufsize(dev);
  4102. if (nv_init_ring(dev)) {
  4103. if (!np->in_shutdown)
  4104. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4105. }
  4106. /* reinit nic view of the queues */
  4107. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4108. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4109. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4110. base + NvRegRingSizes);
  4111. pci_push(base);
  4112. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4113. pci_push(base);
  4114. /* restart engines */
  4115. nv_start_rxtx(dev);
  4116. spin_unlock(&np->lock);
  4117. netif_addr_unlock(dev);
  4118. netif_tx_unlock_bh(dev);
  4119. nv_enable_irq(dev);
  4120. }
  4121. return 0;
  4122. exit:
  4123. return -ENOMEM;
  4124. }
  4125. static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  4126. {
  4127. struct fe_priv *np = netdev_priv(dev);
  4128. pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
  4129. pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
  4130. pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
  4131. }
  4132. static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  4133. {
  4134. struct fe_priv *np = netdev_priv(dev);
  4135. int adv, bmcr;
  4136. if ((!np->autoneg && np->duplex == 0) ||
  4137. (np->autoneg && !pause->autoneg && np->duplex == 0)) {
  4138. printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
  4139. dev->name);
  4140. return -EINVAL;
  4141. }
  4142. if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
  4143. printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
  4144. return -EINVAL;
  4145. }
  4146. netif_carrier_off(dev);
  4147. if (netif_running(dev)) {
  4148. nv_disable_irq(dev);
  4149. netif_tx_lock_bh(dev);
  4150. netif_addr_lock(dev);
  4151. spin_lock(&np->lock);
  4152. /* stop engines */
  4153. nv_stop_rxtx(dev);
  4154. spin_unlock(&np->lock);
  4155. netif_addr_unlock(dev);
  4156. netif_tx_unlock_bh(dev);
  4157. }
  4158. np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
  4159. if (pause->rx_pause)
  4160. np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
  4161. if (pause->tx_pause)
  4162. np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
  4163. if (np->autoneg && pause->autoneg) {
  4164. np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
  4165. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  4166. adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  4167. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  4168. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  4169. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  4170. adv |= ADVERTISE_PAUSE_ASYM;
  4171. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  4172. if (netif_running(dev))
  4173. printk(KERN_INFO "%s: link down.\n", dev->name);
  4174. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  4175. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  4176. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  4177. } else {
  4178. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  4179. if (pause->rx_pause)
  4180. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  4181. if (pause->tx_pause)
  4182. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  4183. if (!netif_running(dev))
  4184. nv_update_linkspeed(dev);
  4185. else
  4186. nv_update_pause(dev, np->pause_flags);
  4187. }
  4188. if (netif_running(dev)) {
  4189. nv_start_rxtx(dev);
  4190. nv_enable_irq(dev);
  4191. }
  4192. return 0;
  4193. }
  4194. static u32 nv_get_rx_csum(struct net_device *dev)
  4195. {
  4196. struct fe_priv *np = netdev_priv(dev);
  4197. return (np->rx_csum) != 0;
  4198. }
  4199. static int nv_set_rx_csum(struct net_device *dev, u32 data)
  4200. {
  4201. struct fe_priv *np = netdev_priv(dev);
  4202. u8 __iomem *base = get_hwbase(dev);
  4203. int retcode = 0;
  4204. if (np->driver_data & DEV_HAS_CHECKSUM) {
  4205. if (data) {
  4206. np->rx_csum = 1;
  4207. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  4208. } else {
  4209. np->rx_csum = 0;
  4210. /* vlan is dependent on rx checksum offload */
  4211. if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
  4212. np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
  4213. }
  4214. if (netif_running(dev)) {
  4215. spin_lock_irq(&np->lock);
  4216. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4217. spin_unlock_irq(&np->lock);
  4218. }
  4219. } else {
  4220. return -EINVAL;
  4221. }
  4222. return retcode;
  4223. }
  4224. static int nv_set_tx_csum(struct net_device *dev, u32 data)
  4225. {
  4226. struct fe_priv *np = netdev_priv(dev);
  4227. if (np->driver_data & DEV_HAS_CHECKSUM)
  4228. return ethtool_op_set_tx_hw_csum(dev, data);
  4229. else
  4230. return -EOPNOTSUPP;
  4231. }
  4232. static int nv_set_sg(struct net_device *dev, u32 data)
  4233. {
  4234. struct fe_priv *np = netdev_priv(dev);
  4235. if (np->driver_data & DEV_HAS_CHECKSUM)
  4236. return ethtool_op_set_sg(dev, data);
  4237. else
  4238. return -EOPNOTSUPP;
  4239. }
  4240. static int nv_get_sset_count(struct net_device *dev, int sset)
  4241. {
  4242. struct fe_priv *np = netdev_priv(dev);
  4243. switch (sset) {
  4244. case ETH_SS_TEST:
  4245. if (np->driver_data & DEV_HAS_TEST_EXTENDED)
  4246. return NV_TEST_COUNT_EXTENDED;
  4247. else
  4248. return NV_TEST_COUNT_BASE;
  4249. case ETH_SS_STATS:
  4250. if (np->driver_data & DEV_HAS_STATISTICS_V1)
  4251. return NV_DEV_STATISTICS_V1_COUNT;
  4252. else if (np->driver_data & DEV_HAS_STATISTICS_V2)
  4253. return NV_DEV_STATISTICS_V2_COUNT;
  4254. else if (np->driver_data & DEV_HAS_STATISTICS_V3)
  4255. return NV_DEV_STATISTICS_V3_COUNT;
  4256. else
  4257. return 0;
  4258. default:
  4259. return -EOPNOTSUPP;
  4260. }
  4261. }
  4262. static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
  4263. {
  4264. struct fe_priv *np = netdev_priv(dev);
  4265. /* update stats */
  4266. nv_do_stats_poll((unsigned long)dev);
  4267. memcpy(buffer, &np->estats, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
  4268. }
  4269. static int nv_link_test(struct net_device *dev)
  4270. {
  4271. struct fe_priv *np = netdev_priv(dev);
  4272. int mii_status;
  4273. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4274. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4275. /* check phy link status */
  4276. if (!(mii_status & BMSR_LSTATUS))
  4277. return 0;
  4278. else
  4279. return 1;
  4280. }
  4281. static int nv_register_test(struct net_device *dev)
  4282. {
  4283. u8 __iomem *base = get_hwbase(dev);
  4284. int i = 0;
  4285. u32 orig_read, new_read;
  4286. do {
  4287. orig_read = readl(base + nv_registers_test[i].reg);
  4288. /* xor with mask to toggle bits */
  4289. orig_read ^= nv_registers_test[i].mask;
  4290. writel(orig_read, base + nv_registers_test[i].reg);
  4291. new_read = readl(base + nv_registers_test[i].reg);
  4292. if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
  4293. return 0;
  4294. /* restore original value */
  4295. orig_read ^= nv_registers_test[i].mask;
  4296. writel(orig_read, base + nv_registers_test[i].reg);
  4297. } while (nv_registers_test[++i].reg != 0);
  4298. return 1;
  4299. }
  4300. static int nv_interrupt_test(struct net_device *dev)
  4301. {
  4302. struct fe_priv *np = netdev_priv(dev);
  4303. u8 __iomem *base = get_hwbase(dev);
  4304. int ret = 1;
  4305. int testcnt;
  4306. u32 save_msi_flags, save_poll_interval = 0;
  4307. if (netif_running(dev)) {
  4308. /* free current irq */
  4309. nv_free_irq(dev);
  4310. save_poll_interval = readl(base+NvRegPollingInterval);
  4311. }
  4312. /* flag to test interrupt handler */
  4313. np->intr_test = 0;
  4314. /* setup test irq */
  4315. save_msi_flags = np->msi_flags;
  4316. np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
  4317. np->msi_flags |= 0x001; /* setup 1 vector */
  4318. if (nv_request_irq(dev, 1))
  4319. return 0;
  4320. /* setup timer interrupt */
  4321. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4322. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4323. nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4324. /* wait for at least one interrupt */
  4325. msleep(100);
  4326. spin_lock_irq(&np->lock);
  4327. /* flag should be set within ISR */
  4328. testcnt = np->intr_test;
  4329. if (!testcnt)
  4330. ret = 2;
  4331. nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4332. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  4333. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4334. else
  4335. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4336. spin_unlock_irq(&np->lock);
  4337. nv_free_irq(dev);
  4338. np->msi_flags = save_msi_flags;
  4339. if (netif_running(dev)) {
  4340. writel(save_poll_interval, base + NvRegPollingInterval);
  4341. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4342. /* restore original irq */
  4343. if (nv_request_irq(dev, 0))
  4344. return 0;
  4345. }
  4346. return ret;
  4347. }
  4348. static int nv_loopback_test(struct net_device *dev)
  4349. {
  4350. struct fe_priv *np = netdev_priv(dev);
  4351. u8 __iomem *base = get_hwbase(dev);
  4352. struct sk_buff *tx_skb, *rx_skb;
  4353. dma_addr_t test_dma_addr;
  4354. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  4355. u32 flags;
  4356. int len, i, pkt_len;
  4357. u8 *pkt_data;
  4358. u32 filter_flags = 0;
  4359. u32 misc1_flags = 0;
  4360. int ret = 1;
  4361. if (netif_running(dev)) {
  4362. nv_disable_irq(dev);
  4363. filter_flags = readl(base + NvRegPacketFilterFlags);
  4364. misc1_flags = readl(base + NvRegMisc1);
  4365. } else {
  4366. nv_txrx_reset(dev);
  4367. }
  4368. /* reinit driver view of the rx queue */
  4369. set_bufsize(dev);
  4370. nv_init_ring(dev);
  4371. /* setup hardware for loopback */
  4372. writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
  4373. writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
  4374. /* reinit nic view of the rx queue */
  4375. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4376. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4377. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4378. base + NvRegRingSizes);
  4379. pci_push(base);
  4380. /* restart rx engine */
  4381. nv_start_rxtx(dev);
  4382. /* setup packet for tx */
  4383. pkt_len = ETH_DATA_LEN;
  4384. tx_skb = dev_alloc_skb(pkt_len);
  4385. if (!tx_skb) {
  4386. printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
  4387. " of %s\n", dev->name);
  4388. ret = 0;
  4389. goto out;
  4390. }
  4391. test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
  4392. skb_tailroom(tx_skb),
  4393. PCI_DMA_FROMDEVICE);
  4394. pkt_data = skb_put(tx_skb, pkt_len);
  4395. for (i = 0; i < pkt_len; i++)
  4396. pkt_data[i] = (u8)(i & 0xff);
  4397. if (!nv_optimized(np)) {
  4398. np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
  4399. np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4400. } else {
  4401. np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
  4402. np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
  4403. np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4404. }
  4405. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4406. pci_push(get_hwbase(dev));
  4407. msleep(500);
  4408. /* check for rx of the packet */
  4409. if (!nv_optimized(np)) {
  4410. flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
  4411. len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
  4412. } else {
  4413. flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
  4414. len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
  4415. }
  4416. if (flags & NV_RX_AVAIL) {
  4417. ret = 0;
  4418. } else if (np->desc_ver == DESC_VER_1) {
  4419. if (flags & NV_RX_ERROR)
  4420. ret = 0;
  4421. } else {
  4422. if (flags & NV_RX2_ERROR) {
  4423. ret = 0;
  4424. }
  4425. }
  4426. if (ret) {
  4427. if (len != pkt_len) {
  4428. ret = 0;
  4429. dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
  4430. dev->name, len, pkt_len);
  4431. } else {
  4432. rx_skb = np->rx_skb[0].skb;
  4433. for (i = 0; i < pkt_len; i++) {
  4434. if (rx_skb->data[i] != (u8)(i & 0xff)) {
  4435. ret = 0;
  4436. dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
  4437. dev->name, i);
  4438. break;
  4439. }
  4440. }
  4441. }
  4442. } else {
  4443. dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
  4444. }
  4445. pci_unmap_page(np->pci_dev, test_dma_addr,
  4446. (skb_end_pointer(tx_skb) - tx_skb->data),
  4447. PCI_DMA_TODEVICE);
  4448. dev_kfree_skb_any(tx_skb);
  4449. out:
  4450. /* stop engines */
  4451. nv_stop_rxtx(dev);
  4452. nv_txrx_reset(dev);
  4453. /* drain rx queue */
  4454. nv_drain_rxtx(dev);
  4455. if (netif_running(dev)) {
  4456. writel(misc1_flags, base + NvRegMisc1);
  4457. writel(filter_flags, base + NvRegPacketFilterFlags);
  4458. nv_enable_irq(dev);
  4459. }
  4460. return ret;
  4461. }
  4462. static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
  4463. {
  4464. struct fe_priv *np = netdev_priv(dev);
  4465. u8 __iomem *base = get_hwbase(dev);
  4466. int result;
  4467. memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64));
  4468. if (!nv_link_test(dev)) {
  4469. test->flags |= ETH_TEST_FL_FAILED;
  4470. buffer[0] = 1;
  4471. }
  4472. if (test->flags & ETH_TEST_FL_OFFLINE) {
  4473. if (netif_running(dev)) {
  4474. netif_stop_queue(dev);
  4475. #ifdef CONFIG_FORCEDETH_NAPI
  4476. napi_disable(&np->napi);
  4477. #endif
  4478. netif_tx_lock_bh(dev);
  4479. netif_addr_lock(dev);
  4480. spin_lock_irq(&np->lock);
  4481. nv_disable_hw_interrupts(dev, np->irqmask);
  4482. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  4483. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4484. } else {
  4485. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4486. }
  4487. /* stop engines */
  4488. nv_stop_rxtx(dev);
  4489. nv_txrx_reset(dev);
  4490. /* drain rx queue */
  4491. nv_drain_rxtx(dev);
  4492. spin_unlock_irq(&np->lock);
  4493. netif_addr_unlock(dev);
  4494. netif_tx_unlock_bh(dev);
  4495. }
  4496. if (!nv_register_test(dev)) {
  4497. test->flags |= ETH_TEST_FL_FAILED;
  4498. buffer[1] = 1;
  4499. }
  4500. result = nv_interrupt_test(dev);
  4501. if (result != 1) {
  4502. test->flags |= ETH_TEST_FL_FAILED;
  4503. buffer[2] = 1;
  4504. }
  4505. if (result == 0) {
  4506. /* bail out */
  4507. return;
  4508. }
  4509. if (!nv_loopback_test(dev)) {
  4510. test->flags |= ETH_TEST_FL_FAILED;
  4511. buffer[3] = 1;
  4512. }
  4513. if (netif_running(dev)) {
  4514. /* reinit driver view of the rx queue */
  4515. set_bufsize(dev);
  4516. if (nv_init_ring(dev)) {
  4517. if (!np->in_shutdown)
  4518. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4519. }
  4520. /* reinit nic view of the rx queue */
  4521. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4522. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4523. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4524. base + NvRegRingSizes);
  4525. pci_push(base);
  4526. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4527. pci_push(base);
  4528. /* restart rx engine */
  4529. nv_start_rxtx(dev);
  4530. netif_start_queue(dev);
  4531. #ifdef CONFIG_FORCEDETH_NAPI
  4532. napi_enable(&np->napi);
  4533. #endif
  4534. nv_enable_hw_interrupts(dev, np->irqmask);
  4535. }
  4536. }
  4537. }
  4538. static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
  4539. {
  4540. switch (stringset) {
  4541. case ETH_SS_STATS:
  4542. memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
  4543. break;
  4544. case ETH_SS_TEST:
  4545. memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
  4546. break;
  4547. }
  4548. }
  4549. static const struct ethtool_ops ops = {
  4550. .get_drvinfo = nv_get_drvinfo,
  4551. .get_link = ethtool_op_get_link,
  4552. .get_wol = nv_get_wol,
  4553. .set_wol = nv_set_wol,
  4554. .get_settings = nv_get_settings,
  4555. .set_settings = nv_set_settings,
  4556. .get_regs_len = nv_get_regs_len,
  4557. .get_regs = nv_get_regs,
  4558. .nway_reset = nv_nway_reset,
  4559. .set_tso = nv_set_tso,
  4560. .get_ringparam = nv_get_ringparam,
  4561. .set_ringparam = nv_set_ringparam,
  4562. .get_pauseparam = nv_get_pauseparam,
  4563. .set_pauseparam = nv_set_pauseparam,
  4564. .get_rx_csum = nv_get_rx_csum,
  4565. .set_rx_csum = nv_set_rx_csum,
  4566. .set_tx_csum = nv_set_tx_csum,
  4567. .set_sg = nv_set_sg,
  4568. .get_strings = nv_get_strings,
  4569. .get_ethtool_stats = nv_get_ethtool_stats,
  4570. .get_sset_count = nv_get_sset_count,
  4571. .self_test = nv_self_test,
  4572. };
  4573. static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  4574. {
  4575. struct fe_priv *np = get_nvpriv(dev);
  4576. spin_lock_irq(&np->lock);
  4577. /* save vlan group */
  4578. np->vlangrp = grp;
  4579. if (grp) {
  4580. /* enable vlan on MAC */
  4581. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
  4582. } else {
  4583. /* disable vlan on MAC */
  4584. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  4585. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  4586. }
  4587. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4588. spin_unlock_irq(&np->lock);
  4589. }
  4590. /* The mgmt unit and driver use a semaphore to access the phy during init */
  4591. static int nv_mgmt_acquire_sema(struct net_device *dev)
  4592. {
  4593. u8 __iomem *base = get_hwbase(dev);
  4594. int i;
  4595. u32 tx_ctrl, mgmt_sema;
  4596. for (i = 0; i < 10; i++) {
  4597. mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
  4598. if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
  4599. break;
  4600. msleep(500);
  4601. }
  4602. if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
  4603. return 0;
  4604. for (i = 0; i < 2; i++) {
  4605. tx_ctrl = readl(base + NvRegTransmitterControl);
  4606. tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
  4607. writel(tx_ctrl, base + NvRegTransmitterControl);
  4608. /* verify that semaphore was acquired */
  4609. tx_ctrl = readl(base + NvRegTransmitterControl);
  4610. if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
  4611. ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE))
  4612. return 1;
  4613. else
  4614. udelay(50);
  4615. }
  4616. return 0;
  4617. }
  4618. static int nv_open(struct net_device *dev)
  4619. {
  4620. struct fe_priv *np = netdev_priv(dev);
  4621. u8 __iomem *base = get_hwbase(dev);
  4622. int ret = 1;
  4623. int oom, i;
  4624. u32 low;
  4625. dprintk(KERN_DEBUG "nv_open: begin\n");
  4626. /* erase previous misconfiguration */
  4627. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  4628. nv_mac_reset(dev);
  4629. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4630. writel(0, base + NvRegMulticastAddrB);
  4631. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4632. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4633. writel(0, base + NvRegPacketFilterFlags);
  4634. writel(0, base + NvRegTransmitterControl);
  4635. writel(0, base + NvRegReceiverControl);
  4636. writel(0, base + NvRegAdapterControl);
  4637. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
  4638. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  4639. /* initialize descriptor rings */
  4640. set_bufsize(dev);
  4641. oom = nv_init_ring(dev);
  4642. writel(0, base + NvRegLinkSpeed);
  4643. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4644. nv_txrx_reset(dev);
  4645. writel(0, base + NvRegUnknownSetupReg6);
  4646. np->in_shutdown = 0;
  4647. /* give hw rings */
  4648. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4649. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4650. base + NvRegRingSizes);
  4651. writel(np->linkspeed, base + NvRegLinkSpeed);
  4652. if (np->desc_ver == DESC_VER_1)
  4653. writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
  4654. else
  4655. writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
  4656. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4657. writel(np->vlanctl_bits, base + NvRegVlanControl);
  4658. pci_push(base);
  4659. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  4660. reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  4661. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
  4662. KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
  4663. writel(0, base + NvRegMIIMask);
  4664. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4665. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4666. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  4667. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  4668. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  4669. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4670. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  4671. get_random_bytes(&low, sizeof(low));
  4672. low &= NVREG_SLOTTIME_MASK;
  4673. if (np->desc_ver == DESC_VER_1) {
  4674. writel(low|NVREG_SLOTTIME_DEFAULT, base + NvRegSlotTime);
  4675. } else {
  4676. if (!(np->driver_data & DEV_HAS_GEAR_MODE)) {
  4677. /* setup legacy backoff */
  4678. writel(NVREG_SLOTTIME_LEGBF_ENABLED|NVREG_SLOTTIME_10_100_FULL|low, base + NvRegSlotTime);
  4679. } else {
  4680. writel(NVREG_SLOTTIME_10_100_FULL, base + NvRegSlotTime);
  4681. nv_gear_backoff_reseed(dev);
  4682. }
  4683. }
  4684. writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
  4685. writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
  4686. if (poll_interval == -1) {
  4687. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  4688. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  4689. else
  4690. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4691. }
  4692. else
  4693. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  4694. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4695. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  4696. base + NvRegAdapterControl);
  4697. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  4698. writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
  4699. if (np->wolenabled)
  4700. writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
  4701. i = readl(base + NvRegPowerState);
  4702. if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
  4703. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  4704. pci_push(base);
  4705. udelay(10);
  4706. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  4707. nv_disable_hw_interrupts(dev, np->irqmask);
  4708. pci_push(base);
  4709. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4710. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4711. pci_push(base);
  4712. if (nv_request_irq(dev, 0)) {
  4713. goto out_drain;
  4714. }
  4715. /* ask for interrupts */
  4716. nv_enable_hw_interrupts(dev, np->irqmask);
  4717. spin_lock_irq(&np->lock);
  4718. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4719. writel(0, base + NvRegMulticastAddrB);
  4720. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4721. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4722. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4723. /* One manual link speed update: Interrupts are enabled, future link
  4724. * speed changes cause interrupts and are handled by nv_link_irq().
  4725. */
  4726. {
  4727. u32 miistat;
  4728. miistat = readl(base + NvRegMIIStatus);
  4729. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4730. dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
  4731. }
  4732. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  4733. * to init hw */
  4734. np->linkspeed = 0;
  4735. ret = nv_update_linkspeed(dev);
  4736. nv_start_rxtx(dev);
  4737. netif_start_queue(dev);
  4738. #ifdef CONFIG_FORCEDETH_NAPI
  4739. napi_enable(&np->napi);
  4740. #endif
  4741. if (ret) {
  4742. netif_carrier_on(dev);
  4743. } else {
  4744. printk(KERN_INFO "%s: no link during initialization.\n", dev->name);
  4745. netif_carrier_off(dev);
  4746. }
  4747. if (oom)
  4748. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4749. /* start statistics timer */
  4750. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
  4751. mod_timer(&np->stats_poll,
  4752. round_jiffies(jiffies + STATS_INTERVAL));
  4753. spin_unlock_irq(&np->lock);
  4754. return 0;
  4755. out_drain:
  4756. nv_drain_rxtx(dev);
  4757. return ret;
  4758. }
  4759. static int nv_close(struct net_device *dev)
  4760. {
  4761. struct fe_priv *np = netdev_priv(dev);
  4762. u8 __iomem *base;
  4763. spin_lock_irq(&np->lock);
  4764. np->in_shutdown = 1;
  4765. spin_unlock_irq(&np->lock);
  4766. #ifdef CONFIG_FORCEDETH_NAPI
  4767. napi_disable(&np->napi);
  4768. #endif
  4769. synchronize_irq(np->pci_dev->irq);
  4770. del_timer_sync(&np->oom_kick);
  4771. del_timer_sync(&np->nic_poll);
  4772. del_timer_sync(&np->stats_poll);
  4773. netif_stop_queue(dev);
  4774. spin_lock_irq(&np->lock);
  4775. nv_stop_rxtx(dev);
  4776. nv_txrx_reset(dev);
  4777. /* disable interrupts on the nic or we will lock up */
  4778. base = get_hwbase(dev);
  4779. nv_disable_hw_interrupts(dev, np->irqmask);
  4780. pci_push(base);
  4781. dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
  4782. spin_unlock_irq(&np->lock);
  4783. nv_free_irq(dev);
  4784. nv_drain_rxtx(dev);
  4785. if (np->wolenabled) {
  4786. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4787. nv_start_rx(dev);
  4788. }
  4789. /* FIXME: power down nic */
  4790. return 0;
  4791. }
  4792. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  4793. {
  4794. struct net_device *dev;
  4795. struct fe_priv *np;
  4796. unsigned long addr;
  4797. u8 __iomem *base;
  4798. int err, i;
  4799. u32 powerstate, txreg;
  4800. u32 phystate_orig = 0, phystate;
  4801. int phyinitialized = 0;
  4802. DECLARE_MAC_BUF(mac);
  4803. static int printed_version;
  4804. if (!printed_version++)
  4805. printk(KERN_INFO "%s: Reverse Engineered nForce ethernet"
  4806. " driver. Version %s.\n", DRV_NAME, FORCEDETH_VERSION);
  4807. dev = alloc_etherdev(sizeof(struct fe_priv));
  4808. err = -ENOMEM;
  4809. if (!dev)
  4810. goto out;
  4811. np = netdev_priv(dev);
  4812. np->dev = dev;
  4813. np->pci_dev = pci_dev;
  4814. spin_lock_init(&np->lock);
  4815. SET_NETDEV_DEV(dev, &pci_dev->dev);
  4816. init_timer(&np->oom_kick);
  4817. np->oom_kick.data = (unsigned long) dev;
  4818. np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
  4819. init_timer(&np->nic_poll);
  4820. np->nic_poll.data = (unsigned long) dev;
  4821. np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
  4822. init_timer(&np->stats_poll);
  4823. np->stats_poll.data = (unsigned long) dev;
  4824. np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
  4825. err = pci_enable_device(pci_dev);
  4826. if (err)
  4827. goto out_free;
  4828. pci_set_master(pci_dev);
  4829. err = pci_request_regions(pci_dev, DRV_NAME);
  4830. if (err < 0)
  4831. goto out_disable;
  4832. if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
  4833. np->register_size = NV_PCI_REGSZ_VER3;
  4834. else if (id->driver_data & DEV_HAS_STATISTICS_V1)
  4835. np->register_size = NV_PCI_REGSZ_VER2;
  4836. else
  4837. np->register_size = NV_PCI_REGSZ_VER1;
  4838. err = -EINVAL;
  4839. addr = 0;
  4840. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  4841. dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
  4842. pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
  4843. pci_resource_len(pci_dev, i),
  4844. pci_resource_flags(pci_dev, i));
  4845. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  4846. pci_resource_len(pci_dev, i) >= np->register_size) {
  4847. addr = pci_resource_start(pci_dev, i);
  4848. break;
  4849. }
  4850. }
  4851. if (i == DEVICE_COUNT_RESOURCE) {
  4852. dev_printk(KERN_INFO, &pci_dev->dev,
  4853. "Couldn't find register window\n");
  4854. goto out_relreg;
  4855. }
  4856. /* copy of driver data */
  4857. np->driver_data = id->driver_data;
  4858. /* copy of device id */
  4859. np->device_id = id->device;
  4860. /* handle different descriptor versions */
  4861. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  4862. /* packet format 3: supports 40-bit addressing */
  4863. np->desc_ver = DESC_VER_3;
  4864. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  4865. if (dma_64bit) {
  4866. if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK))
  4867. dev_printk(KERN_INFO, &pci_dev->dev,
  4868. "64-bit DMA failed, using 32-bit addressing\n");
  4869. else
  4870. dev->features |= NETIF_F_HIGHDMA;
  4871. if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) {
  4872. dev_printk(KERN_INFO, &pci_dev->dev,
  4873. "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
  4874. }
  4875. }
  4876. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  4877. /* packet format 2: supports jumbo frames */
  4878. np->desc_ver = DESC_VER_2;
  4879. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  4880. } else {
  4881. /* original packet format */
  4882. np->desc_ver = DESC_VER_1;
  4883. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  4884. }
  4885. np->pkt_limit = NV_PKTLIMIT_1;
  4886. if (id->driver_data & DEV_HAS_LARGEDESC)
  4887. np->pkt_limit = NV_PKTLIMIT_2;
  4888. if (id->driver_data & DEV_HAS_CHECKSUM) {
  4889. np->rx_csum = 1;
  4890. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  4891. dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
  4892. dev->features |= NETIF_F_TSO;
  4893. }
  4894. np->vlanctl_bits = 0;
  4895. if (id->driver_data & DEV_HAS_VLAN) {
  4896. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  4897. dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  4898. dev->vlan_rx_register = nv_vlan_rx_register;
  4899. }
  4900. np->msi_flags = 0;
  4901. if ((id->driver_data & DEV_HAS_MSI) && msi) {
  4902. np->msi_flags |= NV_MSI_CAPABLE;
  4903. }
  4904. if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
  4905. np->msi_flags |= NV_MSI_X_CAPABLE;
  4906. }
  4907. np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
  4908. if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) ||
  4909. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) ||
  4910. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) {
  4911. np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
  4912. }
  4913. err = -ENOMEM;
  4914. np->base = ioremap(addr, np->register_size);
  4915. if (!np->base)
  4916. goto out_relreg;
  4917. dev->base_addr = (unsigned long)np->base;
  4918. dev->irq = pci_dev->irq;
  4919. np->rx_ring_size = RX_RING_DEFAULT;
  4920. np->tx_ring_size = TX_RING_DEFAULT;
  4921. if (!nv_optimized(np)) {
  4922. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  4923. sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  4924. &np->ring_addr);
  4925. if (!np->rx_ring.orig)
  4926. goto out_unmap;
  4927. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  4928. } else {
  4929. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  4930. sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  4931. &np->ring_addr);
  4932. if (!np->rx_ring.ex)
  4933. goto out_unmap;
  4934. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  4935. }
  4936. np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  4937. np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  4938. if (!np->rx_skb || !np->tx_skb)
  4939. goto out_freering;
  4940. dev->open = nv_open;
  4941. dev->stop = nv_close;
  4942. if (!nv_optimized(np))
  4943. dev->hard_start_xmit = nv_start_xmit;
  4944. else
  4945. dev->hard_start_xmit = nv_start_xmit_optimized;
  4946. dev->get_stats = nv_get_stats;
  4947. dev->change_mtu = nv_change_mtu;
  4948. dev->set_mac_address = nv_set_mac_address;
  4949. dev->set_multicast_list = nv_set_multicast;
  4950. #ifdef CONFIG_NET_POLL_CONTROLLER
  4951. dev->poll_controller = nv_poll_controller;
  4952. #endif
  4953. #ifdef CONFIG_FORCEDETH_NAPI
  4954. netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
  4955. #endif
  4956. SET_ETHTOOL_OPS(dev, &ops);
  4957. dev->tx_timeout = nv_tx_timeout;
  4958. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  4959. pci_set_drvdata(pci_dev, dev);
  4960. /* read the mac address */
  4961. base = get_hwbase(dev);
  4962. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  4963. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  4964. /* check the workaround bit for correct mac address order */
  4965. txreg = readl(base + NvRegTransmitPoll);
  4966. if (id->driver_data & DEV_HAS_CORRECT_MACADDR) {
  4967. /* mac address is already in correct order */
  4968. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  4969. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  4970. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  4971. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  4972. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  4973. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  4974. } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
  4975. /* mac address is already in correct order */
  4976. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  4977. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  4978. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  4979. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  4980. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  4981. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  4982. /*
  4983. * Set orig mac address back to the reversed version.
  4984. * This flag will be cleared during low power transition.
  4985. * Therefore, we should always put back the reversed address.
  4986. */
  4987. np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) +
  4988. (dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24);
  4989. np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8);
  4990. } else {
  4991. /* need to reverse mac address to correct order */
  4992. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  4993. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  4994. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  4995. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  4996. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  4997. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  4998. writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4999. }
  5000. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  5001. if (!is_valid_ether_addr(dev->perm_addr)) {
  5002. /*
  5003. * Bad mac address. At least one bios sets the mac address
  5004. * to 01:23:45:67:89:ab
  5005. */
  5006. dev_printk(KERN_ERR, &pci_dev->dev,
  5007. "Invalid Mac address detected: %s\n",
  5008. print_mac(mac, dev->dev_addr));
  5009. dev_printk(KERN_ERR, &pci_dev->dev,
  5010. "Please complain to your hardware vendor. Switching to a random MAC.\n");
  5011. dev->dev_addr[0] = 0x00;
  5012. dev->dev_addr[1] = 0x00;
  5013. dev->dev_addr[2] = 0x6c;
  5014. get_random_bytes(&dev->dev_addr[3], 3);
  5015. }
  5016. dprintk(KERN_DEBUG "%s: MAC Address %s\n",
  5017. pci_name(pci_dev), print_mac(mac, dev->dev_addr));
  5018. /* set mac address */
  5019. nv_copy_mac_to_hw(dev);
  5020. /* Workaround current PCI init glitch: wakeup bits aren't
  5021. * being set from PCI PM capability.
  5022. */
  5023. device_init_wakeup(&pci_dev->dev, 1);
  5024. /* disable WOL */
  5025. writel(0, base + NvRegWakeUpFlags);
  5026. np->wolenabled = 0;
  5027. if (id->driver_data & DEV_HAS_POWER_CNTRL) {
  5028. /* take phy and nic out of low power mode */
  5029. powerstate = readl(base + NvRegPowerState2);
  5030. powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
  5031. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
  5032. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
  5033. pci_dev->revision >= 0xA3)
  5034. powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
  5035. writel(powerstate, base + NvRegPowerState2);
  5036. }
  5037. if (np->desc_ver == DESC_VER_1) {
  5038. np->tx_flags = NV_TX_VALID;
  5039. } else {
  5040. np->tx_flags = NV_TX2_VALID;
  5041. }
  5042. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
  5043. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  5044. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  5045. np->msi_flags |= 0x0003;
  5046. } else {
  5047. np->irqmask = NVREG_IRQMASK_CPU;
  5048. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  5049. np->msi_flags |= 0x0001;
  5050. }
  5051. if (id->driver_data & DEV_NEED_TIMERIRQ)
  5052. np->irqmask |= NVREG_IRQ_TIMER;
  5053. if (id->driver_data & DEV_NEED_LINKTIMER) {
  5054. dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
  5055. np->need_linktimer = 1;
  5056. np->link_timeout = jiffies + LINK_TIMEOUT;
  5057. } else {
  5058. dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
  5059. np->need_linktimer = 0;
  5060. }
  5061. /* Limit the number of tx's outstanding for hw bug */
  5062. if (id->driver_data & DEV_NEED_TX_LIMIT) {
  5063. np->tx_limit = 1;
  5064. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
  5065. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
  5066. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
  5067. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
  5068. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
  5069. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
  5070. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
  5071. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_39) &&
  5072. pci_dev->revision >= 0xA2)
  5073. np->tx_limit = 0;
  5074. }
  5075. /* clear phy state and temporarily halt phy interrupts */
  5076. writel(0, base + NvRegMIIMask);
  5077. phystate = readl(base + NvRegAdapterControl);
  5078. if (phystate & NVREG_ADAPTCTL_RUNNING) {
  5079. phystate_orig = 1;
  5080. phystate &= ~NVREG_ADAPTCTL_RUNNING;
  5081. writel(phystate, base + NvRegAdapterControl);
  5082. }
  5083. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  5084. if (id->driver_data & DEV_HAS_MGMT_UNIT) {
  5085. /* management unit running on the mac? */
  5086. if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) {
  5087. np->mac_in_use = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST;
  5088. dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n", pci_name(pci_dev), np->mac_in_use);
  5089. if (nv_mgmt_acquire_sema(dev)) {
  5090. /* management unit setup the phy already? */
  5091. if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
  5092. NVREG_XMITCTL_SYNC_PHY_INIT) {
  5093. /* phy is inited by mgmt unit */
  5094. phyinitialized = 1;
  5095. dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n", pci_name(pci_dev));
  5096. } else {
  5097. /* we need to init the phy */
  5098. }
  5099. }
  5100. }
  5101. }
  5102. /* find a suitable phy */
  5103. for (i = 1; i <= 32; i++) {
  5104. int id1, id2;
  5105. int phyaddr = i & 0x1F;
  5106. spin_lock_irq(&np->lock);
  5107. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  5108. spin_unlock_irq(&np->lock);
  5109. if (id1 < 0 || id1 == 0xffff)
  5110. continue;
  5111. spin_lock_irq(&np->lock);
  5112. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  5113. spin_unlock_irq(&np->lock);
  5114. if (id2 < 0 || id2 == 0xffff)
  5115. continue;
  5116. np->phy_model = id2 & PHYID2_MODEL_MASK;
  5117. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  5118. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  5119. dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
  5120. pci_name(pci_dev), id1, id2, phyaddr);
  5121. np->phyaddr = phyaddr;
  5122. np->phy_oui = id1 | id2;
  5123. /* Realtek hardcoded phy id1 to all zero's on certain phys */
  5124. if (np->phy_oui == PHY_OUI_REALTEK2)
  5125. np->phy_oui = PHY_OUI_REALTEK;
  5126. /* Setup phy revision for Realtek */
  5127. if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211)
  5128. np->phy_rev = mii_rw(dev, phyaddr, MII_RESV1, MII_READ) & PHY_REV_MASK;
  5129. break;
  5130. }
  5131. if (i == 33) {
  5132. dev_printk(KERN_INFO, &pci_dev->dev,
  5133. "open: Could not find a valid PHY.\n");
  5134. goto out_error;
  5135. }
  5136. if (!phyinitialized) {
  5137. /* reset it */
  5138. phy_init(dev);
  5139. } else {
  5140. /* see if it is a gigabit phy */
  5141. u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  5142. if (mii_status & PHY_GIGABIT) {
  5143. np->gigabit = PHY_GIGABIT;
  5144. }
  5145. }
  5146. /* set default link speed settings */
  5147. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  5148. np->duplex = 0;
  5149. np->autoneg = 1;
  5150. err = register_netdev(dev);
  5151. if (err) {
  5152. dev_printk(KERN_INFO, &pci_dev->dev,
  5153. "unable to register netdev: %d\n", err);
  5154. goto out_error;
  5155. }
  5156. dev_printk(KERN_INFO, &pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, "
  5157. "addr %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
  5158. dev->name,
  5159. np->phy_oui,
  5160. np->phyaddr,
  5161. dev->dev_addr[0],
  5162. dev->dev_addr[1],
  5163. dev->dev_addr[2],
  5164. dev->dev_addr[3],
  5165. dev->dev_addr[4],
  5166. dev->dev_addr[5]);
  5167. dev_printk(KERN_INFO, &pci_dev->dev, "%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
  5168. dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
  5169. dev->features & (NETIF_F_HW_CSUM | NETIF_F_SG) ?
  5170. "csum " : "",
  5171. dev->features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX) ?
  5172. "vlan " : "",
  5173. id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
  5174. id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
  5175. id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
  5176. np->gigabit == PHY_GIGABIT ? "gbit " : "",
  5177. np->need_linktimer ? "lnktim " : "",
  5178. np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
  5179. np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
  5180. np->desc_ver);
  5181. return 0;
  5182. out_error:
  5183. if (phystate_orig)
  5184. writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
  5185. pci_set_drvdata(pci_dev, NULL);
  5186. out_freering:
  5187. free_rings(dev);
  5188. out_unmap:
  5189. iounmap(get_hwbase(dev));
  5190. out_relreg:
  5191. pci_release_regions(pci_dev);
  5192. out_disable:
  5193. pci_disable_device(pci_dev);
  5194. out_free:
  5195. free_netdev(dev);
  5196. out:
  5197. return err;
  5198. }
  5199. static void nv_restore_phy(struct net_device *dev)
  5200. {
  5201. struct fe_priv *np = netdev_priv(dev);
  5202. u16 phy_reserved, mii_control;
  5203. if (np->phy_oui == PHY_OUI_REALTEK &&
  5204. np->phy_model == PHY_MODEL_REALTEK_8201 &&
  5205. phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
  5206. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3);
  5207. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
  5208. phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
  5209. phy_reserved |= PHY_REALTEK_INIT8;
  5210. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved);
  5211. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1);
  5212. /* restart auto negotiation */
  5213. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  5214. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  5215. mii_rw(dev, np->phyaddr, MII_BMCR, mii_control);
  5216. }
  5217. }
  5218. static void __devexit nv_remove(struct pci_dev *pci_dev)
  5219. {
  5220. struct net_device *dev = pci_get_drvdata(pci_dev);
  5221. struct fe_priv *np = netdev_priv(dev);
  5222. u8 __iomem *base = get_hwbase(dev);
  5223. unregister_netdev(dev);
  5224. /* special op: write back the misordered MAC address - otherwise
  5225. * the next nv_probe would see a wrong address.
  5226. */
  5227. writel(np->orig_mac[0], base + NvRegMacAddrA);
  5228. writel(np->orig_mac[1], base + NvRegMacAddrB);
  5229. writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  5230. base + NvRegTransmitPoll);
  5231. /* restore any phy related changes */
  5232. nv_restore_phy(dev);
  5233. /* free all structures */
  5234. free_rings(dev);
  5235. iounmap(get_hwbase(dev));
  5236. pci_release_regions(pci_dev);
  5237. pci_disable_device(pci_dev);
  5238. free_netdev(dev);
  5239. pci_set_drvdata(pci_dev, NULL);
  5240. }
  5241. #ifdef CONFIG_PM
  5242. static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
  5243. {
  5244. struct net_device *dev = pci_get_drvdata(pdev);
  5245. struct fe_priv *np = netdev_priv(dev);
  5246. u8 __iomem *base = get_hwbase(dev);
  5247. int i;
  5248. if (netif_running(dev)) {
  5249. // Gross.
  5250. nv_close(dev);
  5251. }
  5252. netif_device_detach(dev);
  5253. /* save non-pci configuration space */
  5254. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  5255. np->saved_config_space[i] = readl(base + i*sizeof(u32));
  5256. pci_save_state(pdev);
  5257. pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
  5258. pci_disable_device(pdev);
  5259. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  5260. return 0;
  5261. }
  5262. static int nv_resume(struct pci_dev *pdev)
  5263. {
  5264. struct net_device *dev = pci_get_drvdata(pdev);
  5265. struct fe_priv *np = netdev_priv(dev);
  5266. u8 __iomem *base = get_hwbase(dev);
  5267. int i, rc = 0;
  5268. pci_set_power_state(pdev, PCI_D0);
  5269. pci_restore_state(pdev);
  5270. /* ack any pending wake events, disable PME */
  5271. pci_enable_wake(pdev, PCI_D0, 0);
  5272. /* restore non-pci configuration space */
  5273. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  5274. writel(np->saved_config_space[i], base+i*sizeof(u32));
  5275. netif_device_attach(dev);
  5276. if (netif_running(dev)) {
  5277. rc = nv_open(dev);
  5278. nv_set_multicast(dev);
  5279. }
  5280. return rc;
  5281. }
  5282. static void nv_shutdown(struct pci_dev *pdev)
  5283. {
  5284. struct net_device *dev = pci_get_drvdata(pdev);
  5285. struct fe_priv *np = netdev_priv(dev);
  5286. if (netif_running(dev))
  5287. nv_close(dev);
  5288. pci_enable_wake(pdev, PCI_D3hot, np->wolenabled);
  5289. pci_enable_wake(pdev, PCI_D3cold, np->wolenabled);
  5290. pci_disable_device(pdev);
  5291. pci_set_power_state(pdev, PCI_D3hot);
  5292. }
  5293. #else
  5294. #define nv_suspend NULL
  5295. #define nv_shutdown NULL
  5296. #define nv_resume NULL
  5297. #endif /* CONFIG_PM */
  5298. static struct pci_device_id pci_tbl[] = {
  5299. { /* nForce Ethernet Controller */
  5300. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
  5301. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5302. },
  5303. { /* nForce2 Ethernet Controller */
  5304. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
  5305. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5306. },
  5307. { /* nForce3 Ethernet Controller */
  5308. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
  5309. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5310. },
  5311. { /* nForce3 Ethernet Controller */
  5312. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
  5313. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5314. },
  5315. { /* nForce3 Ethernet Controller */
  5316. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
  5317. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5318. },
  5319. { /* nForce3 Ethernet Controller */
  5320. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
  5321. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5322. },
  5323. { /* nForce3 Ethernet Controller */
  5324. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
  5325. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5326. },
  5327. { /* CK804 Ethernet Controller */
  5328. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
  5329. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5330. },
  5331. { /* CK804 Ethernet Controller */
  5332. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
  5333. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5334. },
  5335. { /* MCP04 Ethernet Controller */
  5336. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
  5337. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5338. },
  5339. { /* MCP04 Ethernet Controller */
  5340. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
  5341. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5342. },
  5343. { /* MCP51 Ethernet Controller */
  5344. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
  5345. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  5346. },
  5347. { /* MCP51 Ethernet Controller */
  5348. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
  5349. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  5350. },
  5351. { /* MCP55 Ethernet Controller */
  5352. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
  5353. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT,
  5354. },
  5355. { /* MCP55 Ethernet Controller */
  5356. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
  5357. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT,
  5358. },
  5359. { /* MCP61 Ethernet Controller */
  5360. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
  5361. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5362. },
  5363. { /* MCP61 Ethernet Controller */
  5364. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
  5365. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5366. },
  5367. { /* MCP61 Ethernet Controller */
  5368. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
  5369. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5370. },
  5371. { /* MCP61 Ethernet Controller */
  5372. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
  5373. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5374. },
  5375. { /* MCP65 Ethernet Controller */
  5376. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
  5377. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5378. },
  5379. { /* MCP65 Ethernet Controller */
  5380. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
  5381. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5382. },
  5383. { /* MCP65 Ethernet Controller */
  5384. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
  5385. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5386. },
  5387. { /* MCP65 Ethernet Controller */
  5388. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
  5389. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5390. },
  5391. { /* MCP67 Ethernet Controller */
  5392. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_24),
  5393. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5394. },
  5395. { /* MCP67 Ethernet Controller */
  5396. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_25),
  5397. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5398. },
  5399. { /* MCP67 Ethernet Controller */
  5400. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_26),
  5401. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5402. },
  5403. { /* MCP67 Ethernet Controller */
  5404. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_27),
  5405. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5406. },
  5407. { /* MCP73 Ethernet Controller */
  5408. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_28),
  5409. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5410. },
  5411. { /* MCP73 Ethernet Controller */
  5412. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_29),
  5413. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5414. },
  5415. { /* MCP73 Ethernet Controller */
  5416. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_30),
  5417. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5418. },
  5419. { /* MCP73 Ethernet Controller */
  5420. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_31),
  5421. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5422. },
  5423. { /* MCP77 Ethernet Controller */
  5424. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_32),
  5425. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5426. },
  5427. { /* MCP77 Ethernet Controller */
  5428. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_33),
  5429. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5430. },
  5431. { /* MCP77 Ethernet Controller */
  5432. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_34),
  5433. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5434. },
  5435. { /* MCP77 Ethernet Controller */
  5436. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_35),
  5437. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5438. },
  5439. { /* MCP79 Ethernet Controller */
  5440. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_36),
  5441. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5442. },
  5443. { /* MCP79 Ethernet Controller */
  5444. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_37),
  5445. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5446. },
  5447. { /* MCP79 Ethernet Controller */
  5448. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_38),
  5449. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5450. },
  5451. { /* MCP79 Ethernet Controller */
  5452. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_39),
  5453. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5454. },
  5455. {0,},
  5456. };
  5457. static struct pci_driver driver = {
  5458. .name = DRV_NAME,
  5459. .id_table = pci_tbl,
  5460. .probe = nv_probe,
  5461. .remove = __devexit_p(nv_remove),
  5462. .suspend = nv_suspend,
  5463. .resume = nv_resume,
  5464. .shutdown = nv_shutdown,
  5465. };
  5466. static int __init init_nic(void)
  5467. {
  5468. return pci_register_driver(&driver);
  5469. }
  5470. static void __exit exit_nic(void)
  5471. {
  5472. pci_unregister_driver(&driver);
  5473. }
  5474. module_param(max_interrupt_work, int, 0);
  5475. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  5476. module_param(optimization_mode, int, 0);
  5477. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
  5478. module_param(poll_interval, int, 0);
  5479. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  5480. module_param(msi, int, 0);
  5481. MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5482. module_param(msix, int, 0);
  5483. MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5484. module_param(dma_64bit, int, 0);
  5485. MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
  5486. module_param(phy_cross, int, 0);
  5487. MODULE_PARM_DESC(phy_cross, "Phy crossover detection for Realtek 8201 phy is enabled by setting to 1 and disabled by setting to 0.");
  5488. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  5489. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  5490. MODULE_LICENSE("GPL");
  5491. MODULE_DEVICE_TABLE(pci, pci_tbl);
  5492. module_init(init_nic);
  5493. module_exit(exit_nic);