rt2500usb.c 56 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864
  1. /*
  2. Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2500usb
  19. Abstract: rt2500usb device specific routines.
  20. Supported chipsets: RT2570.
  21. */
  22. /*
  23. * Set enviroment defines for rt2x00.h
  24. */
  25. #define DRV_NAME "rt2500usb"
  26. #include <linux/delay.h>
  27. #include <linux/etherdevice.h>
  28. #include <linux/init.h>
  29. #include <linux/kernel.h>
  30. #include <linux/module.h>
  31. #include <linux/usb.h>
  32. #include "rt2x00.h"
  33. #include "rt2x00usb.h"
  34. #include "rt2500usb.h"
  35. /*
  36. * Register access.
  37. * All access to the CSR registers will go through the methods
  38. * rt2500usb_register_read and rt2500usb_register_write.
  39. * BBP and RF register require indirect register access,
  40. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  41. * These indirect registers work with busy bits,
  42. * and we will try maximal REGISTER_BUSY_COUNT times to access
  43. * the register while taking a REGISTER_BUSY_DELAY us delay
  44. * between each attampt. When the busy bit is still set at that time,
  45. * the access attempt is considered to have failed,
  46. * and we will print an error.
  47. */
  48. static inline void rt2500usb_register_read(const struct rt2x00_dev *rt2x00dev,
  49. const unsigned int offset,
  50. u16 *value)
  51. {
  52. __le16 reg;
  53. rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
  54. USB_VENDOR_REQUEST_IN, offset,
  55. &reg, sizeof(u16), REGISTER_TIMEOUT);
  56. *value = le16_to_cpu(reg);
  57. }
  58. static inline void rt2500usb_register_multiread(const struct rt2x00_dev
  59. *rt2x00dev,
  60. const unsigned int offset,
  61. void *value, const u16 length)
  62. {
  63. int timeout = REGISTER_TIMEOUT * (length / sizeof(u16));
  64. rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
  65. USB_VENDOR_REQUEST_IN, offset,
  66. value, length, timeout);
  67. }
  68. static inline void rt2500usb_register_write(const struct rt2x00_dev *rt2x00dev,
  69. const unsigned int offset,
  70. u16 value)
  71. {
  72. __le16 reg = cpu_to_le16(value);
  73. rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
  74. USB_VENDOR_REQUEST_OUT, offset,
  75. &reg, sizeof(u16), REGISTER_TIMEOUT);
  76. }
  77. static inline void rt2500usb_register_multiwrite(const struct rt2x00_dev
  78. *rt2x00dev,
  79. const unsigned int offset,
  80. void *value, const u16 length)
  81. {
  82. int timeout = REGISTER_TIMEOUT * (length / sizeof(u16));
  83. rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
  84. USB_VENDOR_REQUEST_OUT, offset,
  85. value, length, timeout);
  86. }
  87. static u16 rt2500usb_bbp_check(const struct rt2x00_dev *rt2x00dev)
  88. {
  89. u16 reg;
  90. unsigned int i;
  91. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  92. rt2500usb_register_read(rt2x00dev, PHY_CSR8, &reg);
  93. if (!rt2x00_get_field16(reg, PHY_CSR8_BUSY))
  94. break;
  95. udelay(REGISTER_BUSY_DELAY);
  96. }
  97. return reg;
  98. }
  99. static void rt2500usb_bbp_write(const struct rt2x00_dev *rt2x00dev,
  100. const unsigned int word, const u8 value)
  101. {
  102. u16 reg;
  103. /*
  104. * Wait until the BBP becomes ready.
  105. */
  106. reg = rt2500usb_bbp_check(rt2x00dev);
  107. if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
  108. ERROR(rt2x00dev, "PHY_CSR8 register busy. Write failed.\n");
  109. return;
  110. }
  111. /*
  112. * Write the data into the BBP.
  113. */
  114. reg = 0;
  115. rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
  116. rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
  117. rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
  118. rt2500usb_register_write(rt2x00dev, PHY_CSR7, reg);
  119. }
  120. static void rt2500usb_bbp_read(const struct rt2x00_dev *rt2x00dev,
  121. const unsigned int word, u8 *value)
  122. {
  123. u16 reg;
  124. /*
  125. * Wait until the BBP becomes ready.
  126. */
  127. reg = rt2500usb_bbp_check(rt2x00dev);
  128. if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
  129. ERROR(rt2x00dev, "PHY_CSR8 register busy. Read failed.\n");
  130. return;
  131. }
  132. /*
  133. * Write the request into the BBP.
  134. */
  135. reg = 0;
  136. rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
  137. rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
  138. rt2500usb_register_write(rt2x00dev, PHY_CSR7, reg);
  139. /*
  140. * Wait until the BBP becomes ready.
  141. */
  142. reg = rt2500usb_bbp_check(rt2x00dev);
  143. if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
  144. ERROR(rt2x00dev, "PHY_CSR8 register busy. Read failed.\n");
  145. *value = 0xff;
  146. return;
  147. }
  148. rt2500usb_register_read(rt2x00dev, PHY_CSR7, &reg);
  149. *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
  150. }
  151. static void rt2500usb_rf_write(const struct rt2x00_dev *rt2x00dev,
  152. const unsigned int word, const u32 value)
  153. {
  154. u16 reg;
  155. unsigned int i;
  156. if (!word)
  157. return;
  158. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  159. rt2500usb_register_read(rt2x00dev, PHY_CSR10, &reg);
  160. if (!rt2x00_get_field16(reg, PHY_CSR10_RF_BUSY))
  161. goto rf_write;
  162. udelay(REGISTER_BUSY_DELAY);
  163. }
  164. ERROR(rt2x00dev, "PHY_CSR10 register busy. Write failed.\n");
  165. return;
  166. rf_write:
  167. reg = 0;
  168. rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
  169. rt2500usb_register_write(rt2x00dev, PHY_CSR9, reg);
  170. reg = 0;
  171. rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
  172. rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
  173. rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
  174. rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
  175. rt2500usb_register_write(rt2x00dev, PHY_CSR10, reg);
  176. rt2x00_rf_write(rt2x00dev, word, value);
  177. }
  178. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  179. #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u16)) )
  180. static void rt2500usb_read_csr(const struct rt2x00_dev *rt2x00dev,
  181. const unsigned int word, u32 *data)
  182. {
  183. rt2500usb_register_read(rt2x00dev, CSR_OFFSET(word), (u16 *) data);
  184. }
  185. static void rt2500usb_write_csr(const struct rt2x00_dev *rt2x00dev,
  186. const unsigned int word, u32 data)
  187. {
  188. rt2500usb_register_write(rt2x00dev, CSR_OFFSET(word), data);
  189. }
  190. static const struct rt2x00debug rt2500usb_rt2x00debug = {
  191. .owner = THIS_MODULE,
  192. .csr = {
  193. .read = rt2500usb_read_csr,
  194. .write = rt2500usb_write_csr,
  195. .word_size = sizeof(u16),
  196. .word_count = CSR_REG_SIZE / sizeof(u16),
  197. },
  198. .eeprom = {
  199. .read = rt2x00_eeprom_read,
  200. .write = rt2x00_eeprom_write,
  201. .word_size = sizeof(u16),
  202. .word_count = EEPROM_SIZE / sizeof(u16),
  203. },
  204. .bbp = {
  205. .read = rt2500usb_bbp_read,
  206. .write = rt2500usb_bbp_write,
  207. .word_size = sizeof(u8),
  208. .word_count = BBP_SIZE / sizeof(u8),
  209. },
  210. .rf = {
  211. .read = rt2x00_rf_read,
  212. .write = rt2500usb_rf_write,
  213. .word_size = sizeof(u32),
  214. .word_count = RF_SIZE / sizeof(u32),
  215. },
  216. };
  217. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  218. /*
  219. * Configuration handlers.
  220. */
  221. static void rt2500usb_config_mac_addr(struct rt2x00_dev *rt2x00dev, u8 *addr)
  222. {
  223. __le16 reg[3];
  224. memset(&reg, 0, sizeof(reg));
  225. memcpy(&reg, addr, ETH_ALEN);
  226. /*
  227. * The MAC address is passed to us as an array of bytes,
  228. * that array is little endian, so no need for byte ordering.
  229. */
  230. rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, &reg, sizeof(reg));
  231. }
  232. static void rt2500usb_config_bssid(struct rt2x00_dev *rt2x00dev, u8 *bssid)
  233. {
  234. __le16 reg[3];
  235. memset(&reg, 0, sizeof(reg));
  236. memcpy(&reg, bssid, ETH_ALEN);
  237. /*
  238. * The BSSID is passed to us as an array of bytes,
  239. * that array is little endian, so no need for byte ordering.
  240. */
  241. rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, &reg, sizeof(reg));
  242. }
  243. static void rt2500usb_config_type(struct rt2x00_dev *rt2x00dev, const int type)
  244. {
  245. struct interface *intf = &rt2x00dev->interface;
  246. u16 reg;
  247. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
  248. /*
  249. * Enable beacon config
  250. */
  251. rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
  252. rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET,
  253. (PREAMBLE + get_duration(IEEE80211_HEADER, 2)) >> 6);
  254. if (is_interface_type(intf, IEEE80211_IF_TYPE_STA))
  255. rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW, 0);
  256. else
  257. rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW, 2);
  258. rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
  259. /*
  260. * Enable synchronisation.
  261. */
  262. rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
  263. rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
  264. rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
  265. rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
  266. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
  267. rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
  268. rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
  269. if (is_interface_type(intf, IEEE80211_IF_TYPE_IBSS) ||
  270. is_interface_type(intf, IEEE80211_IF_TYPE_AP))
  271. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 2);
  272. else if (is_interface_type(intf, IEEE80211_IF_TYPE_STA))
  273. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 1);
  274. else
  275. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
  276. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  277. }
  278. static void rt2500usb_config_rate(struct rt2x00_dev *rt2x00dev, const int rate)
  279. {
  280. struct ieee80211_conf *conf = &rt2x00dev->hw->conf;
  281. u16 reg;
  282. u16 value;
  283. u16 preamble;
  284. if (DEVICE_GET_RATE_FIELD(rate, PREAMBLE))
  285. preamble = SHORT_PREAMBLE;
  286. else
  287. preamble = PREAMBLE;
  288. reg = DEVICE_GET_RATE_FIELD(rate, RATEMASK) & DEV_BASIC_RATEMASK;
  289. rt2500usb_register_write(rt2x00dev, TXRX_CSR11, reg);
  290. rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
  291. value = ((conf->flags & IEEE80211_CONF_SHORT_SLOT_TIME) ?
  292. SHORT_DIFS : DIFS) +
  293. PLCP + preamble + get_duration(ACK_SIZE, 10);
  294. rt2x00_set_field16(&reg, TXRX_CSR1_ACK_TIMEOUT, value);
  295. rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
  296. rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
  297. if (preamble == SHORT_PREAMBLE)
  298. rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE, 1);
  299. else
  300. rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE, 0);
  301. rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
  302. }
  303. static void rt2500usb_config_phymode(struct rt2x00_dev *rt2x00dev,
  304. const int phymode)
  305. {
  306. struct ieee80211_hw_mode *mode;
  307. struct ieee80211_rate *rate;
  308. if (phymode == MODE_IEEE80211A)
  309. rt2x00dev->curr_hwmode = HWMODE_A;
  310. else if (phymode == MODE_IEEE80211B)
  311. rt2x00dev->curr_hwmode = HWMODE_B;
  312. else
  313. rt2x00dev->curr_hwmode = HWMODE_G;
  314. mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode];
  315. rate = &mode->rates[mode->num_rates - 1];
  316. rt2500usb_config_rate(rt2x00dev, rate->val2);
  317. if (phymode == MODE_IEEE80211B) {
  318. rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x000b);
  319. rt2500usb_register_write(rt2x00dev, MAC_CSR12, 0x0040);
  320. } else {
  321. rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0005);
  322. rt2500usb_register_write(rt2x00dev, MAC_CSR12, 0x016c);
  323. }
  324. }
  325. static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
  326. const int index, const int channel,
  327. const int txpower)
  328. {
  329. struct rf_channel reg;
  330. /*
  331. * Fill rf_reg structure.
  332. */
  333. memcpy(&reg, &rt2x00dev->spec.channels[index], sizeof(reg));
  334. /*
  335. * Set TXpower.
  336. */
  337. rt2x00_set_field32(&reg.rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  338. /*
  339. * For RT2525E we should first set the channel to half band higher.
  340. */
  341. if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
  342. static const u32 vals[] = {
  343. 0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
  344. 0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
  345. 0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
  346. 0x00000902, 0x00000906
  347. };
  348. rt2500usb_rf_write(rt2x00dev, 2, vals[channel - 1]);
  349. if (reg.rf4)
  350. rt2500usb_rf_write(rt2x00dev, 4, reg.rf4);
  351. }
  352. rt2500usb_rf_write(rt2x00dev, 1, reg.rf1);
  353. rt2500usb_rf_write(rt2x00dev, 2, reg.rf2);
  354. rt2500usb_rf_write(rt2x00dev, 3, reg.rf3);
  355. if (reg.rf4)
  356. rt2500usb_rf_write(rt2x00dev, 4, reg.rf4);
  357. }
  358. static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
  359. const int txpower)
  360. {
  361. u32 rf3;
  362. rt2x00_rf_read(rt2x00dev, 3, &rf3);
  363. rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  364. rt2500usb_rf_write(rt2x00dev, 3, rf3);
  365. }
  366. static void rt2500usb_config_antenna(struct rt2x00_dev *rt2x00dev,
  367. const int antenna_tx, const int antenna_rx)
  368. {
  369. u8 r2;
  370. u8 r14;
  371. u16 csr5;
  372. u16 csr6;
  373. rt2500usb_bbp_read(rt2x00dev, 2, &r2);
  374. rt2500usb_bbp_read(rt2x00dev, 14, &r14);
  375. rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
  376. rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
  377. /*
  378. * Configure the TX antenna.
  379. */
  380. switch (antenna_tx) {
  381. case ANTENNA_SW_DIVERSITY:
  382. case ANTENNA_HW_DIVERSITY:
  383. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
  384. rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
  385. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
  386. break;
  387. case ANTENNA_A:
  388. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
  389. rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
  390. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
  391. break;
  392. case ANTENNA_B:
  393. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
  394. rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
  395. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
  396. break;
  397. }
  398. /*
  399. * Configure the RX antenna.
  400. */
  401. switch (antenna_rx) {
  402. case ANTENNA_SW_DIVERSITY:
  403. case ANTENNA_HW_DIVERSITY:
  404. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
  405. break;
  406. case ANTENNA_A:
  407. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
  408. break;
  409. case ANTENNA_B:
  410. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
  411. break;
  412. }
  413. /*
  414. * RT2525E and RT5222 need to flip TX I/Q
  415. */
  416. if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
  417. rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  418. rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
  419. rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
  420. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
  421. /*
  422. * RT2525E does not need RX I/Q Flip.
  423. */
  424. if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
  425. rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
  426. } else {
  427. rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
  428. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
  429. }
  430. rt2500usb_bbp_write(rt2x00dev, 2, r2);
  431. rt2500usb_bbp_write(rt2x00dev, 14, r14);
  432. rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
  433. rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
  434. }
  435. static void rt2500usb_config_duration(struct rt2x00_dev *rt2x00dev,
  436. const int short_slot_time,
  437. const int beacon_int)
  438. {
  439. u16 reg;
  440. rt2500usb_register_write(rt2x00dev, MAC_CSR10,
  441. short_slot_time ? SHORT_SLOT_TIME : SLOT_TIME);
  442. rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
  443. rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL, beacon_int * 4);
  444. rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
  445. }
  446. static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
  447. const unsigned int flags,
  448. struct ieee80211_conf *conf)
  449. {
  450. int short_slot_time = conf->flags & IEEE80211_CONF_SHORT_SLOT_TIME;
  451. if (flags & CONFIG_UPDATE_PHYMODE)
  452. rt2500usb_config_phymode(rt2x00dev, conf->phymode);
  453. if (flags & CONFIG_UPDATE_CHANNEL)
  454. rt2500usb_config_channel(rt2x00dev, conf->channel_val,
  455. conf->channel, conf->power_level);
  456. if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
  457. rt2500usb_config_txpower(rt2x00dev, conf->power_level);
  458. if (flags & CONFIG_UPDATE_ANTENNA)
  459. rt2500usb_config_antenna(rt2x00dev, conf->antenna_sel_tx,
  460. conf->antenna_sel_rx);
  461. if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
  462. rt2500usb_config_duration(rt2x00dev, short_slot_time,
  463. conf->beacon_int);
  464. }
  465. /*
  466. * LED functions.
  467. */
  468. static void rt2500usb_enable_led(struct rt2x00_dev *rt2x00dev)
  469. {
  470. u16 reg;
  471. rt2500usb_register_read(rt2x00dev, MAC_CSR21, &reg);
  472. rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, 70);
  473. rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, 30);
  474. rt2500usb_register_write(rt2x00dev, MAC_CSR21, reg);
  475. rt2500usb_register_read(rt2x00dev, MAC_CSR20, &reg);
  476. if (rt2x00dev->led_mode == LED_MODE_TXRX_ACTIVITY) {
  477. rt2x00_set_field16(&reg, MAC_CSR20_LINK, 1);
  478. rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, 0);
  479. } else if (rt2x00dev->led_mode == LED_MODE_ASUS) {
  480. rt2x00_set_field16(&reg, MAC_CSR20_LINK, 0);
  481. rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, 1);
  482. } else {
  483. rt2x00_set_field16(&reg, MAC_CSR20_LINK, 1);
  484. rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, 1);
  485. }
  486. rt2500usb_register_write(rt2x00dev, MAC_CSR20, reg);
  487. }
  488. static void rt2500usb_disable_led(struct rt2x00_dev *rt2x00dev)
  489. {
  490. u16 reg;
  491. rt2500usb_register_read(rt2x00dev, MAC_CSR20, &reg);
  492. rt2x00_set_field16(&reg, MAC_CSR20_LINK, 0);
  493. rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, 0);
  494. rt2500usb_register_write(rt2x00dev, MAC_CSR20, reg);
  495. }
  496. /*
  497. * Link tuning
  498. */
  499. static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev)
  500. {
  501. u16 reg;
  502. /*
  503. * Update FCS error count from register.
  504. */
  505. rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
  506. rt2x00dev->link.rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
  507. /*
  508. * Update False CCA count from register.
  509. */
  510. rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
  511. rt2x00dev->link.false_cca =
  512. rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
  513. }
  514. static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev)
  515. {
  516. u16 eeprom;
  517. u16 value;
  518. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
  519. value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
  520. rt2500usb_bbp_write(rt2x00dev, 24, value);
  521. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
  522. value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
  523. rt2500usb_bbp_write(rt2x00dev, 25, value);
  524. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
  525. value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
  526. rt2500usb_bbp_write(rt2x00dev, 61, value);
  527. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
  528. value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
  529. rt2500usb_bbp_write(rt2x00dev, 17, value);
  530. rt2x00dev->link.vgc_level = value;
  531. }
  532. static void rt2500usb_link_tuner(struct rt2x00_dev *rt2x00dev)
  533. {
  534. int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
  535. u16 bbp_thresh;
  536. u16 vgc_bound;
  537. u16 sens;
  538. u16 r24;
  539. u16 r25;
  540. u16 r61;
  541. u16 r17_sens;
  542. u8 r17;
  543. u8 up_bound;
  544. u8 low_bound;
  545. /*
  546. * Determine the BBP tuning threshold and correctly
  547. * set BBP 24, 25 and 61.
  548. */
  549. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &bbp_thresh);
  550. bbp_thresh = rt2x00_get_field16(bbp_thresh, EEPROM_BBPTUNE_THRESHOLD);
  551. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &r24);
  552. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &r25);
  553. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &r61);
  554. if ((rssi + bbp_thresh) > 0) {
  555. r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_HIGH);
  556. r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_HIGH);
  557. r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_HIGH);
  558. } else {
  559. r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_LOW);
  560. r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_LOW);
  561. r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_LOW);
  562. }
  563. rt2500usb_bbp_write(rt2x00dev, 24, r24);
  564. rt2500usb_bbp_write(rt2x00dev, 25, r25);
  565. rt2500usb_bbp_write(rt2x00dev, 61, r61);
  566. /*
  567. * Read current r17 value, as well as the sensitivity values
  568. * for the r17 register.
  569. */
  570. rt2500usb_bbp_read(rt2x00dev, 17, &r17);
  571. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &r17_sens);
  572. /*
  573. * A too low RSSI will cause too much false CCA which will
  574. * then corrupt the R17 tuning. To remidy this the tuning should
  575. * be stopped (While making sure the R17 value will not exceed limits)
  576. */
  577. if (rssi >= -40) {
  578. if (r17 != 0x60)
  579. rt2500usb_bbp_write(rt2x00dev, 17, 0x60);
  580. return;
  581. }
  582. /*
  583. * Special big-R17 for short distance
  584. */
  585. if (rssi >= -58) {
  586. sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_LOW);
  587. if (r17 != sens)
  588. rt2500usb_bbp_write(rt2x00dev, 17, sens);
  589. return;
  590. }
  591. /*
  592. * Special mid-R17 for middle distance
  593. */
  594. if (rssi >= -74) {
  595. sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_HIGH);
  596. if (r17 != sens)
  597. rt2500usb_bbp_write(rt2x00dev, 17, sens);
  598. return;
  599. }
  600. /*
  601. * Leave short or middle distance condition, restore r17
  602. * to the dynamic tuning range.
  603. */
  604. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &vgc_bound);
  605. vgc_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCUPPER);
  606. low_bound = 0x32;
  607. if (rssi >= -77)
  608. up_bound = vgc_bound;
  609. else
  610. up_bound = vgc_bound - (-77 - rssi);
  611. if (up_bound < low_bound)
  612. up_bound = low_bound;
  613. if (r17 > up_bound) {
  614. rt2500usb_bbp_write(rt2x00dev, 17, up_bound);
  615. rt2x00dev->link.vgc_level = up_bound;
  616. } else if (rt2x00dev->link.false_cca > 512 && r17 < up_bound) {
  617. rt2500usb_bbp_write(rt2x00dev, 17, ++r17);
  618. rt2x00dev->link.vgc_level = r17;
  619. } else if (rt2x00dev->link.false_cca < 100 && r17 > low_bound) {
  620. rt2500usb_bbp_write(rt2x00dev, 17, --r17);
  621. rt2x00dev->link.vgc_level = r17;
  622. }
  623. }
  624. /*
  625. * Initialization functions.
  626. */
  627. static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
  628. {
  629. u16 reg;
  630. rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
  631. USB_MODE_TEST, REGISTER_TIMEOUT);
  632. rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
  633. 0x00f0, REGISTER_TIMEOUT);
  634. rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
  635. rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
  636. rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
  637. rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
  638. rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
  639. rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
  640. rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
  641. rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
  642. rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
  643. rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
  644. rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
  645. rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
  646. rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
  647. rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
  648. rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
  649. rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
  650. rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
  651. rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
  652. rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
  653. rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
  654. rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
  655. rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
  656. rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
  657. rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
  658. rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
  659. rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
  660. rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
  661. rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
  662. rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
  663. rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
  664. rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
  665. rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
  666. rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
  667. rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
  668. rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
  669. rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
  670. rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
  671. rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
  672. rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
  673. rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
  674. rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
  675. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  676. return -EBUSY;
  677. rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
  678. rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
  679. rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
  680. rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
  681. rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
  682. if (rt2x00_get_rev(&rt2x00dev->chip) >= RT2570_VERSION_C) {
  683. rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
  684. reg &= ~0x0002;
  685. } else {
  686. reg = 0x3002;
  687. }
  688. rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
  689. rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
  690. rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
  691. rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
  692. rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
  693. rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
  694. rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
  695. rt2x00dev->rx->data_size);
  696. rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
  697. rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
  698. rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
  699. rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0xff);
  700. rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
  701. rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
  702. rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
  703. rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
  704. rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
  705. rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
  706. rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
  707. rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
  708. rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
  709. rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
  710. return 0;
  711. }
  712. static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
  713. {
  714. unsigned int i;
  715. u16 eeprom;
  716. u8 value;
  717. u8 reg_id;
  718. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  719. rt2500usb_bbp_read(rt2x00dev, 0, &value);
  720. if ((value != 0xff) && (value != 0x00))
  721. goto continue_csr_init;
  722. NOTICE(rt2x00dev, "Waiting for BBP register.\n");
  723. udelay(REGISTER_BUSY_DELAY);
  724. }
  725. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  726. return -EACCES;
  727. continue_csr_init:
  728. rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
  729. rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
  730. rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
  731. rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
  732. rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
  733. rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
  734. rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
  735. rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
  736. rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
  737. rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
  738. rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
  739. rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
  740. rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
  741. rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
  742. rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
  743. rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
  744. rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
  745. rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
  746. rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
  747. rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
  748. rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
  749. rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
  750. rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
  751. rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
  752. rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
  753. rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
  754. rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
  755. rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
  756. rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
  757. rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
  758. rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
  759. DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
  760. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  761. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  762. if (eeprom != 0xffff && eeprom != 0x0000) {
  763. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  764. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  765. DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
  766. reg_id, value);
  767. rt2500usb_bbp_write(rt2x00dev, reg_id, value);
  768. }
  769. }
  770. DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
  771. return 0;
  772. }
  773. /*
  774. * Device state switch handlers.
  775. */
  776. static void rt2500usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
  777. enum dev_state state)
  778. {
  779. u16 reg;
  780. rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
  781. rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX,
  782. state == STATE_RADIO_RX_OFF);
  783. rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
  784. }
  785. static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
  786. {
  787. /*
  788. * Initialize all registers.
  789. */
  790. if (rt2500usb_init_registers(rt2x00dev) ||
  791. rt2500usb_init_bbp(rt2x00dev)) {
  792. ERROR(rt2x00dev, "Register initialization failed.\n");
  793. return -EIO;
  794. }
  795. rt2x00usb_enable_radio(rt2x00dev);
  796. /*
  797. * Enable LED
  798. */
  799. rt2500usb_enable_led(rt2x00dev);
  800. return 0;
  801. }
  802. static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
  803. {
  804. /*
  805. * Disable LED
  806. */
  807. rt2500usb_disable_led(rt2x00dev);
  808. rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
  809. rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
  810. /*
  811. * Disable synchronisation.
  812. */
  813. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
  814. rt2x00usb_disable_radio(rt2x00dev);
  815. }
  816. static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
  817. enum dev_state state)
  818. {
  819. u16 reg;
  820. u16 reg2;
  821. unsigned int i;
  822. char put_to_sleep;
  823. char bbp_state;
  824. char rf_state;
  825. put_to_sleep = (state != STATE_AWAKE);
  826. reg = 0;
  827. rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
  828. rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
  829. rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
  830. rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
  831. rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
  832. rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
  833. /*
  834. * Device is not guaranteed to be in the requested state yet.
  835. * We must wait until the register indicates that the
  836. * device has entered the correct state.
  837. */
  838. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  839. rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
  840. bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
  841. rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
  842. if (bbp_state == state && rf_state == state)
  843. return 0;
  844. rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
  845. msleep(30);
  846. }
  847. NOTICE(rt2x00dev, "Device failed to enter state %d, "
  848. "current device state: bbp %d and rf %d.\n",
  849. state, bbp_state, rf_state);
  850. return -EBUSY;
  851. }
  852. static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
  853. enum dev_state state)
  854. {
  855. int retval = 0;
  856. switch (state) {
  857. case STATE_RADIO_ON:
  858. retval = rt2500usb_enable_radio(rt2x00dev);
  859. break;
  860. case STATE_RADIO_OFF:
  861. rt2500usb_disable_radio(rt2x00dev);
  862. break;
  863. case STATE_RADIO_RX_ON:
  864. case STATE_RADIO_RX_OFF:
  865. rt2500usb_toggle_rx(rt2x00dev, state);
  866. break;
  867. case STATE_DEEP_SLEEP:
  868. case STATE_SLEEP:
  869. case STATE_STANDBY:
  870. case STATE_AWAKE:
  871. retval = rt2500usb_set_state(rt2x00dev, state);
  872. break;
  873. default:
  874. retval = -ENOTSUPP;
  875. break;
  876. }
  877. return retval;
  878. }
  879. /*
  880. * TX descriptor initialization
  881. */
  882. static void rt2500usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  883. struct data_desc *txd,
  884. struct txdata_entry_desc *desc,
  885. struct ieee80211_hdr *ieee80211hdr,
  886. unsigned int length,
  887. struct ieee80211_tx_control *control)
  888. {
  889. u32 word;
  890. /*
  891. * Start writing the descriptor words.
  892. */
  893. rt2x00_desc_read(txd, 1, &word);
  894. rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, IEEE80211_HEADER);
  895. rt2x00_set_field32(&word, TXD_W1_AIFS, desc->aifs);
  896. rt2x00_set_field32(&word, TXD_W1_CWMIN, desc->cw_min);
  897. rt2x00_set_field32(&word, TXD_W1_CWMAX, desc->cw_max);
  898. rt2x00_desc_write(txd, 1, word);
  899. rt2x00_desc_read(txd, 2, &word);
  900. rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, desc->signal);
  901. rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, desc->service);
  902. rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, desc->length_low);
  903. rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, desc->length_high);
  904. rt2x00_desc_write(txd, 2, word);
  905. rt2x00_desc_read(txd, 0, &word);
  906. rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, control->retry_limit);
  907. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  908. test_bit(ENTRY_TXD_MORE_FRAG, &desc->flags));
  909. rt2x00_set_field32(&word, TXD_W0_ACK,
  910. !(control->flags & IEEE80211_TXCTL_NO_ACK));
  911. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  912. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc->flags));
  913. rt2x00_set_field32(&word, TXD_W0_OFDM,
  914. test_bit(ENTRY_TXD_OFDM_RATE, &desc->flags));
  915. rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
  916. !!(control->flags & IEEE80211_TXCTL_FIRST_FRAGMENT));
  917. rt2x00_set_field32(&word, TXD_W0_IFS, desc->ifs);
  918. rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, length);
  919. rt2x00_set_field32(&word, TXD_W0_CIPHER, CIPHER_NONE);
  920. rt2x00_desc_write(txd, 0, word);
  921. }
  922. /*
  923. * TX data initialization
  924. */
  925. static void rt2500usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  926. unsigned int queue)
  927. {
  928. u16 reg;
  929. if (queue != IEEE80211_TX_QUEUE_BEACON)
  930. return;
  931. rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
  932. if (!rt2x00_get_field16(reg, TXRX_CSR19_BEACON_GEN)) {
  933. rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
  934. /*
  935. * Beacon generation will fail initially.
  936. * To prevent this we need to register the TXRX_CSR19
  937. * register several times.
  938. */
  939. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  940. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
  941. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  942. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
  943. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  944. }
  945. }
  946. /*
  947. * RX control handlers
  948. */
  949. static void rt2500usb_fill_rxdone(struct data_entry *entry,
  950. struct rxdata_entry_desc *desc)
  951. {
  952. struct urb *urb = entry->priv;
  953. struct data_desc *rxd = (struct data_desc *)(entry->skb->data +
  954. (urb->actual_length -
  955. entry->ring->desc_size));
  956. u32 word0;
  957. u32 word1;
  958. rt2x00_desc_read(rxd, 0, &word0);
  959. rt2x00_desc_read(rxd, 1, &word1);
  960. desc->flags = 0;
  961. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  962. desc->flags |= RX_FLAG_FAILED_FCS_CRC;
  963. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  964. desc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  965. /*
  966. * Obtain the status about this packet.
  967. */
  968. desc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
  969. desc->rssi = rt2x00_get_field32(word1, RXD_W1_RSSI) -
  970. entry->ring->rt2x00dev->rssi_offset;
  971. desc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
  972. desc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  973. return;
  974. }
  975. /*
  976. * Interrupt functions.
  977. */
  978. static void rt2500usb_beacondone(struct urb *urb)
  979. {
  980. struct data_entry *entry = (struct data_entry *)urb->context;
  981. struct data_ring *ring = entry->ring;
  982. if (!test_bit(DEVICE_ENABLED_RADIO, &ring->rt2x00dev->flags))
  983. return;
  984. /*
  985. * Check if this was the guardian beacon,
  986. * if that was the case we need to send the real beacon now.
  987. * Otherwise we should free the sk_buffer, the device
  988. * should be doing the rest of the work now.
  989. */
  990. if (ring->index == 1) {
  991. rt2x00_ring_index_done_inc(ring);
  992. entry = rt2x00_get_data_entry(ring);
  993. usb_submit_urb(entry->priv, GFP_ATOMIC);
  994. rt2x00_ring_index_inc(ring);
  995. } else if (ring->index_done == 1) {
  996. entry = rt2x00_get_data_entry_done(ring);
  997. if (entry->skb) {
  998. dev_kfree_skb(entry->skb);
  999. entry->skb = NULL;
  1000. }
  1001. rt2x00_ring_index_done_inc(ring);
  1002. }
  1003. }
  1004. /*
  1005. * Device probe functions.
  1006. */
  1007. static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1008. {
  1009. u16 word;
  1010. u8 *mac;
  1011. rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
  1012. /*
  1013. * Start validation of the data that has been read.
  1014. */
  1015. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1016. if (!is_valid_ether_addr(mac)) {
  1017. DECLARE_MAC_BUF(macbuf);
  1018. random_ether_addr(mac);
  1019. EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
  1020. }
  1021. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1022. if (word == 0xffff) {
  1023. rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
  1024. rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, 0);
  1025. rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, 0);
  1026. rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE, 0);
  1027. rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
  1028. rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
  1029. rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
  1030. rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
  1031. EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
  1032. }
  1033. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
  1034. if (word == 0xffff) {
  1035. rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
  1036. rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
  1037. rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
  1038. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
  1039. EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
  1040. }
  1041. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
  1042. if (word == 0xffff) {
  1043. rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
  1044. DEFAULT_RSSI_OFFSET);
  1045. rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
  1046. EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
  1047. }
  1048. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
  1049. if (word == 0xffff) {
  1050. rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
  1051. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
  1052. EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
  1053. }
  1054. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
  1055. if (word == 0xffff) {
  1056. rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
  1057. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
  1058. EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
  1059. }
  1060. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
  1061. if (word == 0xffff) {
  1062. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
  1063. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
  1064. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
  1065. EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
  1066. }
  1067. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
  1068. if (word == 0xffff) {
  1069. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
  1070. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
  1071. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
  1072. EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
  1073. }
  1074. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
  1075. if (word == 0xffff) {
  1076. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
  1077. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
  1078. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
  1079. EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
  1080. }
  1081. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
  1082. if (word == 0xffff) {
  1083. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
  1084. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
  1085. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
  1086. EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
  1087. }
  1088. return 0;
  1089. }
  1090. static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1091. {
  1092. u16 reg;
  1093. u16 value;
  1094. u16 eeprom;
  1095. /*
  1096. * Read EEPROM word for configuration.
  1097. */
  1098. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1099. /*
  1100. * Identify RF chipset.
  1101. */
  1102. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1103. rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
  1104. rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
  1105. if (rt2x00_rev(&rt2x00dev->chip, 0xffff0)) {
  1106. ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
  1107. return -ENODEV;
  1108. }
  1109. if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
  1110. !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
  1111. !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
  1112. !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
  1113. !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
  1114. !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  1115. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1116. return -ENODEV;
  1117. }
  1118. /*
  1119. * Identify default antenna configuration.
  1120. */
  1121. rt2x00dev->hw->conf.antenna_sel_tx =
  1122. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1123. rt2x00dev->hw->conf.antenna_sel_rx =
  1124. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1125. /*
  1126. * Store led mode, for correct led behaviour.
  1127. */
  1128. rt2x00dev->led_mode =
  1129. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1130. /*
  1131. * Check if the BBP tuning should be disabled.
  1132. */
  1133. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
  1134. if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
  1135. __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
  1136. /*
  1137. * Read the RSSI <-> dBm offset information.
  1138. */
  1139. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
  1140. rt2x00dev->rssi_offset =
  1141. rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
  1142. return 0;
  1143. }
  1144. /*
  1145. * RF value list for RF2522
  1146. * Supports: 2.4 GHz
  1147. */
  1148. static const struct rf_channel rf_vals_bg_2522[] = {
  1149. { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
  1150. { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
  1151. { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
  1152. { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
  1153. { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
  1154. { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
  1155. { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
  1156. { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
  1157. { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
  1158. { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
  1159. { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
  1160. { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
  1161. { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
  1162. { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
  1163. };
  1164. /*
  1165. * RF value list for RF2523
  1166. * Supports: 2.4 GHz
  1167. */
  1168. static const struct rf_channel rf_vals_bg_2523[] = {
  1169. { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
  1170. { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
  1171. { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
  1172. { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
  1173. { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
  1174. { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
  1175. { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
  1176. { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
  1177. { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
  1178. { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
  1179. { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
  1180. { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
  1181. { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
  1182. { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
  1183. };
  1184. /*
  1185. * RF value list for RF2524
  1186. * Supports: 2.4 GHz
  1187. */
  1188. static const struct rf_channel rf_vals_bg_2524[] = {
  1189. { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
  1190. { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
  1191. { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
  1192. { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
  1193. { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
  1194. { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
  1195. { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
  1196. { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
  1197. { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
  1198. { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
  1199. { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
  1200. { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
  1201. { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
  1202. { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
  1203. };
  1204. /*
  1205. * RF value list for RF2525
  1206. * Supports: 2.4 GHz
  1207. */
  1208. static const struct rf_channel rf_vals_bg_2525[] = {
  1209. { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
  1210. { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
  1211. { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
  1212. { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
  1213. { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
  1214. { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
  1215. { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
  1216. { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
  1217. { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
  1218. { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
  1219. { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
  1220. { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
  1221. { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
  1222. { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
  1223. };
  1224. /*
  1225. * RF value list for RF2525e
  1226. * Supports: 2.4 GHz
  1227. */
  1228. static const struct rf_channel rf_vals_bg_2525e[] = {
  1229. { 1, 0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
  1230. { 2, 0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
  1231. { 3, 0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
  1232. { 4, 0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
  1233. { 5, 0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
  1234. { 6, 0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
  1235. { 7, 0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
  1236. { 8, 0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
  1237. { 9, 0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
  1238. { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
  1239. { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
  1240. { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
  1241. { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
  1242. { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
  1243. };
  1244. /*
  1245. * RF value list for RF5222
  1246. * Supports: 2.4 GHz & 5.2 GHz
  1247. */
  1248. static const struct rf_channel rf_vals_5222[] = {
  1249. { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
  1250. { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
  1251. { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
  1252. { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
  1253. { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
  1254. { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
  1255. { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
  1256. { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
  1257. { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
  1258. { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
  1259. { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
  1260. { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
  1261. { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
  1262. { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
  1263. /* 802.11 UNI / HyperLan 2 */
  1264. { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
  1265. { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
  1266. { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
  1267. { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
  1268. { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
  1269. { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
  1270. { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
  1271. { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
  1272. /* 802.11 HyperLan 2 */
  1273. { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
  1274. { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
  1275. { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
  1276. { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
  1277. { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
  1278. { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
  1279. { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
  1280. { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
  1281. { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
  1282. { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
  1283. /* 802.11 UNII */
  1284. { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
  1285. { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
  1286. { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
  1287. { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
  1288. { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
  1289. };
  1290. static void rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1291. {
  1292. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1293. u8 *txpower;
  1294. unsigned int i;
  1295. /*
  1296. * Initialize all hw fields.
  1297. */
  1298. rt2x00dev->hw->flags =
  1299. IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE |
  1300. IEEE80211_HW_RX_INCLUDES_FCS |
  1301. IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
  1302. rt2x00dev->hw->extra_tx_headroom = TXD_DESC_SIZE;
  1303. rt2x00dev->hw->max_signal = MAX_SIGNAL;
  1304. rt2x00dev->hw->max_rssi = MAX_RX_SSI;
  1305. rt2x00dev->hw->queues = 2;
  1306. SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_usb(rt2x00dev)->dev);
  1307. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1308. rt2x00_eeprom_addr(rt2x00dev,
  1309. EEPROM_MAC_ADDR_0));
  1310. /*
  1311. * Convert tx_power array in eeprom.
  1312. */
  1313. txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1314. for (i = 0; i < 14; i++)
  1315. txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
  1316. /*
  1317. * Initialize hw_mode information.
  1318. */
  1319. spec->num_modes = 2;
  1320. spec->num_rates = 12;
  1321. spec->tx_power_a = NULL;
  1322. spec->tx_power_bg = txpower;
  1323. spec->tx_power_default = DEFAULT_TXPOWER;
  1324. if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
  1325. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
  1326. spec->channels = rf_vals_bg_2522;
  1327. } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
  1328. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
  1329. spec->channels = rf_vals_bg_2523;
  1330. } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
  1331. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
  1332. spec->channels = rf_vals_bg_2524;
  1333. } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
  1334. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
  1335. spec->channels = rf_vals_bg_2525;
  1336. } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
  1337. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
  1338. spec->channels = rf_vals_bg_2525e;
  1339. } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  1340. spec->num_channels = ARRAY_SIZE(rf_vals_5222);
  1341. spec->channels = rf_vals_5222;
  1342. spec->num_modes = 3;
  1343. }
  1344. }
  1345. static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
  1346. {
  1347. int retval;
  1348. /*
  1349. * Allocate eeprom data.
  1350. */
  1351. retval = rt2500usb_validate_eeprom(rt2x00dev);
  1352. if (retval)
  1353. return retval;
  1354. retval = rt2500usb_init_eeprom(rt2x00dev);
  1355. if (retval)
  1356. return retval;
  1357. /*
  1358. * Initialize hw specifications.
  1359. */
  1360. rt2500usb_probe_hw_mode(rt2x00dev);
  1361. /*
  1362. * This device requires the beacon ring
  1363. */
  1364. __set_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags);
  1365. /*
  1366. * Set the rssi offset.
  1367. */
  1368. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1369. return 0;
  1370. }
  1371. /*
  1372. * IEEE80211 stack callback functions.
  1373. */
  1374. static void rt2500usb_configure_filter(struct ieee80211_hw *hw,
  1375. unsigned int changed_flags,
  1376. unsigned int *total_flags,
  1377. int mc_count,
  1378. struct dev_addr_list *mc_list)
  1379. {
  1380. struct rt2x00_dev *rt2x00dev = hw->priv;
  1381. struct interface *intf = &rt2x00dev->interface;
  1382. u16 reg;
  1383. /*
  1384. * Mask off any flags we are going to ignore from
  1385. * the total_flags field.
  1386. */
  1387. *total_flags &=
  1388. FIF_ALLMULTI |
  1389. FIF_FCSFAIL |
  1390. FIF_PLCPFAIL |
  1391. FIF_CONTROL |
  1392. FIF_OTHER_BSS |
  1393. FIF_PROMISC_IN_BSS;
  1394. /*
  1395. * Apply some rules to the filters:
  1396. * - Some filters imply different filters to be set.
  1397. * - Some things we can't filter out at all.
  1398. * - Some filters are set based on interface type.
  1399. */
  1400. if (mc_count)
  1401. *total_flags |= FIF_ALLMULTI;
  1402. if (changed_flags & FIF_OTHER_BSS ||
  1403. changed_flags & FIF_PROMISC_IN_BSS)
  1404. *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
  1405. if (is_interface_type(intf, IEEE80211_IF_TYPE_AP))
  1406. *total_flags |= FIF_PROMISC_IN_BSS;
  1407. /*
  1408. * Check if there is any work left for us.
  1409. */
  1410. if (intf->filter == *total_flags)
  1411. return;
  1412. intf->filter = *total_flags;
  1413. /*
  1414. * When in atomic context, reschedule and let rt2x00lib
  1415. * call this function again.
  1416. */
  1417. if (in_atomic()) {
  1418. queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->filter_work);
  1419. return;
  1420. }
  1421. /*
  1422. * Start configuration steps.
  1423. * Note that the version error will always be dropped
  1424. * and broadcast frames will always be accepted since
  1425. * there is no filter for it at this time.
  1426. */
  1427. rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
  1428. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
  1429. !(*total_flags & FIF_FCSFAIL));
  1430. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
  1431. !(*total_flags & FIF_PLCPFAIL));
  1432. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
  1433. !(*total_flags & FIF_CONTROL));
  1434. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
  1435. !(*total_flags & FIF_PROMISC_IN_BSS));
  1436. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
  1437. !(*total_flags & FIF_PROMISC_IN_BSS));
  1438. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
  1439. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
  1440. !(*total_flags & FIF_ALLMULTI));
  1441. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
  1442. rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
  1443. }
  1444. static int rt2500usb_beacon_update(struct ieee80211_hw *hw,
  1445. struct sk_buff *skb,
  1446. struct ieee80211_tx_control *control)
  1447. {
  1448. struct rt2x00_dev *rt2x00dev = hw->priv;
  1449. struct usb_device *usb_dev =
  1450. interface_to_usbdev(rt2x00dev_usb(rt2x00dev));
  1451. struct data_ring *ring =
  1452. rt2x00lib_get_ring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
  1453. struct data_entry *beacon;
  1454. struct data_entry *guardian;
  1455. int length;
  1456. /*
  1457. * Just in case the ieee80211 doesn't set this,
  1458. * but we need this queue set for the descriptor
  1459. * initialization.
  1460. */
  1461. control->queue = IEEE80211_TX_QUEUE_BEACON;
  1462. /*
  1463. * Obtain 2 entries, one for the guardian byte,
  1464. * the second for the actual beacon.
  1465. */
  1466. guardian = rt2x00_get_data_entry(ring);
  1467. rt2x00_ring_index_inc(ring);
  1468. beacon = rt2x00_get_data_entry(ring);
  1469. /*
  1470. * First we create the beacon.
  1471. */
  1472. skb_push(skb, ring->desc_size);
  1473. rt2x00lib_write_tx_desc(rt2x00dev, (struct data_desc *)skb->data,
  1474. (struct ieee80211_hdr *)(skb->data +
  1475. ring->desc_size),
  1476. skb->len - ring->desc_size, control);
  1477. /*
  1478. * Length passed to usb_fill_urb cannot be an odd number,
  1479. * so add 1 byte to make it even.
  1480. */
  1481. length = skb->len;
  1482. if (length % 2)
  1483. length++;
  1484. usb_fill_bulk_urb(beacon->priv, usb_dev,
  1485. usb_sndbulkpipe(usb_dev, 1),
  1486. skb->data, length, rt2500usb_beacondone, beacon);
  1487. beacon->skb = skb;
  1488. /*
  1489. * Second we need to create the guardian byte.
  1490. * We only need a single byte, so lets recycle
  1491. * the 'flags' field we are not using for beacons.
  1492. */
  1493. guardian->flags = 0;
  1494. usb_fill_bulk_urb(guardian->priv, usb_dev,
  1495. usb_sndbulkpipe(usb_dev, 1),
  1496. &guardian->flags, 1, rt2500usb_beacondone, guardian);
  1497. /*
  1498. * Send out the guardian byte.
  1499. */
  1500. usb_submit_urb(guardian->priv, GFP_ATOMIC);
  1501. /*
  1502. * Enable beacon generation.
  1503. */
  1504. rt2500usb_kick_tx_queue(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
  1505. return 0;
  1506. }
  1507. static const struct ieee80211_ops rt2500usb_mac80211_ops = {
  1508. .tx = rt2x00mac_tx,
  1509. .start = rt2x00mac_start,
  1510. .stop = rt2x00mac_stop,
  1511. .add_interface = rt2x00mac_add_interface,
  1512. .remove_interface = rt2x00mac_remove_interface,
  1513. .config = rt2x00mac_config,
  1514. .config_interface = rt2x00mac_config_interface,
  1515. .configure_filter = rt2500usb_configure_filter,
  1516. .get_stats = rt2x00mac_get_stats,
  1517. .conf_tx = rt2x00mac_conf_tx,
  1518. .get_tx_stats = rt2x00mac_get_tx_stats,
  1519. .beacon_update = rt2500usb_beacon_update,
  1520. };
  1521. static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
  1522. .probe_hw = rt2500usb_probe_hw,
  1523. .initialize = rt2x00usb_initialize,
  1524. .uninitialize = rt2x00usb_uninitialize,
  1525. .set_device_state = rt2500usb_set_device_state,
  1526. .link_stats = rt2500usb_link_stats,
  1527. .reset_tuner = rt2500usb_reset_tuner,
  1528. .link_tuner = rt2500usb_link_tuner,
  1529. .write_tx_desc = rt2500usb_write_tx_desc,
  1530. .write_tx_data = rt2x00usb_write_tx_data,
  1531. .kick_tx_queue = rt2500usb_kick_tx_queue,
  1532. .fill_rxdone = rt2500usb_fill_rxdone,
  1533. .config_mac_addr = rt2500usb_config_mac_addr,
  1534. .config_bssid = rt2500usb_config_bssid,
  1535. .config_type = rt2500usb_config_type,
  1536. .config = rt2500usb_config,
  1537. };
  1538. static const struct rt2x00_ops rt2500usb_ops = {
  1539. .name = DRV_NAME,
  1540. .rxd_size = RXD_DESC_SIZE,
  1541. .txd_size = TXD_DESC_SIZE,
  1542. .eeprom_size = EEPROM_SIZE,
  1543. .rf_size = RF_SIZE,
  1544. .lib = &rt2500usb_rt2x00_ops,
  1545. .hw = &rt2500usb_mac80211_ops,
  1546. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1547. .debugfs = &rt2500usb_rt2x00debug,
  1548. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1549. };
  1550. /*
  1551. * rt2500usb module information.
  1552. */
  1553. static struct usb_device_id rt2500usb_device_table[] = {
  1554. /* ASUS */
  1555. { USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
  1556. { USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
  1557. /* Belkin */
  1558. { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
  1559. { USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
  1560. { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
  1561. /* Cisco Systems */
  1562. { USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
  1563. { USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
  1564. { USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
  1565. /* Conceptronic */
  1566. { USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
  1567. /* D-LINK */
  1568. { USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
  1569. /* Gigabyte */
  1570. { USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
  1571. { USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
  1572. /* Hercules */
  1573. { USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
  1574. /* Melco */
  1575. { USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
  1576. { USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
  1577. { USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
  1578. { USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops) },
  1579. /* MSI */
  1580. { USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
  1581. { USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
  1582. { USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
  1583. /* Ralink */
  1584. { USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
  1585. { USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
  1586. { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
  1587. { USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
  1588. /* Siemens */
  1589. { USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
  1590. /* SMC */
  1591. { USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
  1592. /* Spairon */
  1593. { USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
  1594. /* Trust */
  1595. { USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
  1596. /* Zinwell */
  1597. { USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
  1598. { 0, }
  1599. };
  1600. MODULE_AUTHOR(DRV_PROJECT);
  1601. MODULE_VERSION(DRV_VERSION);
  1602. MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
  1603. MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
  1604. MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
  1605. MODULE_LICENSE("GPL");
  1606. static struct usb_driver rt2500usb_driver = {
  1607. .name = DRV_NAME,
  1608. .id_table = rt2500usb_device_table,
  1609. .probe = rt2x00usb_probe,
  1610. .disconnect = rt2x00usb_disconnect,
  1611. .suspend = rt2x00usb_suspend,
  1612. .resume = rt2x00usb_resume,
  1613. };
  1614. static int __init rt2500usb_init(void)
  1615. {
  1616. return usb_register(&rt2500usb_driver);
  1617. }
  1618. static void __exit rt2500usb_exit(void)
  1619. {
  1620. usb_deregister(&rt2500usb_driver);
  1621. }
  1622. module_init(rt2500usb_init);
  1623. module_exit(rt2500usb_exit);