GPIO.txt 6.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212
  1. S3C2410 GPIO Control
  2. ====================
  3. Introduction
  4. ------------
  5. The s3c2410 kernel provides an interface to configure and
  6. manipulate the state of the GPIO pins, and find out other
  7. information about them.
  8. There are a number of conditions attached to the configuration
  9. of the s3c2410 GPIO system, please read the Samsung provided
  10. data-sheet/users manual to find out the complete list.
  11. GPIOLIB
  12. -------
  13. With the event of the GPIOLIB in drivers/gpio, support for some
  14. of the GPIO functions such as reading and writing a pin will
  15. be removed in favour of this common access method.
  16. Once all the extant drivers have been converted, the functions
  17. listed below will be removed (they may be marked as __deprecated
  18. in the near future).
  19. The following functions now either have a s3c_ specific variant
  20. or are merged into gpiolib. See the definitions in
  21. arch/arm/plat-samsung/include/plat/gpio-cfg.h:
  22. s3c2410_gpio_setpin() gpio_set_value() or gpio_direction_output()
  23. s3c2410_gpio_getpin() gpio_get_value() or gpio_direction_input()
  24. s3c2410_gpio_getirq() gpio_to_irq()
  25. s3c2410_gpio_cfgpin() s3c_gpio_cfgpin()
  26. s3c2410_gpio_getcfg() s3c_gpio_getcfg()
  27. s3c2410_gpio_pullup() s3c_gpio_setpull()
  28. GPIOLIB conversion
  29. ------------------
  30. If you need to convert your board or driver to use gpiolib from the exiting
  31. s3c2410 api, then here are some notes on the process.
  32. 1) If your board is exclusively using an GPIO, say to control peripheral
  33. power, then it will require to claim the gpio with gpio_request() before
  34. it can use it.
  35. It is recommended to check the return value, with at least WARN_ON()
  36. during initialisation.
  37. 2) The s3c2410_gpio_cfgpin() can be directly replaced with s3c_gpio_cfgpin()
  38. as they have the same arguments, and can either take the pin specific
  39. values, or the more generic special-function-number arguments.
  40. 3) s3c2410_gpio_pullup() changs have the problem that whilst the
  41. s3c2410_gpio_pullup(x, 1) can be easily translated to the
  42. s3c_gpio_setpull(x, S3C_GPIO_PULL_NONE), the s3c2410_gpio_pullup(x, 0)
  43. are not so easy.
  44. The s3c2410_gpio_pullup(x, 0) case enables the pull-up (or in the case
  45. of some of the devices, a pull-down) and as such the new API distinguishes
  46. between the UP and DOWN case. There is currently no 'just turn on' setting
  47. which may be required if this becomes a problem.
  48. 4) s3c2410_gpio_setpin() can be replaced by gpio_set_value(), the old call
  49. does not implicitly configure the relevant gpio to output. The gpio
  50. direction should be changed before using gpio_set_value().
  51. 5) s3c2410_gpio_getpin() is replaceable by gpio_get_value() if the pin
  52. has been set to input. It is currently unknown what the behaviour is
  53. when using gpio_get_value() on an output pin (s3c2410_gpio_getpin
  54. would return the value the pin is supposed to be outputting).
  55. 6) s3c2410_gpio_getirq() should be directly replacable with the
  56. gpio_to_irq() call.
  57. The s3c2410_gpio and gpio_ calls have always operated on the same gpio
  58. numberspace, so there is no problem with converting the gpio numbering
  59. between the calls.
  60. Headers
  61. -------
  62. See arch/arm/mach-s3c2410/include/mach/regs-gpio.h for the list
  63. of GPIO pins, and the configuration values for them. This
  64. is included by using #include <mach/regs-gpio.h>
  65. The GPIO management functions are defined in the hardware
  66. header arch/arm/mach-s3c2410/include/mach/hardware.h which can be
  67. included by #include <mach/hardware.h>
  68. A useful amount of documentation can be found in the hardware
  69. header on how the GPIO functions (and others) work.
  70. Whilst a number of these functions do make some checks on what
  71. is passed to them, for speed of use, they may not always ensure
  72. that the user supplied data to them is correct.
  73. PIN Numbers
  74. -----------
  75. Each pin has an unique number associated with it in regs-gpio.h,
  76. eg S3C2410_GPA(0) or S3C2410_GPF(1). These defines are used to tell
  77. the GPIO functions which pin is to be used.
  78. With the conversion to gpiolib, there is no longer a direct conversion
  79. from gpio pin number to register base address as in earlier kernels. This
  80. is due to the number space required for newer SoCs where the later
  81. GPIOs are not contiguous.
  82. Configuring a pin
  83. -----------------
  84. The following function allows the configuration of a given pin to
  85. be changed.
  86. void s3c2410_gpio_cfgpin(unsigned int pin, unsigned int function);
  87. Eg:
  88. s3c2410_gpio_cfgpin(S3C2410_GPA(0), S3C2410_GPA0_ADDR0);
  89. s3c2410_gpio_cfgpin(S3C2410_GPE(8), S3C2410_GPE8_SDDAT1);
  90. which would turn GPA(0) into the lowest Address line A0, and set
  91. GPE(8) to be connected to the SDIO/MMC controller's SDDAT1 line.
  92. The s3c_gpio_cfgpin() call is a functional replacement for this call.
  93. Reading the current configuration
  94. ---------------------------------
  95. The current configuration of a pin can be read by using:
  96. s3c2410_gpio_getcfg(unsigned int pin);
  97. The return value will be from the same set of values which can be
  98. passed to s3c2410_gpio_cfgpin().
  99. The s3c_gpio_getcfg() call should be a functional replacement for
  100. this call.
  101. Configuring a pull-up resistor
  102. ------------------------------
  103. A large proportion of the GPIO pins on the S3C2410 can have weak
  104. pull-up resistors enabled. This can be configured by the following
  105. function:
  106. void s3c2410_gpio_pullup(unsigned int pin, unsigned int to);
  107. Where the to value is zero to set the pull-up off, and 1 to enable
  108. the specified pull-up. Any other values are currently undefined.
  109. The s3c_gpio_setpull() offers similar functionality, but with the
  110. ability to encode whether the pull is up or down. Currently there
  111. is no 'just on' state, so up or down must be selected.
  112. Getting the state of a PIN
  113. --------------------------
  114. The state of a pin can be read by using the function:
  115. unsigned int s3c2410_gpio_getpin(unsigned int pin);
  116. This will return either zero or non-zero. Do not count on this
  117. function returning 1 if the pin is set.
  118. This call is now implemented by the relevant gpiolib calls, convert
  119. your board or driver to use gpiolib.
  120. Setting the state of a PIN
  121. --------------------------
  122. The value an pin is outputing can be modified by using the following:
  123. void s3c2410_gpio_setpin(unsigned int pin, unsigned int to);
  124. Which sets the given pin to the value. Use 0 to write 0, and 1 to
  125. set the output to 1.
  126. This call is now implemented by the relevant gpiolib calls, convert
  127. your board or driver to use gpiolib.
  128. Getting the IRQ number associated with a PIN
  129. --------------------------------------------
  130. The following function can map the given pin number to an IRQ
  131. number to pass to the IRQ system.
  132. int s3c2410_gpio_getirq(unsigned int pin);
  133. Note, not all pins have an IRQ.
  134. This call is now implemented by the relevant gpiolib calls, convert
  135. your board or driver to use gpiolib.
  136. Authour
  137. -------
  138. Ben Dooks, 03 October 2004
  139. Copyright 2004 Ben Dooks, Simtec Electronics