xfs_aops.c 41 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660
  1. /*
  2. * Copyright (c) 2000-2005 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_bit.h"
  20. #include "xfs_log.h"
  21. #include "xfs_inum.h"
  22. #include "xfs_sb.h"
  23. #include "xfs_ag.h"
  24. #include "xfs_dir2.h"
  25. #include "xfs_trans.h"
  26. #include "xfs_dmapi.h"
  27. #include "xfs_mount.h"
  28. #include "xfs_bmap_btree.h"
  29. #include "xfs_alloc_btree.h"
  30. #include "xfs_ialloc_btree.h"
  31. #include "xfs_dir2_sf.h"
  32. #include "xfs_attr_sf.h"
  33. #include "xfs_dinode.h"
  34. #include "xfs_inode.h"
  35. #include "xfs_alloc.h"
  36. #include "xfs_btree.h"
  37. #include "xfs_error.h"
  38. #include "xfs_rw.h"
  39. #include "xfs_iomap.h"
  40. #include "xfs_vnodeops.h"
  41. #include <linux/mpage.h>
  42. #include <linux/pagevec.h>
  43. #include <linux/writeback.h>
  44. /*
  45. * Prime number of hash buckets since address is used as the key.
  46. */
  47. #define NVSYNC 37
  48. #define to_ioend_wq(v) (&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
  49. static wait_queue_head_t xfs_ioend_wq[NVSYNC];
  50. void __init
  51. xfs_ioend_init(void)
  52. {
  53. int i;
  54. for (i = 0; i < NVSYNC; i++)
  55. init_waitqueue_head(&xfs_ioend_wq[i]);
  56. }
  57. void
  58. xfs_ioend_wait(
  59. xfs_inode_t *ip)
  60. {
  61. wait_queue_head_t *wq = to_ioend_wq(ip);
  62. wait_event(*wq, (atomic_read(&ip->i_iocount) == 0));
  63. }
  64. STATIC void
  65. xfs_ioend_wake(
  66. xfs_inode_t *ip)
  67. {
  68. if (atomic_dec_and_test(&ip->i_iocount))
  69. wake_up(to_ioend_wq(ip));
  70. }
  71. STATIC void
  72. xfs_count_page_state(
  73. struct page *page,
  74. int *delalloc,
  75. int *unmapped,
  76. int *unwritten)
  77. {
  78. struct buffer_head *bh, *head;
  79. *delalloc = *unmapped = *unwritten = 0;
  80. bh = head = page_buffers(page);
  81. do {
  82. if (buffer_uptodate(bh) && !buffer_mapped(bh))
  83. (*unmapped) = 1;
  84. else if (buffer_unwritten(bh))
  85. (*unwritten) = 1;
  86. else if (buffer_delay(bh))
  87. (*delalloc) = 1;
  88. } while ((bh = bh->b_this_page) != head);
  89. }
  90. #if defined(XFS_RW_TRACE)
  91. void
  92. xfs_page_trace(
  93. int tag,
  94. struct inode *inode,
  95. struct page *page,
  96. unsigned long pgoff)
  97. {
  98. xfs_inode_t *ip;
  99. loff_t isize = i_size_read(inode);
  100. loff_t offset = page_offset(page);
  101. int delalloc = -1, unmapped = -1, unwritten = -1;
  102. if (page_has_buffers(page))
  103. xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
  104. ip = XFS_I(inode);
  105. if (!ip->i_rwtrace)
  106. return;
  107. ktrace_enter(ip->i_rwtrace,
  108. (void *)((unsigned long)tag),
  109. (void *)ip,
  110. (void *)inode,
  111. (void *)page,
  112. (void *)pgoff,
  113. (void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)),
  114. (void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)),
  115. (void *)((unsigned long)((isize >> 32) & 0xffffffff)),
  116. (void *)((unsigned long)(isize & 0xffffffff)),
  117. (void *)((unsigned long)((offset >> 32) & 0xffffffff)),
  118. (void *)((unsigned long)(offset & 0xffffffff)),
  119. (void *)((unsigned long)delalloc),
  120. (void *)((unsigned long)unmapped),
  121. (void *)((unsigned long)unwritten),
  122. (void *)((unsigned long)current_pid()),
  123. (void *)NULL);
  124. }
  125. #else
  126. #define xfs_page_trace(tag, inode, page, pgoff)
  127. #endif
  128. STATIC struct block_device *
  129. xfs_find_bdev_for_inode(
  130. struct xfs_inode *ip)
  131. {
  132. struct xfs_mount *mp = ip->i_mount;
  133. if (XFS_IS_REALTIME_INODE(ip))
  134. return mp->m_rtdev_targp->bt_bdev;
  135. else
  136. return mp->m_ddev_targp->bt_bdev;
  137. }
  138. /*
  139. * We're now finished for good with this ioend structure.
  140. * Update the page state via the associated buffer_heads,
  141. * release holds on the inode and bio, and finally free
  142. * up memory. Do not use the ioend after this.
  143. */
  144. STATIC void
  145. xfs_destroy_ioend(
  146. xfs_ioend_t *ioend)
  147. {
  148. struct buffer_head *bh, *next;
  149. struct xfs_inode *ip = XFS_I(ioend->io_inode);
  150. for (bh = ioend->io_buffer_head; bh; bh = next) {
  151. next = bh->b_private;
  152. bh->b_end_io(bh, !ioend->io_error);
  153. }
  154. /*
  155. * Volume managers supporting multiple paths can send back ENODEV
  156. * when the final path disappears. In this case continuing to fill
  157. * the page cache with dirty data which cannot be written out is
  158. * evil, so prevent that.
  159. */
  160. if (unlikely(ioend->io_error == -ENODEV)) {
  161. xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ,
  162. __FILE__, __LINE__);
  163. }
  164. xfs_ioend_wake(ip);
  165. mempool_free(ioend, xfs_ioend_pool);
  166. }
  167. /*
  168. * If the end of the current ioend is beyond the current EOF,
  169. * return the new EOF value, otherwise zero.
  170. */
  171. STATIC xfs_fsize_t
  172. xfs_ioend_new_eof(
  173. xfs_ioend_t *ioend)
  174. {
  175. xfs_inode_t *ip = XFS_I(ioend->io_inode);
  176. xfs_fsize_t isize;
  177. xfs_fsize_t bsize;
  178. bsize = ioend->io_offset + ioend->io_size;
  179. isize = MAX(ip->i_size, ip->i_new_size);
  180. isize = MIN(isize, bsize);
  181. return isize > ip->i_d.di_size ? isize : 0;
  182. }
  183. /*
  184. * Update on-disk file size now that data has been written to disk.
  185. * The current in-memory file size is i_size. If a write is beyond
  186. * eof i_new_size will be the intended file size until i_size is
  187. * updated. If this write does not extend all the way to the valid
  188. * file size then restrict this update to the end of the write.
  189. */
  190. STATIC void
  191. xfs_setfilesize(
  192. xfs_ioend_t *ioend)
  193. {
  194. xfs_inode_t *ip = XFS_I(ioend->io_inode);
  195. xfs_fsize_t isize;
  196. ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
  197. ASSERT(ioend->io_type != IOMAP_READ);
  198. if (unlikely(ioend->io_error))
  199. return;
  200. xfs_ilock(ip, XFS_ILOCK_EXCL);
  201. isize = xfs_ioend_new_eof(ioend);
  202. if (isize) {
  203. ip->i_d.di_size = isize;
  204. xfs_mark_inode_dirty_sync(ip);
  205. }
  206. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  207. }
  208. /*
  209. * Buffered IO write completion for delayed allocate extents.
  210. */
  211. STATIC void
  212. xfs_end_bio_delalloc(
  213. struct work_struct *work)
  214. {
  215. xfs_ioend_t *ioend =
  216. container_of(work, xfs_ioend_t, io_work);
  217. xfs_setfilesize(ioend);
  218. xfs_destroy_ioend(ioend);
  219. }
  220. /*
  221. * Buffered IO write completion for regular, written extents.
  222. */
  223. STATIC void
  224. xfs_end_bio_written(
  225. struct work_struct *work)
  226. {
  227. xfs_ioend_t *ioend =
  228. container_of(work, xfs_ioend_t, io_work);
  229. xfs_setfilesize(ioend);
  230. xfs_destroy_ioend(ioend);
  231. }
  232. /*
  233. * IO write completion for unwritten extents.
  234. *
  235. * Issue transactions to convert a buffer range from unwritten
  236. * to written extents.
  237. */
  238. STATIC void
  239. xfs_end_bio_unwritten(
  240. struct work_struct *work)
  241. {
  242. xfs_ioend_t *ioend =
  243. container_of(work, xfs_ioend_t, io_work);
  244. struct xfs_inode *ip = XFS_I(ioend->io_inode);
  245. xfs_off_t offset = ioend->io_offset;
  246. size_t size = ioend->io_size;
  247. if (likely(!ioend->io_error)) {
  248. if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
  249. int error;
  250. error = xfs_iomap_write_unwritten(ip, offset, size);
  251. if (error)
  252. ioend->io_error = error;
  253. }
  254. xfs_setfilesize(ioend);
  255. }
  256. xfs_destroy_ioend(ioend);
  257. }
  258. /*
  259. * IO read completion for regular, written extents.
  260. */
  261. STATIC void
  262. xfs_end_bio_read(
  263. struct work_struct *work)
  264. {
  265. xfs_ioend_t *ioend =
  266. container_of(work, xfs_ioend_t, io_work);
  267. xfs_destroy_ioend(ioend);
  268. }
  269. /*
  270. * Schedule IO completion handling on a xfsdatad if this was
  271. * the final hold on this ioend. If we are asked to wait,
  272. * flush the workqueue.
  273. */
  274. STATIC void
  275. xfs_finish_ioend(
  276. xfs_ioend_t *ioend,
  277. int wait)
  278. {
  279. if (atomic_dec_and_test(&ioend->io_remaining)) {
  280. struct workqueue_struct *wq = xfsdatad_workqueue;
  281. if (ioend->io_work.func == xfs_end_bio_unwritten)
  282. wq = xfsconvertd_workqueue;
  283. queue_work(wq, &ioend->io_work);
  284. if (wait)
  285. flush_workqueue(wq);
  286. }
  287. }
  288. /*
  289. * Allocate and initialise an IO completion structure.
  290. * We need to track unwritten extent write completion here initially.
  291. * We'll need to extend this for updating the ondisk inode size later
  292. * (vs. incore size).
  293. */
  294. STATIC xfs_ioend_t *
  295. xfs_alloc_ioend(
  296. struct inode *inode,
  297. unsigned int type)
  298. {
  299. xfs_ioend_t *ioend;
  300. ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
  301. /*
  302. * Set the count to 1 initially, which will prevent an I/O
  303. * completion callback from happening before we have started
  304. * all the I/O from calling the completion routine too early.
  305. */
  306. atomic_set(&ioend->io_remaining, 1);
  307. ioend->io_error = 0;
  308. ioend->io_list = NULL;
  309. ioend->io_type = type;
  310. ioend->io_inode = inode;
  311. ioend->io_buffer_head = NULL;
  312. ioend->io_buffer_tail = NULL;
  313. atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
  314. ioend->io_offset = 0;
  315. ioend->io_size = 0;
  316. if (type == IOMAP_UNWRITTEN)
  317. INIT_WORK(&ioend->io_work, xfs_end_bio_unwritten);
  318. else if (type == IOMAP_DELAY)
  319. INIT_WORK(&ioend->io_work, xfs_end_bio_delalloc);
  320. else if (type == IOMAP_READ)
  321. INIT_WORK(&ioend->io_work, xfs_end_bio_read);
  322. else
  323. INIT_WORK(&ioend->io_work, xfs_end_bio_written);
  324. return ioend;
  325. }
  326. STATIC int
  327. xfs_map_blocks(
  328. struct inode *inode,
  329. loff_t offset,
  330. ssize_t count,
  331. xfs_iomap_t *mapp,
  332. int flags)
  333. {
  334. int nmaps = 1;
  335. return -xfs_iomap(XFS_I(inode), offset, count, flags, mapp, &nmaps);
  336. }
  337. STATIC_INLINE int
  338. xfs_iomap_valid(
  339. xfs_iomap_t *iomapp,
  340. loff_t offset)
  341. {
  342. return offset >= iomapp->iomap_offset &&
  343. offset < iomapp->iomap_offset + iomapp->iomap_bsize;
  344. }
  345. /*
  346. * BIO completion handler for buffered IO.
  347. */
  348. STATIC void
  349. xfs_end_bio(
  350. struct bio *bio,
  351. int error)
  352. {
  353. xfs_ioend_t *ioend = bio->bi_private;
  354. ASSERT(atomic_read(&bio->bi_cnt) >= 1);
  355. ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
  356. /* Toss bio and pass work off to an xfsdatad thread */
  357. bio->bi_private = NULL;
  358. bio->bi_end_io = NULL;
  359. bio_put(bio);
  360. xfs_finish_ioend(ioend, 0);
  361. }
  362. STATIC void
  363. xfs_submit_ioend_bio(
  364. struct writeback_control *wbc,
  365. xfs_ioend_t *ioend,
  366. struct bio *bio)
  367. {
  368. atomic_inc(&ioend->io_remaining);
  369. bio->bi_private = ioend;
  370. bio->bi_end_io = xfs_end_bio;
  371. /*
  372. * If the I/O is beyond EOF we mark the inode dirty immediately
  373. * but don't update the inode size until I/O completion.
  374. */
  375. if (xfs_ioend_new_eof(ioend))
  376. xfs_mark_inode_dirty_sync(XFS_I(ioend->io_inode));
  377. submit_bio(wbc->sync_mode == WB_SYNC_ALL ?
  378. WRITE_SYNC_PLUG : WRITE, bio);
  379. ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
  380. bio_put(bio);
  381. }
  382. STATIC struct bio *
  383. xfs_alloc_ioend_bio(
  384. struct buffer_head *bh)
  385. {
  386. struct bio *bio;
  387. int nvecs = bio_get_nr_vecs(bh->b_bdev);
  388. do {
  389. bio = bio_alloc(GFP_NOIO, nvecs);
  390. nvecs >>= 1;
  391. } while (!bio);
  392. ASSERT(bio->bi_private == NULL);
  393. bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
  394. bio->bi_bdev = bh->b_bdev;
  395. bio_get(bio);
  396. return bio;
  397. }
  398. STATIC void
  399. xfs_start_buffer_writeback(
  400. struct buffer_head *bh)
  401. {
  402. ASSERT(buffer_mapped(bh));
  403. ASSERT(buffer_locked(bh));
  404. ASSERT(!buffer_delay(bh));
  405. ASSERT(!buffer_unwritten(bh));
  406. mark_buffer_async_write(bh);
  407. set_buffer_uptodate(bh);
  408. clear_buffer_dirty(bh);
  409. }
  410. STATIC void
  411. xfs_start_page_writeback(
  412. struct page *page,
  413. int clear_dirty,
  414. int buffers)
  415. {
  416. ASSERT(PageLocked(page));
  417. ASSERT(!PageWriteback(page));
  418. if (clear_dirty)
  419. clear_page_dirty_for_io(page);
  420. set_page_writeback(page);
  421. unlock_page(page);
  422. /* If no buffers on the page are to be written, finish it here */
  423. if (!buffers)
  424. end_page_writeback(page);
  425. }
  426. static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
  427. {
  428. return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
  429. }
  430. /*
  431. * Submit all of the bios for all of the ioends we have saved up, covering the
  432. * initial writepage page and also any probed pages.
  433. *
  434. * Because we may have multiple ioends spanning a page, we need to start
  435. * writeback on all the buffers before we submit them for I/O. If we mark the
  436. * buffers as we got, then we can end up with a page that only has buffers
  437. * marked async write and I/O complete on can occur before we mark the other
  438. * buffers async write.
  439. *
  440. * The end result of this is that we trip a bug in end_page_writeback() because
  441. * we call it twice for the one page as the code in end_buffer_async_write()
  442. * assumes that all buffers on the page are started at the same time.
  443. *
  444. * The fix is two passes across the ioend list - one to start writeback on the
  445. * buffer_heads, and then submit them for I/O on the second pass.
  446. */
  447. STATIC void
  448. xfs_submit_ioend(
  449. struct writeback_control *wbc,
  450. xfs_ioend_t *ioend)
  451. {
  452. xfs_ioend_t *head = ioend;
  453. xfs_ioend_t *next;
  454. struct buffer_head *bh;
  455. struct bio *bio;
  456. sector_t lastblock = 0;
  457. /* Pass 1 - start writeback */
  458. do {
  459. next = ioend->io_list;
  460. for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
  461. xfs_start_buffer_writeback(bh);
  462. }
  463. } while ((ioend = next) != NULL);
  464. /* Pass 2 - submit I/O */
  465. ioend = head;
  466. do {
  467. next = ioend->io_list;
  468. bio = NULL;
  469. for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
  470. if (!bio) {
  471. retry:
  472. bio = xfs_alloc_ioend_bio(bh);
  473. } else if (bh->b_blocknr != lastblock + 1) {
  474. xfs_submit_ioend_bio(wbc, ioend, bio);
  475. goto retry;
  476. }
  477. if (bio_add_buffer(bio, bh) != bh->b_size) {
  478. xfs_submit_ioend_bio(wbc, ioend, bio);
  479. goto retry;
  480. }
  481. lastblock = bh->b_blocknr;
  482. }
  483. if (bio)
  484. xfs_submit_ioend_bio(wbc, ioend, bio);
  485. xfs_finish_ioend(ioend, 0);
  486. } while ((ioend = next) != NULL);
  487. }
  488. /*
  489. * Cancel submission of all buffer_heads so far in this endio.
  490. * Toss the endio too. Only ever called for the initial page
  491. * in a writepage request, so only ever one page.
  492. */
  493. STATIC void
  494. xfs_cancel_ioend(
  495. xfs_ioend_t *ioend)
  496. {
  497. xfs_ioend_t *next;
  498. struct buffer_head *bh, *next_bh;
  499. do {
  500. next = ioend->io_list;
  501. bh = ioend->io_buffer_head;
  502. do {
  503. next_bh = bh->b_private;
  504. clear_buffer_async_write(bh);
  505. unlock_buffer(bh);
  506. } while ((bh = next_bh) != NULL);
  507. xfs_ioend_wake(XFS_I(ioend->io_inode));
  508. mempool_free(ioend, xfs_ioend_pool);
  509. } while ((ioend = next) != NULL);
  510. }
  511. /*
  512. * Test to see if we've been building up a completion structure for
  513. * earlier buffers -- if so, we try to append to this ioend if we
  514. * can, otherwise we finish off any current ioend and start another.
  515. * Return true if we've finished the given ioend.
  516. */
  517. STATIC void
  518. xfs_add_to_ioend(
  519. struct inode *inode,
  520. struct buffer_head *bh,
  521. xfs_off_t offset,
  522. unsigned int type,
  523. xfs_ioend_t **result,
  524. int need_ioend)
  525. {
  526. xfs_ioend_t *ioend = *result;
  527. if (!ioend || need_ioend || type != ioend->io_type) {
  528. xfs_ioend_t *previous = *result;
  529. ioend = xfs_alloc_ioend(inode, type);
  530. ioend->io_offset = offset;
  531. ioend->io_buffer_head = bh;
  532. ioend->io_buffer_tail = bh;
  533. if (previous)
  534. previous->io_list = ioend;
  535. *result = ioend;
  536. } else {
  537. ioend->io_buffer_tail->b_private = bh;
  538. ioend->io_buffer_tail = bh;
  539. }
  540. bh->b_private = NULL;
  541. ioend->io_size += bh->b_size;
  542. }
  543. STATIC void
  544. xfs_map_buffer(
  545. struct buffer_head *bh,
  546. xfs_iomap_t *mp,
  547. xfs_off_t offset,
  548. uint block_bits)
  549. {
  550. sector_t bn;
  551. ASSERT(mp->iomap_bn != IOMAP_DADDR_NULL);
  552. bn = (mp->iomap_bn >> (block_bits - BBSHIFT)) +
  553. ((offset - mp->iomap_offset) >> block_bits);
  554. ASSERT(bn || (mp->iomap_flags & IOMAP_REALTIME));
  555. bh->b_blocknr = bn;
  556. set_buffer_mapped(bh);
  557. }
  558. STATIC void
  559. xfs_map_at_offset(
  560. struct buffer_head *bh,
  561. loff_t offset,
  562. int block_bits,
  563. xfs_iomap_t *iomapp)
  564. {
  565. ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE));
  566. ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY));
  567. lock_buffer(bh);
  568. xfs_map_buffer(bh, iomapp, offset, block_bits);
  569. bh->b_bdev = iomapp->iomap_target->bt_bdev;
  570. set_buffer_mapped(bh);
  571. clear_buffer_delay(bh);
  572. clear_buffer_unwritten(bh);
  573. }
  574. /*
  575. * Look for a page at index that is suitable for clustering.
  576. */
  577. STATIC unsigned int
  578. xfs_probe_page(
  579. struct page *page,
  580. unsigned int pg_offset,
  581. int mapped)
  582. {
  583. int ret = 0;
  584. if (PageWriteback(page))
  585. return 0;
  586. if (page->mapping && PageDirty(page)) {
  587. if (page_has_buffers(page)) {
  588. struct buffer_head *bh, *head;
  589. bh = head = page_buffers(page);
  590. do {
  591. if (!buffer_uptodate(bh))
  592. break;
  593. if (mapped != buffer_mapped(bh))
  594. break;
  595. ret += bh->b_size;
  596. if (ret >= pg_offset)
  597. break;
  598. } while ((bh = bh->b_this_page) != head);
  599. } else
  600. ret = mapped ? 0 : PAGE_CACHE_SIZE;
  601. }
  602. return ret;
  603. }
  604. STATIC size_t
  605. xfs_probe_cluster(
  606. struct inode *inode,
  607. struct page *startpage,
  608. struct buffer_head *bh,
  609. struct buffer_head *head,
  610. int mapped)
  611. {
  612. struct pagevec pvec;
  613. pgoff_t tindex, tlast, tloff;
  614. size_t total = 0;
  615. int done = 0, i;
  616. /* First sum forwards in this page */
  617. do {
  618. if (!buffer_uptodate(bh) || (mapped != buffer_mapped(bh)))
  619. return total;
  620. total += bh->b_size;
  621. } while ((bh = bh->b_this_page) != head);
  622. /* if we reached the end of the page, sum forwards in following pages */
  623. tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
  624. tindex = startpage->index + 1;
  625. /* Prune this back to avoid pathological behavior */
  626. tloff = min(tlast, startpage->index + 64);
  627. pagevec_init(&pvec, 0);
  628. while (!done && tindex <= tloff) {
  629. unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
  630. if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
  631. break;
  632. for (i = 0; i < pagevec_count(&pvec); i++) {
  633. struct page *page = pvec.pages[i];
  634. size_t pg_offset, pg_len = 0;
  635. if (tindex == tlast) {
  636. pg_offset =
  637. i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
  638. if (!pg_offset) {
  639. done = 1;
  640. break;
  641. }
  642. } else
  643. pg_offset = PAGE_CACHE_SIZE;
  644. if (page->index == tindex && trylock_page(page)) {
  645. pg_len = xfs_probe_page(page, pg_offset, mapped);
  646. unlock_page(page);
  647. }
  648. if (!pg_len) {
  649. done = 1;
  650. break;
  651. }
  652. total += pg_len;
  653. tindex++;
  654. }
  655. pagevec_release(&pvec);
  656. cond_resched();
  657. }
  658. return total;
  659. }
  660. /*
  661. * Test if a given page is suitable for writing as part of an unwritten
  662. * or delayed allocate extent.
  663. */
  664. STATIC int
  665. xfs_is_delayed_page(
  666. struct page *page,
  667. unsigned int type)
  668. {
  669. if (PageWriteback(page))
  670. return 0;
  671. if (page->mapping && page_has_buffers(page)) {
  672. struct buffer_head *bh, *head;
  673. int acceptable = 0;
  674. bh = head = page_buffers(page);
  675. do {
  676. if (buffer_unwritten(bh))
  677. acceptable = (type == IOMAP_UNWRITTEN);
  678. else if (buffer_delay(bh))
  679. acceptable = (type == IOMAP_DELAY);
  680. else if (buffer_dirty(bh) && buffer_mapped(bh))
  681. acceptable = (type == IOMAP_NEW);
  682. else
  683. break;
  684. } while ((bh = bh->b_this_page) != head);
  685. if (acceptable)
  686. return 1;
  687. }
  688. return 0;
  689. }
  690. /*
  691. * Allocate & map buffers for page given the extent map. Write it out.
  692. * except for the original page of a writepage, this is called on
  693. * delalloc/unwritten pages only, for the original page it is possible
  694. * that the page has no mapping at all.
  695. */
  696. STATIC int
  697. xfs_convert_page(
  698. struct inode *inode,
  699. struct page *page,
  700. loff_t tindex,
  701. xfs_iomap_t *mp,
  702. xfs_ioend_t **ioendp,
  703. struct writeback_control *wbc,
  704. int startio,
  705. int all_bh)
  706. {
  707. struct buffer_head *bh, *head;
  708. xfs_off_t end_offset;
  709. unsigned long p_offset;
  710. unsigned int type;
  711. int bbits = inode->i_blkbits;
  712. int len, page_dirty;
  713. int count = 0, done = 0, uptodate = 1;
  714. xfs_off_t offset = page_offset(page);
  715. if (page->index != tindex)
  716. goto fail;
  717. if (!trylock_page(page))
  718. goto fail;
  719. if (PageWriteback(page))
  720. goto fail_unlock_page;
  721. if (page->mapping != inode->i_mapping)
  722. goto fail_unlock_page;
  723. if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
  724. goto fail_unlock_page;
  725. /*
  726. * page_dirty is initially a count of buffers on the page before
  727. * EOF and is decremented as we move each into a cleanable state.
  728. *
  729. * Derivation:
  730. *
  731. * End offset is the highest offset that this page should represent.
  732. * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
  733. * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
  734. * hence give us the correct page_dirty count. On any other page,
  735. * it will be zero and in that case we need page_dirty to be the
  736. * count of buffers on the page.
  737. */
  738. end_offset = min_t(unsigned long long,
  739. (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
  740. i_size_read(inode));
  741. len = 1 << inode->i_blkbits;
  742. p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
  743. PAGE_CACHE_SIZE);
  744. p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
  745. page_dirty = p_offset / len;
  746. bh = head = page_buffers(page);
  747. do {
  748. if (offset >= end_offset)
  749. break;
  750. if (!buffer_uptodate(bh))
  751. uptodate = 0;
  752. if (!(PageUptodate(page) || buffer_uptodate(bh))) {
  753. done = 1;
  754. continue;
  755. }
  756. if (buffer_unwritten(bh) || buffer_delay(bh)) {
  757. if (buffer_unwritten(bh))
  758. type = IOMAP_UNWRITTEN;
  759. else
  760. type = IOMAP_DELAY;
  761. if (!xfs_iomap_valid(mp, offset)) {
  762. done = 1;
  763. continue;
  764. }
  765. ASSERT(!(mp->iomap_flags & IOMAP_HOLE));
  766. ASSERT(!(mp->iomap_flags & IOMAP_DELAY));
  767. xfs_map_at_offset(bh, offset, bbits, mp);
  768. if (startio) {
  769. xfs_add_to_ioend(inode, bh, offset,
  770. type, ioendp, done);
  771. } else {
  772. set_buffer_dirty(bh);
  773. unlock_buffer(bh);
  774. mark_buffer_dirty(bh);
  775. }
  776. page_dirty--;
  777. count++;
  778. } else {
  779. type = IOMAP_NEW;
  780. if (buffer_mapped(bh) && all_bh && startio) {
  781. lock_buffer(bh);
  782. xfs_add_to_ioend(inode, bh, offset,
  783. type, ioendp, done);
  784. count++;
  785. page_dirty--;
  786. } else {
  787. done = 1;
  788. }
  789. }
  790. } while (offset += len, (bh = bh->b_this_page) != head);
  791. if (uptodate && bh == head)
  792. SetPageUptodate(page);
  793. if (startio) {
  794. if (count) {
  795. struct backing_dev_info *bdi;
  796. bdi = inode->i_mapping->backing_dev_info;
  797. wbc->nr_to_write--;
  798. if (bdi_write_congested(bdi)) {
  799. wbc->encountered_congestion = 1;
  800. done = 1;
  801. } else if (wbc->nr_to_write <= 0) {
  802. done = 1;
  803. }
  804. }
  805. xfs_start_page_writeback(page, !page_dirty, count);
  806. }
  807. return done;
  808. fail_unlock_page:
  809. unlock_page(page);
  810. fail:
  811. return 1;
  812. }
  813. /*
  814. * Convert & write out a cluster of pages in the same extent as defined
  815. * by mp and following the start page.
  816. */
  817. STATIC void
  818. xfs_cluster_write(
  819. struct inode *inode,
  820. pgoff_t tindex,
  821. xfs_iomap_t *iomapp,
  822. xfs_ioend_t **ioendp,
  823. struct writeback_control *wbc,
  824. int startio,
  825. int all_bh,
  826. pgoff_t tlast)
  827. {
  828. struct pagevec pvec;
  829. int done = 0, i;
  830. pagevec_init(&pvec, 0);
  831. while (!done && tindex <= tlast) {
  832. unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
  833. if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
  834. break;
  835. for (i = 0; i < pagevec_count(&pvec); i++) {
  836. done = xfs_convert_page(inode, pvec.pages[i], tindex++,
  837. iomapp, ioendp, wbc, startio, all_bh);
  838. if (done)
  839. break;
  840. }
  841. pagevec_release(&pvec);
  842. cond_resched();
  843. }
  844. }
  845. /*
  846. * Calling this without startio set means we are being asked to make a dirty
  847. * page ready for freeing it's buffers. When called with startio set then
  848. * we are coming from writepage.
  849. *
  850. * When called with startio set it is important that we write the WHOLE
  851. * page if possible.
  852. * The bh->b_state's cannot know if any of the blocks or which block for
  853. * that matter are dirty due to mmap writes, and therefore bh uptodate is
  854. * only valid if the page itself isn't completely uptodate. Some layers
  855. * may clear the page dirty flag prior to calling write page, under the
  856. * assumption the entire page will be written out; by not writing out the
  857. * whole page the page can be reused before all valid dirty data is
  858. * written out. Note: in the case of a page that has been dirty'd by
  859. * mapwrite and but partially setup by block_prepare_write the
  860. * bh->b_states's will not agree and only ones setup by BPW/BCW will have
  861. * valid state, thus the whole page must be written out thing.
  862. */
  863. STATIC int
  864. xfs_page_state_convert(
  865. struct inode *inode,
  866. struct page *page,
  867. struct writeback_control *wbc,
  868. int startio,
  869. int unmapped) /* also implies page uptodate */
  870. {
  871. struct buffer_head *bh, *head;
  872. xfs_iomap_t iomap;
  873. xfs_ioend_t *ioend = NULL, *iohead = NULL;
  874. loff_t offset;
  875. unsigned long p_offset = 0;
  876. unsigned int type;
  877. __uint64_t end_offset;
  878. pgoff_t end_index, last_index, tlast;
  879. ssize_t size, len;
  880. int flags, err, iomap_valid = 0, uptodate = 1;
  881. int page_dirty, count = 0;
  882. int trylock = 0;
  883. int all_bh = unmapped;
  884. if (startio) {
  885. if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking)
  886. trylock |= BMAPI_TRYLOCK;
  887. }
  888. /* Is this page beyond the end of the file? */
  889. offset = i_size_read(inode);
  890. end_index = offset >> PAGE_CACHE_SHIFT;
  891. last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
  892. if (page->index >= end_index) {
  893. if ((page->index >= end_index + 1) ||
  894. !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
  895. if (startio)
  896. unlock_page(page);
  897. return 0;
  898. }
  899. }
  900. /*
  901. * page_dirty is initially a count of buffers on the page before
  902. * EOF and is decremented as we move each into a cleanable state.
  903. *
  904. * Derivation:
  905. *
  906. * End offset is the highest offset that this page should represent.
  907. * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
  908. * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
  909. * hence give us the correct page_dirty count. On any other page,
  910. * it will be zero and in that case we need page_dirty to be the
  911. * count of buffers on the page.
  912. */
  913. end_offset = min_t(unsigned long long,
  914. (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
  915. len = 1 << inode->i_blkbits;
  916. p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
  917. PAGE_CACHE_SIZE);
  918. p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
  919. page_dirty = p_offset / len;
  920. bh = head = page_buffers(page);
  921. offset = page_offset(page);
  922. flags = BMAPI_READ;
  923. type = IOMAP_NEW;
  924. /* TODO: cleanup count and page_dirty */
  925. do {
  926. if (offset >= end_offset)
  927. break;
  928. if (!buffer_uptodate(bh))
  929. uptodate = 0;
  930. if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) {
  931. /*
  932. * the iomap is actually still valid, but the ioend
  933. * isn't. shouldn't happen too often.
  934. */
  935. iomap_valid = 0;
  936. continue;
  937. }
  938. if (iomap_valid)
  939. iomap_valid = xfs_iomap_valid(&iomap, offset);
  940. /*
  941. * First case, map an unwritten extent and prepare for
  942. * extent state conversion transaction on completion.
  943. *
  944. * Second case, allocate space for a delalloc buffer.
  945. * We can return EAGAIN here in the release page case.
  946. *
  947. * Third case, an unmapped buffer was found, and we are
  948. * in a path where we need to write the whole page out.
  949. */
  950. if (buffer_unwritten(bh) || buffer_delay(bh) ||
  951. ((buffer_uptodate(bh) || PageUptodate(page)) &&
  952. !buffer_mapped(bh) && (unmapped || startio))) {
  953. int new_ioend = 0;
  954. /*
  955. * Make sure we don't use a read-only iomap
  956. */
  957. if (flags == BMAPI_READ)
  958. iomap_valid = 0;
  959. if (buffer_unwritten(bh)) {
  960. type = IOMAP_UNWRITTEN;
  961. flags = BMAPI_WRITE | BMAPI_IGNSTATE;
  962. } else if (buffer_delay(bh)) {
  963. type = IOMAP_DELAY;
  964. flags = BMAPI_ALLOCATE | trylock;
  965. } else {
  966. type = IOMAP_NEW;
  967. flags = BMAPI_WRITE | BMAPI_MMAP;
  968. }
  969. if (!iomap_valid) {
  970. /*
  971. * if we didn't have a valid mapping then we
  972. * need to ensure that we put the new mapping
  973. * in a new ioend structure. This needs to be
  974. * done to ensure that the ioends correctly
  975. * reflect the block mappings at io completion
  976. * for unwritten extent conversion.
  977. */
  978. new_ioend = 1;
  979. if (type == IOMAP_NEW) {
  980. size = xfs_probe_cluster(inode,
  981. page, bh, head, 0);
  982. } else {
  983. size = len;
  984. }
  985. err = xfs_map_blocks(inode, offset, size,
  986. &iomap, flags);
  987. if (err)
  988. goto error;
  989. iomap_valid = xfs_iomap_valid(&iomap, offset);
  990. }
  991. if (iomap_valid) {
  992. xfs_map_at_offset(bh, offset,
  993. inode->i_blkbits, &iomap);
  994. if (startio) {
  995. xfs_add_to_ioend(inode, bh, offset,
  996. type, &ioend,
  997. new_ioend);
  998. } else {
  999. set_buffer_dirty(bh);
  1000. unlock_buffer(bh);
  1001. mark_buffer_dirty(bh);
  1002. }
  1003. page_dirty--;
  1004. count++;
  1005. }
  1006. } else if (buffer_uptodate(bh) && startio) {
  1007. /*
  1008. * we got here because the buffer is already mapped.
  1009. * That means it must already have extents allocated
  1010. * underneath it. Map the extent by reading it.
  1011. */
  1012. if (!iomap_valid || flags != BMAPI_READ) {
  1013. flags = BMAPI_READ;
  1014. size = xfs_probe_cluster(inode, page, bh,
  1015. head, 1);
  1016. err = xfs_map_blocks(inode, offset, size,
  1017. &iomap, flags);
  1018. if (err)
  1019. goto error;
  1020. iomap_valid = xfs_iomap_valid(&iomap, offset);
  1021. }
  1022. /*
  1023. * We set the type to IOMAP_NEW in case we are doing a
  1024. * small write at EOF that is extending the file but
  1025. * without needing an allocation. We need to update the
  1026. * file size on I/O completion in this case so it is
  1027. * the same case as having just allocated a new extent
  1028. * that we are writing into for the first time.
  1029. */
  1030. type = IOMAP_NEW;
  1031. if (trylock_buffer(bh)) {
  1032. ASSERT(buffer_mapped(bh));
  1033. if (iomap_valid)
  1034. all_bh = 1;
  1035. xfs_add_to_ioend(inode, bh, offset, type,
  1036. &ioend, !iomap_valid);
  1037. page_dirty--;
  1038. count++;
  1039. } else {
  1040. iomap_valid = 0;
  1041. }
  1042. } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
  1043. (unmapped || startio)) {
  1044. iomap_valid = 0;
  1045. }
  1046. if (!iohead)
  1047. iohead = ioend;
  1048. } while (offset += len, ((bh = bh->b_this_page) != head));
  1049. if (uptodate && bh == head)
  1050. SetPageUptodate(page);
  1051. if (startio)
  1052. xfs_start_page_writeback(page, 1, count);
  1053. if (ioend && iomap_valid) {
  1054. offset = (iomap.iomap_offset + iomap.iomap_bsize - 1) >>
  1055. PAGE_CACHE_SHIFT;
  1056. tlast = min_t(pgoff_t, offset, last_index);
  1057. xfs_cluster_write(inode, page->index + 1, &iomap, &ioend,
  1058. wbc, startio, all_bh, tlast);
  1059. }
  1060. if (iohead)
  1061. xfs_submit_ioend(wbc, iohead);
  1062. return page_dirty;
  1063. error:
  1064. if (iohead)
  1065. xfs_cancel_ioend(iohead);
  1066. /*
  1067. * If it's delalloc and we have nowhere to put it,
  1068. * throw it away, unless the lower layers told
  1069. * us to try again.
  1070. */
  1071. if (err != -EAGAIN) {
  1072. if (!unmapped)
  1073. block_invalidatepage(page, 0);
  1074. ClearPageUptodate(page);
  1075. }
  1076. return err;
  1077. }
  1078. /*
  1079. * writepage: Called from one of two places:
  1080. *
  1081. * 1. we are flushing a delalloc buffer head.
  1082. *
  1083. * 2. we are writing out a dirty page. Typically the page dirty
  1084. * state is cleared before we get here. In this case is it
  1085. * conceivable we have no buffer heads.
  1086. *
  1087. * For delalloc space on the page we need to allocate space and
  1088. * flush it. For unmapped buffer heads on the page we should
  1089. * allocate space if the page is uptodate. For any other dirty
  1090. * buffer heads on the page we should flush them.
  1091. *
  1092. * If we detect that a transaction would be required to flush
  1093. * the page, we have to check the process flags first, if we
  1094. * are already in a transaction or disk I/O during allocations
  1095. * is off, we need to fail the writepage and redirty the page.
  1096. */
  1097. STATIC int
  1098. xfs_vm_writepage(
  1099. struct page *page,
  1100. struct writeback_control *wbc)
  1101. {
  1102. int error;
  1103. int need_trans;
  1104. int delalloc, unmapped, unwritten;
  1105. struct inode *inode = page->mapping->host;
  1106. xfs_page_trace(XFS_WRITEPAGE_ENTER, inode, page, 0);
  1107. /*
  1108. * We need a transaction if:
  1109. * 1. There are delalloc buffers on the page
  1110. * 2. The page is uptodate and we have unmapped buffers
  1111. * 3. The page is uptodate and we have no buffers
  1112. * 4. There are unwritten buffers on the page
  1113. */
  1114. if (!page_has_buffers(page)) {
  1115. unmapped = 1;
  1116. need_trans = 1;
  1117. } else {
  1118. xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
  1119. if (!PageUptodate(page))
  1120. unmapped = 0;
  1121. need_trans = delalloc + unmapped + unwritten;
  1122. }
  1123. /*
  1124. * If we need a transaction and the process flags say
  1125. * we are already in a transaction, or no IO is allowed
  1126. * then mark the page dirty again and leave the page
  1127. * as is.
  1128. */
  1129. if (current_test_flags(PF_FSTRANS) && need_trans)
  1130. goto out_fail;
  1131. /*
  1132. * Delay hooking up buffer heads until we have
  1133. * made our go/no-go decision.
  1134. */
  1135. if (!page_has_buffers(page))
  1136. create_empty_buffers(page, 1 << inode->i_blkbits, 0);
  1137. /*
  1138. * VM calculation for nr_to_write seems off. Bump it way
  1139. * up, this gets simple streaming writes zippy again.
  1140. * To be reviewed again after Jens' writeback changes.
  1141. */
  1142. wbc->nr_to_write *= 4;
  1143. /*
  1144. * Convert delayed allocate, unwritten or unmapped space
  1145. * to real space and flush out to disk.
  1146. */
  1147. error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
  1148. if (error == -EAGAIN)
  1149. goto out_fail;
  1150. if (unlikely(error < 0))
  1151. goto out_unlock;
  1152. return 0;
  1153. out_fail:
  1154. redirty_page_for_writepage(wbc, page);
  1155. unlock_page(page);
  1156. return 0;
  1157. out_unlock:
  1158. unlock_page(page);
  1159. return error;
  1160. }
  1161. STATIC int
  1162. xfs_vm_writepages(
  1163. struct address_space *mapping,
  1164. struct writeback_control *wbc)
  1165. {
  1166. xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
  1167. return generic_writepages(mapping, wbc);
  1168. }
  1169. /*
  1170. * Called to move a page into cleanable state - and from there
  1171. * to be released. Possibly the page is already clean. We always
  1172. * have buffer heads in this call.
  1173. *
  1174. * Returns 0 if the page is ok to release, 1 otherwise.
  1175. *
  1176. * Possible scenarios are:
  1177. *
  1178. * 1. We are being called to release a page which has been written
  1179. * to via regular I/O. buffer heads will be dirty and possibly
  1180. * delalloc. If no delalloc buffer heads in this case then we
  1181. * can just return zero.
  1182. *
  1183. * 2. We are called to release a page which has been written via
  1184. * mmap, all we need to do is ensure there is no delalloc
  1185. * state in the buffer heads, if not we can let the caller
  1186. * free them and we should come back later via writepage.
  1187. */
  1188. STATIC int
  1189. xfs_vm_releasepage(
  1190. struct page *page,
  1191. gfp_t gfp_mask)
  1192. {
  1193. struct inode *inode = page->mapping->host;
  1194. int dirty, delalloc, unmapped, unwritten;
  1195. struct writeback_control wbc = {
  1196. .sync_mode = WB_SYNC_ALL,
  1197. .nr_to_write = 1,
  1198. };
  1199. xfs_page_trace(XFS_RELEASEPAGE_ENTER, inode, page, 0);
  1200. if (!page_has_buffers(page))
  1201. return 0;
  1202. xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
  1203. if (!delalloc && !unwritten)
  1204. goto free_buffers;
  1205. if (!(gfp_mask & __GFP_FS))
  1206. return 0;
  1207. /* If we are already inside a transaction or the thread cannot
  1208. * do I/O, we cannot release this page.
  1209. */
  1210. if (current_test_flags(PF_FSTRANS))
  1211. return 0;
  1212. /*
  1213. * Convert delalloc space to real space, do not flush the
  1214. * data out to disk, that will be done by the caller.
  1215. * Never need to allocate space here - we will always
  1216. * come back to writepage in that case.
  1217. */
  1218. dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
  1219. if (dirty == 0 && !unwritten)
  1220. goto free_buffers;
  1221. return 0;
  1222. free_buffers:
  1223. return try_to_free_buffers(page);
  1224. }
  1225. STATIC int
  1226. __xfs_get_blocks(
  1227. struct inode *inode,
  1228. sector_t iblock,
  1229. struct buffer_head *bh_result,
  1230. int create,
  1231. int direct,
  1232. bmapi_flags_t flags)
  1233. {
  1234. xfs_iomap_t iomap;
  1235. xfs_off_t offset;
  1236. ssize_t size;
  1237. int niomap = 1;
  1238. int error;
  1239. offset = (xfs_off_t)iblock << inode->i_blkbits;
  1240. ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
  1241. size = bh_result->b_size;
  1242. if (!create && direct && offset >= i_size_read(inode))
  1243. return 0;
  1244. error = xfs_iomap(XFS_I(inode), offset, size,
  1245. create ? flags : BMAPI_READ, &iomap, &niomap);
  1246. if (error)
  1247. return -error;
  1248. if (niomap == 0)
  1249. return 0;
  1250. if (iomap.iomap_bn != IOMAP_DADDR_NULL) {
  1251. /*
  1252. * For unwritten extents do not report a disk address on
  1253. * the read case (treat as if we're reading into a hole).
  1254. */
  1255. if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN)) {
  1256. xfs_map_buffer(bh_result, &iomap, offset,
  1257. inode->i_blkbits);
  1258. }
  1259. if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) {
  1260. if (direct)
  1261. bh_result->b_private = inode;
  1262. set_buffer_unwritten(bh_result);
  1263. }
  1264. }
  1265. /*
  1266. * If this is a realtime file, data may be on a different device.
  1267. * to that pointed to from the buffer_head b_bdev currently.
  1268. */
  1269. bh_result->b_bdev = iomap.iomap_target->bt_bdev;
  1270. /*
  1271. * If we previously allocated a block out beyond eof and we are now
  1272. * coming back to use it then we will need to flag it as new even if it
  1273. * has a disk address.
  1274. *
  1275. * With sub-block writes into unwritten extents we also need to mark
  1276. * the buffer as new so that the unwritten parts of the buffer gets
  1277. * correctly zeroed.
  1278. */
  1279. if (create &&
  1280. ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
  1281. (offset >= i_size_read(inode)) ||
  1282. (iomap.iomap_flags & (IOMAP_NEW|IOMAP_UNWRITTEN))))
  1283. set_buffer_new(bh_result);
  1284. if (iomap.iomap_flags & IOMAP_DELAY) {
  1285. BUG_ON(direct);
  1286. if (create) {
  1287. set_buffer_uptodate(bh_result);
  1288. set_buffer_mapped(bh_result);
  1289. set_buffer_delay(bh_result);
  1290. }
  1291. }
  1292. if (direct || size > (1 << inode->i_blkbits)) {
  1293. ASSERT(iomap.iomap_bsize - iomap.iomap_delta > 0);
  1294. offset = min_t(xfs_off_t,
  1295. iomap.iomap_bsize - iomap.iomap_delta, size);
  1296. bh_result->b_size = (ssize_t)min_t(xfs_off_t, LONG_MAX, offset);
  1297. }
  1298. return 0;
  1299. }
  1300. int
  1301. xfs_get_blocks(
  1302. struct inode *inode,
  1303. sector_t iblock,
  1304. struct buffer_head *bh_result,
  1305. int create)
  1306. {
  1307. return __xfs_get_blocks(inode, iblock,
  1308. bh_result, create, 0, BMAPI_WRITE);
  1309. }
  1310. STATIC int
  1311. xfs_get_blocks_direct(
  1312. struct inode *inode,
  1313. sector_t iblock,
  1314. struct buffer_head *bh_result,
  1315. int create)
  1316. {
  1317. return __xfs_get_blocks(inode, iblock,
  1318. bh_result, create, 1, BMAPI_WRITE|BMAPI_DIRECT);
  1319. }
  1320. STATIC void
  1321. xfs_end_io_direct(
  1322. struct kiocb *iocb,
  1323. loff_t offset,
  1324. ssize_t size,
  1325. void *private)
  1326. {
  1327. xfs_ioend_t *ioend = iocb->private;
  1328. /*
  1329. * Non-NULL private data means we need to issue a transaction to
  1330. * convert a range from unwritten to written extents. This needs
  1331. * to happen from process context but aio+dio I/O completion
  1332. * happens from irq context so we need to defer it to a workqueue.
  1333. * This is not necessary for synchronous direct I/O, but we do
  1334. * it anyway to keep the code uniform and simpler.
  1335. *
  1336. * Well, if only it were that simple. Because synchronous direct I/O
  1337. * requires extent conversion to occur *before* we return to userspace,
  1338. * we have to wait for extent conversion to complete. Look at the
  1339. * iocb that has been passed to us to determine if this is AIO or
  1340. * not. If it is synchronous, tell xfs_finish_ioend() to kick the
  1341. * workqueue and wait for it to complete.
  1342. *
  1343. * The core direct I/O code might be changed to always call the
  1344. * completion handler in the future, in which case all this can
  1345. * go away.
  1346. */
  1347. ioend->io_offset = offset;
  1348. ioend->io_size = size;
  1349. if (ioend->io_type == IOMAP_READ) {
  1350. xfs_finish_ioend(ioend, 0);
  1351. } else if (private && size > 0) {
  1352. xfs_finish_ioend(ioend, is_sync_kiocb(iocb));
  1353. } else {
  1354. /*
  1355. * A direct I/O write ioend starts it's life in unwritten
  1356. * state in case they map an unwritten extent. This write
  1357. * didn't map an unwritten extent so switch it's completion
  1358. * handler.
  1359. */
  1360. INIT_WORK(&ioend->io_work, xfs_end_bio_written);
  1361. xfs_finish_ioend(ioend, 0);
  1362. }
  1363. /*
  1364. * blockdev_direct_IO can return an error even after the I/O
  1365. * completion handler was called. Thus we need to protect
  1366. * against double-freeing.
  1367. */
  1368. iocb->private = NULL;
  1369. }
  1370. STATIC ssize_t
  1371. xfs_vm_direct_IO(
  1372. int rw,
  1373. struct kiocb *iocb,
  1374. const struct iovec *iov,
  1375. loff_t offset,
  1376. unsigned long nr_segs)
  1377. {
  1378. struct file *file = iocb->ki_filp;
  1379. struct inode *inode = file->f_mapping->host;
  1380. struct block_device *bdev;
  1381. ssize_t ret;
  1382. bdev = xfs_find_bdev_for_inode(XFS_I(inode));
  1383. if (rw == WRITE) {
  1384. iocb->private = xfs_alloc_ioend(inode, IOMAP_UNWRITTEN);
  1385. ret = blockdev_direct_IO_own_locking(rw, iocb, inode,
  1386. bdev, iov, offset, nr_segs,
  1387. xfs_get_blocks_direct,
  1388. xfs_end_io_direct);
  1389. } else {
  1390. iocb->private = xfs_alloc_ioend(inode, IOMAP_READ);
  1391. ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
  1392. bdev, iov, offset, nr_segs,
  1393. xfs_get_blocks_direct,
  1394. xfs_end_io_direct);
  1395. }
  1396. if (unlikely(ret != -EIOCBQUEUED && iocb->private))
  1397. xfs_destroy_ioend(iocb->private);
  1398. return ret;
  1399. }
  1400. STATIC int
  1401. xfs_vm_write_begin(
  1402. struct file *file,
  1403. struct address_space *mapping,
  1404. loff_t pos,
  1405. unsigned len,
  1406. unsigned flags,
  1407. struct page **pagep,
  1408. void **fsdata)
  1409. {
  1410. *pagep = NULL;
  1411. return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
  1412. xfs_get_blocks);
  1413. }
  1414. STATIC sector_t
  1415. xfs_vm_bmap(
  1416. struct address_space *mapping,
  1417. sector_t block)
  1418. {
  1419. struct inode *inode = (struct inode *)mapping->host;
  1420. struct xfs_inode *ip = XFS_I(inode);
  1421. xfs_itrace_entry(XFS_I(inode));
  1422. xfs_ilock(ip, XFS_IOLOCK_SHARED);
  1423. xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
  1424. xfs_iunlock(ip, XFS_IOLOCK_SHARED);
  1425. return generic_block_bmap(mapping, block, xfs_get_blocks);
  1426. }
  1427. STATIC int
  1428. xfs_vm_readpage(
  1429. struct file *unused,
  1430. struct page *page)
  1431. {
  1432. return mpage_readpage(page, xfs_get_blocks);
  1433. }
  1434. STATIC int
  1435. xfs_vm_readpages(
  1436. struct file *unused,
  1437. struct address_space *mapping,
  1438. struct list_head *pages,
  1439. unsigned nr_pages)
  1440. {
  1441. return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
  1442. }
  1443. STATIC void
  1444. xfs_vm_invalidatepage(
  1445. struct page *page,
  1446. unsigned long offset)
  1447. {
  1448. xfs_page_trace(XFS_INVALIDPAGE_ENTER,
  1449. page->mapping->host, page, offset);
  1450. block_invalidatepage(page, offset);
  1451. }
  1452. const struct address_space_operations xfs_address_space_operations = {
  1453. .readpage = xfs_vm_readpage,
  1454. .readpages = xfs_vm_readpages,
  1455. .writepage = xfs_vm_writepage,
  1456. .writepages = xfs_vm_writepages,
  1457. .sync_page = block_sync_page,
  1458. .releasepage = xfs_vm_releasepage,
  1459. .invalidatepage = xfs_vm_invalidatepage,
  1460. .write_begin = xfs_vm_write_begin,
  1461. .write_end = generic_write_end,
  1462. .bmap = xfs_vm_bmap,
  1463. .direct_IO = xfs_vm_direct_IO,
  1464. .migratepage = buffer_migrate_page,
  1465. .is_partially_uptodate = block_is_partially_uptodate,
  1466. .error_remove_page = generic_error_remove_page,
  1467. };