smp.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658
  1. /*
  2. * linux/arch/arm/kernel/smp.c
  3. *
  4. * Copyright (C) 2002 ARM Limited, All Rights Reserved.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/delay.h>
  12. #include <linux/init.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/sched.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/cache.h>
  17. #include <linux/profile.h>
  18. #include <linux/errno.h>
  19. #include <linux/mm.h>
  20. #include <linux/err.h>
  21. #include <linux/cpu.h>
  22. #include <linux/seq_file.h>
  23. #include <linux/irq.h>
  24. #include <linux/percpu.h>
  25. #include <linux/clockchips.h>
  26. #include <linux/completion.h>
  27. #include <linux/cpufreq.h>
  28. #include <linux/atomic.h>
  29. #include <asm/smp.h>
  30. #include <asm/cacheflush.h>
  31. #include <asm/cpu.h>
  32. #include <asm/cputype.h>
  33. #include <asm/exception.h>
  34. #include <asm/idmap.h>
  35. #include <asm/topology.h>
  36. #include <asm/mmu_context.h>
  37. #include <asm/pgtable.h>
  38. #include <asm/pgalloc.h>
  39. #include <asm/processor.h>
  40. #include <asm/sections.h>
  41. #include <asm/tlbflush.h>
  42. #include <asm/ptrace.h>
  43. #include <asm/smp_plat.h>
  44. #include <asm/virt.h>
  45. #include <asm/mach/arch.h>
  46. /*
  47. * as from 2.5, kernels no longer have an init_tasks structure
  48. * so we need some other way of telling a new secondary core
  49. * where to place its SVC stack
  50. */
  51. struct secondary_data secondary_data;
  52. /*
  53. * control for which core is the next to come out of the secondary
  54. * boot "holding pen"
  55. */
  56. volatile int __cpuinitdata pen_release = -1;
  57. enum ipi_msg_type {
  58. IPI_WAKEUP,
  59. IPI_TIMER,
  60. IPI_RESCHEDULE,
  61. IPI_CALL_FUNC,
  62. IPI_CALL_FUNC_SINGLE,
  63. IPI_CPU_STOP,
  64. };
  65. static DECLARE_COMPLETION(cpu_running);
  66. static struct smp_operations smp_ops;
  67. void __init smp_set_ops(struct smp_operations *ops)
  68. {
  69. if (ops)
  70. smp_ops = *ops;
  71. };
  72. int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle)
  73. {
  74. int ret;
  75. /*
  76. * We need to tell the secondary core where to find
  77. * its stack and the page tables.
  78. */
  79. secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
  80. secondary_data.pgdir = virt_to_phys(idmap_pgd);
  81. secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
  82. __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
  83. outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
  84. /*
  85. * Now bring the CPU into our world.
  86. */
  87. ret = boot_secondary(cpu, idle);
  88. if (ret == 0) {
  89. /*
  90. * CPU was successfully started, wait for it
  91. * to come online or time out.
  92. */
  93. wait_for_completion_timeout(&cpu_running,
  94. msecs_to_jiffies(1000));
  95. if (!cpu_online(cpu)) {
  96. pr_crit("CPU%u: failed to come online\n", cpu);
  97. ret = -EIO;
  98. }
  99. } else {
  100. pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
  101. }
  102. secondary_data.stack = NULL;
  103. secondary_data.pgdir = 0;
  104. return ret;
  105. }
  106. /* platform specific SMP operations */
  107. void __init smp_init_cpus(void)
  108. {
  109. if (smp_ops.smp_init_cpus)
  110. smp_ops.smp_init_cpus();
  111. }
  112. int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
  113. {
  114. if (smp_ops.smp_boot_secondary)
  115. return smp_ops.smp_boot_secondary(cpu, idle);
  116. return -ENOSYS;
  117. }
  118. #ifdef CONFIG_HOTPLUG_CPU
  119. static int platform_cpu_kill(unsigned int cpu)
  120. {
  121. if (smp_ops.cpu_kill)
  122. return smp_ops.cpu_kill(cpu);
  123. return 1;
  124. }
  125. static int platform_cpu_disable(unsigned int cpu)
  126. {
  127. if (smp_ops.cpu_disable)
  128. return smp_ops.cpu_disable(cpu);
  129. /*
  130. * By default, allow disabling all CPUs except the first one,
  131. * since this is special on a lot of platforms, e.g. because
  132. * of clock tick interrupts.
  133. */
  134. return cpu == 0 ? -EPERM : 0;
  135. }
  136. /*
  137. * __cpu_disable runs on the processor to be shutdown.
  138. */
  139. int __cpuinit __cpu_disable(void)
  140. {
  141. unsigned int cpu = smp_processor_id();
  142. int ret;
  143. ret = platform_cpu_disable(cpu);
  144. if (ret)
  145. return ret;
  146. /*
  147. * Take this CPU offline. Once we clear this, we can't return,
  148. * and we must not schedule until we're ready to give up the cpu.
  149. */
  150. set_cpu_online(cpu, false);
  151. /*
  152. * OK - migrate IRQs away from this CPU
  153. */
  154. migrate_irqs();
  155. /*
  156. * Flush user cache and TLB mappings, and then remove this CPU
  157. * from the vm mask set of all processes.
  158. *
  159. * Caches are flushed to the Level of Unification Inner Shareable
  160. * to write-back dirty lines to unified caches shared by all CPUs.
  161. */
  162. flush_cache_louis();
  163. local_flush_tlb_all();
  164. clear_tasks_mm_cpumask(cpu);
  165. return 0;
  166. }
  167. static DECLARE_COMPLETION(cpu_died);
  168. /*
  169. * called on the thread which is asking for a CPU to be shutdown -
  170. * waits until shutdown has completed, or it is timed out.
  171. */
  172. void __cpuinit __cpu_die(unsigned int cpu)
  173. {
  174. if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
  175. pr_err("CPU%u: cpu didn't die\n", cpu);
  176. return;
  177. }
  178. printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
  179. /*
  180. * platform_cpu_kill() is generally expected to do the powering off
  181. * and/or cutting of clocks to the dying CPU. Optionally, this may
  182. * be done by the CPU which is dying in preference to supporting
  183. * this call, but that means there is _no_ synchronisation between
  184. * the requesting CPU and the dying CPU actually losing power.
  185. */
  186. if (!platform_cpu_kill(cpu))
  187. printk("CPU%u: unable to kill\n", cpu);
  188. }
  189. /*
  190. * Called from the idle thread for the CPU which has been shutdown.
  191. *
  192. * Note that we disable IRQs here, but do not re-enable them
  193. * before returning to the caller. This is also the behaviour
  194. * of the other hotplug-cpu capable cores, so presumably coming
  195. * out of idle fixes this.
  196. */
  197. void __ref cpu_die(void)
  198. {
  199. unsigned int cpu = smp_processor_id();
  200. idle_task_exit();
  201. local_irq_disable();
  202. /*
  203. * Flush the data out of the L1 cache for this CPU. This must be
  204. * before the completion to ensure that data is safely written out
  205. * before platform_cpu_kill() gets called - which may disable
  206. * *this* CPU and power down its cache.
  207. */
  208. flush_cache_louis();
  209. /*
  210. * Tell __cpu_die() that this CPU is now safe to dispose of. Once
  211. * this returns, power and/or clocks can be removed at any point
  212. * from this CPU and its cache by platform_cpu_kill().
  213. */
  214. RCU_NONIDLE(complete(&cpu_died));
  215. /*
  216. * Ensure that the cache lines associated with that completion are
  217. * written out. This covers the case where _this_ CPU is doing the
  218. * powering down, to ensure that the completion is visible to the
  219. * CPU waiting for this one.
  220. */
  221. flush_cache_louis();
  222. /*
  223. * The actual CPU shutdown procedure is at least platform (if not
  224. * CPU) specific. This may remove power, or it may simply spin.
  225. *
  226. * Platforms are generally expected *NOT* to return from this call,
  227. * although there are some which do because they have no way to
  228. * power down the CPU. These platforms are the _only_ reason we
  229. * have a return path which uses the fragment of assembly below.
  230. *
  231. * The return path should not be used for platforms which can
  232. * power off the CPU.
  233. */
  234. if (smp_ops.cpu_die)
  235. smp_ops.cpu_die(cpu);
  236. /*
  237. * Do not return to the idle loop - jump back to the secondary
  238. * cpu initialisation. There's some initialisation which needs
  239. * to be repeated to undo the effects of taking the CPU offline.
  240. */
  241. __asm__("mov sp, %0\n"
  242. " mov fp, #0\n"
  243. " b secondary_start_kernel"
  244. :
  245. : "r" (task_stack_page(current) + THREAD_SIZE - 8));
  246. }
  247. #endif /* CONFIG_HOTPLUG_CPU */
  248. /*
  249. * Called by both boot and secondaries to move global data into
  250. * per-processor storage.
  251. */
  252. static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
  253. {
  254. struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
  255. cpu_info->loops_per_jiffy = loops_per_jiffy;
  256. cpu_info->cpuid = read_cpuid_id();
  257. store_cpu_topology(cpuid);
  258. }
  259. /*
  260. * This is the secondary CPU boot entry. We're using this CPUs
  261. * idle thread stack, but a set of temporary page tables.
  262. */
  263. asmlinkage void __cpuinit secondary_start_kernel(void)
  264. {
  265. struct mm_struct *mm = &init_mm;
  266. unsigned int cpu;
  267. /*
  268. * The identity mapping is uncached (strongly ordered), so
  269. * switch away from it before attempting any exclusive accesses.
  270. */
  271. cpu_switch_mm(mm->pgd, mm);
  272. local_flush_bp_all();
  273. enter_lazy_tlb(mm, current);
  274. local_flush_tlb_all();
  275. /*
  276. * All kernel threads share the same mm context; grab a
  277. * reference and switch to it.
  278. */
  279. cpu = smp_processor_id();
  280. atomic_inc(&mm->mm_count);
  281. current->active_mm = mm;
  282. cpumask_set_cpu(cpu, mm_cpumask(mm));
  283. cpu_init();
  284. printk("CPU%u: Booted secondary processor\n", cpu);
  285. preempt_disable();
  286. trace_hardirqs_off();
  287. /*
  288. * Give the platform a chance to do its own initialisation.
  289. */
  290. if (smp_ops.smp_secondary_init)
  291. smp_ops.smp_secondary_init(cpu);
  292. notify_cpu_starting(cpu);
  293. calibrate_delay();
  294. smp_store_cpu_info(cpu);
  295. /*
  296. * OK, now it's safe to let the boot CPU continue. Wait for
  297. * the CPU migration code to notice that the CPU is online
  298. * before we continue - which happens after __cpu_up returns.
  299. */
  300. set_cpu_online(cpu, true);
  301. complete(&cpu_running);
  302. local_irq_enable();
  303. local_fiq_enable();
  304. /*
  305. * OK, it's off to the idle thread for us
  306. */
  307. cpu_startup_entry(CPUHP_ONLINE);
  308. }
  309. void __init smp_cpus_done(unsigned int max_cpus)
  310. {
  311. int cpu;
  312. unsigned long bogosum = 0;
  313. for_each_online_cpu(cpu)
  314. bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
  315. printk(KERN_INFO "SMP: Total of %d processors activated "
  316. "(%lu.%02lu BogoMIPS).\n",
  317. num_online_cpus(),
  318. bogosum / (500000/HZ),
  319. (bogosum / (5000/HZ)) % 100);
  320. hyp_mode_check();
  321. }
  322. void __init smp_prepare_boot_cpu(void)
  323. {
  324. set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
  325. }
  326. void __init smp_prepare_cpus(unsigned int max_cpus)
  327. {
  328. unsigned int ncores = num_possible_cpus();
  329. init_cpu_topology();
  330. smp_store_cpu_info(smp_processor_id());
  331. /*
  332. * are we trying to boot more cores than exist?
  333. */
  334. if (max_cpus > ncores)
  335. max_cpus = ncores;
  336. if (ncores > 1 && max_cpus) {
  337. /*
  338. * Initialise the present map, which describes the set of CPUs
  339. * actually populated at the present time. A platform should
  340. * re-initialize the map in the platforms smp_prepare_cpus()
  341. * if present != possible (e.g. physical hotplug).
  342. */
  343. init_cpu_present(cpu_possible_mask);
  344. /*
  345. * Initialise the SCU if there are more than one CPU
  346. * and let them know where to start.
  347. */
  348. if (smp_ops.smp_prepare_cpus)
  349. smp_ops.smp_prepare_cpus(max_cpus);
  350. }
  351. }
  352. static void (*smp_cross_call)(const struct cpumask *, unsigned int);
  353. void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
  354. {
  355. if (!smp_cross_call)
  356. smp_cross_call = fn;
  357. }
  358. void arch_send_call_function_ipi_mask(const struct cpumask *mask)
  359. {
  360. smp_cross_call(mask, IPI_CALL_FUNC);
  361. }
  362. void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
  363. {
  364. smp_cross_call(mask, IPI_WAKEUP);
  365. }
  366. void arch_send_call_function_single_ipi(int cpu)
  367. {
  368. smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
  369. }
  370. static const char *ipi_types[NR_IPI] = {
  371. #define S(x,s) [x] = s
  372. S(IPI_WAKEUP, "CPU wakeup interrupts"),
  373. S(IPI_TIMER, "Timer broadcast interrupts"),
  374. S(IPI_RESCHEDULE, "Rescheduling interrupts"),
  375. S(IPI_CALL_FUNC, "Function call interrupts"),
  376. S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
  377. S(IPI_CPU_STOP, "CPU stop interrupts"),
  378. };
  379. void show_ipi_list(struct seq_file *p, int prec)
  380. {
  381. unsigned int cpu, i;
  382. for (i = 0; i < NR_IPI; i++) {
  383. seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
  384. for_each_online_cpu(cpu)
  385. seq_printf(p, "%10u ",
  386. __get_irq_stat(cpu, ipi_irqs[i]));
  387. seq_printf(p, " %s\n", ipi_types[i]);
  388. }
  389. }
  390. u64 smp_irq_stat_cpu(unsigned int cpu)
  391. {
  392. u64 sum = 0;
  393. int i;
  394. for (i = 0; i < NR_IPI; i++)
  395. sum += __get_irq_stat(cpu, ipi_irqs[i]);
  396. return sum;
  397. }
  398. #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
  399. void tick_broadcast(const struct cpumask *mask)
  400. {
  401. smp_cross_call(mask, IPI_TIMER);
  402. }
  403. #endif
  404. static DEFINE_RAW_SPINLOCK(stop_lock);
  405. /*
  406. * ipi_cpu_stop - handle IPI from smp_send_stop()
  407. */
  408. static void ipi_cpu_stop(unsigned int cpu)
  409. {
  410. if (system_state == SYSTEM_BOOTING ||
  411. system_state == SYSTEM_RUNNING) {
  412. raw_spin_lock(&stop_lock);
  413. printk(KERN_CRIT "CPU%u: stopping\n", cpu);
  414. dump_stack();
  415. raw_spin_unlock(&stop_lock);
  416. }
  417. set_cpu_online(cpu, false);
  418. local_fiq_disable();
  419. local_irq_disable();
  420. while (1)
  421. cpu_relax();
  422. }
  423. /*
  424. * Main handler for inter-processor interrupts
  425. */
  426. asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
  427. {
  428. handle_IPI(ipinr, regs);
  429. }
  430. void handle_IPI(int ipinr, struct pt_regs *regs)
  431. {
  432. unsigned int cpu = smp_processor_id();
  433. struct pt_regs *old_regs = set_irq_regs(regs);
  434. if (ipinr < NR_IPI)
  435. __inc_irq_stat(cpu, ipi_irqs[ipinr]);
  436. switch (ipinr) {
  437. case IPI_WAKEUP:
  438. break;
  439. #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
  440. case IPI_TIMER:
  441. irq_enter();
  442. tick_receive_broadcast();
  443. irq_exit();
  444. break;
  445. #endif
  446. case IPI_RESCHEDULE:
  447. scheduler_ipi();
  448. break;
  449. case IPI_CALL_FUNC:
  450. irq_enter();
  451. generic_smp_call_function_interrupt();
  452. irq_exit();
  453. break;
  454. case IPI_CALL_FUNC_SINGLE:
  455. irq_enter();
  456. generic_smp_call_function_single_interrupt();
  457. irq_exit();
  458. break;
  459. case IPI_CPU_STOP:
  460. irq_enter();
  461. ipi_cpu_stop(cpu);
  462. irq_exit();
  463. break;
  464. default:
  465. printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
  466. cpu, ipinr);
  467. break;
  468. }
  469. set_irq_regs(old_regs);
  470. }
  471. void smp_send_reschedule(int cpu)
  472. {
  473. smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
  474. }
  475. #ifdef CONFIG_HOTPLUG_CPU
  476. static void smp_kill_cpus(cpumask_t *mask)
  477. {
  478. unsigned int cpu;
  479. for_each_cpu(cpu, mask)
  480. platform_cpu_kill(cpu);
  481. }
  482. #else
  483. static void smp_kill_cpus(cpumask_t *mask) { }
  484. #endif
  485. void smp_send_stop(void)
  486. {
  487. unsigned long timeout;
  488. struct cpumask mask;
  489. cpumask_copy(&mask, cpu_online_mask);
  490. cpumask_clear_cpu(smp_processor_id(), &mask);
  491. if (!cpumask_empty(&mask))
  492. smp_cross_call(&mask, IPI_CPU_STOP);
  493. /* Wait up to one second for other CPUs to stop */
  494. timeout = USEC_PER_SEC;
  495. while (num_online_cpus() > 1 && timeout--)
  496. udelay(1);
  497. if (num_online_cpus() > 1)
  498. pr_warning("SMP: failed to stop secondary CPUs\n");
  499. smp_kill_cpus(&mask);
  500. }
  501. /*
  502. * not supported here
  503. */
  504. int setup_profiling_timer(unsigned int multiplier)
  505. {
  506. return -EINVAL;
  507. }
  508. #ifdef CONFIG_CPU_FREQ
  509. static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
  510. static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
  511. static unsigned long global_l_p_j_ref;
  512. static unsigned long global_l_p_j_ref_freq;
  513. static int cpufreq_callback(struct notifier_block *nb,
  514. unsigned long val, void *data)
  515. {
  516. struct cpufreq_freqs *freq = data;
  517. int cpu = freq->cpu;
  518. if (freq->flags & CPUFREQ_CONST_LOOPS)
  519. return NOTIFY_OK;
  520. if (!per_cpu(l_p_j_ref, cpu)) {
  521. per_cpu(l_p_j_ref, cpu) =
  522. per_cpu(cpu_data, cpu).loops_per_jiffy;
  523. per_cpu(l_p_j_ref_freq, cpu) = freq->old;
  524. if (!global_l_p_j_ref) {
  525. global_l_p_j_ref = loops_per_jiffy;
  526. global_l_p_j_ref_freq = freq->old;
  527. }
  528. }
  529. if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
  530. (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
  531. (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
  532. loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
  533. global_l_p_j_ref_freq,
  534. freq->new);
  535. per_cpu(cpu_data, cpu).loops_per_jiffy =
  536. cpufreq_scale(per_cpu(l_p_j_ref, cpu),
  537. per_cpu(l_p_j_ref_freq, cpu),
  538. freq->new);
  539. }
  540. return NOTIFY_OK;
  541. }
  542. static struct notifier_block cpufreq_notifier = {
  543. .notifier_call = cpufreq_callback,
  544. };
  545. static int __init register_cpufreq_notifier(void)
  546. {
  547. return cpufreq_register_notifier(&cpufreq_notifier,
  548. CPUFREQ_TRANSITION_NOTIFIER);
  549. }
  550. core_initcall(register_cpufreq_notifier);
  551. #endif