inode.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854
  1. /*
  2. * linux/fs/ufs/inode.c
  3. *
  4. * Copyright (C) 1998
  5. * Daniel Pirkl <daniel.pirkl@email.cz>
  6. * Charles University, Faculty of Mathematics and Physics
  7. *
  8. * from
  9. *
  10. * linux/fs/ext2/inode.c
  11. *
  12. * Copyright (C) 1992, 1993, 1994, 1995
  13. * Remy Card (card@masi.ibp.fr)
  14. * Laboratoire MASI - Institut Blaise Pascal
  15. * Universite Pierre et Marie Curie (Paris VI)
  16. *
  17. * from
  18. *
  19. * linux/fs/minix/inode.c
  20. *
  21. * Copyright (C) 1991, 1992 Linus Torvalds
  22. *
  23. * Goal-directed block allocation by Stephen Tweedie (sct@dcs.ed.ac.uk), 1993
  24. * Big-endian to little-endian byte-swapping/bitmaps by
  25. * David S. Miller (davem@caip.rutgers.edu), 1995
  26. */
  27. #include <asm/uaccess.h>
  28. #include <asm/system.h>
  29. #include <linux/errno.h>
  30. #include <linux/fs.h>
  31. #include <linux/ufs_fs.h>
  32. #include <linux/time.h>
  33. #include <linux/stat.h>
  34. #include <linux/string.h>
  35. #include <linux/mm.h>
  36. #include <linux/smp_lock.h>
  37. #include <linux/buffer_head.h>
  38. #include "swab.h"
  39. #include "util.h"
  40. static u64 ufs_frag_map(struct inode *inode, sector_t frag);
  41. static int ufs_block_to_path(struct inode *inode, sector_t i_block, sector_t offsets[4])
  42. {
  43. struct ufs_sb_private_info *uspi = UFS_SB(inode->i_sb)->s_uspi;
  44. int ptrs = uspi->s_apb;
  45. int ptrs_bits = uspi->s_apbshift;
  46. const long direct_blocks = UFS_NDADDR,
  47. indirect_blocks = ptrs,
  48. double_blocks = (1 << (ptrs_bits * 2));
  49. int n = 0;
  50. UFSD("ptrs=uspi->s_apb = %d,double_blocks=%ld \n",ptrs,double_blocks);
  51. if (i_block < 0) {
  52. ufs_warning(inode->i_sb, "ufs_block_to_path", "block < 0");
  53. } else if (i_block < direct_blocks) {
  54. offsets[n++] = i_block;
  55. } else if ((i_block -= direct_blocks) < indirect_blocks) {
  56. offsets[n++] = UFS_IND_BLOCK;
  57. offsets[n++] = i_block;
  58. } else if ((i_block -= indirect_blocks) < double_blocks) {
  59. offsets[n++] = UFS_DIND_BLOCK;
  60. offsets[n++] = i_block >> ptrs_bits;
  61. offsets[n++] = i_block & (ptrs - 1);
  62. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  63. offsets[n++] = UFS_TIND_BLOCK;
  64. offsets[n++] = i_block >> (ptrs_bits * 2);
  65. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  66. offsets[n++] = i_block & (ptrs - 1);
  67. } else {
  68. ufs_warning(inode->i_sb, "ufs_block_to_path", "block > big");
  69. }
  70. return n;
  71. }
  72. /*
  73. * Returns the location of the fragment from
  74. * the begining of the filesystem.
  75. */
  76. static u64 ufs_frag_map(struct inode *inode, sector_t frag)
  77. {
  78. struct ufs_inode_info *ufsi = UFS_I(inode);
  79. struct super_block *sb = inode->i_sb;
  80. struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
  81. u64 mask = (u64) uspi->s_apbmask>>uspi->s_fpbshift;
  82. int shift = uspi->s_apbshift-uspi->s_fpbshift;
  83. sector_t offsets[4], *p;
  84. int depth = ufs_block_to_path(inode, frag >> uspi->s_fpbshift, offsets);
  85. u64 ret = 0L;
  86. __fs32 block;
  87. __fs64 u2_block = 0L;
  88. unsigned flags = UFS_SB(sb)->s_flags;
  89. u64 temp = 0L;
  90. UFSD(": frag = %llu depth = %d\n", (unsigned long long)frag, depth);
  91. UFSD(": uspi->s_fpbshift = %d ,uspi->s_apbmask = %x, mask=%llx\n",uspi->s_fpbshift,uspi->s_apbmask,mask);
  92. if (depth == 0)
  93. return 0;
  94. p = offsets;
  95. lock_kernel();
  96. if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
  97. goto ufs2;
  98. block = ufsi->i_u1.i_data[*p++];
  99. if (!block)
  100. goto out;
  101. while (--depth) {
  102. struct buffer_head *bh;
  103. sector_t n = *p++;
  104. bh = sb_bread(sb, uspi->s_sbbase + fs32_to_cpu(sb, block)+(n>>shift));
  105. if (!bh)
  106. goto out;
  107. block = ((__fs32 *) bh->b_data)[n & mask];
  108. brelse (bh);
  109. if (!block)
  110. goto out;
  111. }
  112. ret = (u64) (uspi->s_sbbase + fs32_to_cpu(sb, block) + (frag & uspi->s_fpbmask));
  113. goto out;
  114. ufs2:
  115. u2_block = ufsi->i_u1.u2_i_data[*p++];
  116. if (!u2_block)
  117. goto out;
  118. while (--depth) {
  119. struct buffer_head *bh;
  120. sector_t n = *p++;
  121. temp = (u64)(uspi->s_sbbase) + fs64_to_cpu(sb, u2_block);
  122. bh = sb_bread(sb, temp +(u64) (n>>shift));
  123. if (!bh)
  124. goto out;
  125. u2_block = ((__fs64 *)bh->b_data)[n & mask];
  126. brelse(bh);
  127. if (!u2_block)
  128. goto out;
  129. }
  130. temp = (u64)uspi->s_sbbase + fs64_to_cpu(sb, u2_block);
  131. ret = temp + (u64) (frag & uspi->s_fpbmask);
  132. out:
  133. unlock_kernel();
  134. return ret;
  135. }
  136. static void ufs_clear_frag(struct inode *inode, struct buffer_head *bh)
  137. {
  138. lock_buffer(bh);
  139. memset(bh->b_data, 0, inode->i_sb->s_blocksize);
  140. set_buffer_uptodate(bh);
  141. mark_buffer_dirty(bh);
  142. unlock_buffer(bh);
  143. if (IS_SYNC(inode))
  144. sync_dirty_buffer(bh);
  145. }
  146. static struct buffer_head *
  147. ufs_clear_frags(struct inode *inode, sector_t beg,
  148. unsigned int n)
  149. {
  150. struct buffer_head *res, *bh;
  151. sector_t end = beg + n;
  152. res = sb_getblk(inode->i_sb, beg);
  153. ufs_clear_frag(inode, res);
  154. for (++beg; beg < end; ++beg) {
  155. bh = sb_getblk(inode->i_sb, beg);
  156. ufs_clear_frag(inode, bh);
  157. brelse(bh);
  158. }
  159. return res;
  160. }
  161. /**
  162. * ufs_inode_getfrag() - allocate new fragment(s)
  163. * @inode - pointer to inode
  164. * @fragment - number of `fragment' which hold pointer
  165. * to new allocated fragment(s)
  166. * @new_fragment - number of new allocated fragment(s)
  167. * @required - how many fragment(s) we require
  168. * @err - we set it if something wrong
  169. * @phys - pointer to where we save physical number of new allocated fragments,
  170. * NULL if we allocate not data(indirect blocks for example).
  171. * @new - we set it if we allocate new block
  172. * @locked_page - for ufs_new_fragments()
  173. */
  174. static struct buffer_head *
  175. ufs_inode_getfrag(struct inode *inode, unsigned int fragment,
  176. sector_t new_fragment, unsigned int required, int *err,
  177. long *phys, int *new, struct page *locked_page)
  178. {
  179. struct ufs_inode_info *ufsi = UFS_I(inode);
  180. struct super_block *sb = inode->i_sb;
  181. struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
  182. struct buffer_head * result;
  183. unsigned block, blockoff, lastfrag, lastblock, lastblockoff;
  184. unsigned tmp, goal;
  185. __fs32 * p, * p2;
  186. UFSD("ENTER, ino %lu, fragment %u, new_fragment %llu, required %u, "
  187. "metadata %d\n", inode->i_ino, fragment,
  188. (unsigned long long)new_fragment, required, !phys);
  189. /* TODO : to be done for write support
  190. if ( (flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
  191. goto ufs2;
  192. */
  193. block = ufs_fragstoblks (fragment);
  194. blockoff = ufs_fragnum (fragment);
  195. p = ufsi->i_u1.i_data + block;
  196. goal = 0;
  197. repeat:
  198. tmp = fs32_to_cpu(sb, *p);
  199. lastfrag = ufsi->i_lastfrag;
  200. if (tmp && fragment < lastfrag) {
  201. if (!phys) {
  202. result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
  203. if (tmp == fs32_to_cpu(sb, *p)) {
  204. UFSD("EXIT, result %u\n", tmp + blockoff);
  205. return result;
  206. }
  207. brelse (result);
  208. goto repeat;
  209. } else {
  210. *phys = tmp + blockoff;
  211. return NULL;
  212. }
  213. }
  214. lastblock = ufs_fragstoblks (lastfrag);
  215. lastblockoff = ufs_fragnum (lastfrag);
  216. /*
  217. * We will extend file into new block beyond last allocated block
  218. */
  219. if (lastblock < block) {
  220. /*
  221. * We must reallocate last allocated block
  222. */
  223. if (lastblockoff) {
  224. p2 = ufsi->i_u1.i_data + lastblock;
  225. tmp = ufs_new_fragments (inode, p2, lastfrag,
  226. fs32_to_cpu(sb, *p2), uspi->s_fpb - lastblockoff,
  227. err, locked_page);
  228. if (!tmp) {
  229. if (lastfrag != ufsi->i_lastfrag)
  230. goto repeat;
  231. else
  232. return NULL;
  233. }
  234. lastfrag = ufsi->i_lastfrag;
  235. }
  236. goal = fs32_to_cpu(sb, ufsi->i_u1.i_data[lastblock]) + uspi->s_fpb;
  237. tmp = ufs_new_fragments (inode, p, fragment - blockoff,
  238. goal, required + blockoff,
  239. err, locked_page);
  240. }
  241. /*
  242. * We will extend last allocated block
  243. */
  244. else if (lastblock == block) {
  245. tmp = ufs_new_fragments(inode, p, fragment - (blockoff - lastblockoff),
  246. fs32_to_cpu(sb, *p), required + (blockoff - lastblockoff),
  247. err, locked_page);
  248. }
  249. /*
  250. * We will allocate new block before last allocated block
  251. */
  252. else /* (lastblock > block) */ {
  253. if (lastblock && (tmp = fs32_to_cpu(sb, ufsi->i_u1.i_data[lastblock-1])))
  254. goal = tmp + uspi->s_fpb;
  255. tmp = ufs_new_fragments(inode, p, fragment - blockoff,
  256. goal, uspi->s_fpb, err, locked_page);
  257. }
  258. if (!tmp) {
  259. if ((!blockoff && *p) ||
  260. (blockoff && lastfrag != ufsi->i_lastfrag))
  261. goto repeat;
  262. *err = -ENOSPC;
  263. return NULL;
  264. }
  265. if (!phys) {
  266. result = ufs_clear_frags(inode, tmp + blockoff, required);
  267. } else {
  268. *phys = tmp + blockoff;
  269. result = NULL;
  270. *err = 0;
  271. *new = 1;
  272. }
  273. inode->i_ctime = CURRENT_TIME_SEC;
  274. if (IS_SYNC(inode))
  275. ufs_sync_inode (inode);
  276. mark_inode_dirty(inode);
  277. UFSD("EXIT, result %u\n", tmp + blockoff);
  278. return result;
  279. /* This part : To be implemented ....
  280. Required only for writing, not required for READ-ONLY.
  281. ufs2:
  282. u2_block = ufs_fragstoblks(fragment);
  283. u2_blockoff = ufs_fragnum(fragment);
  284. p = ufsi->i_u1.u2_i_data + block;
  285. goal = 0;
  286. repeat2:
  287. tmp = fs32_to_cpu(sb, *p);
  288. lastfrag = ufsi->i_lastfrag;
  289. */
  290. }
  291. /**
  292. * ufs_inode_getblock() - allocate new block
  293. * @inode - pointer to inode
  294. * @bh - pointer to block which hold "pointer" to new allocated block
  295. * @fragment - number of `fragment' which hold pointer
  296. * to new allocated block
  297. * @new_fragment - number of new allocated fragment
  298. * (block will hold this fragment and also uspi->s_fpb-1)
  299. * @err - see ufs_inode_getfrag()
  300. * @phys - see ufs_inode_getfrag()
  301. * @new - see ufs_inode_getfrag()
  302. * @locked_page - see ufs_inode_getfrag()
  303. */
  304. static struct buffer_head *
  305. ufs_inode_getblock(struct inode *inode, struct buffer_head *bh,
  306. unsigned int fragment, sector_t new_fragment, int *err,
  307. long *phys, int *new, struct page *locked_page)
  308. {
  309. struct super_block *sb = inode->i_sb;
  310. struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
  311. struct buffer_head * result;
  312. unsigned tmp, goal, block, blockoff;
  313. __fs32 * p;
  314. block = ufs_fragstoblks (fragment);
  315. blockoff = ufs_fragnum (fragment);
  316. UFSD("ENTER, ino %lu, fragment %u, new_fragment %llu, metadata %d\n",
  317. inode->i_ino, fragment, (unsigned long long)new_fragment, !phys);
  318. result = NULL;
  319. if (!bh)
  320. goto out;
  321. if (!buffer_uptodate(bh)) {
  322. ll_rw_block (READ, 1, &bh);
  323. wait_on_buffer (bh);
  324. if (!buffer_uptodate(bh))
  325. goto out;
  326. }
  327. p = (__fs32 *) bh->b_data + block;
  328. repeat:
  329. tmp = fs32_to_cpu(sb, *p);
  330. if (tmp) {
  331. if (!phys) {
  332. result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
  333. if (tmp == fs32_to_cpu(sb, *p))
  334. goto out;
  335. brelse (result);
  336. goto repeat;
  337. } else {
  338. *phys = tmp + blockoff;
  339. goto out;
  340. }
  341. }
  342. if (block && (tmp = fs32_to_cpu(sb, ((__fs32*)bh->b_data)[block-1]) + uspi->s_fpb))
  343. goal = tmp + uspi->s_fpb;
  344. else
  345. goal = bh->b_blocknr + uspi->s_fpb;
  346. tmp = ufs_new_fragments(inode, p, ufs_blknum(new_fragment), goal,
  347. uspi->s_fpb, err, locked_page);
  348. if (!tmp) {
  349. if (fs32_to_cpu(sb, *p))
  350. goto repeat;
  351. goto out;
  352. }
  353. if (!phys) {
  354. result = ufs_clear_frags(inode, tmp + blockoff, uspi->s_fpb);
  355. } else {
  356. *phys = tmp + blockoff;
  357. *new = 1;
  358. }
  359. mark_buffer_dirty(bh);
  360. if (IS_SYNC(inode))
  361. sync_dirty_buffer(bh);
  362. inode->i_ctime = CURRENT_TIME_SEC;
  363. mark_inode_dirty(inode);
  364. UFSD("result %u\n", tmp + blockoff);
  365. out:
  366. brelse (bh);
  367. UFSD("EXIT\n");
  368. return result;
  369. }
  370. /**
  371. * ufs_getfrag_bloc() - `get_block_t' function, interface between UFS and
  372. * readpage, writepage and so on
  373. */
  374. int ufs_getfrag_block(struct inode *inode, sector_t fragment, struct buffer_head *bh_result, int create)
  375. {
  376. struct super_block * sb = inode->i_sb;
  377. struct ufs_sb_private_info * uspi = UFS_SB(sb)->s_uspi;
  378. struct buffer_head * bh;
  379. int ret, err, new;
  380. unsigned long ptr,phys;
  381. u64 phys64 = 0;
  382. if (!create) {
  383. phys64 = ufs_frag_map(inode, fragment);
  384. UFSD("phys64 = %llu \n",phys64);
  385. if (phys64)
  386. map_bh(bh_result, sb, phys64);
  387. return 0;
  388. }
  389. /* This code entered only while writing ....? */
  390. err = -EIO;
  391. new = 0;
  392. ret = 0;
  393. bh = NULL;
  394. lock_kernel();
  395. UFSD("ENTER, ino %lu, fragment %llu\n", inode->i_ino, (unsigned long long)fragment);
  396. if (fragment < 0)
  397. goto abort_negative;
  398. if (fragment >
  399. ((UFS_NDADDR + uspi->s_apb + uspi->s_2apb + uspi->s_3apb)
  400. << uspi->s_fpbshift))
  401. goto abort_too_big;
  402. err = 0;
  403. ptr = fragment;
  404. /*
  405. * ok, these macros clean the logic up a bit and make
  406. * it much more readable:
  407. */
  408. #define GET_INODE_DATABLOCK(x) \
  409. ufs_inode_getfrag(inode, x, fragment, 1, &err, &phys, &new, bh_result->b_page)
  410. #define GET_INODE_PTR(x) \
  411. ufs_inode_getfrag(inode, x, fragment, uspi->s_fpb, &err, NULL, NULL, bh_result->b_page)
  412. #define GET_INDIRECT_DATABLOCK(x) \
  413. ufs_inode_getblock(inode, bh, x, fragment, \
  414. &err, &phys, &new, bh_result->b_page);
  415. #define GET_INDIRECT_PTR(x) \
  416. ufs_inode_getblock(inode, bh, x, fragment, \
  417. &err, NULL, NULL, bh_result->b_page);
  418. if (ptr < UFS_NDIR_FRAGMENT) {
  419. bh = GET_INODE_DATABLOCK(ptr);
  420. goto out;
  421. }
  422. ptr -= UFS_NDIR_FRAGMENT;
  423. if (ptr < (1 << (uspi->s_apbshift + uspi->s_fpbshift))) {
  424. bh = GET_INODE_PTR(UFS_IND_FRAGMENT + (ptr >> uspi->s_apbshift));
  425. goto get_indirect;
  426. }
  427. ptr -= 1 << (uspi->s_apbshift + uspi->s_fpbshift);
  428. if (ptr < (1 << (uspi->s_2apbshift + uspi->s_fpbshift))) {
  429. bh = GET_INODE_PTR(UFS_DIND_FRAGMENT + (ptr >> uspi->s_2apbshift));
  430. goto get_double;
  431. }
  432. ptr -= 1 << (uspi->s_2apbshift + uspi->s_fpbshift);
  433. bh = GET_INODE_PTR(UFS_TIND_FRAGMENT + (ptr >> uspi->s_3apbshift));
  434. bh = GET_INDIRECT_PTR((ptr >> uspi->s_2apbshift) & uspi->s_apbmask);
  435. get_double:
  436. bh = GET_INDIRECT_PTR((ptr >> uspi->s_apbshift) & uspi->s_apbmask);
  437. get_indirect:
  438. bh = GET_INDIRECT_DATABLOCK(ptr & uspi->s_apbmask);
  439. #undef GET_INODE_DATABLOCK
  440. #undef GET_INODE_PTR
  441. #undef GET_INDIRECT_DATABLOCK
  442. #undef GET_INDIRECT_PTR
  443. out:
  444. if (err)
  445. goto abort;
  446. if (new)
  447. set_buffer_new(bh_result);
  448. map_bh(bh_result, sb, phys);
  449. abort:
  450. unlock_kernel();
  451. return err;
  452. abort_negative:
  453. ufs_warning(sb, "ufs_get_block", "block < 0");
  454. goto abort;
  455. abort_too_big:
  456. ufs_warning(sb, "ufs_get_block", "block > big");
  457. goto abort;
  458. }
  459. static struct buffer_head *ufs_getfrag(struct inode *inode,
  460. unsigned int fragment,
  461. int create, int *err)
  462. {
  463. struct buffer_head dummy;
  464. int error;
  465. dummy.b_state = 0;
  466. dummy.b_blocknr = -1000;
  467. error = ufs_getfrag_block(inode, fragment, &dummy, create);
  468. *err = error;
  469. if (!error && buffer_mapped(&dummy)) {
  470. struct buffer_head *bh;
  471. bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
  472. if (buffer_new(&dummy)) {
  473. memset(bh->b_data, 0, inode->i_sb->s_blocksize);
  474. set_buffer_uptodate(bh);
  475. mark_buffer_dirty(bh);
  476. }
  477. return bh;
  478. }
  479. return NULL;
  480. }
  481. struct buffer_head * ufs_bread (struct inode * inode, unsigned fragment,
  482. int create, int * err)
  483. {
  484. struct buffer_head * bh;
  485. UFSD("ENTER, ino %lu, fragment %u\n", inode->i_ino, fragment);
  486. bh = ufs_getfrag (inode, fragment, create, err);
  487. if (!bh || buffer_uptodate(bh))
  488. return bh;
  489. ll_rw_block (READ, 1, &bh);
  490. wait_on_buffer (bh);
  491. if (buffer_uptodate(bh))
  492. return bh;
  493. brelse (bh);
  494. *err = -EIO;
  495. return NULL;
  496. }
  497. static int ufs_writepage(struct page *page, struct writeback_control *wbc)
  498. {
  499. return block_write_full_page(page,ufs_getfrag_block,wbc);
  500. }
  501. static int ufs_readpage(struct file *file, struct page *page)
  502. {
  503. return block_read_full_page(page,ufs_getfrag_block);
  504. }
  505. static int ufs_prepare_write(struct file *file, struct page *page, unsigned from, unsigned to)
  506. {
  507. return block_prepare_write(page,from,to,ufs_getfrag_block);
  508. }
  509. static sector_t ufs_bmap(struct address_space *mapping, sector_t block)
  510. {
  511. return generic_block_bmap(mapping,block,ufs_getfrag_block);
  512. }
  513. struct address_space_operations ufs_aops = {
  514. .readpage = ufs_readpage,
  515. .writepage = ufs_writepage,
  516. .sync_page = block_sync_page,
  517. .prepare_write = ufs_prepare_write,
  518. .commit_write = generic_commit_write,
  519. .bmap = ufs_bmap
  520. };
  521. static void ufs_set_inode_ops(struct inode *inode)
  522. {
  523. if (S_ISREG(inode->i_mode)) {
  524. inode->i_op = &ufs_file_inode_operations;
  525. inode->i_fop = &ufs_file_operations;
  526. inode->i_mapping->a_ops = &ufs_aops;
  527. } else if (S_ISDIR(inode->i_mode)) {
  528. inode->i_op = &ufs_dir_inode_operations;
  529. inode->i_fop = &ufs_dir_operations;
  530. inode->i_mapping->a_ops = &ufs_aops;
  531. } else if (S_ISLNK(inode->i_mode)) {
  532. if (!inode->i_blocks)
  533. inode->i_op = &ufs_fast_symlink_inode_operations;
  534. else {
  535. inode->i_op = &page_symlink_inode_operations;
  536. inode->i_mapping->a_ops = &ufs_aops;
  537. }
  538. } else
  539. init_special_inode(inode, inode->i_mode,
  540. ufs_get_inode_dev(inode->i_sb, UFS_I(inode)));
  541. }
  542. static void ufs1_read_inode(struct inode *inode, struct ufs_inode *ufs_inode)
  543. {
  544. struct ufs_inode_info *ufsi = UFS_I(inode);
  545. struct super_block *sb = inode->i_sb;
  546. mode_t mode;
  547. unsigned i;
  548. /*
  549. * Copy data to the in-core inode.
  550. */
  551. inode->i_mode = mode = fs16_to_cpu(sb, ufs_inode->ui_mode);
  552. inode->i_nlink = fs16_to_cpu(sb, ufs_inode->ui_nlink);
  553. if (inode->i_nlink == 0)
  554. ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino);
  555. /*
  556. * Linux now has 32-bit uid and gid, so we can support EFT.
  557. */
  558. inode->i_uid = ufs_get_inode_uid(sb, ufs_inode);
  559. inode->i_gid = ufs_get_inode_gid(sb, ufs_inode);
  560. inode->i_size = fs64_to_cpu(sb, ufs_inode->ui_size);
  561. inode->i_atime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_atime.tv_sec);
  562. inode->i_ctime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_ctime.tv_sec);
  563. inode->i_mtime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_mtime.tv_sec);
  564. inode->i_mtime.tv_nsec = 0;
  565. inode->i_atime.tv_nsec = 0;
  566. inode->i_ctime.tv_nsec = 0;
  567. inode->i_blocks = fs32_to_cpu(sb, ufs_inode->ui_blocks);
  568. ufsi->i_flags = fs32_to_cpu(sb, ufs_inode->ui_flags);
  569. ufsi->i_gen = fs32_to_cpu(sb, ufs_inode->ui_gen);
  570. ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
  571. ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
  572. if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
  573. for (i = 0; i < (UFS_NDADDR + UFS_NINDIR); i++)
  574. ufsi->i_u1.i_data[i] = ufs_inode->ui_u2.ui_addr.ui_db[i];
  575. } else {
  576. for (i = 0; i < (UFS_NDADDR + UFS_NINDIR) * 4; i++)
  577. ufsi->i_u1.i_symlink[i] = ufs_inode->ui_u2.ui_symlink[i];
  578. }
  579. }
  580. static void ufs2_read_inode(struct inode *inode, struct ufs2_inode *ufs2_inode)
  581. {
  582. struct ufs_inode_info *ufsi = UFS_I(inode);
  583. struct super_block *sb = inode->i_sb;
  584. mode_t mode;
  585. unsigned i;
  586. UFSD("Reading ufs2 inode, ino %lu\n", inode->i_ino);
  587. /*
  588. * Copy data to the in-core inode.
  589. */
  590. inode->i_mode = mode = fs16_to_cpu(sb, ufs2_inode->ui_mode);
  591. inode->i_nlink = fs16_to_cpu(sb, ufs2_inode->ui_nlink);
  592. if (inode->i_nlink == 0)
  593. ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino);
  594. /*
  595. * Linux now has 32-bit uid and gid, so we can support EFT.
  596. */
  597. inode->i_uid = fs32_to_cpu(sb, ufs2_inode->ui_uid);
  598. inode->i_gid = fs32_to_cpu(sb, ufs2_inode->ui_gid);
  599. inode->i_size = fs64_to_cpu(sb, ufs2_inode->ui_size);
  600. inode->i_atime.tv_sec = fs32_to_cpu(sb, ufs2_inode->ui_atime.tv_sec);
  601. inode->i_ctime.tv_sec = fs32_to_cpu(sb, ufs2_inode->ui_ctime.tv_sec);
  602. inode->i_mtime.tv_sec = fs32_to_cpu(sb, ufs2_inode->ui_mtime.tv_sec);
  603. inode->i_mtime.tv_nsec = 0;
  604. inode->i_atime.tv_nsec = 0;
  605. inode->i_ctime.tv_nsec = 0;
  606. inode->i_blocks = fs64_to_cpu(sb, ufs2_inode->ui_blocks);
  607. ufsi->i_flags = fs32_to_cpu(sb, ufs2_inode->ui_flags);
  608. ufsi->i_gen = fs32_to_cpu(sb, ufs2_inode->ui_gen);
  609. /*
  610. ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
  611. ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
  612. */
  613. if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
  614. for (i = 0; i < (UFS_NDADDR + UFS_NINDIR); i++)
  615. ufsi->i_u1.u2_i_data[i] =
  616. ufs2_inode->ui_u2.ui_addr.ui_db[i];
  617. } else {
  618. for (i = 0; i < (UFS_NDADDR + UFS_NINDIR) * 4; i++)
  619. ufsi->i_u1.i_symlink[i] = ufs2_inode->ui_u2.ui_symlink[i];
  620. }
  621. }
  622. void ufs_read_inode(struct inode * inode)
  623. {
  624. struct ufs_inode_info *ufsi = UFS_I(inode);
  625. struct super_block * sb;
  626. struct ufs_sb_private_info * uspi;
  627. struct buffer_head * bh;
  628. UFSD("ENTER, ino %lu\n", inode->i_ino);
  629. sb = inode->i_sb;
  630. uspi = UFS_SB(sb)->s_uspi;
  631. if (inode->i_ino < UFS_ROOTINO ||
  632. inode->i_ino > (uspi->s_ncg * uspi->s_ipg)) {
  633. ufs_warning(sb, "ufs_read_inode", "bad inode number (%lu)\n",
  634. inode->i_ino);
  635. goto bad_inode;
  636. }
  637. bh = sb_bread(sb, uspi->s_sbbase + ufs_inotofsba(inode->i_ino));
  638. if (!bh) {
  639. ufs_warning(sb, "ufs_read_inode", "unable to read inode %lu\n",
  640. inode->i_ino);
  641. goto bad_inode;
  642. }
  643. if ((UFS_SB(sb)->s_flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) {
  644. struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data;
  645. ufs2_read_inode(inode,
  646. ufs2_inode + ufs_inotofsbo(inode->i_ino));
  647. } else {
  648. struct ufs_inode *ufs_inode = (struct ufs_inode *)bh->b_data;
  649. ufs1_read_inode(inode, ufs_inode + ufs_inotofsbo(inode->i_ino));
  650. }
  651. inode->i_blksize = PAGE_SIZE;/*This is the optimal IO size (for stat)*/
  652. inode->i_version++;
  653. ufsi->i_lastfrag =
  654. (inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift;
  655. ufsi->i_dir_start_lookup = 0;
  656. ufsi->i_osync = 0;
  657. ufs_set_inode_ops(inode);
  658. brelse(bh);
  659. UFSD("EXIT\n");
  660. return;
  661. bad_inode:
  662. make_bad_inode(inode);
  663. }
  664. static int ufs_update_inode(struct inode * inode, int do_sync)
  665. {
  666. struct ufs_inode_info *ufsi = UFS_I(inode);
  667. struct super_block * sb;
  668. struct ufs_sb_private_info * uspi;
  669. struct buffer_head * bh;
  670. struct ufs_inode * ufs_inode;
  671. unsigned i;
  672. unsigned flags;
  673. UFSD("ENTER, ino %lu\n", inode->i_ino);
  674. sb = inode->i_sb;
  675. uspi = UFS_SB(sb)->s_uspi;
  676. flags = UFS_SB(sb)->s_flags;
  677. if (inode->i_ino < UFS_ROOTINO ||
  678. inode->i_ino > (uspi->s_ncg * uspi->s_ipg)) {
  679. ufs_warning (sb, "ufs_read_inode", "bad inode number (%lu)\n", inode->i_ino);
  680. return -1;
  681. }
  682. bh = sb_bread(sb, ufs_inotofsba(inode->i_ino));
  683. if (!bh) {
  684. ufs_warning (sb, "ufs_read_inode", "unable to read inode %lu\n", inode->i_ino);
  685. return -1;
  686. }
  687. ufs_inode = (struct ufs_inode *) (bh->b_data + ufs_inotofsbo(inode->i_ino) * sizeof(struct ufs_inode));
  688. ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode);
  689. ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink);
  690. ufs_set_inode_uid(sb, ufs_inode, inode->i_uid);
  691. ufs_set_inode_gid(sb, ufs_inode, inode->i_gid);
  692. ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size);
  693. ufs_inode->ui_atime.tv_sec = cpu_to_fs32(sb, inode->i_atime.tv_sec);
  694. ufs_inode->ui_atime.tv_usec = 0;
  695. ufs_inode->ui_ctime.tv_sec = cpu_to_fs32(sb, inode->i_ctime.tv_sec);
  696. ufs_inode->ui_ctime.tv_usec = 0;
  697. ufs_inode->ui_mtime.tv_sec = cpu_to_fs32(sb, inode->i_mtime.tv_sec);
  698. ufs_inode->ui_mtime.tv_usec = 0;
  699. ufs_inode->ui_blocks = cpu_to_fs32(sb, inode->i_blocks);
  700. ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags);
  701. ufs_inode->ui_gen = cpu_to_fs32(sb, ufsi->i_gen);
  702. if ((flags & UFS_UID_MASK) == UFS_UID_EFT) {
  703. ufs_inode->ui_u3.ui_sun.ui_shadow = cpu_to_fs32(sb, ufsi->i_shadow);
  704. ufs_inode->ui_u3.ui_sun.ui_oeftflag = cpu_to_fs32(sb, ufsi->i_oeftflag);
  705. }
  706. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  707. /* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */
  708. ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.i_data[0];
  709. } else if (inode->i_blocks) {
  710. for (i = 0; i < (UFS_NDADDR + UFS_NINDIR); i++)
  711. ufs_inode->ui_u2.ui_addr.ui_db[i] = ufsi->i_u1.i_data[i];
  712. }
  713. else {
  714. for (i = 0; i < (UFS_NDADDR + UFS_NINDIR) * 4; i++)
  715. ufs_inode->ui_u2.ui_symlink[i] = ufsi->i_u1.i_symlink[i];
  716. }
  717. if (!inode->i_nlink)
  718. memset (ufs_inode, 0, sizeof(struct ufs_inode));
  719. mark_buffer_dirty(bh);
  720. if (do_sync)
  721. sync_dirty_buffer(bh);
  722. brelse (bh);
  723. UFSD("EXIT\n");
  724. return 0;
  725. }
  726. int ufs_write_inode (struct inode * inode, int wait)
  727. {
  728. int ret;
  729. lock_kernel();
  730. ret = ufs_update_inode (inode, wait);
  731. unlock_kernel();
  732. return ret;
  733. }
  734. int ufs_sync_inode (struct inode *inode)
  735. {
  736. return ufs_update_inode (inode, 1);
  737. }
  738. void ufs_delete_inode (struct inode * inode)
  739. {
  740. truncate_inode_pages(&inode->i_data, 0);
  741. /*UFS_I(inode)->i_dtime = CURRENT_TIME;*/
  742. lock_kernel();
  743. mark_inode_dirty(inode);
  744. ufs_update_inode(inode, IS_SYNC(inode));
  745. inode->i_size = 0;
  746. if (inode->i_blocks)
  747. ufs_truncate (inode);
  748. ufs_free_inode (inode);
  749. unlock_kernel();
  750. }