init.c 41 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538
  1. /* $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
  2. * arch/sparc64/mm/init.c
  3. *
  4. * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
  5. * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  6. */
  7. #include <linux/config.h>
  8. #include <linux/kernel.h>
  9. #include <linux/sched.h>
  10. #include <linux/string.h>
  11. #include <linux/init.h>
  12. #include <linux/bootmem.h>
  13. #include <linux/mm.h>
  14. #include <linux/hugetlb.h>
  15. #include <linux/slab.h>
  16. #include <linux/initrd.h>
  17. #include <linux/swap.h>
  18. #include <linux/pagemap.h>
  19. #include <linux/fs.h>
  20. #include <linux/seq_file.h>
  21. #include <linux/kprobes.h>
  22. #include <linux/cache.h>
  23. #include <linux/sort.h>
  24. #include <asm/head.h>
  25. #include <asm/system.h>
  26. #include <asm/page.h>
  27. #include <asm/pgalloc.h>
  28. #include <asm/pgtable.h>
  29. #include <asm/oplib.h>
  30. #include <asm/iommu.h>
  31. #include <asm/io.h>
  32. #include <asm/uaccess.h>
  33. #include <asm/mmu_context.h>
  34. #include <asm/tlbflush.h>
  35. #include <asm/dma.h>
  36. #include <asm/starfire.h>
  37. #include <asm/tlb.h>
  38. #include <asm/spitfire.h>
  39. #include <asm/sections.h>
  40. extern void device_scan(void);
  41. #define MAX_BANKS 32
  42. static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
  43. static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
  44. static int pavail_ents __initdata;
  45. static int pavail_rescan_ents __initdata;
  46. static int cmp_p64(const void *a, const void *b)
  47. {
  48. const struct linux_prom64_registers *x = a, *y = b;
  49. if (x->phys_addr > y->phys_addr)
  50. return 1;
  51. if (x->phys_addr < y->phys_addr)
  52. return -1;
  53. return 0;
  54. }
  55. static void __init read_obp_memory(const char *property,
  56. struct linux_prom64_registers *regs,
  57. int *num_ents)
  58. {
  59. int node = prom_finddevice("/memory");
  60. int prop_size = prom_getproplen(node, property);
  61. int ents, ret, i;
  62. ents = prop_size / sizeof(struct linux_prom64_registers);
  63. if (ents > MAX_BANKS) {
  64. prom_printf("The machine has more %s property entries than "
  65. "this kernel can support (%d).\n",
  66. property, MAX_BANKS);
  67. prom_halt();
  68. }
  69. ret = prom_getproperty(node, property, (char *) regs, prop_size);
  70. if (ret == -1) {
  71. prom_printf("Couldn't get %s property from /memory.\n");
  72. prom_halt();
  73. }
  74. *num_ents = ents;
  75. /* Sanitize what we got from the firmware, by page aligning
  76. * everything.
  77. */
  78. for (i = 0; i < ents; i++) {
  79. unsigned long base, size;
  80. base = regs[i].phys_addr;
  81. size = regs[i].reg_size;
  82. size &= PAGE_MASK;
  83. if (base & ~PAGE_MASK) {
  84. unsigned long new_base = PAGE_ALIGN(base);
  85. size -= new_base - base;
  86. if ((long) size < 0L)
  87. size = 0UL;
  88. base = new_base;
  89. }
  90. regs[i].phys_addr = base;
  91. regs[i].reg_size = size;
  92. }
  93. sort(regs, ents, sizeof(struct linux_prom64_registers),
  94. cmp_p64, NULL);
  95. }
  96. unsigned long *sparc64_valid_addr_bitmap __read_mostly;
  97. /* Ugly, but necessary... -DaveM */
  98. unsigned long phys_base __read_mostly;
  99. unsigned long kern_base __read_mostly;
  100. unsigned long kern_size __read_mostly;
  101. unsigned long pfn_base __read_mostly;
  102. /* get_new_mmu_context() uses "cache + 1". */
  103. DEFINE_SPINLOCK(ctx_alloc_lock);
  104. unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
  105. #define CTX_BMAP_SLOTS (1UL << (CTX_NR_BITS - 6))
  106. unsigned long mmu_context_bmap[CTX_BMAP_SLOTS];
  107. /* References to special section boundaries */
  108. extern char _start[], _end[];
  109. /* Initial ramdisk setup */
  110. extern unsigned long sparc_ramdisk_image64;
  111. extern unsigned int sparc_ramdisk_image;
  112. extern unsigned int sparc_ramdisk_size;
  113. struct page *mem_map_zero __read_mostly;
  114. unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
  115. unsigned long sparc64_kern_pri_context __read_mostly;
  116. unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
  117. unsigned long sparc64_kern_sec_context __read_mostly;
  118. int bigkernel = 0;
  119. /* XXX Tune this... */
  120. #define PGT_CACHE_LOW 25
  121. #define PGT_CACHE_HIGH 50
  122. #ifndef CONFIG_SMP
  123. struct pgtable_cache_struct pgt_quicklists;
  124. #endif
  125. void check_pgt_cache(void)
  126. {
  127. preempt_disable();
  128. if (pgtable_cache_size > PGT_CACHE_HIGH) {
  129. do {
  130. if (pgd_quicklist)
  131. free_pgd_slow(get_pgd_fast());
  132. if (pte_quicklist)
  133. free_pte_slow(pte_alloc_one_fast());
  134. } while (pgtable_cache_size > PGT_CACHE_LOW);
  135. }
  136. preempt_enable();
  137. }
  138. #ifdef CONFIG_DEBUG_DCFLUSH
  139. atomic_t dcpage_flushes = ATOMIC_INIT(0);
  140. #ifdef CONFIG_SMP
  141. atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
  142. #endif
  143. #endif
  144. __inline__ void flush_dcache_page_impl(struct page *page)
  145. {
  146. #ifdef CONFIG_DEBUG_DCFLUSH
  147. atomic_inc(&dcpage_flushes);
  148. #endif
  149. #ifdef DCACHE_ALIASING_POSSIBLE
  150. __flush_dcache_page(page_address(page),
  151. ((tlb_type == spitfire) &&
  152. page_mapping(page) != NULL));
  153. #else
  154. if (page_mapping(page) != NULL &&
  155. tlb_type == spitfire)
  156. __flush_icache_page(__pa(page_address(page)));
  157. #endif
  158. }
  159. #define PG_dcache_dirty PG_arch_1
  160. #define PG_dcache_cpu_shift 24
  161. #define PG_dcache_cpu_mask (256 - 1)
  162. #if NR_CPUS > 256
  163. #error D-cache dirty tracking and thread_info->cpu need fixing for > 256 cpus
  164. #endif
  165. #define dcache_dirty_cpu(page) \
  166. (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
  167. static __inline__ void set_dcache_dirty(struct page *page, int this_cpu)
  168. {
  169. unsigned long mask = this_cpu;
  170. unsigned long non_cpu_bits;
  171. non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
  172. mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
  173. __asm__ __volatile__("1:\n\t"
  174. "ldx [%2], %%g7\n\t"
  175. "and %%g7, %1, %%g1\n\t"
  176. "or %%g1, %0, %%g1\n\t"
  177. "casx [%2], %%g7, %%g1\n\t"
  178. "cmp %%g7, %%g1\n\t"
  179. "membar #StoreLoad | #StoreStore\n\t"
  180. "bne,pn %%xcc, 1b\n\t"
  181. " nop"
  182. : /* no outputs */
  183. : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
  184. : "g1", "g7");
  185. }
  186. static __inline__ void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
  187. {
  188. unsigned long mask = (1UL << PG_dcache_dirty);
  189. __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
  190. "1:\n\t"
  191. "ldx [%2], %%g7\n\t"
  192. "srlx %%g7, %4, %%g1\n\t"
  193. "and %%g1, %3, %%g1\n\t"
  194. "cmp %%g1, %0\n\t"
  195. "bne,pn %%icc, 2f\n\t"
  196. " andn %%g7, %1, %%g1\n\t"
  197. "casx [%2], %%g7, %%g1\n\t"
  198. "cmp %%g7, %%g1\n\t"
  199. "membar #StoreLoad | #StoreStore\n\t"
  200. "bne,pn %%xcc, 1b\n\t"
  201. " nop\n"
  202. "2:"
  203. : /* no outputs */
  204. : "r" (cpu), "r" (mask), "r" (&page->flags),
  205. "i" (PG_dcache_cpu_mask),
  206. "i" (PG_dcache_cpu_shift)
  207. : "g1", "g7");
  208. }
  209. void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
  210. {
  211. struct page *page;
  212. unsigned long pfn;
  213. unsigned long pg_flags;
  214. pfn = pte_pfn(pte);
  215. if (pfn_valid(pfn) &&
  216. (page = pfn_to_page(pfn), page_mapping(page)) &&
  217. ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
  218. int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
  219. PG_dcache_cpu_mask);
  220. int this_cpu = get_cpu();
  221. /* This is just to optimize away some function calls
  222. * in the SMP case.
  223. */
  224. if (cpu == this_cpu)
  225. flush_dcache_page_impl(page);
  226. else
  227. smp_flush_dcache_page_impl(page, cpu);
  228. clear_dcache_dirty_cpu(page, cpu);
  229. put_cpu();
  230. }
  231. }
  232. void flush_dcache_page(struct page *page)
  233. {
  234. struct address_space *mapping;
  235. int this_cpu;
  236. /* Do not bother with the expensive D-cache flush if it
  237. * is merely the zero page. The 'bigcore' testcase in GDB
  238. * causes this case to run millions of times.
  239. */
  240. if (page == ZERO_PAGE(0))
  241. return;
  242. this_cpu = get_cpu();
  243. mapping = page_mapping(page);
  244. if (mapping && !mapping_mapped(mapping)) {
  245. int dirty = test_bit(PG_dcache_dirty, &page->flags);
  246. if (dirty) {
  247. int dirty_cpu = dcache_dirty_cpu(page);
  248. if (dirty_cpu == this_cpu)
  249. goto out;
  250. smp_flush_dcache_page_impl(page, dirty_cpu);
  251. }
  252. set_dcache_dirty(page, this_cpu);
  253. } else {
  254. /* We could delay the flush for the !page_mapping
  255. * case too. But that case is for exec env/arg
  256. * pages and those are %99 certainly going to get
  257. * faulted into the tlb (and thus flushed) anyways.
  258. */
  259. flush_dcache_page_impl(page);
  260. }
  261. out:
  262. put_cpu();
  263. }
  264. void __kprobes flush_icache_range(unsigned long start, unsigned long end)
  265. {
  266. /* Cheetah has coherent I-cache. */
  267. if (tlb_type == spitfire) {
  268. unsigned long kaddr;
  269. for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE)
  270. __flush_icache_page(__get_phys(kaddr));
  271. }
  272. }
  273. unsigned long page_to_pfn(struct page *page)
  274. {
  275. return (unsigned long) ((page - mem_map) + pfn_base);
  276. }
  277. struct page *pfn_to_page(unsigned long pfn)
  278. {
  279. return (mem_map + (pfn - pfn_base));
  280. }
  281. void show_mem(void)
  282. {
  283. printk("Mem-info:\n");
  284. show_free_areas();
  285. printk("Free swap: %6ldkB\n",
  286. nr_swap_pages << (PAGE_SHIFT-10));
  287. printk("%ld pages of RAM\n", num_physpages);
  288. printk("%d free pages\n", nr_free_pages());
  289. printk("%d pages in page table cache\n",pgtable_cache_size);
  290. }
  291. void mmu_info(struct seq_file *m)
  292. {
  293. if (tlb_type == cheetah)
  294. seq_printf(m, "MMU Type\t: Cheetah\n");
  295. else if (tlb_type == cheetah_plus)
  296. seq_printf(m, "MMU Type\t: Cheetah+\n");
  297. else if (tlb_type == spitfire)
  298. seq_printf(m, "MMU Type\t: Spitfire\n");
  299. else
  300. seq_printf(m, "MMU Type\t: ???\n");
  301. #ifdef CONFIG_DEBUG_DCFLUSH
  302. seq_printf(m, "DCPageFlushes\t: %d\n",
  303. atomic_read(&dcpage_flushes));
  304. #ifdef CONFIG_SMP
  305. seq_printf(m, "DCPageFlushesXC\t: %d\n",
  306. atomic_read(&dcpage_flushes_xcall));
  307. #endif /* CONFIG_SMP */
  308. #endif /* CONFIG_DEBUG_DCFLUSH */
  309. }
  310. struct linux_prom_translation {
  311. unsigned long virt;
  312. unsigned long size;
  313. unsigned long data;
  314. };
  315. /* Exported for kernel TLB miss handling in ktlb.S */
  316. struct linux_prom_translation prom_trans[512] __read_mostly;
  317. unsigned int prom_trans_ents __read_mostly;
  318. unsigned int swapper_pgd_zero __read_mostly;
  319. extern unsigned long prom_boot_page;
  320. extern void prom_remap(unsigned long physpage, unsigned long virtpage, int mmu_ihandle);
  321. extern int prom_get_mmu_ihandle(void);
  322. extern void register_prom_callbacks(void);
  323. /* Exported for SMP bootup purposes. */
  324. unsigned long kern_locked_tte_data;
  325. /*
  326. * Translate PROM's mapping we capture at boot time into physical address.
  327. * The second parameter is only set from prom_callback() invocations.
  328. */
  329. unsigned long prom_virt_to_phys(unsigned long promva, int *error)
  330. {
  331. int i;
  332. for (i = 0; i < prom_trans_ents; i++) {
  333. struct linux_prom_translation *p = &prom_trans[i];
  334. if (promva >= p->virt &&
  335. promva < (p->virt + p->size)) {
  336. unsigned long base = p->data & _PAGE_PADDR;
  337. if (error)
  338. *error = 0;
  339. return base + (promva & (8192 - 1));
  340. }
  341. }
  342. if (error)
  343. *error = 1;
  344. return 0UL;
  345. }
  346. /* The obp translations are saved based on 8k pagesize, since obp can
  347. * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
  348. * HI_OBP_ADDRESS range are handled in ktlb.S.
  349. */
  350. static inline int in_obp_range(unsigned long vaddr)
  351. {
  352. return (vaddr >= LOW_OBP_ADDRESS &&
  353. vaddr < HI_OBP_ADDRESS);
  354. }
  355. static int cmp_ptrans(const void *a, const void *b)
  356. {
  357. const struct linux_prom_translation *x = a, *y = b;
  358. if (x->virt > y->virt)
  359. return 1;
  360. if (x->virt < y->virt)
  361. return -1;
  362. return 0;
  363. }
  364. /* Read OBP translations property into 'prom_trans[]'. */
  365. static void __init read_obp_translations(void)
  366. {
  367. int n, node, ents, first, last, i;
  368. node = prom_finddevice("/virtual-memory");
  369. n = prom_getproplen(node, "translations");
  370. if (unlikely(n == 0 || n == -1)) {
  371. prom_printf("prom_mappings: Couldn't get size.\n");
  372. prom_halt();
  373. }
  374. if (unlikely(n > sizeof(prom_trans))) {
  375. prom_printf("prom_mappings: Size %Zd is too big.\n", n);
  376. prom_halt();
  377. }
  378. if ((n = prom_getproperty(node, "translations",
  379. (char *)&prom_trans[0],
  380. sizeof(prom_trans))) == -1) {
  381. prom_printf("prom_mappings: Couldn't get property.\n");
  382. prom_halt();
  383. }
  384. n = n / sizeof(struct linux_prom_translation);
  385. ents = n;
  386. sort(prom_trans, ents, sizeof(struct linux_prom_translation),
  387. cmp_ptrans, NULL);
  388. /* Now kick out all the non-OBP entries. */
  389. for (i = 0; i < ents; i++) {
  390. if (in_obp_range(prom_trans[i].virt))
  391. break;
  392. }
  393. first = i;
  394. for (; i < ents; i++) {
  395. if (!in_obp_range(prom_trans[i].virt))
  396. break;
  397. }
  398. last = i;
  399. for (i = 0; i < (last - first); i++) {
  400. struct linux_prom_translation *src = &prom_trans[i + first];
  401. struct linux_prom_translation *dest = &prom_trans[i];
  402. *dest = *src;
  403. }
  404. for (; i < ents; i++) {
  405. struct linux_prom_translation *dest = &prom_trans[i];
  406. dest->virt = dest->size = dest->data = 0x0UL;
  407. }
  408. prom_trans_ents = last - first;
  409. if (tlb_type == spitfire) {
  410. /* Clear diag TTE bits. */
  411. for (i = 0; i < prom_trans_ents; i++)
  412. prom_trans[i].data &= ~0x0003fe0000000000UL;
  413. }
  414. }
  415. static void __init remap_kernel(void)
  416. {
  417. unsigned long phys_page, tte_vaddr, tte_data;
  418. int tlb_ent = sparc64_highest_locked_tlbent();
  419. tte_vaddr = (unsigned long) KERNBASE;
  420. phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
  421. tte_data = (phys_page | (_PAGE_VALID | _PAGE_SZ4MB |
  422. _PAGE_CP | _PAGE_CV | _PAGE_P |
  423. _PAGE_L | _PAGE_W));
  424. kern_locked_tte_data = tte_data;
  425. /* Now lock us into the TLBs via OBP. */
  426. prom_dtlb_load(tlb_ent, tte_data, tte_vaddr);
  427. prom_itlb_load(tlb_ent, tte_data, tte_vaddr);
  428. if (bigkernel) {
  429. tlb_ent -= 1;
  430. prom_dtlb_load(tlb_ent,
  431. tte_data + 0x400000,
  432. tte_vaddr + 0x400000);
  433. prom_itlb_load(tlb_ent,
  434. tte_data + 0x400000,
  435. tte_vaddr + 0x400000);
  436. }
  437. sparc64_highest_unlocked_tlb_ent = tlb_ent - 1;
  438. if (tlb_type == cheetah_plus) {
  439. sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
  440. CTX_CHEETAH_PLUS_NUC);
  441. sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
  442. sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
  443. }
  444. }
  445. static void __init inherit_prom_mappings(void)
  446. {
  447. read_obp_translations();
  448. /* Now fixup OBP's idea about where we really are mapped. */
  449. prom_printf("Remapping the kernel... ");
  450. remap_kernel();
  451. prom_printf("done.\n");
  452. prom_printf("Registering callbacks... ");
  453. register_prom_callbacks();
  454. prom_printf("done.\n");
  455. }
  456. static int prom_ditlb_set;
  457. struct prom_tlb_entry {
  458. int tlb_ent;
  459. unsigned long tlb_tag;
  460. unsigned long tlb_data;
  461. };
  462. struct prom_tlb_entry prom_itlb[16], prom_dtlb[16];
  463. void prom_world(int enter)
  464. {
  465. unsigned long pstate;
  466. int i;
  467. if (!enter)
  468. set_fs((mm_segment_t) { get_thread_current_ds() });
  469. if (!prom_ditlb_set)
  470. return;
  471. /* Make sure the following runs atomically. */
  472. __asm__ __volatile__("flushw\n\t"
  473. "rdpr %%pstate, %0\n\t"
  474. "wrpr %0, %1, %%pstate"
  475. : "=r" (pstate)
  476. : "i" (PSTATE_IE));
  477. if (enter) {
  478. /* Install PROM world. */
  479. for (i = 0; i < 16; i++) {
  480. if (prom_dtlb[i].tlb_ent != -1) {
  481. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  482. "membar #Sync"
  483. : : "r" (prom_dtlb[i].tlb_tag), "r" (TLB_TAG_ACCESS),
  484. "i" (ASI_DMMU));
  485. if (tlb_type == spitfire)
  486. spitfire_put_dtlb_data(prom_dtlb[i].tlb_ent,
  487. prom_dtlb[i].tlb_data);
  488. else if (tlb_type == cheetah || tlb_type == cheetah_plus)
  489. cheetah_put_ldtlb_data(prom_dtlb[i].tlb_ent,
  490. prom_dtlb[i].tlb_data);
  491. }
  492. if (prom_itlb[i].tlb_ent != -1) {
  493. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  494. "membar #Sync"
  495. : : "r" (prom_itlb[i].tlb_tag),
  496. "r" (TLB_TAG_ACCESS),
  497. "i" (ASI_IMMU));
  498. if (tlb_type == spitfire)
  499. spitfire_put_itlb_data(prom_itlb[i].tlb_ent,
  500. prom_itlb[i].tlb_data);
  501. else if (tlb_type == cheetah || tlb_type == cheetah_plus)
  502. cheetah_put_litlb_data(prom_itlb[i].tlb_ent,
  503. prom_itlb[i].tlb_data);
  504. }
  505. }
  506. } else {
  507. for (i = 0; i < 16; i++) {
  508. if (prom_dtlb[i].tlb_ent != -1) {
  509. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  510. "membar #Sync"
  511. : : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
  512. if (tlb_type == spitfire)
  513. spitfire_put_dtlb_data(prom_dtlb[i].tlb_ent, 0x0UL);
  514. else
  515. cheetah_put_ldtlb_data(prom_dtlb[i].tlb_ent, 0x0UL);
  516. }
  517. if (prom_itlb[i].tlb_ent != -1) {
  518. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  519. "membar #Sync"
  520. : : "r" (TLB_TAG_ACCESS),
  521. "i" (ASI_IMMU));
  522. if (tlb_type == spitfire)
  523. spitfire_put_itlb_data(prom_itlb[i].tlb_ent, 0x0UL);
  524. else
  525. cheetah_put_litlb_data(prom_itlb[i].tlb_ent, 0x0UL);
  526. }
  527. }
  528. }
  529. __asm__ __volatile__("wrpr %0, 0, %%pstate"
  530. : : "r" (pstate));
  531. }
  532. void inherit_locked_prom_mappings(int save_p)
  533. {
  534. int i;
  535. int dtlb_seen = 0;
  536. int itlb_seen = 0;
  537. /* Fucking losing PROM has more mappings in the TLB, but
  538. * it (conveniently) fails to mention any of these in the
  539. * translations property. The only ones that matter are
  540. * the locked PROM tlb entries, so we impose the following
  541. * irrecovable rule on the PROM, it is allowed 8 locked
  542. * entries in the ITLB and 8 in the DTLB.
  543. *
  544. * Supposedly the upper 16GB of the address space is
  545. * reserved for OBP, BUT I WISH THIS WAS DOCUMENTED
  546. * SOMEWHERE!!!!!!!!!!!!!!!!! Furthermore the entire interface
  547. * used between the client program and the firmware on sun5
  548. * systems to coordinate mmu mappings is also COMPLETELY
  549. * UNDOCUMENTED!!!!!! Thanks S(t)un!
  550. */
  551. if (save_p) {
  552. for (i = 0; i < 16; i++) {
  553. prom_itlb[i].tlb_ent = -1;
  554. prom_dtlb[i].tlb_ent = -1;
  555. }
  556. }
  557. if (tlb_type == spitfire) {
  558. int high = sparc64_highest_unlocked_tlb_ent;
  559. for (i = 0; i <= high; i++) {
  560. unsigned long data;
  561. /* Spitfire Errata #32 workaround */
  562. /* NOTE: Always runs on spitfire, so no cheetah+
  563. * page size encodings.
  564. */
  565. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  566. "flush %%g6"
  567. : /* No outputs */
  568. : "r" (0),
  569. "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
  570. data = spitfire_get_dtlb_data(i);
  571. if ((data & (_PAGE_L|_PAGE_VALID)) == (_PAGE_L|_PAGE_VALID)) {
  572. unsigned long tag;
  573. /* Spitfire Errata #32 workaround */
  574. /* NOTE: Always runs on spitfire, so no
  575. * cheetah+ page size encodings.
  576. */
  577. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  578. "flush %%g6"
  579. : /* No outputs */
  580. : "r" (0),
  581. "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
  582. tag = spitfire_get_dtlb_tag(i);
  583. if (save_p) {
  584. prom_dtlb[dtlb_seen].tlb_ent = i;
  585. prom_dtlb[dtlb_seen].tlb_tag = tag;
  586. prom_dtlb[dtlb_seen].tlb_data = data;
  587. }
  588. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  589. "membar #Sync"
  590. : : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
  591. spitfire_put_dtlb_data(i, 0x0UL);
  592. dtlb_seen++;
  593. if (dtlb_seen > 15)
  594. break;
  595. }
  596. }
  597. for (i = 0; i < high; i++) {
  598. unsigned long data;
  599. /* Spitfire Errata #32 workaround */
  600. /* NOTE: Always runs on spitfire, so no
  601. * cheetah+ page size encodings.
  602. */
  603. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  604. "flush %%g6"
  605. : /* No outputs */
  606. : "r" (0),
  607. "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
  608. data = spitfire_get_itlb_data(i);
  609. if ((data & (_PAGE_L|_PAGE_VALID)) == (_PAGE_L|_PAGE_VALID)) {
  610. unsigned long tag;
  611. /* Spitfire Errata #32 workaround */
  612. /* NOTE: Always runs on spitfire, so no
  613. * cheetah+ page size encodings.
  614. */
  615. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  616. "flush %%g6"
  617. : /* No outputs */
  618. : "r" (0),
  619. "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
  620. tag = spitfire_get_itlb_tag(i);
  621. if (save_p) {
  622. prom_itlb[itlb_seen].tlb_ent = i;
  623. prom_itlb[itlb_seen].tlb_tag = tag;
  624. prom_itlb[itlb_seen].tlb_data = data;
  625. }
  626. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  627. "membar #Sync"
  628. : : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
  629. spitfire_put_itlb_data(i, 0x0UL);
  630. itlb_seen++;
  631. if (itlb_seen > 15)
  632. break;
  633. }
  634. }
  635. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  636. int high = sparc64_highest_unlocked_tlb_ent;
  637. for (i = 0; i <= high; i++) {
  638. unsigned long data;
  639. data = cheetah_get_ldtlb_data(i);
  640. if ((data & (_PAGE_L|_PAGE_VALID)) == (_PAGE_L|_PAGE_VALID)) {
  641. unsigned long tag;
  642. tag = cheetah_get_ldtlb_tag(i);
  643. if (save_p) {
  644. prom_dtlb[dtlb_seen].tlb_ent = i;
  645. prom_dtlb[dtlb_seen].tlb_tag = tag;
  646. prom_dtlb[dtlb_seen].tlb_data = data;
  647. }
  648. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  649. "membar #Sync"
  650. : : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
  651. cheetah_put_ldtlb_data(i, 0x0UL);
  652. dtlb_seen++;
  653. if (dtlb_seen > 15)
  654. break;
  655. }
  656. }
  657. for (i = 0; i < high; i++) {
  658. unsigned long data;
  659. data = cheetah_get_litlb_data(i);
  660. if ((data & (_PAGE_L|_PAGE_VALID)) == (_PAGE_L|_PAGE_VALID)) {
  661. unsigned long tag;
  662. tag = cheetah_get_litlb_tag(i);
  663. if (save_p) {
  664. prom_itlb[itlb_seen].tlb_ent = i;
  665. prom_itlb[itlb_seen].tlb_tag = tag;
  666. prom_itlb[itlb_seen].tlb_data = data;
  667. }
  668. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  669. "membar #Sync"
  670. : : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
  671. cheetah_put_litlb_data(i, 0x0UL);
  672. itlb_seen++;
  673. if (itlb_seen > 15)
  674. break;
  675. }
  676. }
  677. } else {
  678. /* Implement me :-) */
  679. BUG();
  680. }
  681. if (save_p)
  682. prom_ditlb_set = 1;
  683. }
  684. /* Give PROM back his world, done during reboots... */
  685. void prom_reload_locked(void)
  686. {
  687. int i;
  688. for (i = 0; i < 16; i++) {
  689. if (prom_dtlb[i].tlb_ent != -1) {
  690. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  691. "membar #Sync"
  692. : : "r" (prom_dtlb[i].tlb_tag), "r" (TLB_TAG_ACCESS),
  693. "i" (ASI_DMMU));
  694. if (tlb_type == spitfire)
  695. spitfire_put_dtlb_data(prom_dtlb[i].tlb_ent,
  696. prom_dtlb[i].tlb_data);
  697. else if (tlb_type == cheetah || tlb_type == cheetah_plus)
  698. cheetah_put_ldtlb_data(prom_dtlb[i].tlb_ent,
  699. prom_dtlb[i].tlb_data);
  700. }
  701. if (prom_itlb[i].tlb_ent != -1) {
  702. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  703. "membar #Sync"
  704. : : "r" (prom_itlb[i].tlb_tag),
  705. "r" (TLB_TAG_ACCESS),
  706. "i" (ASI_IMMU));
  707. if (tlb_type == spitfire)
  708. spitfire_put_itlb_data(prom_itlb[i].tlb_ent,
  709. prom_itlb[i].tlb_data);
  710. else
  711. cheetah_put_litlb_data(prom_itlb[i].tlb_ent,
  712. prom_itlb[i].tlb_data);
  713. }
  714. }
  715. }
  716. #ifdef DCACHE_ALIASING_POSSIBLE
  717. void __flush_dcache_range(unsigned long start, unsigned long end)
  718. {
  719. unsigned long va;
  720. if (tlb_type == spitfire) {
  721. int n = 0;
  722. for (va = start; va < end; va += 32) {
  723. spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
  724. if (++n >= 512)
  725. break;
  726. }
  727. } else {
  728. start = __pa(start);
  729. end = __pa(end);
  730. for (va = start; va < end; va += 32)
  731. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  732. "membar #Sync"
  733. : /* no outputs */
  734. : "r" (va),
  735. "i" (ASI_DCACHE_INVALIDATE));
  736. }
  737. }
  738. #endif /* DCACHE_ALIASING_POSSIBLE */
  739. /* If not locked, zap it. */
  740. void __flush_tlb_all(void)
  741. {
  742. unsigned long pstate;
  743. int i;
  744. __asm__ __volatile__("flushw\n\t"
  745. "rdpr %%pstate, %0\n\t"
  746. "wrpr %0, %1, %%pstate"
  747. : "=r" (pstate)
  748. : "i" (PSTATE_IE));
  749. if (tlb_type == spitfire) {
  750. for (i = 0; i < 64; i++) {
  751. /* Spitfire Errata #32 workaround */
  752. /* NOTE: Always runs on spitfire, so no
  753. * cheetah+ page size encodings.
  754. */
  755. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  756. "flush %%g6"
  757. : /* No outputs */
  758. : "r" (0),
  759. "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
  760. if (!(spitfire_get_dtlb_data(i) & _PAGE_L)) {
  761. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  762. "membar #Sync"
  763. : /* no outputs */
  764. : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
  765. spitfire_put_dtlb_data(i, 0x0UL);
  766. }
  767. /* Spitfire Errata #32 workaround */
  768. /* NOTE: Always runs on spitfire, so no
  769. * cheetah+ page size encodings.
  770. */
  771. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  772. "flush %%g6"
  773. : /* No outputs */
  774. : "r" (0),
  775. "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
  776. if (!(spitfire_get_itlb_data(i) & _PAGE_L)) {
  777. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  778. "membar #Sync"
  779. : /* no outputs */
  780. : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
  781. spitfire_put_itlb_data(i, 0x0UL);
  782. }
  783. }
  784. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  785. cheetah_flush_dtlb_all();
  786. cheetah_flush_itlb_all();
  787. }
  788. __asm__ __volatile__("wrpr %0, 0, %%pstate"
  789. : : "r" (pstate));
  790. }
  791. /* Caller does TLB context flushing on local CPU if necessary.
  792. * The caller also ensures that CTX_VALID(mm->context) is false.
  793. *
  794. * We must be careful about boundary cases so that we never
  795. * let the user have CTX 0 (nucleus) or we ever use a CTX
  796. * version of zero (and thus NO_CONTEXT would not be caught
  797. * by version mis-match tests in mmu_context.h).
  798. */
  799. void get_new_mmu_context(struct mm_struct *mm)
  800. {
  801. unsigned long ctx, new_ctx;
  802. unsigned long orig_pgsz_bits;
  803. spin_lock(&ctx_alloc_lock);
  804. orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
  805. ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
  806. new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
  807. if (new_ctx >= (1 << CTX_NR_BITS)) {
  808. new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
  809. if (new_ctx >= ctx) {
  810. int i;
  811. new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
  812. CTX_FIRST_VERSION;
  813. if (new_ctx == 1)
  814. new_ctx = CTX_FIRST_VERSION;
  815. /* Don't call memset, for 16 entries that's just
  816. * plain silly...
  817. */
  818. mmu_context_bmap[0] = 3;
  819. mmu_context_bmap[1] = 0;
  820. mmu_context_bmap[2] = 0;
  821. mmu_context_bmap[3] = 0;
  822. for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
  823. mmu_context_bmap[i + 0] = 0;
  824. mmu_context_bmap[i + 1] = 0;
  825. mmu_context_bmap[i + 2] = 0;
  826. mmu_context_bmap[i + 3] = 0;
  827. }
  828. goto out;
  829. }
  830. }
  831. mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
  832. new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
  833. out:
  834. tlb_context_cache = new_ctx;
  835. mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
  836. spin_unlock(&ctx_alloc_lock);
  837. }
  838. void sparc_ultra_dump_itlb(void)
  839. {
  840. int slot;
  841. if (tlb_type == spitfire) {
  842. printk ("Contents of itlb: ");
  843. for (slot = 0; slot < 14; slot++) printk (" ");
  844. printk ("%2x:%016lx,%016lx\n",
  845. 0,
  846. spitfire_get_itlb_tag(0), spitfire_get_itlb_data(0));
  847. for (slot = 1; slot < 64; slot+=3) {
  848. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  849. slot,
  850. spitfire_get_itlb_tag(slot), spitfire_get_itlb_data(slot),
  851. slot+1,
  852. spitfire_get_itlb_tag(slot+1), spitfire_get_itlb_data(slot+1),
  853. slot+2,
  854. spitfire_get_itlb_tag(slot+2), spitfire_get_itlb_data(slot+2));
  855. }
  856. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  857. printk ("Contents of itlb0:\n");
  858. for (slot = 0; slot < 16; slot+=2) {
  859. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  860. slot,
  861. cheetah_get_litlb_tag(slot), cheetah_get_litlb_data(slot),
  862. slot+1,
  863. cheetah_get_litlb_tag(slot+1), cheetah_get_litlb_data(slot+1));
  864. }
  865. printk ("Contents of itlb2:\n");
  866. for (slot = 0; slot < 128; slot+=2) {
  867. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  868. slot,
  869. cheetah_get_itlb_tag(slot), cheetah_get_itlb_data(slot),
  870. slot+1,
  871. cheetah_get_itlb_tag(slot+1), cheetah_get_itlb_data(slot+1));
  872. }
  873. }
  874. }
  875. void sparc_ultra_dump_dtlb(void)
  876. {
  877. int slot;
  878. if (tlb_type == spitfire) {
  879. printk ("Contents of dtlb: ");
  880. for (slot = 0; slot < 14; slot++) printk (" ");
  881. printk ("%2x:%016lx,%016lx\n", 0,
  882. spitfire_get_dtlb_tag(0), spitfire_get_dtlb_data(0));
  883. for (slot = 1; slot < 64; slot+=3) {
  884. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  885. slot,
  886. spitfire_get_dtlb_tag(slot), spitfire_get_dtlb_data(slot),
  887. slot+1,
  888. spitfire_get_dtlb_tag(slot+1), spitfire_get_dtlb_data(slot+1),
  889. slot+2,
  890. spitfire_get_dtlb_tag(slot+2), spitfire_get_dtlb_data(slot+2));
  891. }
  892. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  893. printk ("Contents of dtlb0:\n");
  894. for (slot = 0; slot < 16; slot+=2) {
  895. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  896. slot,
  897. cheetah_get_ldtlb_tag(slot), cheetah_get_ldtlb_data(slot),
  898. slot+1,
  899. cheetah_get_ldtlb_tag(slot+1), cheetah_get_ldtlb_data(slot+1));
  900. }
  901. printk ("Contents of dtlb2:\n");
  902. for (slot = 0; slot < 512; slot+=2) {
  903. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  904. slot,
  905. cheetah_get_dtlb_tag(slot, 2), cheetah_get_dtlb_data(slot, 2),
  906. slot+1,
  907. cheetah_get_dtlb_tag(slot+1, 2), cheetah_get_dtlb_data(slot+1, 2));
  908. }
  909. if (tlb_type == cheetah_plus) {
  910. printk ("Contents of dtlb3:\n");
  911. for (slot = 0; slot < 512; slot+=2) {
  912. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  913. slot,
  914. cheetah_get_dtlb_tag(slot, 3), cheetah_get_dtlb_data(slot, 3),
  915. slot+1,
  916. cheetah_get_dtlb_tag(slot+1, 3), cheetah_get_dtlb_data(slot+1, 3));
  917. }
  918. }
  919. }
  920. }
  921. extern unsigned long cmdline_memory_size;
  922. unsigned long __init bootmem_init(unsigned long *pages_avail)
  923. {
  924. unsigned long bootmap_size, start_pfn, end_pfn;
  925. unsigned long end_of_phys_memory = 0UL;
  926. unsigned long bootmap_pfn, bytes_avail, size;
  927. int i;
  928. #ifdef CONFIG_DEBUG_BOOTMEM
  929. prom_printf("bootmem_init: Scan pavail, ");
  930. #endif
  931. bytes_avail = 0UL;
  932. for (i = 0; i < pavail_ents; i++) {
  933. end_of_phys_memory = pavail[i].phys_addr +
  934. pavail[i].reg_size;
  935. bytes_avail += pavail[i].reg_size;
  936. if (cmdline_memory_size) {
  937. if (bytes_avail > cmdline_memory_size) {
  938. unsigned long slack = bytes_avail - cmdline_memory_size;
  939. bytes_avail -= slack;
  940. end_of_phys_memory -= slack;
  941. pavail[i].reg_size -= slack;
  942. if ((long)pavail[i].reg_size <= 0L) {
  943. pavail[i].phys_addr = 0xdeadbeefUL;
  944. pavail[i].reg_size = 0UL;
  945. pavail_ents = i;
  946. } else {
  947. pavail[i+1].reg_size = 0Ul;
  948. pavail[i+1].phys_addr = 0xdeadbeefUL;
  949. pavail_ents = i + 1;
  950. }
  951. break;
  952. }
  953. }
  954. }
  955. *pages_avail = bytes_avail >> PAGE_SHIFT;
  956. /* Start with page aligned address of last symbol in kernel
  957. * image. The kernel is hard mapped below PAGE_OFFSET in a
  958. * 4MB locked TLB translation.
  959. */
  960. start_pfn = PAGE_ALIGN(kern_base + kern_size) >> PAGE_SHIFT;
  961. bootmap_pfn = start_pfn;
  962. end_pfn = end_of_phys_memory >> PAGE_SHIFT;
  963. #ifdef CONFIG_BLK_DEV_INITRD
  964. /* Now have to check initial ramdisk, so that bootmap does not overwrite it */
  965. if (sparc_ramdisk_image || sparc_ramdisk_image64) {
  966. unsigned long ramdisk_image = sparc_ramdisk_image ?
  967. sparc_ramdisk_image : sparc_ramdisk_image64;
  968. if (ramdisk_image >= (unsigned long)_end - 2 * PAGE_SIZE)
  969. ramdisk_image -= KERNBASE;
  970. initrd_start = ramdisk_image + phys_base;
  971. initrd_end = initrd_start + sparc_ramdisk_size;
  972. if (initrd_end > end_of_phys_memory) {
  973. printk(KERN_CRIT "initrd extends beyond end of memory "
  974. "(0x%016lx > 0x%016lx)\ndisabling initrd\n",
  975. initrd_end, end_of_phys_memory);
  976. initrd_start = 0;
  977. }
  978. if (initrd_start) {
  979. if (initrd_start >= (start_pfn << PAGE_SHIFT) &&
  980. initrd_start < (start_pfn << PAGE_SHIFT) + 2 * PAGE_SIZE)
  981. bootmap_pfn = PAGE_ALIGN (initrd_end) >> PAGE_SHIFT;
  982. }
  983. }
  984. #endif
  985. /* Initialize the boot-time allocator. */
  986. max_pfn = max_low_pfn = end_pfn;
  987. min_low_pfn = pfn_base;
  988. #ifdef CONFIG_DEBUG_BOOTMEM
  989. prom_printf("init_bootmem(min[%lx], bootmap[%lx], max[%lx])\n",
  990. min_low_pfn, bootmap_pfn, max_low_pfn);
  991. #endif
  992. bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn, pfn_base, end_pfn);
  993. /* Now register the available physical memory with the
  994. * allocator.
  995. */
  996. for (i = 0; i < pavail_ents; i++) {
  997. #ifdef CONFIG_DEBUG_BOOTMEM
  998. prom_printf("free_bootmem(pavail:%d): base[%lx] size[%lx]\n",
  999. i, pavail[i].phys_addr, pavail[i].reg_size);
  1000. #endif
  1001. free_bootmem(pavail[i].phys_addr, pavail[i].reg_size);
  1002. }
  1003. #ifdef CONFIG_BLK_DEV_INITRD
  1004. if (initrd_start) {
  1005. size = initrd_end - initrd_start;
  1006. /* Resert the initrd image area. */
  1007. #ifdef CONFIG_DEBUG_BOOTMEM
  1008. prom_printf("reserve_bootmem(initrd): base[%llx] size[%lx]\n",
  1009. initrd_start, initrd_end);
  1010. #endif
  1011. reserve_bootmem(initrd_start, size);
  1012. *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
  1013. initrd_start += PAGE_OFFSET;
  1014. initrd_end += PAGE_OFFSET;
  1015. }
  1016. #endif
  1017. /* Reserve the kernel text/data/bss. */
  1018. #ifdef CONFIG_DEBUG_BOOTMEM
  1019. prom_printf("reserve_bootmem(kernel): base[%lx] size[%lx]\n", kern_base, kern_size);
  1020. #endif
  1021. reserve_bootmem(kern_base, kern_size);
  1022. *pages_avail -= PAGE_ALIGN(kern_size) >> PAGE_SHIFT;
  1023. /* Reserve the bootmem map. We do not account for it
  1024. * in pages_avail because we will release that memory
  1025. * in free_all_bootmem.
  1026. */
  1027. size = bootmap_size;
  1028. #ifdef CONFIG_DEBUG_BOOTMEM
  1029. prom_printf("reserve_bootmem(bootmap): base[%lx] size[%lx]\n",
  1030. (bootmap_pfn << PAGE_SHIFT), size);
  1031. #endif
  1032. reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size);
  1033. *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
  1034. return end_pfn;
  1035. }
  1036. #ifdef CONFIG_DEBUG_PAGEALLOC
  1037. static unsigned long kernel_map_range(unsigned long pstart, unsigned long pend, pgprot_t prot)
  1038. {
  1039. unsigned long vstart = PAGE_OFFSET + pstart;
  1040. unsigned long vend = PAGE_OFFSET + pend;
  1041. unsigned long alloc_bytes = 0UL;
  1042. if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
  1043. prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
  1044. vstart, vend);
  1045. prom_halt();
  1046. }
  1047. while (vstart < vend) {
  1048. unsigned long this_end, paddr = __pa(vstart);
  1049. pgd_t *pgd = pgd_offset_k(vstart);
  1050. pud_t *pud;
  1051. pmd_t *pmd;
  1052. pte_t *pte;
  1053. pud = pud_offset(pgd, vstart);
  1054. if (pud_none(*pud)) {
  1055. pmd_t *new;
  1056. new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
  1057. alloc_bytes += PAGE_SIZE;
  1058. pud_populate(&init_mm, pud, new);
  1059. }
  1060. pmd = pmd_offset(pud, vstart);
  1061. if (!pmd_present(*pmd)) {
  1062. pte_t *new;
  1063. new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
  1064. alloc_bytes += PAGE_SIZE;
  1065. pmd_populate_kernel(&init_mm, pmd, new);
  1066. }
  1067. pte = pte_offset_kernel(pmd, vstart);
  1068. this_end = (vstart + PMD_SIZE) & PMD_MASK;
  1069. if (this_end > vend)
  1070. this_end = vend;
  1071. while (vstart < this_end) {
  1072. pte_val(*pte) = (paddr | pgprot_val(prot));
  1073. vstart += PAGE_SIZE;
  1074. paddr += PAGE_SIZE;
  1075. pte++;
  1076. }
  1077. }
  1078. return alloc_bytes;
  1079. }
  1080. static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
  1081. static int pall_ents __initdata;
  1082. extern unsigned int kvmap_linear_patch[1];
  1083. static void __init kernel_physical_mapping_init(void)
  1084. {
  1085. unsigned long i, mem_alloced = 0UL;
  1086. read_obp_memory("reg", &pall[0], &pall_ents);
  1087. for (i = 0; i < pall_ents; i++) {
  1088. unsigned long phys_start, phys_end;
  1089. phys_start = pall[i].phys_addr;
  1090. phys_end = phys_start + pall[i].reg_size;
  1091. mem_alloced += kernel_map_range(phys_start, phys_end,
  1092. PAGE_KERNEL);
  1093. }
  1094. printk("Allocated %ld bytes for kernel page tables.\n",
  1095. mem_alloced);
  1096. kvmap_linear_patch[0] = 0x01000000; /* nop */
  1097. flushi(&kvmap_linear_patch[0]);
  1098. __flush_tlb_all();
  1099. }
  1100. void kernel_map_pages(struct page *page, int numpages, int enable)
  1101. {
  1102. unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
  1103. unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
  1104. kernel_map_range(phys_start, phys_end,
  1105. (enable ? PAGE_KERNEL : __pgprot(0)));
  1106. flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
  1107. PAGE_OFFSET + phys_end);
  1108. /* we should perform an IPI and flush all tlbs,
  1109. * but that can deadlock->flush only current cpu.
  1110. */
  1111. __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
  1112. PAGE_OFFSET + phys_end);
  1113. }
  1114. #endif
  1115. unsigned long __init find_ecache_flush_span(unsigned long size)
  1116. {
  1117. int i;
  1118. for (i = 0; i < pavail_ents; i++) {
  1119. if (pavail[i].reg_size >= size)
  1120. return pavail[i].phys_addr;
  1121. }
  1122. return ~0UL;
  1123. }
  1124. /* paging_init() sets up the page tables */
  1125. extern void cheetah_ecache_flush_init(void);
  1126. static unsigned long last_valid_pfn;
  1127. pgd_t swapper_pg_dir[2048];
  1128. void __init paging_init(void)
  1129. {
  1130. unsigned long end_pfn, pages_avail, shift;
  1131. unsigned long real_end, i;
  1132. /* Find available physical memory... */
  1133. read_obp_memory("available", &pavail[0], &pavail_ents);
  1134. phys_base = 0xffffffffffffffffUL;
  1135. for (i = 0; i < pavail_ents; i++)
  1136. phys_base = min(phys_base, pavail[i].phys_addr);
  1137. pfn_base = phys_base >> PAGE_SHIFT;
  1138. kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
  1139. kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
  1140. set_bit(0, mmu_context_bmap);
  1141. shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
  1142. real_end = (unsigned long)_end;
  1143. if ((real_end > ((unsigned long)KERNBASE + 0x400000)))
  1144. bigkernel = 1;
  1145. if ((real_end > ((unsigned long)KERNBASE + 0x800000))) {
  1146. prom_printf("paging_init: Kernel > 8MB, too large.\n");
  1147. prom_halt();
  1148. }
  1149. /* Set kernel pgd to upper alias so physical page computations
  1150. * work.
  1151. */
  1152. init_mm.pgd += ((shift) / (sizeof(pgd_t)));
  1153. memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
  1154. /* Now can init the kernel/bad page tables. */
  1155. pud_set(pud_offset(&swapper_pg_dir[0], 0),
  1156. swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
  1157. swapper_pgd_zero = pgd_val(swapper_pg_dir[0]);
  1158. inherit_prom_mappings();
  1159. /* Ok, we can use our TLB miss and window trap handlers safely.
  1160. * We need to do a quick peek here to see if we are on StarFire
  1161. * or not, so setup_tba can setup the IRQ globals correctly (it
  1162. * needs to get the hard smp processor id correctly).
  1163. */
  1164. {
  1165. extern void setup_tba(int);
  1166. setup_tba(this_is_starfire);
  1167. }
  1168. inherit_locked_prom_mappings(1);
  1169. __flush_tlb_all();
  1170. /* Setup bootmem... */
  1171. pages_avail = 0;
  1172. last_valid_pfn = end_pfn = bootmem_init(&pages_avail);
  1173. #ifdef CONFIG_DEBUG_PAGEALLOC
  1174. kernel_physical_mapping_init();
  1175. #endif
  1176. {
  1177. unsigned long zones_size[MAX_NR_ZONES];
  1178. unsigned long zholes_size[MAX_NR_ZONES];
  1179. unsigned long npages;
  1180. int znum;
  1181. for (znum = 0; znum < MAX_NR_ZONES; znum++)
  1182. zones_size[znum] = zholes_size[znum] = 0;
  1183. npages = end_pfn - pfn_base;
  1184. zones_size[ZONE_DMA] = npages;
  1185. zholes_size[ZONE_DMA] = npages - pages_avail;
  1186. free_area_init_node(0, &contig_page_data, zones_size,
  1187. phys_base >> PAGE_SHIFT, zholes_size);
  1188. }
  1189. device_scan();
  1190. }
  1191. static void __init taint_real_pages(void)
  1192. {
  1193. int i;
  1194. read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
  1195. /* Find changes discovered in the physmem available rescan and
  1196. * reserve the lost portions in the bootmem maps.
  1197. */
  1198. for (i = 0; i < pavail_ents; i++) {
  1199. unsigned long old_start, old_end;
  1200. old_start = pavail[i].phys_addr;
  1201. old_end = old_start +
  1202. pavail[i].reg_size;
  1203. while (old_start < old_end) {
  1204. int n;
  1205. for (n = 0; pavail_rescan_ents; n++) {
  1206. unsigned long new_start, new_end;
  1207. new_start = pavail_rescan[n].phys_addr;
  1208. new_end = new_start +
  1209. pavail_rescan[n].reg_size;
  1210. if (new_start <= old_start &&
  1211. new_end >= (old_start + PAGE_SIZE)) {
  1212. set_bit(old_start >> 22,
  1213. sparc64_valid_addr_bitmap);
  1214. goto do_next_page;
  1215. }
  1216. }
  1217. reserve_bootmem(old_start, PAGE_SIZE);
  1218. do_next_page:
  1219. old_start += PAGE_SIZE;
  1220. }
  1221. }
  1222. }
  1223. void __init mem_init(void)
  1224. {
  1225. unsigned long codepages, datapages, initpages;
  1226. unsigned long addr, last;
  1227. int i;
  1228. i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
  1229. i += 1;
  1230. sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
  1231. if (sparc64_valid_addr_bitmap == NULL) {
  1232. prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
  1233. prom_halt();
  1234. }
  1235. memset(sparc64_valid_addr_bitmap, 0, i << 3);
  1236. addr = PAGE_OFFSET + kern_base;
  1237. last = PAGE_ALIGN(kern_size) + addr;
  1238. while (addr < last) {
  1239. set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
  1240. addr += PAGE_SIZE;
  1241. }
  1242. taint_real_pages();
  1243. max_mapnr = last_valid_pfn - pfn_base;
  1244. high_memory = __va(last_valid_pfn << PAGE_SHIFT);
  1245. #ifdef CONFIG_DEBUG_BOOTMEM
  1246. prom_printf("mem_init: Calling free_all_bootmem().\n");
  1247. #endif
  1248. totalram_pages = num_physpages = free_all_bootmem() - 1;
  1249. /*
  1250. * Set up the zero page, mark it reserved, so that page count
  1251. * is not manipulated when freeing the page from user ptes.
  1252. */
  1253. mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
  1254. if (mem_map_zero == NULL) {
  1255. prom_printf("paging_init: Cannot alloc zero page.\n");
  1256. prom_halt();
  1257. }
  1258. SetPageReserved(mem_map_zero);
  1259. codepages = (((unsigned long) _etext) - ((unsigned long) _start));
  1260. codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
  1261. datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
  1262. datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
  1263. initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
  1264. initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
  1265. printk("Memory: %uk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
  1266. nr_free_pages() << (PAGE_SHIFT-10),
  1267. codepages << (PAGE_SHIFT-10),
  1268. datapages << (PAGE_SHIFT-10),
  1269. initpages << (PAGE_SHIFT-10),
  1270. PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
  1271. if (tlb_type == cheetah || tlb_type == cheetah_plus)
  1272. cheetah_ecache_flush_init();
  1273. }
  1274. void free_initmem(void)
  1275. {
  1276. unsigned long addr, initend;
  1277. /*
  1278. * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
  1279. */
  1280. addr = PAGE_ALIGN((unsigned long)(__init_begin));
  1281. initend = (unsigned long)(__init_end) & PAGE_MASK;
  1282. for (; addr < initend; addr += PAGE_SIZE) {
  1283. unsigned long page;
  1284. struct page *p;
  1285. page = (addr +
  1286. ((unsigned long) __va(kern_base)) -
  1287. ((unsigned long) KERNBASE));
  1288. memset((void *)addr, 0xcc, PAGE_SIZE);
  1289. p = virt_to_page(page);
  1290. ClearPageReserved(p);
  1291. set_page_count(p, 1);
  1292. __free_page(p);
  1293. num_physpages++;
  1294. totalram_pages++;
  1295. }
  1296. }
  1297. #ifdef CONFIG_BLK_DEV_INITRD
  1298. void free_initrd_mem(unsigned long start, unsigned long end)
  1299. {
  1300. if (start < end)
  1301. printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
  1302. for (; start < end; start += PAGE_SIZE) {
  1303. struct page *p = virt_to_page(start);
  1304. ClearPageReserved(p);
  1305. set_page_count(p, 1);
  1306. __free_page(p);
  1307. num_physpages++;
  1308. totalram_pages++;
  1309. }
  1310. }
  1311. #endif