vmx.c 55 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "vmx.h"
  19. #include <linux/module.h>
  20. #include <linux/kernel.h>
  21. #include <linux/mm.h>
  22. #include <linux/highmem.h>
  23. #include <linux/profile.h>
  24. #include <linux/sched.h>
  25. #include <asm/io.h>
  26. #include <asm/desc.h>
  27. #include "segment_descriptor.h"
  28. MODULE_AUTHOR("Qumranet");
  29. MODULE_LICENSE("GPL");
  30. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  31. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  32. static struct page *vmx_io_bitmap_a;
  33. static struct page *vmx_io_bitmap_b;
  34. #ifdef CONFIG_X86_64
  35. #define HOST_IS_64 1
  36. #else
  37. #define HOST_IS_64 0
  38. #endif
  39. static struct vmcs_descriptor {
  40. int size;
  41. int order;
  42. u32 revision_id;
  43. } vmcs_descriptor;
  44. #define VMX_SEGMENT_FIELD(seg) \
  45. [VCPU_SREG_##seg] = { \
  46. .selector = GUEST_##seg##_SELECTOR, \
  47. .base = GUEST_##seg##_BASE, \
  48. .limit = GUEST_##seg##_LIMIT, \
  49. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  50. }
  51. static struct kvm_vmx_segment_field {
  52. unsigned selector;
  53. unsigned base;
  54. unsigned limit;
  55. unsigned ar_bytes;
  56. } kvm_vmx_segment_fields[] = {
  57. VMX_SEGMENT_FIELD(CS),
  58. VMX_SEGMENT_FIELD(DS),
  59. VMX_SEGMENT_FIELD(ES),
  60. VMX_SEGMENT_FIELD(FS),
  61. VMX_SEGMENT_FIELD(GS),
  62. VMX_SEGMENT_FIELD(SS),
  63. VMX_SEGMENT_FIELD(TR),
  64. VMX_SEGMENT_FIELD(LDTR),
  65. };
  66. /*
  67. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  68. * away by decrementing the array size.
  69. */
  70. static const u32 vmx_msr_index[] = {
  71. #ifdef CONFIG_X86_64
  72. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  73. #endif
  74. MSR_EFER, MSR_K6_STAR,
  75. };
  76. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  77. #ifdef CONFIG_X86_64
  78. static unsigned msr_offset_kernel_gs_base;
  79. #define NR_64BIT_MSRS 4
  80. /*
  81. * avoid save/load MSR_SYSCALL_MASK and MSR_LSTAR by std vt
  82. * mechanism (cpu bug AA24)
  83. */
  84. #define NR_BAD_MSRS 2
  85. #else
  86. #define NR_64BIT_MSRS 0
  87. #define NR_BAD_MSRS 0
  88. #endif
  89. static inline int is_page_fault(u32 intr_info)
  90. {
  91. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  92. INTR_INFO_VALID_MASK)) ==
  93. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  94. }
  95. static inline int is_no_device(u32 intr_info)
  96. {
  97. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  98. INTR_INFO_VALID_MASK)) ==
  99. (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  100. }
  101. static inline int is_external_interrupt(u32 intr_info)
  102. {
  103. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  104. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  105. }
  106. static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
  107. {
  108. int i;
  109. for (i = 0; i < vcpu->nmsrs; ++i)
  110. if (vcpu->guest_msrs[i].index == msr)
  111. return &vcpu->guest_msrs[i];
  112. return NULL;
  113. }
  114. static void vmcs_clear(struct vmcs *vmcs)
  115. {
  116. u64 phys_addr = __pa(vmcs);
  117. u8 error;
  118. asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
  119. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  120. : "cc", "memory");
  121. if (error)
  122. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  123. vmcs, phys_addr);
  124. }
  125. static void __vcpu_clear(void *arg)
  126. {
  127. struct kvm_vcpu *vcpu = arg;
  128. int cpu = raw_smp_processor_id();
  129. if (vcpu->cpu == cpu)
  130. vmcs_clear(vcpu->vmcs);
  131. if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
  132. per_cpu(current_vmcs, cpu) = NULL;
  133. }
  134. static void vcpu_clear(struct kvm_vcpu *vcpu)
  135. {
  136. if (vcpu->cpu != raw_smp_processor_id() && vcpu->cpu != -1)
  137. smp_call_function_single(vcpu->cpu, __vcpu_clear, vcpu, 0, 1);
  138. else
  139. __vcpu_clear(vcpu);
  140. vcpu->launched = 0;
  141. }
  142. static unsigned long vmcs_readl(unsigned long field)
  143. {
  144. unsigned long value;
  145. asm volatile (ASM_VMX_VMREAD_RDX_RAX
  146. : "=a"(value) : "d"(field) : "cc");
  147. return value;
  148. }
  149. static u16 vmcs_read16(unsigned long field)
  150. {
  151. return vmcs_readl(field);
  152. }
  153. static u32 vmcs_read32(unsigned long field)
  154. {
  155. return vmcs_readl(field);
  156. }
  157. static u64 vmcs_read64(unsigned long field)
  158. {
  159. #ifdef CONFIG_X86_64
  160. return vmcs_readl(field);
  161. #else
  162. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  163. #endif
  164. }
  165. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  166. {
  167. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  168. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  169. dump_stack();
  170. }
  171. static void vmcs_writel(unsigned long field, unsigned long value)
  172. {
  173. u8 error;
  174. asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
  175. : "=q"(error) : "a"(value), "d"(field) : "cc" );
  176. if (unlikely(error))
  177. vmwrite_error(field, value);
  178. }
  179. static void vmcs_write16(unsigned long field, u16 value)
  180. {
  181. vmcs_writel(field, value);
  182. }
  183. static void vmcs_write32(unsigned long field, u32 value)
  184. {
  185. vmcs_writel(field, value);
  186. }
  187. static void vmcs_write64(unsigned long field, u64 value)
  188. {
  189. #ifdef CONFIG_X86_64
  190. vmcs_writel(field, value);
  191. #else
  192. vmcs_writel(field, value);
  193. asm volatile ("");
  194. vmcs_writel(field+1, value >> 32);
  195. #endif
  196. }
  197. static void vmcs_clear_bits(unsigned long field, u32 mask)
  198. {
  199. vmcs_writel(field, vmcs_readl(field) & ~mask);
  200. }
  201. static void vmcs_set_bits(unsigned long field, u32 mask)
  202. {
  203. vmcs_writel(field, vmcs_readl(field) | mask);
  204. }
  205. /*
  206. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  207. * vcpu mutex is already taken.
  208. */
  209. static void vmx_vcpu_load(struct kvm_vcpu *vcpu)
  210. {
  211. u64 phys_addr = __pa(vcpu->vmcs);
  212. int cpu;
  213. cpu = get_cpu();
  214. if (vcpu->cpu != cpu)
  215. vcpu_clear(vcpu);
  216. if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
  217. u8 error;
  218. per_cpu(current_vmcs, cpu) = vcpu->vmcs;
  219. asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
  220. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  221. : "cc");
  222. if (error)
  223. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  224. vcpu->vmcs, phys_addr);
  225. }
  226. if (vcpu->cpu != cpu) {
  227. struct descriptor_table dt;
  228. unsigned long sysenter_esp;
  229. vcpu->cpu = cpu;
  230. /*
  231. * Linux uses per-cpu TSS and GDT, so set these when switching
  232. * processors.
  233. */
  234. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  235. get_gdt(&dt);
  236. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  237. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  238. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  239. }
  240. }
  241. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  242. {
  243. kvm_put_guest_fpu(vcpu);
  244. put_cpu();
  245. }
  246. static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
  247. {
  248. vcpu_clear(vcpu);
  249. }
  250. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  251. {
  252. return vmcs_readl(GUEST_RFLAGS);
  253. }
  254. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  255. {
  256. vmcs_writel(GUEST_RFLAGS, rflags);
  257. }
  258. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  259. {
  260. unsigned long rip;
  261. u32 interruptibility;
  262. rip = vmcs_readl(GUEST_RIP);
  263. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  264. vmcs_writel(GUEST_RIP, rip);
  265. /*
  266. * We emulated an instruction, so temporary interrupt blocking
  267. * should be removed, if set.
  268. */
  269. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  270. if (interruptibility & 3)
  271. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  272. interruptibility & ~3);
  273. vcpu->interrupt_window_open = 1;
  274. }
  275. static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
  276. {
  277. printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
  278. vmcs_readl(GUEST_RIP));
  279. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  280. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  281. GP_VECTOR |
  282. INTR_TYPE_EXCEPTION |
  283. INTR_INFO_DELIEVER_CODE_MASK |
  284. INTR_INFO_VALID_MASK);
  285. }
  286. /*
  287. * Set up the vmcs to automatically save and restore system
  288. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  289. * mode, as fiddling with msrs is very expensive.
  290. */
  291. static void setup_msrs(struct kvm_vcpu *vcpu)
  292. {
  293. int nr_skip, nr_good_msrs;
  294. if (is_long_mode(vcpu))
  295. nr_skip = NR_BAD_MSRS;
  296. else
  297. nr_skip = NR_64BIT_MSRS;
  298. nr_good_msrs = vcpu->nmsrs - nr_skip;
  299. /*
  300. * MSR_K6_STAR is only needed on long mode guests, and only
  301. * if efer.sce is enabled.
  302. */
  303. if (find_msr_entry(vcpu, MSR_K6_STAR)) {
  304. --nr_good_msrs;
  305. #ifdef CONFIG_X86_64
  306. if (is_long_mode(vcpu) && (vcpu->shadow_efer & EFER_SCE))
  307. ++nr_good_msrs;
  308. #endif
  309. }
  310. vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
  311. virt_to_phys(vcpu->guest_msrs + nr_skip));
  312. vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
  313. virt_to_phys(vcpu->guest_msrs + nr_skip));
  314. vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
  315. virt_to_phys(vcpu->host_msrs + nr_skip));
  316. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */
  317. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
  318. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
  319. }
  320. /*
  321. * reads and returns guest's timestamp counter "register"
  322. * guest_tsc = host_tsc + tsc_offset -- 21.3
  323. */
  324. static u64 guest_read_tsc(void)
  325. {
  326. u64 host_tsc, tsc_offset;
  327. rdtscll(host_tsc);
  328. tsc_offset = vmcs_read64(TSC_OFFSET);
  329. return host_tsc + tsc_offset;
  330. }
  331. /*
  332. * writes 'guest_tsc' into guest's timestamp counter "register"
  333. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  334. */
  335. static void guest_write_tsc(u64 guest_tsc)
  336. {
  337. u64 host_tsc;
  338. rdtscll(host_tsc);
  339. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  340. }
  341. static void reload_tss(void)
  342. {
  343. #ifndef CONFIG_X86_64
  344. /*
  345. * VT restores TR but not its size. Useless.
  346. */
  347. struct descriptor_table gdt;
  348. struct segment_descriptor *descs;
  349. get_gdt(&gdt);
  350. descs = (void *)gdt.base;
  351. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  352. load_TR_desc();
  353. #endif
  354. }
  355. /*
  356. * Reads an msr value (of 'msr_index') into 'pdata'.
  357. * Returns 0 on success, non-0 otherwise.
  358. * Assumes vcpu_load() was already called.
  359. */
  360. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  361. {
  362. u64 data;
  363. struct vmx_msr_entry *msr;
  364. if (!pdata) {
  365. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  366. return -EINVAL;
  367. }
  368. switch (msr_index) {
  369. #ifdef CONFIG_X86_64
  370. case MSR_FS_BASE:
  371. data = vmcs_readl(GUEST_FS_BASE);
  372. break;
  373. case MSR_GS_BASE:
  374. data = vmcs_readl(GUEST_GS_BASE);
  375. break;
  376. case MSR_EFER:
  377. return kvm_get_msr_common(vcpu, msr_index, pdata);
  378. #endif
  379. case MSR_IA32_TIME_STAMP_COUNTER:
  380. data = guest_read_tsc();
  381. break;
  382. case MSR_IA32_SYSENTER_CS:
  383. data = vmcs_read32(GUEST_SYSENTER_CS);
  384. break;
  385. case MSR_IA32_SYSENTER_EIP:
  386. data = vmcs_readl(GUEST_SYSENTER_EIP);
  387. break;
  388. case MSR_IA32_SYSENTER_ESP:
  389. data = vmcs_readl(GUEST_SYSENTER_ESP);
  390. break;
  391. default:
  392. msr = find_msr_entry(vcpu, msr_index);
  393. if (msr) {
  394. data = msr->data;
  395. break;
  396. }
  397. return kvm_get_msr_common(vcpu, msr_index, pdata);
  398. }
  399. *pdata = data;
  400. return 0;
  401. }
  402. /*
  403. * Writes msr value into into the appropriate "register".
  404. * Returns 0 on success, non-0 otherwise.
  405. * Assumes vcpu_load() was already called.
  406. */
  407. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  408. {
  409. struct vmx_msr_entry *msr;
  410. switch (msr_index) {
  411. #ifdef CONFIG_X86_64
  412. case MSR_EFER:
  413. return kvm_set_msr_common(vcpu, msr_index, data);
  414. case MSR_FS_BASE:
  415. vmcs_writel(GUEST_FS_BASE, data);
  416. break;
  417. case MSR_GS_BASE:
  418. vmcs_writel(GUEST_GS_BASE, data);
  419. break;
  420. case MSR_LSTAR:
  421. case MSR_SYSCALL_MASK:
  422. msr = find_msr_entry(vcpu, msr_index);
  423. if (msr)
  424. msr->data = data;
  425. load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
  426. break;
  427. #endif
  428. case MSR_IA32_SYSENTER_CS:
  429. vmcs_write32(GUEST_SYSENTER_CS, data);
  430. break;
  431. case MSR_IA32_SYSENTER_EIP:
  432. vmcs_writel(GUEST_SYSENTER_EIP, data);
  433. break;
  434. case MSR_IA32_SYSENTER_ESP:
  435. vmcs_writel(GUEST_SYSENTER_ESP, data);
  436. break;
  437. case MSR_IA32_TIME_STAMP_COUNTER:
  438. guest_write_tsc(data);
  439. break;
  440. default:
  441. msr = find_msr_entry(vcpu, msr_index);
  442. if (msr) {
  443. msr->data = data;
  444. break;
  445. }
  446. return kvm_set_msr_common(vcpu, msr_index, data);
  447. msr->data = data;
  448. break;
  449. }
  450. return 0;
  451. }
  452. /*
  453. * Sync the rsp and rip registers into the vcpu structure. This allows
  454. * registers to be accessed by indexing vcpu->regs.
  455. */
  456. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  457. {
  458. vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  459. vcpu->rip = vmcs_readl(GUEST_RIP);
  460. }
  461. /*
  462. * Syncs rsp and rip back into the vmcs. Should be called after possible
  463. * modification.
  464. */
  465. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  466. {
  467. vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
  468. vmcs_writel(GUEST_RIP, vcpu->rip);
  469. }
  470. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  471. {
  472. unsigned long dr7 = 0x400;
  473. u32 exception_bitmap;
  474. int old_singlestep;
  475. exception_bitmap = vmcs_read32(EXCEPTION_BITMAP);
  476. old_singlestep = vcpu->guest_debug.singlestep;
  477. vcpu->guest_debug.enabled = dbg->enabled;
  478. if (vcpu->guest_debug.enabled) {
  479. int i;
  480. dr7 |= 0x200; /* exact */
  481. for (i = 0; i < 4; ++i) {
  482. if (!dbg->breakpoints[i].enabled)
  483. continue;
  484. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  485. dr7 |= 2 << (i*2); /* global enable */
  486. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  487. }
  488. exception_bitmap |= (1u << 1); /* Trap debug exceptions */
  489. vcpu->guest_debug.singlestep = dbg->singlestep;
  490. } else {
  491. exception_bitmap &= ~(1u << 1); /* Ignore debug exceptions */
  492. vcpu->guest_debug.singlestep = 0;
  493. }
  494. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  495. unsigned long flags;
  496. flags = vmcs_readl(GUEST_RFLAGS);
  497. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  498. vmcs_writel(GUEST_RFLAGS, flags);
  499. }
  500. vmcs_write32(EXCEPTION_BITMAP, exception_bitmap);
  501. vmcs_writel(GUEST_DR7, dr7);
  502. return 0;
  503. }
  504. static __init int cpu_has_kvm_support(void)
  505. {
  506. unsigned long ecx = cpuid_ecx(1);
  507. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  508. }
  509. static __init int vmx_disabled_by_bios(void)
  510. {
  511. u64 msr;
  512. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  513. return (msr & 5) == 1; /* locked but not enabled */
  514. }
  515. static void hardware_enable(void *garbage)
  516. {
  517. int cpu = raw_smp_processor_id();
  518. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  519. u64 old;
  520. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  521. if ((old & 5) != 5)
  522. /* enable and lock */
  523. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
  524. write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
  525. asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
  526. : "memory", "cc");
  527. }
  528. static void hardware_disable(void *garbage)
  529. {
  530. asm volatile (ASM_VMX_VMXOFF : : : "cc");
  531. }
  532. static __init void setup_vmcs_descriptor(void)
  533. {
  534. u32 vmx_msr_low, vmx_msr_high;
  535. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  536. vmcs_descriptor.size = vmx_msr_high & 0x1fff;
  537. vmcs_descriptor.order = get_order(vmcs_descriptor.size);
  538. vmcs_descriptor.revision_id = vmx_msr_low;
  539. }
  540. static struct vmcs *alloc_vmcs_cpu(int cpu)
  541. {
  542. int node = cpu_to_node(cpu);
  543. struct page *pages;
  544. struct vmcs *vmcs;
  545. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
  546. if (!pages)
  547. return NULL;
  548. vmcs = page_address(pages);
  549. memset(vmcs, 0, vmcs_descriptor.size);
  550. vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
  551. return vmcs;
  552. }
  553. static struct vmcs *alloc_vmcs(void)
  554. {
  555. return alloc_vmcs_cpu(raw_smp_processor_id());
  556. }
  557. static void free_vmcs(struct vmcs *vmcs)
  558. {
  559. free_pages((unsigned long)vmcs, vmcs_descriptor.order);
  560. }
  561. static void free_kvm_area(void)
  562. {
  563. int cpu;
  564. for_each_online_cpu(cpu)
  565. free_vmcs(per_cpu(vmxarea, cpu));
  566. }
  567. extern struct vmcs *alloc_vmcs_cpu(int cpu);
  568. static __init int alloc_kvm_area(void)
  569. {
  570. int cpu;
  571. for_each_online_cpu(cpu) {
  572. struct vmcs *vmcs;
  573. vmcs = alloc_vmcs_cpu(cpu);
  574. if (!vmcs) {
  575. free_kvm_area();
  576. return -ENOMEM;
  577. }
  578. per_cpu(vmxarea, cpu) = vmcs;
  579. }
  580. return 0;
  581. }
  582. static __init int hardware_setup(void)
  583. {
  584. setup_vmcs_descriptor();
  585. return alloc_kvm_area();
  586. }
  587. static __exit void hardware_unsetup(void)
  588. {
  589. free_kvm_area();
  590. }
  591. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  592. {
  593. if (vcpu->rmode.active)
  594. vmcs_write32(EXCEPTION_BITMAP, ~0);
  595. else
  596. vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
  597. }
  598. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  599. {
  600. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  601. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  602. vmcs_write16(sf->selector, save->selector);
  603. vmcs_writel(sf->base, save->base);
  604. vmcs_write32(sf->limit, save->limit);
  605. vmcs_write32(sf->ar_bytes, save->ar);
  606. } else {
  607. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  608. << AR_DPL_SHIFT;
  609. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  610. }
  611. }
  612. static void enter_pmode(struct kvm_vcpu *vcpu)
  613. {
  614. unsigned long flags;
  615. vcpu->rmode.active = 0;
  616. vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
  617. vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
  618. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
  619. flags = vmcs_readl(GUEST_RFLAGS);
  620. flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
  621. flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
  622. vmcs_writel(GUEST_RFLAGS, flags);
  623. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
  624. (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
  625. update_exception_bitmap(vcpu);
  626. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
  627. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
  628. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
  629. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
  630. vmcs_write16(GUEST_SS_SELECTOR, 0);
  631. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  632. vmcs_write16(GUEST_CS_SELECTOR,
  633. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  634. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  635. }
  636. static int rmode_tss_base(struct kvm* kvm)
  637. {
  638. gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
  639. return base_gfn << PAGE_SHIFT;
  640. }
  641. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  642. {
  643. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  644. save->selector = vmcs_read16(sf->selector);
  645. save->base = vmcs_readl(sf->base);
  646. save->limit = vmcs_read32(sf->limit);
  647. save->ar = vmcs_read32(sf->ar_bytes);
  648. vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
  649. vmcs_write32(sf->limit, 0xffff);
  650. vmcs_write32(sf->ar_bytes, 0xf3);
  651. }
  652. static void enter_rmode(struct kvm_vcpu *vcpu)
  653. {
  654. unsigned long flags;
  655. vcpu->rmode.active = 1;
  656. vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  657. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  658. vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  659. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  660. vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  661. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  662. flags = vmcs_readl(GUEST_RFLAGS);
  663. vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
  664. flags |= IOPL_MASK | X86_EFLAGS_VM;
  665. vmcs_writel(GUEST_RFLAGS, flags);
  666. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
  667. update_exception_bitmap(vcpu);
  668. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  669. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  670. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  671. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  672. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  673. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  674. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  675. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  676. fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
  677. fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
  678. fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
  679. fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
  680. }
  681. #ifdef CONFIG_X86_64
  682. static void enter_lmode(struct kvm_vcpu *vcpu)
  683. {
  684. u32 guest_tr_ar;
  685. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  686. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  687. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  688. __FUNCTION__);
  689. vmcs_write32(GUEST_TR_AR_BYTES,
  690. (guest_tr_ar & ~AR_TYPE_MASK)
  691. | AR_TYPE_BUSY_64_TSS);
  692. }
  693. vcpu->shadow_efer |= EFER_LMA;
  694. find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
  695. vmcs_write32(VM_ENTRY_CONTROLS,
  696. vmcs_read32(VM_ENTRY_CONTROLS)
  697. | VM_ENTRY_CONTROLS_IA32E_MASK);
  698. }
  699. static void exit_lmode(struct kvm_vcpu *vcpu)
  700. {
  701. vcpu->shadow_efer &= ~EFER_LMA;
  702. vmcs_write32(VM_ENTRY_CONTROLS,
  703. vmcs_read32(VM_ENTRY_CONTROLS)
  704. & ~VM_ENTRY_CONTROLS_IA32E_MASK);
  705. }
  706. #endif
  707. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  708. {
  709. vcpu->cr4 &= KVM_GUEST_CR4_MASK;
  710. vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  711. }
  712. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  713. {
  714. if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
  715. enter_pmode(vcpu);
  716. if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
  717. enter_rmode(vcpu);
  718. #ifdef CONFIG_X86_64
  719. if (vcpu->shadow_efer & EFER_LME) {
  720. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
  721. enter_lmode(vcpu);
  722. if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
  723. exit_lmode(vcpu);
  724. }
  725. #endif
  726. if (!(cr0 & CR0_TS_MASK)) {
  727. vcpu->fpu_active = 1;
  728. vmcs_clear_bits(EXCEPTION_BITMAP, CR0_TS_MASK);
  729. }
  730. vmcs_writel(CR0_READ_SHADOW, cr0);
  731. vmcs_writel(GUEST_CR0,
  732. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  733. vcpu->cr0 = cr0;
  734. }
  735. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  736. {
  737. vmcs_writel(GUEST_CR3, cr3);
  738. if (!(vcpu->cr0 & CR0_TS_MASK)) {
  739. vcpu->fpu_active = 0;
  740. vmcs_set_bits(GUEST_CR0, CR0_TS_MASK);
  741. vmcs_set_bits(EXCEPTION_BITMAP, 1 << NM_VECTOR);
  742. }
  743. }
  744. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  745. {
  746. vmcs_writel(CR4_READ_SHADOW, cr4);
  747. vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
  748. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
  749. vcpu->cr4 = cr4;
  750. }
  751. #ifdef CONFIG_X86_64
  752. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  753. {
  754. struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
  755. vcpu->shadow_efer = efer;
  756. if (efer & EFER_LMA) {
  757. vmcs_write32(VM_ENTRY_CONTROLS,
  758. vmcs_read32(VM_ENTRY_CONTROLS) |
  759. VM_ENTRY_CONTROLS_IA32E_MASK);
  760. msr->data = efer;
  761. } else {
  762. vmcs_write32(VM_ENTRY_CONTROLS,
  763. vmcs_read32(VM_ENTRY_CONTROLS) &
  764. ~VM_ENTRY_CONTROLS_IA32E_MASK);
  765. msr->data = efer & ~EFER_LME;
  766. }
  767. setup_msrs(vcpu);
  768. }
  769. #endif
  770. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  771. {
  772. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  773. return vmcs_readl(sf->base);
  774. }
  775. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  776. struct kvm_segment *var, int seg)
  777. {
  778. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  779. u32 ar;
  780. var->base = vmcs_readl(sf->base);
  781. var->limit = vmcs_read32(sf->limit);
  782. var->selector = vmcs_read16(sf->selector);
  783. ar = vmcs_read32(sf->ar_bytes);
  784. if (ar & AR_UNUSABLE_MASK)
  785. ar = 0;
  786. var->type = ar & 15;
  787. var->s = (ar >> 4) & 1;
  788. var->dpl = (ar >> 5) & 3;
  789. var->present = (ar >> 7) & 1;
  790. var->avl = (ar >> 12) & 1;
  791. var->l = (ar >> 13) & 1;
  792. var->db = (ar >> 14) & 1;
  793. var->g = (ar >> 15) & 1;
  794. var->unusable = (ar >> 16) & 1;
  795. }
  796. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  797. struct kvm_segment *var, int seg)
  798. {
  799. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  800. u32 ar;
  801. vmcs_writel(sf->base, var->base);
  802. vmcs_write32(sf->limit, var->limit);
  803. vmcs_write16(sf->selector, var->selector);
  804. if (vcpu->rmode.active && var->s) {
  805. /*
  806. * Hack real-mode segments into vm86 compatibility.
  807. */
  808. if (var->base == 0xffff0000 && var->selector == 0xf000)
  809. vmcs_writel(sf->base, 0xf0000);
  810. ar = 0xf3;
  811. } else if (var->unusable)
  812. ar = 1 << 16;
  813. else {
  814. ar = var->type & 15;
  815. ar |= (var->s & 1) << 4;
  816. ar |= (var->dpl & 3) << 5;
  817. ar |= (var->present & 1) << 7;
  818. ar |= (var->avl & 1) << 12;
  819. ar |= (var->l & 1) << 13;
  820. ar |= (var->db & 1) << 14;
  821. ar |= (var->g & 1) << 15;
  822. }
  823. if (ar == 0) /* a 0 value means unusable */
  824. ar = AR_UNUSABLE_MASK;
  825. vmcs_write32(sf->ar_bytes, ar);
  826. }
  827. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  828. {
  829. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  830. *db = (ar >> 14) & 1;
  831. *l = (ar >> 13) & 1;
  832. }
  833. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  834. {
  835. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  836. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  837. }
  838. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  839. {
  840. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  841. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  842. }
  843. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  844. {
  845. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  846. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  847. }
  848. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  849. {
  850. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  851. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  852. }
  853. static int init_rmode_tss(struct kvm* kvm)
  854. {
  855. struct page *p1, *p2, *p3;
  856. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  857. char *page;
  858. p1 = gfn_to_page(kvm, fn++);
  859. p2 = gfn_to_page(kvm, fn++);
  860. p3 = gfn_to_page(kvm, fn);
  861. if (!p1 || !p2 || !p3) {
  862. kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
  863. return 0;
  864. }
  865. page = kmap_atomic(p1, KM_USER0);
  866. memset(page, 0, PAGE_SIZE);
  867. *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  868. kunmap_atomic(page, KM_USER0);
  869. page = kmap_atomic(p2, KM_USER0);
  870. memset(page, 0, PAGE_SIZE);
  871. kunmap_atomic(page, KM_USER0);
  872. page = kmap_atomic(p3, KM_USER0);
  873. memset(page, 0, PAGE_SIZE);
  874. *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
  875. kunmap_atomic(page, KM_USER0);
  876. return 1;
  877. }
  878. static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
  879. {
  880. u32 msr_high, msr_low;
  881. rdmsr(msr, msr_low, msr_high);
  882. val &= msr_high;
  883. val |= msr_low;
  884. vmcs_write32(vmcs_field, val);
  885. }
  886. static void seg_setup(int seg)
  887. {
  888. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  889. vmcs_write16(sf->selector, 0);
  890. vmcs_writel(sf->base, 0);
  891. vmcs_write32(sf->limit, 0xffff);
  892. vmcs_write32(sf->ar_bytes, 0x93);
  893. }
  894. /*
  895. * Sets up the vmcs for emulated real mode.
  896. */
  897. static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
  898. {
  899. u32 host_sysenter_cs;
  900. u32 junk;
  901. unsigned long a;
  902. struct descriptor_table dt;
  903. int i;
  904. int ret = 0;
  905. extern asmlinkage void kvm_vmx_return(void);
  906. if (!init_rmode_tss(vcpu->kvm)) {
  907. ret = -ENOMEM;
  908. goto out;
  909. }
  910. memset(vcpu->regs, 0, sizeof(vcpu->regs));
  911. vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
  912. vcpu->cr8 = 0;
  913. vcpu->apic_base = 0xfee00000 |
  914. /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
  915. MSR_IA32_APICBASE_ENABLE;
  916. fx_init(vcpu);
  917. /*
  918. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  919. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  920. */
  921. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  922. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  923. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  924. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  925. seg_setup(VCPU_SREG_DS);
  926. seg_setup(VCPU_SREG_ES);
  927. seg_setup(VCPU_SREG_FS);
  928. seg_setup(VCPU_SREG_GS);
  929. seg_setup(VCPU_SREG_SS);
  930. vmcs_write16(GUEST_TR_SELECTOR, 0);
  931. vmcs_writel(GUEST_TR_BASE, 0);
  932. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  933. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  934. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  935. vmcs_writel(GUEST_LDTR_BASE, 0);
  936. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  937. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  938. vmcs_write32(GUEST_SYSENTER_CS, 0);
  939. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  940. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  941. vmcs_writel(GUEST_RFLAGS, 0x02);
  942. vmcs_writel(GUEST_RIP, 0xfff0);
  943. vmcs_writel(GUEST_RSP, 0);
  944. //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
  945. vmcs_writel(GUEST_DR7, 0x400);
  946. vmcs_writel(GUEST_GDTR_BASE, 0);
  947. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  948. vmcs_writel(GUEST_IDTR_BASE, 0);
  949. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  950. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  951. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  952. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  953. /* I/O */
  954. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  955. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  956. guest_write_tsc(0);
  957. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  958. /* Special registers */
  959. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  960. /* Control */
  961. vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS,
  962. PIN_BASED_VM_EXEC_CONTROL,
  963. PIN_BASED_EXT_INTR_MASK /* 20.6.1 */
  964. | PIN_BASED_NMI_EXITING /* 20.6.1 */
  965. );
  966. vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS,
  967. CPU_BASED_VM_EXEC_CONTROL,
  968. CPU_BASED_HLT_EXITING /* 20.6.2 */
  969. | CPU_BASED_CR8_LOAD_EXITING /* 20.6.2 */
  970. | CPU_BASED_CR8_STORE_EXITING /* 20.6.2 */
  971. | CPU_BASED_ACTIVATE_IO_BITMAP /* 20.6.2 */
  972. | CPU_BASED_MOV_DR_EXITING
  973. | CPU_BASED_USE_TSC_OFFSETING /* 21.3 */
  974. );
  975. vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
  976. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  977. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  978. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  979. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  980. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  981. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  982. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  983. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  984. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  985. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  986. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  987. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  988. #ifdef CONFIG_X86_64
  989. rdmsrl(MSR_FS_BASE, a);
  990. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  991. rdmsrl(MSR_GS_BASE, a);
  992. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  993. #else
  994. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  995. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  996. #endif
  997. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  998. get_idt(&dt);
  999. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1000. vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */
  1001. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1002. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1003. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1004. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1005. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1006. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1007. for (i = 0; i < NR_VMX_MSR; ++i) {
  1008. u32 index = vmx_msr_index[i];
  1009. u32 data_low, data_high;
  1010. u64 data;
  1011. int j = vcpu->nmsrs;
  1012. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1013. continue;
  1014. if (wrmsr_safe(index, data_low, data_high) < 0)
  1015. continue;
  1016. data = data_low | ((u64)data_high << 32);
  1017. vcpu->host_msrs[j].index = index;
  1018. vcpu->host_msrs[j].reserved = 0;
  1019. vcpu->host_msrs[j].data = data;
  1020. vcpu->guest_msrs[j] = vcpu->host_msrs[j];
  1021. #ifdef CONFIG_X86_64
  1022. if (index == MSR_KERNEL_GS_BASE)
  1023. msr_offset_kernel_gs_base = j;
  1024. #endif
  1025. ++vcpu->nmsrs;
  1026. }
  1027. setup_msrs(vcpu);
  1028. vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_CONTROLS,
  1029. (HOST_IS_64 << 9)); /* 22.2,1, 20.7.1 */
  1030. /* 22.2.1, 20.8.1 */
  1031. vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS,
  1032. VM_ENTRY_CONTROLS, 0);
  1033. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1034. #ifdef CONFIG_X86_64
  1035. vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
  1036. vmcs_writel(TPR_THRESHOLD, 0);
  1037. #endif
  1038. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1039. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1040. vcpu->cr0 = 0x60000010;
  1041. vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
  1042. vmx_set_cr4(vcpu, 0);
  1043. #ifdef CONFIG_X86_64
  1044. vmx_set_efer(vcpu, 0);
  1045. #endif
  1046. return 0;
  1047. out:
  1048. return ret;
  1049. }
  1050. static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
  1051. {
  1052. u16 ent[2];
  1053. u16 cs;
  1054. u16 ip;
  1055. unsigned long flags;
  1056. unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
  1057. u16 sp = vmcs_readl(GUEST_RSP);
  1058. u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  1059. if (sp > ss_limit || sp < 6 ) {
  1060. vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
  1061. __FUNCTION__,
  1062. vmcs_readl(GUEST_RSP),
  1063. vmcs_readl(GUEST_SS_BASE),
  1064. vmcs_read32(GUEST_SS_LIMIT));
  1065. return;
  1066. }
  1067. if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
  1068. sizeof(ent)) {
  1069. vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
  1070. return;
  1071. }
  1072. flags = vmcs_readl(GUEST_RFLAGS);
  1073. cs = vmcs_readl(GUEST_CS_BASE) >> 4;
  1074. ip = vmcs_readl(GUEST_RIP);
  1075. if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
  1076. kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
  1077. kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
  1078. vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
  1079. return;
  1080. }
  1081. vmcs_writel(GUEST_RFLAGS, flags &
  1082. ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
  1083. vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
  1084. vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
  1085. vmcs_writel(GUEST_RIP, ent[0]);
  1086. vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
  1087. }
  1088. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1089. {
  1090. int word_index = __ffs(vcpu->irq_summary);
  1091. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  1092. int irq = word_index * BITS_PER_LONG + bit_index;
  1093. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  1094. if (!vcpu->irq_pending[word_index])
  1095. clear_bit(word_index, &vcpu->irq_summary);
  1096. if (vcpu->rmode.active) {
  1097. inject_rmode_irq(vcpu, irq);
  1098. return;
  1099. }
  1100. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1101. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1102. }
  1103. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1104. struct kvm_run *kvm_run)
  1105. {
  1106. u32 cpu_based_vm_exec_control;
  1107. vcpu->interrupt_window_open =
  1108. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1109. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1110. if (vcpu->interrupt_window_open &&
  1111. vcpu->irq_summary &&
  1112. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1113. /*
  1114. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1115. */
  1116. kvm_do_inject_irq(vcpu);
  1117. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1118. if (!vcpu->interrupt_window_open &&
  1119. (vcpu->irq_summary || kvm_run->request_interrupt_window))
  1120. /*
  1121. * Interrupts blocked. Wait for unblock.
  1122. */
  1123. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1124. else
  1125. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1126. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1127. }
  1128. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1129. {
  1130. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1131. set_debugreg(dbg->bp[0], 0);
  1132. set_debugreg(dbg->bp[1], 1);
  1133. set_debugreg(dbg->bp[2], 2);
  1134. set_debugreg(dbg->bp[3], 3);
  1135. if (dbg->singlestep) {
  1136. unsigned long flags;
  1137. flags = vmcs_readl(GUEST_RFLAGS);
  1138. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1139. vmcs_writel(GUEST_RFLAGS, flags);
  1140. }
  1141. }
  1142. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1143. int vec, u32 err_code)
  1144. {
  1145. if (!vcpu->rmode.active)
  1146. return 0;
  1147. if (vec == GP_VECTOR && err_code == 0)
  1148. if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
  1149. return 1;
  1150. return 0;
  1151. }
  1152. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1153. {
  1154. u32 intr_info, error_code;
  1155. unsigned long cr2, rip;
  1156. u32 vect_info;
  1157. enum emulation_result er;
  1158. int r;
  1159. vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1160. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1161. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1162. !is_page_fault(intr_info)) {
  1163. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1164. "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
  1165. }
  1166. if (is_external_interrupt(vect_info)) {
  1167. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1168. set_bit(irq, vcpu->irq_pending);
  1169. set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
  1170. }
  1171. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
  1172. asm ("int $2");
  1173. return 1;
  1174. }
  1175. if (is_no_device(intr_info)) {
  1176. vcpu->fpu_active = 1;
  1177. vmcs_clear_bits(EXCEPTION_BITMAP, 1 << NM_VECTOR);
  1178. if (!(vcpu->cr0 & CR0_TS_MASK))
  1179. vmcs_clear_bits(GUEST_CR0, CR0_TS_MASK);
  1180. return 1;
  1181. }
  1182. error_code = 0;
  1183. rip = vmcs_readl(GUEST_RIP);
  1184. if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
  1185. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1186. if (is_page_fault(intr_info)) {
  1187. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1188. spin_lock(&vcpu->kvm->lock);
  1189. r = kvm_mmu_page_fault(vcpu, cr2, error_code);
  1190. if (r < 0) {
  1191. spin_unlock(&vcpu->kvm->lock);
  1192. return r;
  1193. }
  1194. if (!r) {
  1195. spin_unlock(&vcpu->kvm->lock);
  1196. return 1;
  1197. }
  1198. er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
  1199. spin_unlock(&vcpu->kvm->lock);
  1200. switch (er) {
  1201. case EMULATE_DONE:
  1202. return 1;
  1203. case EMULATE_DO_MMIO:
  1204. ++vcpu->stat.mmio_exits;
  1205. kvm_run->exit_reason = KVM_EXIT_MMIO;
  1206. return 0;
  1207. case EMULATE_FAIL:
  1208. vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
  1209. break;
  1210. default:
  1211. BUG();
  1212. }
  1213. }
  1214. if (vcpu->rmode.active &&
  1215. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1216. error_code))
  1217. return 1;
  1218. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
  1219. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1220. return 0;
  1221. }
  1222. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1223. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1224. kvm_run->ex.error_code = error_code;
  1225. return 0;
  1226. }
  1227. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1228. struct kvm_run *kvm_run)
  1229. {
  1230. ++vcpu->stat.irq_exits;
  1231. return 1;
  1232. }
  1233. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1234. {
  1235. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1236. return 0;
  1237. }
  1238. static int get_io_count(struct kvm_vcpu *vcpu, unsigned long *count)
  1239. {
  1240. u64 inst;
  1241. gva_t rip;
  1242. int countr_size;
  1243. int i, n;
  1244. if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
  1245. countr_size = 2;
  1246. } else {
  1247. u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1248. countr_size = (cs_ar & AR_L_MASK) ? 8:
  1249. (cs_ar & AR_DB_MASK) ? 4: 2;
  1250. }
  1251. rip = vmcs_readl(GUEST_RIP);
  1252. if (countr_size != 8)
  1253. rip += vmcs_readl(GUEST_CS_BASE);
  1254. n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
  1255. for (i = 0; i < n; i++) {
  1256. switch (((u8*)&inst)[i]) {
  1257. case 0xf0:
  1258. case 0xf2:
  1259. case 0xf3:
  1260. case 0x2e:
  1261. case 0x36:
  1262. case 0x3e:
  1263. case 0x26:
  1264. case 0x64:
  1265. case 0x65:
  1266. case 0x66:
  1267. break;
  1268. case 0x67:
  1269. countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
  1270. default:
  1271. goto done;
  1272. }
  1273. }
  1274. return 0;
  1275. done:
  1276. countr_size *= 8;
  1277. *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
  1278. //printk("cx: %lx\n", vcpu->regs[VCPU_REGS_RCX]);
  1279. return 1;
  1280. }
  1281. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1282. {
  1283. u64 exit_qualification;
  1284. int size, down, in, string, rep;
  1285. unsigned port;
  1286. unsigned long count;
  1287. gva_t address;
  1288. ++vcpu->stat.io_exits;
  1289. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1290. in = (exit_qualification & 8) != 0;
  1291. size = (exit_qualification & 7) + 1;
  1292. string = (exit_qualification & 16) != 0;
  1293. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1294. count = 1;
  1295. rep = (exit_qualification & 32) != 0;
  1296. port = exit_qualification >> 16;
  1297. address = 0;
  1298. if (string) {
  1299. if (rep && !get_io_count(vcpu, &count))
  1300. return 1;
  1301. address = vmcs_readl(GUEST_LINEAR_ADDRESS);
  1302. }
  1303. return kvm_setup_pio(vcpu, kvm_run, in, size, count, string, down,
  1304. address, rep, port);
  1305. }
  1306. static void
  1307. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1308. {
  1309. /*
  1310. * Patch in the VMCALL instruction:
  1311. */
  1312. hypercall[0] = 0x0f;
  1313. hypercall[1] = 0x01;
  1314. hypercall[2] = 0xc1;
  1315. hypercall[3] = 0xc3;
  1316. }
  1317. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1318. {
  1319. u64 exit_qualification;
  1320. int cr;
  1321. int reg;
  1322. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1323. cr = exit_qualification & 15;
  1324. reg = (exit_qualification >> 8) & 15;
  1325. switch ((exit_qualification >> 4) & 3) {
  1326. case 0: /* mov to cr */
  1327. switch (cr) {
  1328. case 0:
  1329. vcpu_load_rsp_rip(vcpu);
  1330. set_cr0(vcpu, vcpu->regs[reg]);
  1331. skip_emulated_instruction(vcpu);
  1332. return 1;
  1333. case 3:
  1334. vcpu_load_rsp_rip(vcpu);
  1335. set_cr3(vcpu, vcpu->regs[reg]);
  1336. skip_emulated_instruction(vcpu);
  1337. return 1;
  1338. case 4:
  1339. vcpu_load_rsp_rip(vcpu);
  1340. set_cr4(vcpu, vcpu->regs[reg]);
  1341. skip_emulated_instruction(vcpu);
  1342. return 1;
  1343. case 8:
  1344. vcpu_load_rsp_rip(vcpu);
  1345. set_cr8(vcpu, vcpu->regs[reg]);
  1346. skip_emulated_instruction(vcpu);
  1347. return 1;
  1348. };
  1349. break;
  1350. case 2: /* clts */
  1351. vcpu_load_rsp_rip(vcpu);
  1352. vcpu->fpu_active = 1;
  1353. vmcs_clear_bits(EXCEPTION_BITMAP, 1 << NM_VECTOR);
  1354. vmcs_clear_bits(GUEST_CR0, CR0_TS_MASK);
  1355. vcpu->cr0 &= ~CR0_TS_MASK;
  1356. vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
  1357. skip_emulated_instruction(vcpu);
  1358. return 1;
  1359. case 1: /*mov from cr*/
  1360. switch (cr) {
  1361. case 3:
  1362. vcpu_load_rsp_rip(vcpu);
  1363. vcpu->regs[reg] = vcpu->cr3;
  1364. vcpu_put_rsp_rip(vcpu);
  1365. skip_emulated_instruction(vcpu);
  1366. return 1;
  1367. case 8:
  1368. vcpu_load_rsp_rip(vcpu);
  1369. vcpu->regs[reg] = vcpu->cr8;
  1370. vcpu_put_rsp_rip(vcpu);
  1371. skip_emulated_instruction(vcpu);
  1372. return 1;
  1373. }
  1374. break;
  1375. case 3: /* lmsw */
  1376. lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  1377. skip_emulated_instruction(vcpu);
  1378. return 1;
  1379. default:
  1380. break;
  1381. }
  1382. kvm_run->exit_reason = 0;
  1383. printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
  1384. (int)(exit_qualification >> 4) & 3, cr);
  1385. return 0;
  1386. }
  1387. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1388. {
  1389. u64 exit_qualification;
  1390. unsigned long val;
  1391. int dr, reg;
  1392. /*
  1393. * FIXME: this code assumes the host is debugging the guest.
  1394. * need to deal with guest debugging itself too.
  1395. */
  1396. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1397. dr = exit_qualification & 7;
  1398. reg = (exit_qualification >> 8) & 15;
  1399. vcpu_load_rsp_rip(vcpu);
  1400. if (exit_qualification & 16) {
  1401. /* mov from dr */
  1402. switch (dr) {
  1403. case 6:
  1404. val = 0xffff0ff0;
  1405. break;
  1406. case 7:
  1407. val = 0x400;
  1408. break;
  1409. default:
  1410. val = 0;
  1411. }
  1412. vcpu->regs[reg] = val;
  1413. } else {
  1414. /* mov to dr */
  1415. }
  1416. vcpu_put_rsp_rip(vcpu);
  1417. skip_emulated_instruction(vcpu);
  1418. return 1;
  1419. }
  1420. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1421. {
  1422. kvm_emulate_cpuid(vcpu);
  1423. return 1;
  1424. }
  1425. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1426. {
  1427. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1428. u64 data;
  1429. if (vmx_get_msr(vcpu, ecx, &data)) {
  1430. vmx_inject_gp(vcpu, 0);
  1431. return 1;
  1432. }
  1433. /* FIXME: handling of bits 32:63 of rax, rdx */
  1434. vcpu->regs[VCPU_REGS_RAX] = data & -1u;
  1435. vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  1436. skip_emulated_instruction(vcpu);
  1437. return 1;
  1438. }
  1439. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1440. {
  1441. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1442. u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
  1443. | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
  1444. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  1445. vmx_inject_gp(vcpu, 0);
  1446. return 1;
  1447. }
  1448. skip_emulated_instruction(vcpu);
  1449. return 1;
  1450. }
  1451. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1452. struct kvm_run *kvm_run)
  1453. {
  1454. kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
  1455. kvm_run->cr8 = vcpu->cr8;
  1456. kvm_run->apic_base = vcpu->apic_base;
  1457. kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
  1458. vcpu->irq_summary == 0);
  1459. }
  1460. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  1461. struct kvm_run *kvm_run)
  1462. {
  1463. /*
  1464. * If the user space waits to inject interrupts, exit as soon as
  1465. * possible
  1466. */
  1467. if (kvm_run->request_interrupt_window &&
  1468. !vcpu->irq_summary) {
  1469. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1470. ++vcpu->stat.irq_window_exits;
  1471. return 0;
  1472. }
  1473. return 1;
  1474. }
  1475. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1476. {
  1477. skip_emulated_instruction(vcpu);
  1478. if (vcpu->irq_summary)
  1479. return 1;
  1480. kvm_run->exit_reason = KVM_EXIT_HLT;
  1481. ++vcpu->stat.halt_exits;
  1482. return 0;
  1483. }
  1484. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1485. {
  1486. skip_emulated_instruction(vcpu);
  1487. return kvm_hypercall(vcpu, kvm_run);
  1488. }
  1489. /*
  1490. * The exit handlers return 1 if the exit was handled fully and guest execution
  1491. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  1492. * to be done to userspace and return 0.
  1493. */
  1494. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  1495. struct kvm_run *kvm_run) = {
  1496. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  1497. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  1498. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  1499. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  1500. [EXIT_REASON_CR_ACCESS] = handle_cr,
  1501. [EXIT_REASON_DR_ACCESS] = handle_dr,
  1502. [EXIT_REASON_CPUID] = handle_cpuid,
  1503. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  1504. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  1505. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  1506. [EXIT_REASON_HLT] = handle_halt,
  1507. [EXIT_REASON_VMCALL] = handle_vmcall,
  1508. };
  1509. static const int kvm_vmx_max_exit_handlers =
  1510. sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
  1511. /*
  1512. * The guest has exited. See if we can fix it or if we need userspace
  1513. * assistance.
  1514. */
  1515. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1516. {
  1517. u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1518. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  1519. if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
  1520. exit_reason != EXIT_REASON_EXCEPTION_NMI )
  1521. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  1522. "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
  1523. if (exit_reason < kvm_vmx_max_exit_handlers
  1524. && kvm_vmx_exit_handlers[exit_reason])
  1525. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  1526. else {
  1527. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1528. kvm_run->hw.hardware_exit_reason = exit_reason;
  1529. }
  1530. return 0;
  1531. }
  1532. /*
  1533. * Check if userspace requested an interrupt window, and that the
  1534. * interrupt window is open.
  1535. *
  1536. * No need to exit to userspace if we already have an interrupt queued.
  1537. */
  1538. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1539. struct kvm_run *kvm_run)
  1540. {
  1541. return (!vcpu->irq_summary &&
  1542. kvm_run->request_interrupt_window &&
  1543. vcpu->interrupt_window_open &&
  1544. (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
  1545. }
  1546. static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1547. {
  1548. u8 fail;
  1549. u16 fs_sel, gs_sel, ldt_sel;
  1550. int fs_gs_ldt_reload_needed;
  1551. int r;
  1552. preempted:
  1553. /*
  1554. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  1555. * allow segment selectors with cpl > 0 or ti == 1.
  1556. */
  1557. fs_sel = read_fs();
  1558. gs_sel = read_gs();
  1559. ldt_sel = read_ldt();
  1560. fs_gs_ldt_reload_needed = (fs_sel & 7) | (gs_sel & 7) | ldt_sel;
  1561. if (!fs_gs_ldt_reload_needed) {
  1562. vmcs_write16(HOST_FS_SELECTOR, fs_sel);
  1563. vmcs_write16(HOST_GS_SELECTOR, gs_sel);
  1564. } else {
  1565. vmcs_write16(HOST_FS_SELECTOR, 0);
  1566. vmcs_write16(HOST_GS_SELECTOR, 0);
  1567. }
  1568. #ifdef CONFIG_X86_64
  1569. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  1570. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  1571. #else
  1572. vmcs_writel(HOST_FS_BASE, segment_base(fs_sel));
  1573. vmcs_writel(HOST_GS_BASE, segment_base(gs_sel));
  1574. #endif
  1575. if (!vcpu->mmio_read_completed)
  1576. do_interrupt_requests(vcpu, kvm_run);
  1577. if (vcpu->guest_debug.enabled)
  1578. kvm_guest_debug_pre(vcpu);
  1579. #ifdef CONFIG_X86_64
  1580. if (is_long_mode(vcpu)) {
  1581. save_msrs(vcpu->host_msrs + msr_offset_kernel_gs_base, 1);
  1582. load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
  1583. }
  1584. #endif
  1585. again:
  1586. kvm_load_guest_fpu(vcpu);
  1587. /*
  1588. * Loading guest fpu may have cleared host cr0.ts
  1589. */
  1590. vmcs_writel(HOST_CR0, read_cr0());
  1591. asm (
  1592. /* Store host registers */
  1593. "pushf \n\t"
  1594. #ifdef CONFIG_X86_64
  1595. "push %%rax; push %%rbx; push %%rdx;"
  1596. "push %%rsi; push %%rdi; push %%rbp;"
  1597. "push %%r8; push %%r9; push %%r10; push %%r11;"
  1598. "push %%r12; push %%r13; push %%r14; push %%r15;"
  1599. "push %%rcx \n\t"
  1600. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1601. #else
  1602. "pusha; push %%ecx \n\t"
  1603. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1604. #endif
  1605. /* Check if vmlaunch of vmresume is needed */
  1606. "cmp $0, %1 \n\t"
  1607. /* Load guest registers. Don't clobber flags. */
  1608. #ifdef CONFIG_X86_64
  1609. "mov %c[cr2](%3), %%rax \n\t"
  1610. "mov %%rax, %%cr2 \n\t"
  1611. "mov %c[rax](%3), %%rax \n\t"
  1612. "mov %c[rbx](%3), %%rbx \n\t"
  1613. "mov %c[rdx](%3), %%rdx \n\t"
  1614. "mov %c[rsi](%3), %%rsi \n\t"
  1615. "mov %c[rdi](%3), %%rdi \n\t"
  1616. "mov %c[rbp](%3), %%rbp \n\t"
  1617. "mov %c[r8](%3), %%r8 \n\t"
  1618. "mov %c[r9](%3), %%r9 \n\t"
  1619. "mov %c[r10](%3), %%r10 \n\t"
  1620. "mov %c[r11](%3), %%r11 \n\t"
  1621. "mov %c[r12](%3), %%r12 \n\t"
  1622. "mov %c[r13](%3), %%r13 \n\t"
  1623. "mov %c[r14](%3), %%r14 \n\t"
  1624. "mov %c[r15](%3), %%r15 \n\t"
  1625. "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
  1626. #else
  1627. "mov %c[cr2](%3), %%eax \n\t"
  1628. "mov %%eax, %%cr2 \n\t"
  1629. "mov %c[rax](%3), %%eax \n\t"
  1630. "mov %c[rbx](%3), %%ebx \n\t"
  1631. "mov %c[rdx](%3), %%edx \n\t"
  1632. "mov %c[rsi](%3), %%esi \n\t"
  1633. "mov %c[rdi](%3), %%edi \n\t"
  1634. "mov %c[rbp](%3), %%ebp \n\t"
  1635. "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
  1636. #endif
  1637. /* Enter guest mode */
  1638. "jne launched \n\t"
  1639. ASM_VMX_VMLAUNCH "\n\t"
  1640. "jmp kvm_vmx_return \n\t"
  1641. "launched: " ASM_VMX_VMRESUME "\n\t"
  1642. ".globl kvm_vmx_return \n\t"
  1643. "kvm_vmx_return: "
  1644. /* Save guest registers, load host registers, keep flags */
  1645. #ifdef CONFIG_X86_64
  1646. "xchg %3, (%%rsp) \n\t"
  1647. "mov %%rax, %c[rax](%3) \n\t"
  1648. "mov %%rbx, %c[rbx](%3) \n\t"
  1649. "pushq (%%rsp); popq %c[rcx](%3) \n\t"
  1650. "mov %%rdx, %c[rdx](%3) \n\t"
  1651. "mov %%rsi, %c[rsi](%3) \n\t"
  1652. "mov %%rdi, %c[rdi](%3) \n\t"
  1653. "mov %%rbp, %c[rbp](%3) \n\t"
  1654. "mov %%r8, %c[r8](%3) \n\t"
  1655. "mov %%r9, %c[r9](%3) \n\t"
  1656. "mov %%r10, %c[r10](%3) \n\t"
  1657. "mov %%r11, %c[r11](%3) \n\t"
  1658. "mov %%r12, %c[r12](%3) \n\t"
  1659. "mov %%r13, %c[r13](%3) \n\t"
  1660. "mov %%r14, %c[r14](%3) \n\t"
  1661. "mov %%r15, %c[r15](%3) \n\t"
  1662. "mov %%cr2, %%rax \n\t"
  1663. "mov %%rax, %c[cr2](%3) \n\t"
  1664. "mov (%%rsp), %3 \n\t"
  1665. "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
  1666. "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
  1667. "pop %%rbp; pop %%rdi; pop %%rsi;"
  1668. "pop %%rdx; pop %%rbx; pop %%rax \n\t"
  1669. #else
  1670. "xchg %3, (%%esp) \n\t"
  1671. "mov %%eax, %c[rax](%3) \n\t"
  1672. "mov %%ebx, %c[rbx](%3) \n\t"
  1673. "pushl (%%esp); popl %c[rcx](%3) \n\t"
  1674. "mov %%edx, %c[rdx](%3) \n\t"
  1675. "mov %%esi, %c[rsi](%3) \n\t"
  1676. "mov %%edi, %c[rdi](%3) \n\t"
  1677. "mov %%ebp, %c[rbp](%3) \n\t"
  1678. "mov %%cr2, %%eax \n\t"
  1679. "mov %%eax, %c[cr2](%3) \n\t"
  1680. "mov (%%esp), %3 \n\t"
  1681. "pop %%ecx; popa \n\t"
  1682. #endif
  1683. "setbe %0 \n\t"
  1684. "popf \n\t"
  1685. : "=q" (fail)
  1686. : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
  1687. "c"(vcpu),
  1688. [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
  1689. [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
  1690. [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
  1691. [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
  1692. [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
  1693. [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
  1694. [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
  1695. #ifdef CONFIG_X86_64
  1696. [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
  1697. [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
  1698. [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
  1699. [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
  1700. [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
  1701. [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
  1702. [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
  1703. [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
  1704. #endif
  1705. [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
  1706. : "cc", "memory" );
  1707. ++vcpu->stat.exits;
  1708. vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
  1709. asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  1710. if (unlikely(fail)) {
  1711. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  1712. kvm_run->fail_entry.hardware_entry_failure_reason
  1713. = vmcs_read32(VM_INSTRUCTION_ERROR);
  1714. r = 0;
  1715. goto out;
  1716. }
  1717. /*
  1718. * Profile KVM exit RIPs:
  1719. */
  1720. if (unlikely(prof_on == KVM_PROFILING))
  1721. profile_hit(KVM_PROFILING, (void *)vmcs_readl(GUEST_RIP));
  1722. vcpu->launched = 1;
  1723. r = kvm_handle_exit(kvm_run, vcpu);
  1724. if (r > 0) {
  1725. /* Give scheduler a change to reschedule. */
  1726. if (signal_pending(current)) {
  1727. r = -EINTR;
  1728. kvm_run->exit_reason = KVM_EXIT_INTR;
  1729. ++vcpu->stat.signal_exits;
  1730. goto out;
  1731. }
  1732. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1733. r = -EINTR;
  1734. kvm_run->exit_reason = KVM_EXIT_INTR;
  1735. ++vcpu->stat.request_irq_exits;
  1736. goto out;
  1737. }
  1738. if (!need_resched()) {
  1739. ++vcpu->stat.light_exits;
  1740. goto again;
  1741. }
  1742. }
  1743. out:
  1744. /*
  1745. * Reload segment selectors ASAP. (it's needed for a functional
  1746. * kernel: x86 relies on having __KERNEL_PDA in %fs and x86_64
  1747. * relies on having 0 in %gs for the CPU PDA to work.)
  1748. */
  1749. if (fs_gs_ldt_reload_needed) {
  1750. load_ldt(ldt_sel);
  1751. load_fs(fs_sel);
  1752. /*
  1753. * If we have to reload gs, we must take care to
  1754. * preserve our gs base.
  1755. */
  1756. local_irq_disable();
  1757. load_gs(gs_sel);
  1758. #ifdef CONFIG_X86_64
  1759. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  1760. #endif
  1761. local_irq_enable();
  1762. reload_tss();
  1763. }
  1764. #ifdef CONFIG_X86_64
  1765. if (is_long_mode(vcpu)) {
  1766. save_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
  1767. load_msrs(vcpu->host_msrs, NR_BAD_MSRS);
  1768. }
  1769. #endif
  1770. if (r > 0) {
  1771. kvm_resched(vcpu);
  1772. goto preempted;
  1773. }
  1774. post_kvm_run_save(vcpu, kvm_run);
  1775. return r;
  1776. }
  1777. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1778. {
  1779. vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
  1780. }
  1781. static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
  1782. unsigned long addr,
  1783. u32 err_code)
  1784. {
  1785. u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1786. ++vcpu->stat.pf_guest;
  1787. if (is_page_fault(vect_info)) {
  1788. printk(KERN_DEBUG "inject_page_fault: "
  1789. "double fault 0x%lx @ 0x%lx\n",
  1790. addr, vmcs_readl(GUEST_RIP));
  1791. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
  1792. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1793. DF_VECTOR |
  1794. INTR_TYPE_EXCEPTION |
  1795. INTR_INFO_DELIEVER_CODE_MASK |
  1796. INTR_INFO_VALID_MASK);
  1797. return;
  1798. }
  1799. vcpu->cr2 = addr;
  1800. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
  1801. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1802. PF_VECTOR |
  1803. INTR_TYPE_EXCEPTION |
  1804. INTR_INFO_DELIEVER_CODE_MASK |
  1805. INTR_INFO_VALID_MASK);
  1806. }
  1807. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  1808. {
  1809. if (vcpu->vmcs) {
  1810. on_each_cpu(__vcpu_clear, vcpu, 0, 1);
  1811. free_vmcs(vcpu->vmcs);
  1812. vcpu->vmcs = NULL;
  1813. }
  1814. }
  1815. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  1816. {
  1817. vmx_free_vmcs(vcpu);
  1818. }
  1819. static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
  1820. {
  1821. struct vmcs *vmcs;
  1822. vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  1823. if (!vcpu->guest_msrs)
  1824. return -ENOMEM;
  1825. vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  1826. if (!vcpu->host_msrs)
  1827. goto out_free_guest_msrs;
  1828. vmcs = alloc_vmcs();
  1829. if (!vmcs)
  1830. goto out_free_msrs;
  1831. vmcs_clear(vmcs);
  1832. vcpu->vmcs = vmcs;
  1833. vcpu->launched = 0;
  1834. vcpu->fpu_active = 1;
  1835. return 0;
  1836. out_free_msrs:
  1837. kfree(vcpu->host_msrs);
  1838. vcpu->host_msrs = NULL;
  1839. out_free_guest_msrs:
  1840. kfree(vcpu->guest_msrs);
  1841. vcpu->guest_msrs = NULL;
  1842. return -ENOMEM;
  1843. }
  1844. static struct kvm_arch_ops vmx_arch_ops = {
  1845. .cpu_has_kvm_support = cpu_has_kvm_support,
  1846. .disabled_by_bios = vmx_disabled_by_bios,
  1847. .hardware_setup = hardware_setup,
  1848. .hardware_unsetup = hardware_unsetup,
  1849. .hardware_enable = hardware_enable,
  1850. .hardware_disable = hardware_disable,
  1851. .vcpu_create = vmx_create_vcpu,
  1852. .vcpu_free = vmx_free_vcpu,
  1853. .vcpu_load = vmx_vcpu_load,
  1854. .vcpu_put = vmx_vcpu_put,
  1855. .vcpu_decache = vmx_vcpu_decache,
  1856. .set_guest_debug = set_guest_debug,
  1857. .get_msr = vmx_get_msr,
  1858. .set_msr = vmx_set_msr,
  1859. .get_segment_base = vmx_get_segment_base,
  1860. .get_segment = vmx_get_segment,
  1861. .set_segment = vmx_set_segment,
  1862. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  1863. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  1864. .set_cr0 = vmx_set_cr0,
  1865. .set_cr3 = vmx_set_cr3,
  1866. .set_cr4 = vmx_set_cr4,
  1867. #ifdef CONFIG_X86_64
  1868. .set_efer = vmx_set_efer,
  1869. #endif
  1870. .get_idt = vmx_get_idt,
  1871. .set_idt = vmx_set_idt,
  1872. .get_gdt = vmx_get_gdt,
  1873. .set_gdt = vmx_set_gdt,
  1874. .cache_regs = vcpu_load_rsp_rip,
  1875. .decache_regs = vcpu_put_rsp_rip,
  1876. .get_rflags = vmx_get_rflags,
  1877. .set_rflags = vmx_set_rflags,
  1878. .tlb_flush = vmx_flush_tlb,
  1879. .inject_page_fault = vmx_inject_page_fault,
  1880. .inject_gp = vmx_inject_gp,
  1881. .run = vmx_vcpu_run,
  1882. .skip_emulated_instruction = skip_emulated_instruction,
  1883. .vcpu_setup = vmx_vcpu_setup,
  1884. .patch_hypercall = vmx_patch_hypercall,
  1885. };
  1886. static int __init vmx_init(void)
  1887. {
  1888. void *iova;
  1889. int r;
  1890. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  1891. if (!vmx_io_bitmap_a)
  1892. return -ENOMEM;
  1893. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  1894. if (!vmx_io_bitmap_b) {
  1895. r = -ENOMEM;
  1896. goto out;
  1897. }
  1898. /*
  1899. * Allow direct access to the PC debug port (it is often used for I/O
  1900. * delays, but the vmexits simply slow things down).
  1901. */
  1902. iova = kmap(vmx_io_bitmap_a);
  1903. memset(iova, 0xff, PAGE_SIZE);
  1904. clear_bit(0x80, iova);
  1905. kunmap(iova);
  1906. iova = kmap(vmx_io_bitmap_b);
  1907. memset(iova, 0xff, PAGE_SIZE);
  1908. kunmap(iova);
  1909. r = kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
  1910. if (r)
  1911. goto out1;
  1912. return 0;
  1913. out1:
  1914. __free_page(vmx_io_bitmap_b);
  1915. out:
  1916. __free_page(vmx_io_bitmap_a);
  1917. return r;
  1918. }
  1919. static void __exit vmx_exit(void)
  1920. {
  1921. __free_page(vmx_io_bitmap_b);
  1922. __free_page(vmx_io_bitmap_a);
  1923. kvm_exit_arch();
  1924. }
  1925. module_init(vmx_init)
  1926. module_exit(vmx_exit)