perf_event.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834
  1. #undef DEBUG
  2. /*
  3. * ARM performance counter support.
  4. *
  5. * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
  6. * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
  7. *
  8. * This code is based on the sparc64 perf event code, which is in turn based
  9. * on the x86 code. Callchain code is based on the ARM OProfile backtrace
  10. * code.
  11. */
  12. #define pr_fmt(fmt) "hw perfevents: " fmt
  13. #include <linux/interrupt.h>
  14. #include <linux/kernel.h>
  15. #include <linux/module.h>
  16. #include <linux/perf_event.h>
  17. #include <linux/platform_device.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/uaccess.h>
  20. #include <asm/cputype.h>
  21. #include <asm/irq.h>
  22. #include <asm/irq_regs.h>
  23. #include <asm/pmu.h>
  24. #include <asm/stacktrace.h>
  25. static struct platform_device *pmu_device;
  26. /*
  27. * Hardware lock to serialize accesses to PMU registers. Needed for the
  28. * read/modify/write sequences.
  29. */
  30. static DEFINE_RAW_SPINLOCK(pmu_lock);
  31. /*
  32. * ARMv6 supports a maximum of 3 events, starting from index 0. If we add
  33. * another platform that supports more, we need to increase this to be the
  34. * largest of all platforms.
  35. *
  36. * ARMv7 supports up to 32 events:
  37. * cycle counter CCNT + 31 events counters CNT0..30.
  38. * Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters.
  39. */
  40. #define ARMPMU_MAX_HWEVENTS 32
  41. /* The events for a given CPU. */
  42. struct cpu_hw_events {
  43. /*
  44. * The events that are active on the CPU for the given index.
  45. */
  46. struct perf_event *events[ARMPMU_MAX_HWEVENTS];
  47. /*
  48. * A 1 bit for an index indicates that the counter is being used for
  49. * an event. A 0 means that the counter can be used.
  50. */
  51. unsigned long used_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)];
  52. /*
  53. * A 1 bit for an index indicates that the counter is actively being
  54. * used.
  55. */
  56. unsigned long active_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)];
  57. };
  58. static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
  59. struct arm_pmu {
  60. enum arm_perf_pmu_ids id;
  61. cpumask_t active_irqs;
  62. const char *name;
  63. irqreturn_t (*handle_irq)(int irq_num, void *dev);
  64. void (*enable)(struct hw_perf_event *evt, int idx);
  65. void (*disable)(struct hw_perf_event *evt, int idx);
  66. int (*get_event_idx)(struct cpu_hw_events *cpuc,
  67. struct hw_perf_event *hwc);
  68. int (*set_event_filter)(struct hw_perf_event *evt,
  69. struct perf_event_attr *attr);
  70. u32 (*read_counter)(int idx);
  71. void (*write_counter)(int idx, u32 val);
  72. void (*start)(void);
  73. void (*stop)(void);
  74. void (*reset)(void *);
  75. const unsigned (*cache_map)[PERF_COUNT_HW_CACHE_MAX]
  76. [PERF_COUNT_HW_CACHE_OP_MAX]
  77. [PERF_COUNT_HW_CACHE_RESULT_MAX];
  78. const unsigned (*event_map)[PERF_COUNT_HW_MAX];
  79. u32 raw_event_mask;
  80. int num_events;
  81. u64 max_period;
  82. };
  83. /* Set at runtime when we know what CPU type we are. */
  84. static struct arm_pmu *armpmu;
  85. enum arm_perf_pmu_ids
  86. armpmu_get_pmu_id(void)
  87. {
  88. int id = -ENODEV;
  89. if (armpmu != NULL)
  90. id = armpmu->id;
  91. return id;
  92. }
  93. EXPORT_SYMBOL_GPL(armpmu_get_pmu_id);
  94. int
  95. armpmu_get_max_events(void)
  96. {
  97. int max_events = 0;
  98. if (armpmu != NULL)
  99. max_events = armpmu->num_events;
  100. return max_events;
  101. }
  102. EXPORT_SYMBOL_GPL(armpmu_get_max_events);
  103. int perf_num_counters(void)
  104. {
  105. return armpmu_get_max_events();
  106. }
  107. EXPORT_SYMBOL_GPL(perf_num_counters);
  108. #define HW_OP_UNSUPPORTED 0xFFFF
  109. #define C(_x) \
  110. PERF_COUNT_HW_CACHE_##_x
  111. #define CACHE_OP_UNSUPPORTED 0xFFFF
  112. static int
  113. armpmu_map_cache_event(u64 config)
  114. {
  115. unsigned int cache_type, cache_op, cache_result, ret;
  116. cache_type = (config >> 0) & 0xff;
  117. if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
  118. return -EINVAL;
  119. cache_op = (config >> 8) & 0xff;
  120. if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
  121. return -EINVAL;
  122. cache_result = (config >> 16) & 0xff;
  123. if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  124. return -EINVAL;
  125. ret = (int)(*armpmu->cache_map)[cache_type][cache_op][cache_result];
  126. if (ret == CACHE_OP_UNSUPPORTED)
  127. return -ENOENT;
  128. return ret;
  129. }
  130. static int
  131. armpmu_map_event(u64 config)
  132. {
  133. int mapping = (*armpmu->event_map)[config];
  134. return mapping == HW_OP_UNSUPPORTED ? -EOPNOTSUPP : mapping;
  135. }
  136. static int
  137. armpmu_map_raw_event(u64 config)
  138. {
  139. return (int)(config & armpmu->raw_event_mask);
  140. }
  141. static int
  142. armpmu_event_set_period(struct perf_event *event,
  143. struct hw_perf_event *hwc,
  144. int idx)
  145. {
  146. s64 left = local64_read(&hwc->period_left);
  147. s64 period = hwc->sample_period;
  148. int ret = 0;
  149. if (unlikely(left <= -period)) {
  150. left = period;
  151. local64_set(&hwc->period_left, left);
  152. hwc->last_period = period;
  153. ret = 1;
  154. }
  155. if (unlikely(left <= 0)) {
  156. left += period;
  157. local64_set(&hwc->period_left, left);
  158. hwc->last_period = period;
  159. ret = 1;
  160. }
  161. if (left > (s64)armpmu->max_period)
  162. left = armpmu->max_period;
  163. local64_set(&hwc->prev_count, (u64)-left);
  164. armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
  165. perf_event_update_userpage(event);
  166. return ret;
  167. }
  168. static u64
  169. armpmu_event_update(struct perf_event *event,
  170. struct hw_perf_event *hwc,
  171. int idx, int overflow)
  172. {
  173. u64 delta, prev_raw_count, new_raw_count;
  174. again:
  175. prev_raw_count = local64_read(&hwc->prev_count);
  176. new_raw_count = armpmu->read_counter(idx);
  177. if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
  178. new_raw_count) != prev_raw_count)
  179. goto again;
  180. new_raw_count &= armpmu->max_period;
  181. prev_raw_count &= armpmu->max_period;
  182. if (overflow)
  183. delta = armpmu->max_period - prev_raw_count + new_raw_count + 1;
  184. else
  185. delta = new_raw_count - prev_raw_count;
  186. local64_add(delta, &event->count);
  187. local64_sub(delta, &hwc->period_left);
  188. return new_raw_count;
  189. }
  190. static void
  191. armpmu_read(struct perf_event *event)
  192. {
  193. struct hw_perf_event *hwc = &event->hw;
  194. /* Don't read disabled counters! */
  195. if (hwc->idx < 0)
  196. return;
  197. armpmu_event_update(event, hwc, hwc->idx, 0);
  198. }
  199. static void
  200. armpmu_stop(struct perf_event *event, int flags)
  201. {
  202. struct hw_perf_event *hwc = &event->hw;
  203. if (!armpmu)
  204. return;
  205. /*
  206. * ARM pmu always has to update the counter, so ignore
  207. * PERF_EF_UPDATE, see comments in armpmu_start().
  208. */
  209. if (!(hwc->state & PERF_HES_STOPPED)) {
  210. armpmu->disable(hwc, hwc->idx);
  211. barrier(); /* why? */
  212. armpmu_event_update(event, hwc, hwc->idx, 0);
  213. hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
  214. }
  215. }
  216. static void
  217. armpmu_start(struct perf_event *event, int flags)
  218. {
  219. struct hw_perf_event *hwc = &event->hw;
  220. if (!armpmu)
  221. return;
  222. /*
  223. * ARM pmu always has to reprogram the period, so ignore
  224. * PERF_EF_RELOAD, see the comment below.
  225. */
  226. if (flags & PERF_EF_RELOAD)
  227. WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
  228. hwc->state = 0;
  229. /*
  230. * Set the period again. Some counters can't be stopped, so when we
  231. * were stopped we simply disabled the IRQ source and the counter
  232. * may have been left counting. If we don't do this step then we may
  233. * get an interrupt too soon or *way* too late if the overflow has
  234. * happened since disabling.
  235. */
  236. armpmu_event_set_period(event, hwc, hwc->idx);
  237. armpmu->enable(hwc, hwc->idx);
  238. }
  239. static void
  240. armpmu_del(struct perf_event *event, int flags)
  241. {
  242. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  243. struct hw_perf_event *hwc = &event->hw;
  244. int idx = hwc->idx;
  245. WARN_ON(idx < 0);
  246. clear_bit(idx, cpuc->active_mask);
  247. armpmu_stop(event, PERF_EF_UPDATE);
  248. cpuc->events[idx] = NULL;
  249. clear_bit(idx, cpuc->used_mask);
  250. perf_event_update_userpage(event);
  251. }
  252. static int
  253. armpmu_add(struct perf_event *event, int flags)
  254. {
  255. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  256. struct hw_perf_event *hwc = &event->hw;
  257. int idx;
  258. int err = 0;
  259. perf_pmu_disable(event->pmu);
  260. /* If we don't have a space for the counter then finish early. */
  261. idx = armpmu->get_event_idx(cpuc, hwc);
  262. if (idx < 0) {
  263. err = idx;
  264. goto out;
  265. }
  266. /*
  267. * If there is an event in the counter we are going to use then make
  268. * sure it is disabled.
  269. */
  270. event->hw.idx = idx;
  271. armpmu->disable(hwc, idx);
  272. cpuc->events[idx] = event;
  273. set_bit(idx, cpuc->active_mask);
  274. hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
  275. if (flags & PERF_EF_START)
  276. armpmu_start(event, PERF_EF_RELOAD);
  277. /* Propagate our changes to the userspace mapping. */
  278. perf_event_update_userpage(event);
  279. out:
  280. perf_pmu_enable(event->pmu);
  281. return err;
  282. }
  283. static struct pmu pmu;
  284. static int
  285. validate_event(struct cpu_hw_events *cpuc,
  286. struct perf_event *event)
  287. {
  288. struct hw_perf_event fake_event = event->hw;
  289. if (event->pmu != &pmu || event->state <= PERF_EVENT_STATE_OFF)
  290. return 1;
  291. return armpmu->get_event_idx(cpuc, &fake_event) >= 0;
  292. }
  293. static int
  294. validate_group(struct perf_event *event)
  295. {
  296. struct perf_event *sibling, *leader = event->group_leader;
  297. struct cpu_hw_events fake_pmu;
  298. memset(&fake_pmu, 0, sizeof(fake_pmu));
  299. if (!validate_event(&fake_pmu, leader))
  300. return -ENOSPC;
  301. list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
  302. if (!validate_event(&fake_pmu, sibling))
  303. return -ENOSPC;
  304. }
  305. if (!validate_event(&fake_pmu, event))
  306. return -ENOSPC;
  307. return 0;
  308. }
  309. static irqreturn_t armpmu_platform_irq(int irq, void *dev)
  310. {
  311. struct arm_pmu_platdata *plat = dev_get_platdata(&pmu_device->dev);
  312. return plat->handle_irq(irq, dev, armpmu->handle_irq);
  313. }
  314. static void
  315. armpmu_release_hardware(void)
  316. {
  317. int i, irq, irqs;
  318. irqs = min(pmu_device->num_resources, num_possible_cpus());
  319. for (i = 0; i < irqs; ++i) {
  320. if (!cpumask_test_and_clear_cpu(i, &armpmu->active_irqs))
  321. continue;
  322. irq = platform_get_irq(pmu_device, i);
  323. if (irq >= 0)
  324. free_irq(irq, NULL);
  325. }
  326. armpmu->stop();
  327. release_pmu(ARM_PMU_DEVICE_CPU);
  328. }
  329. static int
  330. armpmu_reserve_hardware(void)
  331. {
  332. struct arm_pmu_platdata *plat;
  333. irq_handler_t handle_irq;
  334. int i, err, irq, irqs;
  335. err = reserve_pmu(ARM_PMU_DEVICE_CPU);
  336. if (err) {
  337. pr_warning("unable to reserve pmu\n");
  338. return err;
  339. }
  340. plat = dev_get_platdata(&pmu_device->dev);
  341. if (plat && plat->handle_irq)
  342. handle_irq = armpmu_platform_irq;
  343. else
  344. handle_irq = armpmu->handle_irq;
  345. irqs = min(pmu_device->num_resources, num_possible_cpus());
  346. if (irqs < 1) {
  347. pr_err("no irqs for PMUs defined\n");
  348. return -ENODEV;
  349. }
  350. for (i = 0; i < irqs; ++i) {
  351. err = 0;
  352. irq = platform_get_irq(pmu_device, i);
  353. if (irq < 0)
  354. continue;
  355. /*
  356. * If we have a single PMU interrupt that we can't shift,
  357. * assume that we're running on a uniprocessor machine and
  358. * continue. Otherwise, continue without this interrupt.
  359. */
  360. if (irq_set_affinity(irq, cpumask_of(i)) && irqs > 1) {
  361. pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
  362. irq, i);
  363. continue;
  364. }
  365. err = request_irq(irq, handle_irq,
  366. IRQF_DISABLED | IRQF_NOBALANCING,
  367. "arm-pmu", NULL);
  368. if (err) {
  369. pr_err("unable to request IRQ%d for ARM PMU counters\n",
  370. irq);
  371. armpmu_release_hardware();
  372. return err;
  373. }
  374. cpumask_set_cpu(i, &armpmu->active_irqs);
  375. }
  376. return 0;
  377. }
  378. static atomic_t active_events = ATOMIC_INIT(0);
  379. static DEFINE_MUTEX(pmu_reserve_mutex);
  380. static void
  381. hw_perf_event_destroy(struct perf_event *event)
  382. {
  383. if (atomic_dec_and_mutex_lock(&active_events, &pmu_reserve_mutex)) {
  384. armpmu_release_hardware();
  385. mutex_unlock(&pmu_reserve_mutex);
  386. }
  387. }
  388. static int
  389. event_requires_mode_exclusion(struct perf_event_attr *attr)
  390. {
  391. return attr->exclude_idle || attr->exclude_user ||
  392. attr->exclude_kernel || attr->exclude_hv;
  393. }
  394. static int
  395. __hw_perf_event_init(struct perf_event *event)
  396. {
  397. struct hw_perf_event *hwc = &event->hw;
  398. int mapping, err;
  399. /* Decode the generic type into an ARM event identifier. */
  400. if (PERF_TYPE_HARDWARE == event->attr.type) {
  401. mapping = armpmu_map_event(event->attr.config);
  402. } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
  403. mapping = armpmu_map_cache_event(event->attr.config);
  404. } else if (PERF_TYPE_RAW == event->attr.type) {
  405. mapping = armpmu_map_raw_event(event->attr.config);
  406. } else {
  407. pr_debug("event type %x not supported\n", event->attr.type);
  408. return -EOPNOTSUPP;
  409. }
  410. if (mapping < 0) {
  411. pr_debug("event %x:%llx not supported\n", event->attr.type,
  412. event->attr.config);
  413. return mapping;
  414. }
  415. /*
  416. * We don't assign an index until we actually place the event onto
  417. * hardware. Use -1 to signify that we haven't decided where to put it
  418. * yet. For SMP systems, each core has it's own PMU so we can't do any
  419. * clever allocation or constraints checking at this point.
  420. */
  421. hwc->idx = -1;
  422. hwc->config_base = 0;
  423. hwc->config = 0;
  424. hwc->event_base = 0;
  425. /*
  426. * Check whether we need to exclude the counter from certain modes.
  427. */
  428. if ((!armpmu->set_event_filter ||
  429. armpmu->set_event_filter(hwc, &event->attr)) &&
  430. event_requires_mode_exclusion(&event->attr)) {
  431. pr_debug("ARM performance counters do not support "
  432. "mode exclusion\n");
  433. return -EPERM;
  434. }
  435. /*
  436. * Store the event encoding into the config_base field.
  437. */
  438. hwc->config_base |= (unsigned long)mapping;
  439. if (!hwc->sample_period) {
  440. hwc->sample_period = armpmu->max_period;
  441. hwc->last_period = hwc->sample_period;
  442. local64_set(&hwc->period_left, hwc->sample_period);
  443. }
  444. err = 0;
  445. if (event->group_leader != event) {
  446. err = validate_group(event);
  447. if (err)
  448. return -EINVAL;
  449. }
  450. return err;
  451. }
  452. static int armpmu_event_init(struct perf_event *event)
  453. {
  454. int err = 0;
  455. switch (event->attr.type) {
  456. case PERF_TYPE_RAW:
  457. case PERF_TYPE_HARDWARE:
  458. case PERF_TYPE_HW_CACHE:
  459. break;
  460. default:
  461. return -ENOENT;
  462. }
  463. if (!armpmu)
  464. return -ENODEV;
  465. event->destroy = hw_perf_event_destroy;
  466. if (!atomic_inc_not_zero(&active_events)) {
  467. mutex_lock(&pmu_reserve_mutex);
  468. if (atomic_read(&active_events) == 0) {
  469. err = armpmu_reserve_hardware();
  470. }
  471. if (!err)
  472. atomic_inc(&active_events);
  473. mutex_unlock(&pmu_reserve_mutex);
  474. }
  475. if (err)
  476. return err;
  477. err = __hw_perf_event_init(event);
  478. if (err)
  479. hw_perf_event_destroy(event);
  480. return err;
  481. }
  482. static void armpmu_enable(struct pmu *pmu)
  483. {
  484. /* Enable all of the perf events on hardware. */
  485. int idx, enabled = 0;
  486. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  487. if (!armpmu)
  488. return;
  489. for (idx = 0; idx < armpmu->num_events; ++idx) {
  490. struct perf_event *event = cpuc->events[idx];
  491. if (!event)
  492. continue;
  493. armpmu->enable(&event->hw, idx);
  494. enabled = 1;
  495. }
  496. if (enabled)
  497. armpmu->start();
  498. }
  499. static void armpmu_disable(struct pmu *pmu)
  500. {
  501. if (armpmu)
  502. armpmu->stop();
  503. }
  504. static struct pmu pmu = {
  505. .pmu_enable = armpmu_enable,
  506. .pmu_disable = armpmu_disable,
  507. .event_init = armpmu_event_init,
  508. .add = armpmu_add,
  509. .del = armpmu_del,
  510. .start = armpmu_start,
  511. .stop = armpmu_stop,
  512. .read = armpmu_read,
  513. };
  514. /* Include the PMU-specific implementations. */
  515. #include "perf_event_xscale.c"
  516. #include "perf_event_v6.c"
  517. #include "perf_event_v7.c"
  518. /*
  519. * Ensure the PMU has sane values out of reset.
  520. * This requires SMP to be available, so exists as a separate initcall.
  521. */
  522. static int __init
  523. armpmu_reset(void)
  524. {
  525. if (armpmu && armpmu->reset)
  526. return on_each_cpu(armpmu->reset, NULL, 1);
  527. return 0;
  528. }
  529. arch_initcall(armpmu_reset);
  530. /*
  531. * PMU platform driver and devicetree bindings.
  532. */
  533. static struct of_device_id armpmu_of_device_ids[] = {
  534. {.compatible = "arm,cortex-a9-pmu"},
  535. {.compatible = "arm,cortex-a8-pmu"},
  536. {.compatible = "arm,arm1136-pmu"},
  537. {.compatible = "arm,arm1176-pmu"},
  538. {},
  539. };
  540. static struct platform_device_id armpmu_plat_device_ids[] = {
  541. {.name = "arm-pmu"},
  542. {},
  543. };
  544. static int __devinit armpmu_device_probe(struct platform_device *pdev)
  545. {
  546. pmu_device = pdev;
  547. return 0;
  548. }
  549. static struct platform_driver armpmu_driver = {
  550. .driver = {
  551. .name = "arm-pmu",
  552. .of_match_table = armpmu_of_device_ids,
  553. },
  554. .probe = armpmu_device_probe,
  555. .id_table = armpmu_plat_device_ids,
  556. };
  557. static int __init register_pmu_driver(void)
  558. {
  559. return platform_driver_register(&armpmu_driver);
  560. }
  561. device_initcall(register_pmu_driver);
  562. /*
  563. * CPU PMU identification and registration.
  564. */
  565. static int __init
  566. init_hw_perf_events(void)
  567. {
  568. unsigned long cpuid = read_cpuid_id();
  569. unsigned long implementor = (cpuid & 0xFF000000) >> 24;
  570. unsigned long part_number = (cpuid & 0xFFF0);
  571. /* ARM Ltd CPUs. */
  572. if (0x41 == implementor) {
  573. switch (part_number) {
  574. case 0xB360: /* ARM1136 */
  575. case 0xB560: /* ARM1156 */
  576. case 0xB760: /* ARM1176 */
  577. armpmu = armv6pmu_init();
  578. break;
  579. case 0xB020: /* ARM11mpcore */
  580. armpmu = armv6mpcore_pmu_init();
  581. break;
  582. case 0xC080: /* Cortex-A8 */
  583. armpmu = armv7_a8_pmu_init();
  584. break;
  585. case 0xC090: /* Cortex-A9 */
  586. armpmu = armv7_a9_pmu_init();
  587. break;
  588. case 0xC050: /* Cortex-A5 */
  589. armpmu = armv7_a5_pmu_init();
  590. break;
  591. case 0xC0F0: /* Cortex-A15 */
  592. armpmu = armv7_a15_pmu_init();
  593. break;
  594. }
  595. /* Intel CPUs [xscale]. */
  596. } else if (0x69 == implementor) {
  597. part_number = (cpuid >> 13) & 0x7;
  598. switch (part_number) {
  599. case 1:
  600. armpmu = xscale1pmu_init();
  601. break;
  602. case 2:
  603. armpmu = xscale2pmu_init();
  604. break;
  605. }
  606. }
  607. if (armpmu) {
  608. pr_info("enabled with %s PMU driver, %d counters available\n",
  609. armpmu->name, armpmu->num_events);
  610. } else {
  611. pr_info("no hardware support available\n");
  612. }
  613. perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
  614. return 0;
  615. }
  616. early_initcall(init_hw_perf_events);
  617. /*
  618. * Callchain handling code.
  619. */
  620. /*
  621. * The registers we're interested in are at the end of the variable
  622. * length saved register structure. The fp points at the end of this
  623. * structure so the address of this struct is:
  624. * (struct frame_tail *)(xxx->fp)-1
  625. *
  626. * This code has been adapted from the ARM OProfile support.
  627. */
  628. struct frame_tail {
  629. struct frame_tail __user *fp;
  630. unsigned long sp;
  631. unsigned long lr;
  632. } __attribute__((packed));
  633. /*
  634. * Get the return address for a single stackframe and return a pointer to the
  635. * next frame tail.
  636. */
  637. static struct frame_tail __user *
  638. user_backtrace(struct frame_tail __user *tail,
  639. struct perf_callchain_entry *entry)
  640. {
  641. struct frame_tail buftail;
  642. /* Also check accessibility of one struct frame_tail beyond */
  643. if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
  644. return NULL;
  645. if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
  646. return NULL;
  647. perf_callchain_store(entry, buftail.lr);
  648. /*
  649. * Frame pointers should strictly progress back up the stack
  650. * (towards higher addresses).
  651. */
  652. if (tail + 1 >= buftail.fp)
  653. return NULL;
  654. return buftail.fp - 1;
  655. }
  656. void
  657. perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
  658. {
  659. struct frame_tail __user *tail;
  660. tail = (struct frame_tail __user *)regs->ARM_fp - 1;
  661. while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
  662. tail && !((unsigned long)tail & 0x3))
  663. tail = user_backtrace(tail, entry);
  664. }
  665. /*
  666. * Gets called by walk_stackframe() for every stackframe. This will be called
  667. * whist unwinding the stackframe and is like a subroutine return so we use
  668. * the PC.
  669. */
  670. static int
  671. callchain_trace(struct stackframe *fr,
  672. void *data)
  673. {
  674. struct perf_callchain_entry *entry = data;
  675. perf_callchain_store(entry, fr->pc);
  676. return 0;
  677. }
  678. void
  679. perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
  680. {
  681. struct stackframe fr;
  682. fr.fp = regs->ARM_fp;
  683. fr.sp = regs->ARM_sp;
  684. fr.lr = regs->ARM_lr;
  685. fr.pc = regs->ARM_pc;
  686. walk_stackframe(&fr, callchain_trace, entry);
  687. }