skbuff.h 69 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509
  1. /*
  2. * Definitions for the 'struct sk_buff' memory handlers.
  3. *
  4. * Authors:
  5. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  6. * Florian La Roche, <rzsfl@rz.uni-sb.de>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License
  10. * as published by the Free Software Foundation; either version
  11. * 2 of the License, or (at your option) any later version.
  12. */
  13. #ifndef _LINUX_SKBUFF_H
  14. #define _LINUX_SKBUFF_H
  15. #include <linux/kernel.h>
  16. #include <linux/kmemcheck.h>
  17. #include <linux/compiler.h>
  18. #include <linux/time.h>
  19. #include <linux/cache.h>
  20. #include <linux/atomic.h>
  21. #include <asm/types.h>
  22. #include <linux/spinlock.h>
  23. #include <linux/net.h>
  24. #include <linux/textsearch.h>
  25. #include <net/checksum.h>
  26. #include <linux/rcupdate.h>
  27. #include <linux/dmaengine.h>
  28. #include <linux/hrtimer.h>
  29. #include <linux/dma-mapping.h>
  30. /* Don't change this without changing skb_csum_unnecessary! */
  31. #define CHECKSUM_NONE 0
  32. #define CHECKSUM_UNNECESSARY 1
  33. #define CHECKSUM_COMPLETE 2
  34. #define CHECKSUM_PARTIAL 3
  35. #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
  36. ~(SMP_CACHE_BYTES - 1))
  37. #define SKB_WITH_OVERHEAD(X) \
  38. ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  39. #define SKB_MAX_ORDER(X, ORDER) \
  40. SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
  41. #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
  42. #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
  43. /* return minimum truesize of one skb containing X bytes of data */
  44. #define SKB_TRUESIZE(X) ((X) + \
  45. SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
  46. SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  47. /* A. Checksumming of received packets by device.
  48. *
  49. * NONE: device failed to checksum this packet.
  50. * skb->csum is undefined.
  51. *
  52. * UNNECESSARY: device parsed packet and wouldbe verified checksum.
  53. * skb->csum is undefined.
  54. * It is bad option, but, unfortunately, many of vendors do this.
  55. * Apparently with secret goal to sell you new device, when you
  56. * will add new protocol to your host. F.e. IPv6. 8)
  57. *
  58. * COMPLETE: the most generic way. Device supplied checksum of _all_
  59. * the packet as seen by netif_rx in skb->csum.
  60. * NOTE: Even if device supports only some protocols, but
  61. * is able to produce some skb->csum, it MUST use COMPLETE,
  62. * not UNNECESSARY.
  63. *
  64. * PARTIAL: identical to the case for output below. This may occur
  65. * on a packet received directly from another Linux OS, e.g.,
  66. * a virtualised Linux kernel on the same host. The packet can
  67. * be treated in the same way as UNNECESSARY except that on
  68. * output (i.e., forwarding) the checksum must be filled in
  69. * by the OS or the hardware.
  70. *
  71. * B. Checksumming on output.
  72. *
  73. * NONE: skb is checksummed by protocol or csum is not required.
  74. *
  75. * PARTIAL: device is required to csum packet as seen by hard_start_xmit
  76. * from skb->csum_start to the end and to record the checksum
  77. * at skb->csum_start + skb->csum_offset.
  78. *
  79. * Device must show its capabilities in dev->features, set
  80. * at device setup time.
  81. * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
  82. * everything.
  83. * NETIF_F_NO_CSUM - loopback or reliable single hop media.
  84. * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
  85. * TCP/UDP over IPv4. Sigh. Vendors like this
  86. * way by an unknown reason. Though, see comment above
  87. * about CHECKSUM_UNNECESSARY. 8)
  88. * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
  89. *
  90. * Any questions? No questions, good. --ANK
  91. */
  92. struct net_device;
  93. struct scatterlist;
  94. struct pipe_inode_info;
  95. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  96. struct nf_conntrack {
  97. atomic_t use;
  98. };
  99. #endif
  100. #ifdef CONFIG_BRIDGE_NETFILTER
  101. struct nf_bridge_info {
  102. atomic_t use;
  103. struct net_device *physindev;
  104. struct net_device *physoutdev;
  105. unsigned int mask;
  106. unsigned long data[32 / sizeof(unsigned long)];
  107. };
  108. #endif
  109. struct sk_buff_head {
  110. /* These two members must be first. */
  111. struct sk_buff *next;
  112. struct sk_buff *prev;
  113. __u32 qlen;
  114. spinlock_t lock;
  115. };
  116. struct sk_buff;
  117. /* To allow 64K frame to be packed as single skb without frag_list. Since
  118. * GRO uses frags we allocate at least 16 regardless of page size.
  119. */
  120. #if (65536/PAGE_SIZE + 2) < 16
  121. #define MAX_SKB_FRAGS 16UL
  122. #else
  123. #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
  124. #endif
  125. typedef struct skb_frag_struct skb_frag_t;
  126. struct skb_frag_struct {
  127. struct page *page;
  128. #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
  129. __u32 page_offset;
  130. __u32 size;
  131. #else
  132. __u16 page_offset;
  133. __u16 size;
  134. #endif
  135. };
  136. static inline unsigned int skb_frag_size(const skb_frag_t *frag)
  137. {
  138. return frag->size;
  139. }
  140. static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
  141. {
  142. frag->size = size;
  143. }
  144. static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
  145. {
  146. frag->size += delta;
  147. }
  148. static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
  149. {
  150. frag->size -= delta;
  151. }
  152. #define HAVE_HW_TIME_STAMP
  153. /**
  154. * struct skb_shared_hwtstamps - hardware time stamps
  155. * @hwtstamp: hardware time stamp transformed into duration
  156. * since arbitrary point in time
  157. * @syststamp: hwtstamp transformed to system time base
  158. *
  159. * Software time stamps generated by ktime_get_real() are stored in
  160. * skb->tstamp. The relation between the different kinds of time
  161. * stamps is as follows:
  162. *
  163. * syststamp and tstamp can be compared against each other in
  164. * arbitrary combinations. The accuracy of a
  165. * syststamp/tstamp/"syststamp from other device" comparison is
  166. * limited by the accuracy of the transformation into system time
  167. * base. This depends on the device driver and its underlying
  168. * hardware.
  169. *
  170. * hwtstamps can only be compared against other hwtstamps from
  171. * the same device.
  172. *
  173. * This structure is attached to packets as part of the
  174. * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
  175. */
  176. struct skb_shared_hwtstamps {
  177. ktime_t hwtstamp;
  178. ktime_t syststamp;
  179. };
  180. /* Definitions for tx_flags in struct skb_shared_info */
  181. enum {
  182. /* generate hardware time stamp */
  183. SKBTX_HW_TSTAMP = 1 << 0,
  184. /* generate software time stamp */
  185. SKBTX_SW_TSTAMP = 1 << 1,
  186. /* device driver is going to provide hardware time stamp */
  187. SKBTX_IN_PROGRESS = 1 << 2,
  188. /* ensure the originating sk reference is available on driver level */
  189. SKBTX_DRV_NEEDS_SK_REF = 1 << 3,
  190. /* device driver supports TX zero-copy buffers */
  191. SKBTX_DEV_ZEROCOPY = 1 << 4,
  192. };
  193. /*
  194. * The callback notifies userspace to release buffers when skb DMA is done in
  195. * lower device, the skb last reference should be 0 when calling this.
  196. * The desc is used to track userspace buffer index.
  197. */
  198. struct ubuf_info {
  199. void (*callback)(void *);
  200. void *arg;
  201. unsigned long desc;
  202. };
  203. /* This data is invariant across clones and lives at
  204. * the end of the header data, ie. at skb->end.
  205. */
  206. struct skb_shared_info {
  207. unsigned short nr_frags;
  208. unsigned short gso_size;
  209. /* Warning: this field is not always filled in (UFO)! */
  210. unsigned short gso_segs;
  211. unsigned short gso_type;
  212. __be32 ip6_frag_id;
  213. __u8 tx_flags;
  214. struct sk_buff *frag_list;
  215. struct skb_shared_hwtstamps hwtstamps;
  216. /*
  217. * Warning : all fields before dataref are cleared in __alloc_skb()
  218. */
  219. atomic_t dataref;
  220. /* Intermediate layers must ensure that destructor_arg
  221. * remains valid until skb destructor */
  222. void * destructor_arg;
  223. /* must be last field, see pskb_expand_head() */
  224. skb_frag_t frags[MAX_SKB_FRAGS];
  225. };
  226. /* We divide dataref into two halves. The higher 16 bits hold references
  227. * to the payload part of skb->data. The lower 16 bits hold references to
  228. * the entire skb->data. A clone of a headerless skb holds the length of
  229. * the header in skb->hdr_len.
  230. *
  231. * All users must obey the rule that the skb->data reference count must be
  232. * greater than or equal to the payload reference count.
  233. *
  234. * Holding a reference to the payload part means that the user does not
  235. * care about modifications to the header part of skb->data.
  236. */
  237. #define SKB_DATAREF_SHIFT 16
  238. #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
  239. enum {
  240. SKB_FCLONE_UNAVAILABLE,
  241. SKB_FCLONE_ORIG,
  242. SKB_FCLONE_CLONE,
  243. };
  244. enum {
  245. SKB_GSO_TCPV4 = 1 << 0,
  246. SKB_GSO_UDP = 1 << 1,
  247. /* This indicates the skb is from an untrusted source. */
  248. SKB_GSO_DODGY = 1 << 2,
  249. /* This indicates the tcp segment has CWR set. */
  250. SKB_GSO_TCP_ECN = 1 << 3,
  251. SKB_GSO_TCPV6 = 1 << 4,
  252. SKB_GSO_FCOE = 1 << 5,
  253. };
  254. #if BITS_PER_LONG > 32
  255. #define NET_SKBUFF_DATA_USES_OFFSET 1
  256. #endif
  257. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  258. typedef unsigned int sk_buff_data_t;
  259. #else
  260. typedef unsigned char *sk_buff_data_t;
  261. #endif
  262. #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
  263. defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
  264. #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
  265. #endif
  266. /**
  267. * struct sk_buff - socket buffer
  268. * @next: Next buffer in list
  269. * @prev: Previous buffer in list
  270. * @tstamp: Time we arrived
  271. * @sk: Socket we are owned by
  272. * @dev: Device we arrived on/are leaving by
  273. * @cb: Control buffer. Free for use by every layer. Put private vars here
  274. * @_skb_refdst: destination entry (with norefcount bit)
  275. * @sp: the security path, used for xfrm
  276. * @len: Length of actual data
  277. * @data_len: Data length
  278. * @mac_len: Length of link layer header
  279. * @hdr_len: writable header length of cloned skb
  280. * @csum: Checksum (must include start/offset pair)
  281. * @csum_start: Offset from skb->head where checksumming should start
  282. * @csum_offset: Offset from csum_start where checksum should be stored
  283. * @priority: Packet queueing priority
  284. * @local_df: allow local fragmentation
  285. * @cloned: Head may be cloned (check refcnt to be sure)
  286. * @ip_summed: Driver fed us an IP checksum
  287. * @nohdr: Payload reference only, must not modify header
  288. * @nfctinfo: Relationship of this skb to the connection
  289. * @pkt_type: Packet class
  290. * @fclone: skbuff clone status
  291. * @ipvs_property: skbuff is owned by ipvs
  292. * @peeked: this packet has been seen already, so stats have been
  293. * done for it, don't do them again
  294. * @nf_trace: netfilter packet trace flag
  295. * @protocol: Packet protocol from driver
  296. * @destructor: Destruct function
  297. * @nfct: Associated connection, if any
  298. * @nfct_reasm: netfilter conntrack re-assembly pointer
  299. * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
  300. * @skb_iif: ifindex of device we arrived on
  301. * @tc_index: Traffic control index
  302. * @tc_verd: traffic control verdict
  303. * @rxhash: the packet hash computed on receive
  304. * @queue_mapping: Queue mapping for multiqueue devices
  305. * @ndisc_nodetype: router type (from link layer)
  306. * @ooo_okay: allow the mapping of a socket to a queue to be changed
  307. * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
  308. * ports.
  309. * @dma_cookie: a cookie to one of several possible DMA operations
  310. * done by skb DMA functions
  311. * @secmark: security marking
  312. * @mark: Generic packet mark
  313. * @dropcount: total number of sk_receive_queue overflows
  314. * @vlan_tci: vlan tag control information
  315. * @transport_header: Transport layer header
  316. * @network_header: Network layer header
  317. * @mac_header: Link layer header
  318. * @tail: Tail pointer
  319. * @end: End pointer
  320. * @head: Head of buffer
  321. * @data: Data head pointer
  322. * @truesize: Buffer size
  323. * @users: User count - see {datagram,tcp}.c
  324. */
  325. struct sk_buff {
  326. /* These two members must be first. */
  327. struct sk_buff *next;
  328. struct sk_buff *prev;
  329. ktime_t tstamp;
  330. struct sock *sk;
  331. struct net_device *dev;
  332. /*
  333. * This is the control buffer. It is free to use for every
  334. * layer. Please put your private variables there. If you
  335. * want to keep them across layers you have to do a skb_clone()
  336. * first. This is owned by whoever has the skb queued ATM.
  337. */
  338. char cb[48] __aligned(8);
  339. unsigned long _skb_refdst;
  340. #ifdef CONFIG_XFRM
  341. struct sec_path *sp;
  342. #endif
  343. unsigned int len,
  344. data_len;
  345. __u16 mac_len,
  346. hdr_len;
  347. union {
  348. __wsum csum;
  349. struct {
  350. __u16 csum_start;
  351. __u16 csum_offset;
  352. };
  353. };
  354. __u32 priority;
  355. kmemcheck_bitfield_begin(flags1);
  356. __u8 local_df:1,
  357. cloned:1,
  358. ip_summed:2,
  359. nohdr:1,
  360. nfctinfo:3;
  361. __u8 pkt_type:3,
  362. fclone:2,
  363. ipvs_property:1,
  364. peeked:1,
  365. nf_trace:1;
  366. kmemcheck_bitfield_end(flags1);
  367. __be16 protocol;
  368. void (*destructor)(struct sk_buff *skb);
  369. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  370. struct nf_conntrack *nfct;
  371. #endif
  372. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  373. struct sk_buff *nfct_reasm;
  374. #endif
  375. #ifdef CONFIG_BRIDGE_NETFILTER
  376. struct nf_bridge_info *nf_bridge;
  377. #endif
  378. int skb_iif;
  379. #ifdef CONFIG_NET_SCHED
  380. __u16 tc_index; /* traffic control index */
  381. #ifdef CONFIG_NET_CLS_ACT
  382. __u16 tc_verd; /* traffic control verdict */
  383. #endif
  384. #endif
  385. __u32 rxhash;
  386. __u16 queue_mapping;
  387. kmemcheck_bitfield_begin(flags2);
  388. #ifdef CONFIG_IPV6_NDISC_NODETYPE
  389. __u8 ndisc_nodetype:2;
  390. #endif
  391. __u8 ooo_okay:1;
  392. __u8 l4_rxhash:1;
  393. kmemcheck_bitfield_end(flags2);
  394. /* 0/13 bit hole */
  395. #ifdef CONFIG_NET_DMA
  396. dma_cookie_t dma_cookie;
  397. #endif
  398. #ifdef CONFIG_NETWORK_SECMARK
  399. __u32 secmark;
  400. #endif
  401. union {
  402. __u32 mark;
  403. __u32 dropcount;
  404. };
  405. __u16 vlan_tci;
  406. sk_buff_data_t transport_header;
  407. sk_buff_data_t network_header;
  408. sk_buff_data_t mac_header;
  409. /* These elements must be at the end, see alloc_skb() for details. */
  410. sk_buff_data_t tail;
  411. sk_buff_data_t end;
  412. unsigned char *head,
  413. *data;
  414. unsigned int truesize;
  415. atomic_t users;
  416. };
  417. #ifdef __KERNEL__
  418. /*
  419. * Handling routines are only of interest to the kernel
  420. */
  421. #include <linux/slab.h>
  422. #include <asm/system.h>
  423. /*
  424. * skb might have a dst pointer attached, refcounted or not.
  425. * _skb_refdst low order bit is set if refcount was _not_ taken
  426. */
  427. #define SKB_DST_NOREF 1UL
  428. #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
  429. /**
  430. * skb_dst - returns skb dst_entry
  431. * @skb: buffer
  432. *
  433. * Returns skb dst_entry, regardless of reference taken or not.
  434. */
  435. static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
  436. {
  437. /* If refdst was not refcounted, check we still are in a
  438. * rcu_read_lock section
  439. */
  440. WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
  441. !rcu_read_lock_held() &&
  442. !rcu_read_lock_bh_held());
  443. return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
  444. }
  445. /**
  446. * skb_dst_set - sets skb dst
  447. * @skb: buffer
  448. * @dst: dst entry
  449. *
  450. * Sets skb dst, assuming a reference was taken on dst and should
  451. * be released by skb_dst_drop()
  452. */
  453. static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
  454. {
  455. skb->_skb_refdst = (unsigned long)dst;
  456. }
  457. extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
  458. /**
  459. * skb_dst_is_noref - Test if skb dst isn't refcounted
  460. * @skb: buffer
  461. */
  462. static inline bool skb_dst_is_noref(const struct sk_buff *skb)
  463. {
  464. return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
  465. }
  466. static inline struct rtable *skb_rtable(const struct sk_buff *skb)
  467. {
  468. return (struct rtable *)skb_dst(skb);
  469. }
  470. extern void kfree_skb(struct sk_buff *skb);
  471. extern void consume_skb(struct sk_buff *skb);
  472. extern void __kfree_skb(struct sk_buff *skb);
  473. extern struct sk_buff *__alloc_skb(unsigned int size,
  474. gfp_t priority, int fclone, int node);
  475. static inline struct sk_buff *alloc_skb(unsigned int size,
  476. gfp_t priority)
  477. {
  478. return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
  479. }
  480. static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
  481. gfp_t priority)
  482. {
  483. return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
  484. }
  485. extern void skb_recycle(struct sk_buff *skb);
  486. extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
  487. extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
  488. extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
  489. extern struct sk_buff *skb_clone(struct sk_buff *skb,
  490. gfp_t priority);
  491. extern struct sk_buff *skb_copy(const struct sk_buff *skb,
  492. gfp_t priority);
  493. extern struct sk_buff *pskb_copy(struct sk_buff *skb,
  494. gfp_t gfp_mask);
  495. extern int pskb_expand_head(struct sk_buff *skb,
  496. int nhead, int ntail,
  497. gfp_t gfp_mask);
  498. extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
  499. unsigned int headroom);
  500. extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
  501. int newheadroom, int newtailroom,
  502. gfp_t priority);
  503. extern int skb_to_sgvec(struct sk_buff *skb,
  504. struct scatterlist *sg, int offset,
  505. int len);
  506. extern int skb_cow_data(struct sk_buff *skb, int tailbits,
  507. struct sk_buff **trailer);
  508. extern int skb_pad(struct sk_buff *skb, int pad);
  509. #define dev_kfree_skb(a) consume_skb(a)
  510. extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
  511. int getfrag(void *from, char *to, int offset,
  512. int len,int odd, struct sk_buff *skb),
  513. void *from, int length);
  514. struct skb_seq_state {
  515. __u32 lower_offset;
  516. __u32 upper_offset;
  517. __u32 frag_idx;
  518. __u32 stepped_offset;
  519. struct sk_buff *root_skb;
  520. struct sk_buff *cur_skb;
  521. __u8 *frag_data;
  522. };
  523. extern void skb_prepare_seq_read(struct sk_buff *skb,
  524. unsigned int from, unsigned int to,
  525. struct skb_seq_state *st);
  526. extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
  527. struct skb_seq_state *st);
  528. extern void skb_abort_seq_read(struct skb_seq_state *st);
  529. extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
  530. unsigned int to, struct ts_config *config,
  531. struct ts_state *state);
  532. extern void __skb_get_rxhash(struct sk_buff *skb);
  533. static inline __u32 skb_get_rxhash(struct sk_buff *skb)
  534. {
  535. if (!skb->rxhash)
  536. __skb_get_rxhash(skb);
  537. return skb->rxhash;
  538. }
  539. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  540. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  541. {
  542. return skb->head + skb->end;
  543. }
  544. #else
  545. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  546. {
  547. return skb->end;
  548. }
  549. #endif
  550. /* Internal */
  551. #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
  552. static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
  553. {
  554. return &skb_shinfo(skb)->hwtstamps;
  555. }
  556. /**
  557. * skb_queue_empty - check if a queue is empty
  558. * @list: queue head
  559. *
  560. * Returns true if the queue is empty, false otherwise.
  561. */
  562. static inline int skb_queue_empty(const struct sk_buff_head *list)
  563. {
  564. return list->next == (struct sk_buff *)list;
  565. }
  566. /**
  567. * skb_queue_is_last - check if skb is the last entry in the queue
  568. * @list: queue head
  569. * @skb: buffer
  570. *
  571. * Returns true if @skb is the last buffer on the list.
  572. */
  573. static inline bool skb_queue_is_last(const struct sk_buff_head *list,
  574. const struct sk_buff *skb)
  575. {
  576. return skb->next == (struct sk_buff *)list;
  577. }
  578. /**
  579. * skb_queue_is_first - check if skb is the first entry in the queue
  580. * @list: queue head
  581. * @skb: buffer
  582. *
  583. * Returns true if @skb is the first buffer on the list.
  584. */
  585. static inline bool skb_queue_is_first(const struct sk_buff_head *list,
  586. const struct sk_buff *skb)
  587. {
  588. return skb->prev == (struct sk_buff *)list;
  589. }
  590. /**
  591. * skb_queue_next - return the next packet in the queue
  592. * @list: queue head
  593. * @skb: current buffer
  594. *
  595. * Return the next packet in @list after @skb. It is only valid to
  596. * call this if skb_queue_is_last() evaluates to false.
  597. */
  598. static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
  599. const struct sk_buff *skb)
  600. {
  601. /* This BUG_ON may seem severe, but if we just return then we
  602. * are going to dereference garbage.
  603. */
  604. BUG_ON(skb_queue_is_last(list, skb));
  605. return skb->next;
  606. }
  607. /**
  608. * skb_queue_prev - return the prev packet in the queue
  609. * @list: queue head
  610. * @skb: current buffer
  611. *
  612. * Return the prev packet in @list before @skb. It is only valid to
  613. * call this if skb_queue_is_first() evaluates to false.
  614. */
  615. static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
  616. const struct sk_buff *skb)
  617. {
  618. /* This BUG_ON may seem severe, but if we just return then we
  619. * are going to dereference garbage.
  620. */
  621. BUG_ON(skb_queue_is_first(list, skb));
  622. return skb->prev;
  623. }
  624. /**
  625. * skb_get - reference buffer
  626. * @skb: buffer to reference
  627. *
  628. * Makes another reference to a socket buffer and returns a pointer
  629. * to the buffer.
  630. */
  631. static inline struct sk_buff *skb_get(struct sk_buff *skb)
  632. {
  633. atomic_inc(&skb->users);
  634. return skb;
  635. }
  636. /*
  637. * If users == 1, we are the only owner and are can avoid redundant
  638. * atomic change.
  639. */
  640. /**
  641. * skb_cloned - is the buffer a clone
  642. * @skb: buffer to check
  643. *
  644. * Returns true if the buffer was generated with skb_clone() and is
  645. * one of multiple shared copies of the buffer. Cloned buffers are
  646. * shared data so must not be written to under normal circumstances.
  647. */
  648. static inline int skb_cloned(const struct sk_buff *skb)
  649. {
  650. return skb->cloned &&
  651. (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
  652. }
  653. /**
  654. * skb_header_cloned - is the header a clone
  655. * @skb: buffer to check
  656. *
  657. * Returns true if modifying the header part of the buffer requires
  658. * the data to be copied.
  659. */
  660. static inline int skb_header_cloned(const struct sk_buff *skb)
  661. {
  662. int dataref;
  663. if (!skb->cloned)
  664. return 0;
  665. dataref = atomic_read(&skb_shinfo(skb)->dataref);
  666. dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
  667. return dataref != 1;
  668. }
  669. /**
  670. * skb_header_release - release reference to header
  671. * @skb: buffer to operate on
  672. *
  673. * Drop a reference to the header part of the buffer. This is done
  674. * by acquiring a payload reference. You must not read from the header
  675. * part of skb->data after this.
  676. */
  677. static inline void skb_header_release(struct sk_buff *skb)
  678. {
  679. BUG_ON(skb->nohdr);
  680. skb->nohdr = 1;
  681. atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
  682. }
  683. /**
  684. * skb_shared - is the buffer shared
  685. * @skb: buffer to check
  686. *
  687. * Returns true if more than one person has a reference to this
  688. * buffer.
  689. */
  690. static inline int skb_shared(const struct sk_buff *skb)
  691. {
  692. return atomic_read(&skb->users) != 1;
  693. }
  694. /**
  695. * skb_share_check - check if buffer is shared and if so clone it
  696. * @skb: buffer to check
  697. * @pri: priority for memory allocation
  698. *
  699. * If the buffer is shared the buffer is cloned and the old copy
  700. * drops a reference. A new clone with a single reference is returned.
  701. * If the buffer is not shared the original buffer is returned. When
  702. * being called from interrupt status or with spinlocks held pri must
  703. * be GFP_ATOMIC.
  704. *
  705. * NULL is returned on a memory allocation failure.
  706. */
  707. static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
  708. gfp_t pri)
  709. {
  710. might_sleep_if(pri & __GFP_WAIT);
  711. if (skb_shared(skb)) {
  712. struct sk_buff *nskb = skb_clone(skb, pri);
  713. kfree_skb(skb);
  714. skb = nskb;
  715. }
  716. return skb;
  717. }
  718. /*
  719. * Copy shared buffers into a new sk_buff. We effectively do COW on
  720. * packets to handle cases where we have a local reader and forward
  721. * and a couple of other messy ones. The normal one is tcpdumping
  722. * a packet thats being forwarded.
  723. */
  724. /**
  725. * skb_unshare - make a copy of a shared buffer
  726. * @skb: buffer to check
  727. * @pri: priority for memory allocation
  728. *
  729. * If the socket buffer is a clone then this function creates a new
  730. * copy of the data, drops a reference count on the old copy and returns
  731. * the new copy with the reference count at 1. If the buffer is not a clone
  732. * the original buffer is returned. When called with a spinlock held or
  733. * from interrupt state @pri must be %GFP_ATOMIC
  734. *
  735. * %NULL is returned on a memory allocation failure.
  736. */
  737. static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
  738. gfp_t pri)
  739. {
  740. might_sleep_if(pri & __GFP_WAIT);
  741. if (skb_cloned(skb)) {
  742. struct sk_buff *nskb = skb_copy(skb, pri);
  743. kfree_skb(skb); /* Free our shared copy */
  744. skb = nskb;
  745. }
  746. return skb;
  747. }
  748. /**
  749. * skb_peek - peek at the head of an &sk_buff_head
  750. * @list_: list to peek at
  751. *
  752. * Peek an &sk_buff. Unlike most other operations you _MUST_
  753. * be careful with this one. A peek leaves the buffer on the
  754. * list and someone else may run off with it. You must hold
  755. * the appropriate locks or have a private queue to do this.
  756. *
  757. * Returns %NULL for an empty list or a pointer to the head element.
  758. * The reference count is not incremented and the reference is therefore
  759. * volatile. Use with caution.
  760. */
  761. static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
  762. {
  763. struct sk_buff *list = ((const struct sk_buff *)list_)->next;
  764. if (list == (struct sk_buff *)list_)
  765. list = NULL;
  766. return list;
  767. }
  768. /**
  769. * skb_peek_tail - peek at the tail of an &sk_buff_head
  770. * @list_: list to peek at
  771. *
  772. * Peek an &sk_buff. Unlike most other operations you _MUST_
  773. * be careful with this one. A peek leaves the buffer on the
  774. * list and someone else may run off with it. You must hold
  775. * the appropriate locks or have a private queue to do this.
  776. *
  777. * Returns %NULL for an empty list or a pointer to the tail element.
  778. * The reference count is not incremented and the reference is therefore
  779. * volatile. Use with caution.
  780. */
  781. static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
  782. {
  783. struct sk_buff *list = ((const struct sk_buff *)list_)->prev;
  784. if (list == (struct sk_buff *)list_)
  785. list = NULL;
  786. return list;
  787. }
  788. /**
  789. * skb_queue_len - get queue length
  790. * @list_: list to measure
  791. *
  792. * Return the length of an &sk_buff queue.
  793. */
  794. static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
  795. {
  796. return list_->qlen;
  797. }
  798. /**
  799. * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
  800. * @list: queue to initialize
  801. *
  802. * This initializes only the list and queue length aspects of
  803. * an sk_buff_head object. This allows to initialize the list
  804. * aspects of an sk_buff_head without reinitializing things like
  805. * the spinlock. It can also be used for on-stack sk_buff_head
  806. * objects where the spinlock is known to not be used.
  807. */
  808. static inline void __skb_queue_head_init(struct sk_buff_head *list)
  809. {
  810. list->prev = list->next = (struct sk_buff *)list;
  811. list->qlen = 0;
  812. }
  813. /*
  814. * This function creates a split out lock class for each invocation;
  815. * this is needed for now since a whole lot of users of the skb-queue
  816. * infrastructure in drivers have different locking usage (in hardirq)
  817. * than the networking core (in softirq only). In the long run either the
  818. * network layer or drivers should need annotation to consolidate the
  819. * main types of usage into 3 classes.
  820. */
  821. static inline void skb_queue_head_init(struct sk_buff_head *list)
  822. {
  823. spin_lock_init(&list->lock);
  824. __skb_queue_head_init(list);
  825. }
  826. static inline void skb_queue_head_init_class(struct sk_buff_head *list,
  827. struct lock_class_key *class)
  828. {
  829. skb_queue_head_init(list);
  830. lockdep_set_class(&list->lock, class);
  831. }
  832. /*
  833. * Insert an sk_buff on a list.
  834. *
  835. * The "__skb_xxxx()" functions are the non-atomic ones that
  836. * can only be called with interrupts disabled.
  837. */
  838. extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
  839. static inline void __skb_insert(struct sk_buff *newsk,
  840. struct sk_buff *prev, struct sk_buff *next,
  841. struct sk_buff_head *list)
  842. {
  843. newsk->next = next;
  844. newsk->prev = prev;
  845. next->prev = prev->next = newsk;
  846. list->qlen++;
  847. }
  848. static inline void __skb_queue_splice(const struct sk_buff_head *list,
  849. struct sk_buff *prev,
  850. struct sk_buff *next)
  851. {
  852. struct sk_buff *first = list->next;
  853. struct sk_buff *last = list->prev;
  854. first->prev = prev;
  855. prev->next = first;
  856. last->next = next;
  857. next->prev = last;
  858. }
  859. /**
  860. * skb_queue_splice - join two skb lists, this is designed for stacks
  861. * @list: the new list to add
  862. * @head: the place to add it in the first list
  863. */
  864. static inline void skb_queue_splice(const struct sk_buff_head *list,
  865. struct sk_buff_head *head)
  866. {
  867. if (!skb_queue_empty(list)) {
  868. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  869. head->qlen += list->qlen;
  870. }
  871. }
  872. /**
  873. * skb_queue_splice - join two skb lists and reinitialise the emptied list
  874. * @list: the new list to add
  875. * @head: the place to add it in the first list
  876. *
  877. * The list at @list is reinitialised
  878. */
  879. static inline void skb_queue_splice_init(struct sk_buff_head *list,
  880. struct sk_buff_head *head)
  881. {
  882. if (!skb_queue_empty(list)) {
  883. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  884. head->qlen += list->qlen;
  885. __skb_queue_head_init(list);
  886. }
  887. }
  888. /**
  889. * skb_queue_splice_tail - join two skb lists, each list being a queue
  890. * @list: the new list to add
  891. * @head: the place to add it in the first list
  892. */
  893. static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
  894. struct sk_buff_head *head)
  895. {
  896. if (!skb_queue_empty(list)) {
  897. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  898. head->qlen += list->qlen;
  899. }
  900. }
  901. /**
  902. * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
  903. * @list: the new list to add
  904. * @head: the place to add it in the first list
  905. *
  906. * Each of the lists is a queue.
  907. * The list at @list is reinitialised
  908. */
  909. static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
  910. struct sk_buff_head *head)
  911. {
  912. if (!skb_queue_empty(list)) {
  913. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  914. head->qlen += list->qlen;
  915. __skb_queue_head_init(list);
  916. }
  917. }
  918. /**
  919. * __skb_queue_after - queue a buffer at the list head
  920. * @list: list to use
  921. * @prev: place after this buffer
  922. * @newsk: buffer to queue
  923. *
  924. * Queue a buffer int the middle of a list. This function takes no locks
  925. * and you must therefore hold required locks before calling it.
  926. *
  927. * A buffer cannot be placed on two lists at the same time.
  928. */
  929. static inline void __skb_queue_after(struct sk_buff_head *list,
  930. struct sk_buff *prev,
  931. struct sk_buff *newsk)
  932. {
  933. __skb_insert(newsk, prev, prev->next, list);
  934. }
  935. extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
  936. struct sk_buff_head *list);
  937. static inline void __skb_queue_before(struct sk_buff_head *list,
  938. struct sk_buff *next,
  939. struct sk_buff *newsk)
  940. {
  941. __skb_insert(newsk, next->prev, next, list);
  942. }
  943. /**
  944. * __skb_queue_head - queue a buffer at the list head
  945. * @list: list to use
  946. * @newsk: buffer to queue
  947. *
  948. * Queue a buffer at the start of a list. This function takes no locks
  949. * and you must therefore hold required locks before calling it.
  950. *
  951. * A buffer cannot be placed on two lists at the same time.
  952. */
  953. extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
  954. static inline void __skb_queue_head(struct sk_buff_head *list,
  955. struct sk_buff *newsk)
  956. {
  957. __skb_queue_after(list, (struct sk_buff *)list, newsk);
  958. }
  959. /**
  960. * __skb_queue_tail - queue a buffer at the list tail
  961. * @list: list to use
  962. * @newsk: buffer to queue
  963. *
  964. * Queue a buffer at the end of a list. This function takes no locks
  965. * and you must therefore hold required locks before calling it.
  966. *
  967. * A buffer cannot be placed on two lists at the same time.
  968. */
  969. extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
  970. static inline void __skb_queue_tail(struct sk_buff_head *list,
  971. struct sk_buff *newsk)
  972. {
  973. __skb_queue_before(list, (struct sk_buff *)list, newsk);
  974. }
  975. /*
  976. * remove sk_buff from list. _Must_ be called atomically, and with
  977. * the list known..
  978. */
  979. extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
  980. static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
  981. {
  982. struct sk_buff *next, *prev;
  983. list->qlen--;
  984. next = skb->next;
  985. prev = skb->prev;
  986. skb->next = skb->prev = NULL;
  987. next->prev = prev;
  988. prev->next = next;
  989. }
  990. /**
  991. * __skb_dequeue - remove from the head of the queue
  992. * @list: list to dequeue from
  993. *
  994. * Remove the head of the list. This function does not take any locks
  995. * so must be used with appropriate locks held only. The head item is
  996. * returned or %NULL if the list is empty.
  997. */
  998. extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
  999. static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
  1000. {
  1001. struct sk_buff *skb = skb_peek(list);
  1002. if (skb)
  1003. __skb_unlink(skb, list);
  1004. return skb;
  1005. }
  1006. /**
  1007. * __skb_dequeue_tail - remove from the tail of the queue
  1008. * @list: list to dequeue from
  1009. *
  1010. * Remove the tail of the list. This function does not take any locks
  1011. * so must be used with appropriate locks held only. The tail item is
  1012. * returned or %NULL if the list is empty.
  1013. */
  1014. extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
  1015. static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
  1016. {
  1017. struct sk_buff *skb = skb_peek_tail(list);
  1018. if (skb)
  1019. __skb_unlink(skb, list);
  1020. return skb;
  1021. }
  1022. static inline int skb_is_nonlinear(const struct sk_buff *skb)
  1023. {
  1024. return skb->data_len;
  1025. }
  1026. static inline unsigned int skb_headlen(const struct sk_buff *skb)
  1027. {
  1028. return skb->len - skb->data_len;
  1029. }
  1030. static inline int skb_pagelen(const struct sk_buff *skb)
  1031. {
  1032. int i, len = 0;
  1033. for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
  1034. len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
  1035. return len + skb_headlen(skb);
  1036. }
  1037. /**
  1038. * __skb_fill_page_desc - initialise a paged fragment in an skb
  1039. * @skb: buffer containing fragment to be initialised
  1040. * @i: paged fragment index to initialise
  1041. * @page: the page to use for this fragment
  1042. * @off: the offset to the data with @page
  1043. * @size: the length of the data
  1044. *
  1045. * Initialises the @i'th fragment of @skb to point to &size bytes at
  1046. * offset @off within @page.
  1047. *
  1048. * Does not take any additional reference on the fragment.
  1049. */
  1050. static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
  1051. struct page *page, int off, int size)
  1052. {
  1053. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1054. frag->page = page;
  1055. frag->page_offset = off;
  1056. skb_frag_size_set(frag, size);
  1057. }
  1058. /**
  1059. * skb_fill_page_desc - initialise a paged fragment in an skb
  1060. * @skb: buffer containing fragment to be initialised
  1061. * @i: paged fragment index to initialise
  1062. * @page: the page to use for this fragment
  1063. * @off: the offset to the data with @page
  1064. * @size: the length of the data
  1065. *
  1066. * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
  1067. * @skb to point to &size bytes at offset @off within @page. In
  1068. * addition updates @skb such that @i is the last fragment.
  1069. *
  1070. * Does not take any additional reference on the fragment.
  1071. */
  1072. static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
  1073. struct page *page, int off, int size)
  1074. {
  1075. __skb_fill_page_desc(skb, i, page, off, size);
  1076. skb_shinfo(skb)->nr_frags = i + 1;
  1077. }
  1078. extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
  1079. int off, int size);
  1080. #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
  1081. #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
  1082. #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
  1083. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  1084. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  1085. {
  1086. return skb->head + skb->tail;
  1087. }
  1088. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  1089. {
  1090. skb->tail = skb->data - skb->head;
  1091. }
  1092. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  1093. {
  1094. skb_reset_tail_pointer(skb);
  1095. skb->tail += offset;
  1096. }
  1097. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  1098. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  1099. {
  1100. return skb->tail;
  1101. }
  1102. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  1103. {
  1104. skb->tail = skb->data;
  1105. }
  1106. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  1107. {
  1108. skb->tail = skb->data + offset;
  1109. }
  1110. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  1111. /*
  1112. * Add data to an sk_buff
  1113. */
  1114. extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
  1115. static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
  1116. {
  1117. unsigned char *tmp = skb_tail_pointer(skb);
  1118. SKB_LINEAR_ASSERT(skb);
  1119. skb->tail += len;
  1120. skb->len += len;
  1121. return tmp;
  1122. }
  1123. extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
  1124. static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
  1125. {
  1126. skb->data -= len;
  1127. skb->len += len;
  1128. return skb->data;
  1129. }
  1130. extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
  1131. static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
  1132. {
  1133. skb->len -= len;
  1134. BUG_ON(skb->len < skb->data_len);
  1135. return skb->data += len;
  1136. }
  1137. static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
  1138. {
  1139. return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
  1140. }
  1141. extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
  1142. static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
  1143. {
  1144. if (len > skb_headlen(skb) &&
  1145. !__pskb_pull_tail(skb, len - skb_headlen(skb)))
  1146. return NULL;
  1147. skb->len -= len;
  1148. return skb->data += len;
  1149. }
  1150. static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
  1151. {
  1152. return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
  1153. }
  1154. static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
  1155. {
  1156. if (likely(len <= skb_headlen(skb)))
  1157. return 1;
  1158. if (unlikely(len > skb->len))
  1159. return 0;
  1160. return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
  1161. }
  1162. /**
  1163. * skb_headroom - bytes at buffer head
  1164. * @skb: buffer to check
  1165. *
  1166. * Return the number of bytes of free space at the head of an &sk_buff.
  1167. */
  1168. static inline unsigned int skb_headroom(const struct sk_buff *skb)
  1169. {
  1170. return skb->data - skb->head;
  1171. }
  1172. /**
  1173. * skb_tailroom - bytes at buffer end
  1174. * @skb: buffer to check
  1175. *
  1176. * Return the number of bytes of free space at the tail of an sk_buff
  1177. */
  1178. static inline int skb_tailroom(const struct sk_buff *skb)
  1179. {
  1180. return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
  1181. }
  1182. /**
  1183. * skb_reserve - adjust headroom
  1184. * @skb: buffer to alter
  1185. * @len: bytes to move
  1186. *
  1187. * Increase the headroom of an empty &sk_buff by reducing the tail
  1188. * room. This is only allowed for an empty buffer.
  1189. */
  1190. static inline void skb_reserve(struct sk_buff *skb, int len)
  1191. {
  1192. skb->data += len;
  1193. skb->tail += len;
  1194. }
  1195. static inline void skb_reset_mac_len(struct sk_buff *skb)
  1196. {
  1197. skb->mac_len = skb->network_header - skb->mac_header;
  1198. }
  1199. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  1200. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  1201. {
  1202. return skb->head + skb->transport_header;
  1203. }
  1204. static inline void skb_reset_transport_header(struct sk_buff *skb)
  1205. {
  1206. skb->transport_header = skb->data - skb->head;
  1207. }
  1208. static inline void skb_set_transport_header(struct sk_buff *skb,
  1209. const int offset)
  1210. {
  1211. skb_reset_transport_header(skb);
  1212. skb->transport_header += offset;
  1213. }
  1214. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  1215. {
  1216. return skb->head + skb->network_header;
  1217. }
  1218. static inline void skb_reset_network_header(struct sk_buff *skb)
  1219. {
  1220. skb->network_header = skb->data - skb->head;
  1221. }
  1222. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  1223. {
  1224. skb_reset_network_header(skb);
  1225. skb->network_header += offset;
  1226. }
  1227. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  1228. {
  1229. return skb->head + skb->mac_header;
  1230. }
  1231. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  1232. {
  1233. return skb->mac_header != ~0U;
  1234. }
  1235. static inline void skb_reset_mac_header(struct sk_buff *skb)
  1236. {
  1237. skb->mac_header = skb->data - skb->head;
  1238. }
  1239. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  1240. {
  1241. skb_reset_mac_header(skb);
  1242. skb->mac_header += offset;
  1243. }
  1244. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  1245. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  1246. {
  1247. return skb->transport_header;
  1248. }
  1249. static inline void skb_reset_transport_header(struct sk_buff *skb)
  1250. {
  1251. skb->transport_header = skb->data;
  1252. }
  1253. static inline void skb_set_transport_header(struct sk_buff *skb,
  1254. const int offset)
  1255. {
  1256. skb->transport_header = skb->data + offset;
  1257. }
  1258. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  1259. {
  1260. return skb->network_header;
  1261. }
  1262. static inline void skb_reset_network_header(struct sk_buff *skb)
  1263. {
  1264. skb->network_header = skb->data;
  1265. }
  1266. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  1267. {
  1268. skb->network_header = skb->data + offset;
  1269. }
  1270. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  1271. {
  1272. return skb->mac_header;
  1273. }
  1274. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  1275. {
  1276. return skb->mac_header != NULL;
  1277. }
  1278. static inline void skb_reset_mac_header(struct sk_buff *skb)
  1279. {
  1280. skb->mac_header = skb->data;
  1281. }
  1282. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  1283. {
  1284. skb->mac_header = skb->data + offset;
  1285. }
  1286. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  1287. static inline int skb_checksum_start_offset(const struct sk_buff *skb)
  1288. {
  1289. return skb->csum_start - skb_headroom(skb);
  1290. }
  1291. static inline int skb_transport_offset(const struct sk_buff *skb)
  1292. {
  1293. return skb_transport_header(skb) - skb->data;
  1294. }
  1295. static inline u32 skb_network_header_len(const struct sk_buff *skb)
  1296. {
  1297. return skb->transport_header - skb->network_header;
  1298. }
  1299. static inline int skb_network_offset(const struct sk_buff *skb)
  1300. {
  1301. return skb_network_header(skb) - skb->data;
  1302. }
  1303. static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
  1304. {
  1305. return pskb_may_pull(skb, skb_network_offset(skb) + len);
  1306. }
  1307. /*
  1308. * CPUs often take a performance hit when accessing unaligned memory
  1309. * locations. The actual performance hit varies, it can be small if the
  1310. * hardware handles it or large if we have to take an exception and fix it
  1311. * in software.
  1312. *
  1313. * Since an ethernet header is 14 bytes network drivers often end up with
  1314. * the IP header at an unaligned offset. The IP header can be aligned by
  1315. * shifting the start of the packet by 2 bytes. Drivers should do this
  1316. * with:
  1317. *
  1318. * skb_reserve(skb, NET_IP_ALIGN);
  1319. *
  1320. * The downside to this alignment of the IP header is that the DMA is now
  1321. * unaligned. On some architectures the cost of an unaligned DMA is high
  1322. * and this cost outweighs the gains made by aligning the IP header.
  1323. *
  1324. * Since this trade off varies between architectures, we allow NET_IP_ALIGN
  1325. * to be overridden.
  1326. */
  1327. #ifndef NET_IP_ALIGN
  1328. #define NET_IP_ALIGN 2
  1329. #endif
  1330. /*
  1331. * The networking layer reserves some headroom in skb data (via
  1332. * dev_alloc_skb). This is used to avoid having to reallocate skb data when
  1333. * the header has to grow. In the default case, if the header has to grow
  1334. * 32 bytes or less we avoid the reallocation.
  1335. *
  1336. * Unfortunately this headroom changes the DMA alignment of the resulting
  1337. * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
  1338. * on some architectures. An architecture can override this value,
  1339. * perhaps setting it to a cacheline in size (since that will maintain
  1340. * cacheline alignment of the DMA). It must be a power of 2.
  1341. *
  1342. * Various parts of the networking layer expect at least 32 bytes of
  1343. * headroom, you should not reduce this.
  1344. *
  1345. * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
  1346. * to reduce average number of cache lines per packet.
  1347. * get_rps_cpus() for example only access one 64 bytes aligned block :
  1348. * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
  1349. */
  1350. #ifndef NET_SKB_PAD
  1351. #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
  1352. #endif
  1353. extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
  1354. static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
  1355. {
  1356. if (unlikely(skb_is_nonlinear(skb))) {
  1357. WARN_ON(1);
  1358. return;
  1359. }
  1360. skb->len = len;
  1361. skb_set_tail_pointer(skb, len);
  1362. }
  1363. extern void skb_trim(struct sk_buff *skb, unsigned int len);
  1364. static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
  1365. {
  1366. if (skb->data_len)
  1367. return ___pskb_trim(skb, len);
  1368. __skb_trim(skb, len);
  1369. return 0;
  1370. }
  1371. static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
  1372. {
  1373. return (len < skb->len) ? __pskb_trim(skb, len) : 0;
  1374. }
  1375. /**
  1376. * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
  1377. * @skb: buffer to alter
  1378. * @len: new length
  1379. *
  1380. * This is identical to pskb_trim except that the caller knows that
  1381. * the skb is not cloned so we should never get an error due to out-
  1382. * of-memory.
  1383. */
  1384. static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
  1385. {
  1386. int err = pskb_trim(skb, len);
  1387. BUG_ON(err);
  1388. }
  1389. /**
  1390. * skb_orphan - orphan a buffer
  1391. * @skb: buffer to orphan
  1392. *
  1393. * If a buffer currently has an owner then we call the owner's
  1394. * destructor function and make the @skb unowned. The buffer continues
  1395. * to exist but is no longer charged to its former owner.
  1396. */
  1397. static inline void skb_orphan(struct sk_buff *skb)
  1398. {
  1399. if (skb->destructor)
  1400. skb->destructor(skb);
  1401. skb->destructor = NULL;
  1402. skb->sk = NULL;
  1403. }
  1404. /**
  1405. * __skb_queue_purge - empty a list
  1406. * @list: list to empty
  1407. *
  1408. * Delete all buffers on an &sk_buff list. Each buffer is removed from
  1409. * the list and one reference dropped. This function does not take the
  1410. * list lock and the caller must hold the relevant locks to use it.
  1411. */
  1412. extern void skb_queue_purge(struct sk_buff_head *list);
  1413. static inline void __skb_queue_purge(struct sk_buff_head *list)
  1414. {
  1415. struct sk_buff *skb;
  1416. while ((skb = __skb_dequeue(list)) != NULL)
  1417. kfree_skb(skb);
  1418. }
  1419. /**
  1420. * __dev_alloc_skb - allocate an skbuff for receiving
  1421. * @length: length to allocate
  1422. * @gfp_mask: get_free_pages mask, passed to alloc_skb
  1423. *
  1424. * Allocate a new &sk_buff and assign it a usage count of one. The
  1425. * buffer has unspecified headroom built in. Users should allocate
  1426. * the headroom they think they need without accounting for the
  1427. * built in space. The built in space is used for optimisations.
  1428. *
  1429. * %NULL is returned if there is no free memory.
  1430. */
  1431. static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
  1432. gfp_t gfp_mask)
  1433. {
  1434. struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
  1435. if (likely(skb))
  1436. skb_reserve(skb, NET_SKB_PAD);
  1437. return skb;
  1438. }
  1439. extern struct sk_buff *dev_alloc_skb(unsigned int length);
  1440. extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
  1441. unsigned int length, gfp_t gfp_mask);
  1442. /**
  1443. * netdev_alloc_skb - allocate an skbuff for rx on a specific device
  1444. * @dev: network device to receive on
  1445. * @length: length to allocate
  1446. *
  1447. * Allocate a new &sk_buff and assign it a usage count of one. The
  1448. * buffer has unspecified headroom built in. Users should allocate
  1449. * the headroom they think they need without accounting for the
  1450. * built in space. The built in space is used for optimisations.
  1451. *
  1452. * %NULL is returned if there is no free memory. Although this function
  1453. * allocates memory it can be called from an interrupt.
  1454. */
  1455. static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
  1456. unsigned int length)
  1457. {
  1458. return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
  1459. }
  1460. static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
  1461. unsigned int length, gfp_t gfp)
  1462. {
  1463. struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
  1464. if (NET_IP_ALIGN && skb)
  1465. skb_reserve(skb, NET_IP_ALIGN);
  1466. return skb;
  1467. }
  1468. static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
  1469. unsigned int length)
  1470. {
  1471. return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
  1472. }
  1473. /**
  1474. * __netdev_alloc_page - allocate a page for ps-rx on a specific device
  1475. * @dev: network device to receive on
  1476. * @gfp_mask: alloc_pages_node mask
  1477. *
  1478. * Allocate a new page. dev currently unused.
  1479. *
  1480. * %NULL is returned if there is no free memory.
  1481. */
  1482. static inline struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
  1483. {
  1484. return alloc_pages_node(NUMA_NO_NODE, gfp_mask, 0);
  1485. }
  1486. /**
  1487. * netdev_alloc_page - allocate a page for ps-rx on a specific device
  1488. * @dev: network device to receive on
  1489. *
  1490. * Allocate a new page. dev currently unused.
  1491. *
  1492. * %NULL is returned if there is no free memory.
  1493. */
  1494. static inline struct page *netdev_alloc_page(struct net_device *dev)
  1495. {
  1496. return __netdev_alloc_page(dev, GFP_ATOMIC);
  1497. }
  1498. static inline void netdev_free_page(struct net_device *dev, struct page *page)
  1499. {
  1500. __free_page(page);
  1501. }
  1502. /**
  1503. * skb_frag_page - retrieve the page refered to by a paged fragment
  1504. * @frag: the paged fragment
  1505. *
  1506. * Returns the &struct page associated with @frag.
  1507. */
  1508. static inline struct page *skb_frag_page(const skb_frag_t *frag)
  1509. {
  1510. return frag->page;
  1511. }
  1512. /**
  1513. * __skb_frag_ref - take an addition reference on a paged fragment.
  1514. * @frag: the paged fragment
  1515. *
  1516. * Takes an additional reference on the paged fragment @frag.
  1517. */
  1518. static inline void __skb_frag_ref(skb_frag_t *frag)
  1519. {
  1520. get_page(skb_frag_page(frag));
  1521. }
  1522. /**
  1523. * skb_frag_ref - take an addition reference on a paged fragment of an skb.
  1524. * @skb: the buffer
  1525. * @f: the fragment offset.
  1526. *
  1527. * Takes an additional reference on the @f'th paged fragment of @skb.
  1528. */
  1529. static inline void skb_frag_ref(struct sk_buff *skb, int f)
  1530. {
  1531. __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
  1532. }
  1533. /**
  1534. * __skb_frag_unref - release a reference on a paged fragment.
  1535. * @frag: the paged fragment
  1536. *
  1537. * Releases a reference on the paged fragment @frag.
  1538. */
  1539. static inline void __skb_frag_unref(skb_frag_t *frag)
  1540. {
  1541. put_page(skb_frag_page(frag));
  1542. }
  1543. /**
  1544. * skb_frag_unref - release a reference on a paged fragment of an skb.
  1545. * @skb: the buffer
  1546. * @f: the fragment offset
  1547. *
  1548. * Releases a reference on the @f'th paged fragment of @skb.
  1549. */
  1550. static inline void skb_frag_unref(struct sk_buff *skb, int f)
  1551. {
  1552. __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
  1553. }
  1554. /**
  1555. * skb_frag_address - gets the address of the data contained in a paged fragment
  1556. * @frag: the paged fragment buffer
  1557. *
  1558. * Returns the address of the data within @frag. The page must already
  1559. * be mapped.
  1560. */
  1561. static inline void *skb_frag_address(const skb_frag_t *frag)
  1562. {
  1563. return page_address(skb_frag_page(frag)) + frag->page_offset;
  1564. }
  1565. /**
  1566. * skb_frag_address_safe - gets the address of the data contained in a paged fragment
  1567. * @frag: the paged fragment buffer
  1568. *
  1569. * Returns the address of the data within @frag. Checks that the page
  1570. * is mapped and returns %NULL otherwise.
  1571. */
  1572. static inline void *skb_frag_address_safe(const skb_frag_t *frag)
  1573. {
  1574. void *ptr = page_address(skb_frag_page(frag));
  1575. if (unlikely(!ptr))
  1576. return NULL;
  1577. return ptr + frag->page_offset;
  1578. }
  1579. /**
  1580. * __skb_frag_set_page - sets the page contained in a paged fragment
  1581. * @frag: the paged fragment
  1582. * @page: the page to set
  1583. *
  1584. * Sets the fragment @frag to contain @page.
  1585. */
  1586. static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
  1587. {
  1588. frag->page = page;
  1589. }
  1590. /**
  1591. * skb_frag_set_page - sets the page contained in a paged fragment of an skb
  1592. * @skb: the buffer
  1593. * @f: the fragment offset
  1594. * @page: the page to set
  1595. *
  1596. * Sets the @f'th fragment of @skb to contain @page.
  1597. */
  1598. static inline void skb_frag_set_page(struct sk_buff *skb, int f,
  1599. struct page *page)
  1600. {
  1601. __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
  1602. }
  1603. /**
  1604. * skb_frag_dma_map - maps a paged fragment via the DMA API
  1605. * @device: the device to map the fragment to
  1606. * @frag: the paged fragment to map
  1607. * @offset: the offset within the fragment (starting at the
  1608. * fragment's own offset)
  1609. * @size: the number of bytes to map
  1610. * @direction: the direction of the mapping (%PCI_DMA_*)
  1611. *
  1612. * Maps the page associated with @frag to @device.
  1613. */
  1614. static inline dma_addr_t skb_frag_dma_map(struct device *dev,
  1615. const skb_frag_t *frag,
  1616. size_t offset, size_t size,
  1617. enum dma_data_direction dir)
  1618. {
  1619. return dma_map_page(dev, skb_frag_page(frag),
  1620. frag->page_offset + offset, size, dir);
  1621. }
  1622. /**
  1623. * skb_clone_writable - is the header of a clone writable
  1624. * @skb: buffer to check
  1625. * @len: length up to which to write
  1626. *
  1627. * Returns true if modifying the header part of the cloned buffer
  1628. * does not requires the data to be copied.
  1629. */
  1630. static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
  1631. {
  1632. return !skb_header_cloned(skb) &&
  1633. skb_headroom(skb) + len <= skb->hdr_len;
  1634. }
  1635. static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
  1636. int cloned)
  1637. {
  1638. int delta = 0;
  1639. if (headroom < NET_SKB_PAD)
  1640. headroom = NET_SKB_PAD;
  1641. if (headroom > skb_headroom(skb))
  1642. delta = headroom - skb_headroom(skb);
  1643. if (delta || cloned)
  1644. return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
  1645. GFP_ATOMIC);
  1646. return 0;
  1647. }
  1648. /**
  1649. * skb_cow - copy header of skb when it is required
  1650. * @skb: buffer to cow
  1651. * @headroom: needed headroom
  1652. *
  1653. * If the skb passed lacks sufficient headroom or its data part
  1654. * is shared, data is reallocated. If reallocation fails, an error
  1655. * is returned and original skb is not changed.
  1656. *
  1657. * The result is skb with writable area skb->head...skb->tail
  1658. * and at least @headroom of space at head.
  1659. */
  1660. static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
  1661. {
  1662. return __skb_cow(skb, headroom, skb_cloned(skb));
  1663. }
  1664. /**
  1665. * skb_cow_head - skb_cow but only making the head writable
  1666. * @skb: buffer to cow
  1667. * @headroom: needed headroom
  1668. *
  1669. * This function is identical to skb_cow except that we replace the
  1670. * skb_cloned check by skb_header_cloned. It should be used when
  1671. * you only need to push on some header and do not need to modify
  1672. * the data.
  1673. */
  1674. static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
  1675. {
  1676. return __skb_cow(skb, headroom, skb_header_cloned(skb));
  1677. }
  1678. /**
  1679. * skb_padto - pad an skbuff up to a minimal size
  1680. * @skb: buffer to pad
  1681. * @len: minimal length
  1682. *
  1683. * Pads up a buffer to ensure the trailing bytes exist and are
  1684. * blanked. If the buffer already contains sufficient data it
  1685. * is untouched. Otherwise it is extended. Returns zero on
  1686. * success. The skb is freed on error.
  1687. */
  1688. static inline int skb_padto(struct sk_buff *skb, unsigned int len)
  1689. {
  1690. unsigned int size = skb->len;
  1691. if (likely(size >= len))
  1692. return 0;
  1693. return skb_pad(skb, len - size);
  1694. }
  1695. static inline int skb_add_data(struct sk_buff *skb,
  1696. char __user *from, int copy)
  1697. {
  1698. const int off = skb->len;
  1699. if (skb->ip_summed == CHECKSUM_NONE) {
  1700. int err = 0;
  1701. __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
  1702. copy, 0, &err);
  1703. if (!err) {
  1704. skb->csum = csum_block_add(skb->csum, csum, off);
  1705. return 0;
  1706. }
  1707. } else if (!copy_from_user(skb_put(skb, copy), from, copy))
  1708. return 0;
  1709. __skb_trim(skb, off);
  1710. return -EFAULT;
  1711. }
  1712. static inline int skb_can_coalesce(struct sk_buff *skb, int i,
  1713. const struct page *page, int off)
  1714. {
  1715. if (i) {
  1716. const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
  1717. return page == skb_frag_page(frag) &&
  1718. off == frag->page_offset + skb_frag_size(frag);
  1719. }
  1720. return 0;
  1721. }
  1722. static inline int __skb_linearize(struct sk_buff *skb)
  1723. {
  1724. return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
  1725. }
  1726. /**
  1727. * skb_linearize - convert paged skb to linear one
  1728. * @skb: buffer to linarize
  1729. *
  1730. * If there is no free memory -ENOMEM is returned, otherwise zero
  1731. * is returned and the old skb data released.
  1732. */
  1733. static inline int skb_linearize(struct sk_buff *skb)
  1734. {
  1735. return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
  1736. }
  1737. /**
  1738. * skb_linearize_cow - make sure skb is linear and writable
  1739. * @skb: buffer to process
  1740. *
  1741. * If there is no free memory -ENOMEM is returned, otherwise zero
  1742. * is returned and the old skb data released.
  1743. */
  1744. static inline int skb_linearize_cow(struct sk_buff *skb)
  1745. {
  1746. return skb_is_nonlinear(skb) || skb_cloned(skb) ?
  1747. __skb_linearize(skb) : 0;
  1748. }
  1749. /**
  1750. * skb_postpull_rcsum - update checksum for received skb after pull
  1751. * @skb: buffer to update
  1752. * @start: start of data before pull
  1753. * @len: length of data pulled
  1754. *
  1755. * After doing a pull on a received packet, you need to call this to
  1756. * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
  1757. * CHECKSUM_NONE so that it can be recomputed from scratch.
  1758. */
  1759. static inline void skb_postpull_rcsum(struct sk_buff *skb,
  1760. const void *start, unsigned int len)
  1761. {
  1762. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1763. skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
  1764. }
  1765. unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
  1766. /**
  1767. * pskb_trim_rcsum - trim received skb and update checksum
  1768. * @skb: buffer to trim
  1769. * @len: new length
  1770. *
  1771. * This is exactly the same as pskb_trim except that it ensures the
  1772. * checksum of received packets are still valid after the operation.
  1773. */
  1774. static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
  1775. {
  1776. if (likely(len >= skb->len))
  1777. return 0;
  1778. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1779. skb->ip_summed = CHECKSUM_NONE;
  1780. return __pskb_trim(skb, len);
  1781. }
  1782. #define skb_queue_walk(queue, skb) \
  1783. for (skb = (queue)->next; \
  1784. skb != (struct sk_buff *)(queue); \
  1785. skb = skb->next)
  1786. #define skb_queue_walk_safe(queue, skb, tmp) \
  1787. for (skb = (queue)->next, tmp = skb->next; \
  1788. skb != (struct sk_buff *)(queue); \
  1789. skb = tmp, tmp = skb->next)
  1790. #define skb_queue_walk_from(queue, skb) \
  1791. for (; skb != (struct sk_buff *)(queue); \
  1792. skb = skb->next)
  1793. #define skb_queue_walk_from_safe(queue, skb, tmp) \
  1794. for (tmp = skb->next; \
  1795. skb != (struct sk_buff *)(queue); \
  1796. skb = tmp, tmp = skb->next)
  1797. #define skb_queue_reverse_walk(queue, skb) \
  1798. for (skb = (queue)->prev; \
  1799. skb != (struct sk_buff *)(queue); \
  1800. skb = skb->prev)
  1801. #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
  1802. for (skb = (queue)->prev, tmp = skb->prev; \
  1803. skb != (struct sk_buff *)(queue); \
  1804. skb = tmp, tmp = skb->prev)
  1805. #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
  1806. for (tmp = skb->prev; \
  1807. skb != (struct sk_buff *)(queue); \
  1808. skb = tmp, tmp = skb->prev)
  1809. static inline bool skb_has_frag_list(const struct sk_buff *skb)
  1810. {
  1811. return skb_shinfo(skb)->frag_list != NULL;
  1812. }
  1813. static inline void skb_frag_list_init(struct sk_buff *skb)
  1814. {
  1815. skb_shinfo(skb)->frag_list = NULL;
  1816. }
  1817. static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
  1818. {
  1819. frag->next = skb_shinfo(skb)->frag_list;
  1820. skb_shinfo(skb)->frag_list = frag;
  1821. }
  1822. #define skb_walk_frags(skb, iter) \
  1823. for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
  1824. extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
  1825. int *peeked, int *err);
  1826. extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
  1827. int noblock, int *err);
  1828. extern unsigned int datagram_poll(struct file *file, struct socket *sock,
  1829. struct poll_table_struct *wait);
  1830. extern int skb_copy_datagram_iovec(const struct sk_buff *from,
  1831. int offset, struct iovec *to,
  1832. int size);
  1833. extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
  1834. int hlen,
  1835. struct iovec *iov);
  1836. extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
  1837. int offset,
  1838. const struct iovec *from,
  1839. int from_offset,
  1840. int len);
  1841. extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
  1842. int offset,
  1843. const struct iovec *to,
  1844. int to_offset,
  1845. int size);
  1846. extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
  1847. extern void skb_free_datagram_locked(struct sock *sk,
  1848. struct sk_buff *skb);
  1849. extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
  1850. unsigned int flags);
  1851. extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
  1852. int len, __wsum csum);
  1853. extern int skb_copy_bits(const struct sk_buff *skb, int offset,
  1854. void *to, int len);
  1855. extern int skb_store_bits(struct sk_buff *skb, int offset,
  1856. const void *from, int len);
  1857. extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
  1858. int offset, u8 *to, int len,
  1859. __wsum csum);
  1860. extern int skb_splice_bits(struct sk_buff *skb,
  1861. unsigned int offset,
  1862. struct pipe_inode_info *pipe,
  1863. unsigned int len,
  1864. unsigned int flags);
  1865. extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
  1866. extern void skb_split(struct sk_buff *skb,
  1867. struct sk_buff *skb1, const u32 len);
  1868. extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
  1869. int shiftlen);
  1870. extern struct sk_buff *skb_segment(struct sk_buff *skb, u32 features);
  1871. static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
  1872. int len, void *buffer)
  1873. {
  1874. int hlen = skb_headlen(skb);
  1875. if (hlen - offset >= len)
  1876. return skb->data + offset;
  1877. if (skb_copy_bits(skb, offset, buffer, len) < 0)
  1878. return NULL;
  1879. return buffer;
  1880. }
  1881. static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
  1882. void *to,
  1883. const unsigned int len)
  1884. {
  1885. memcpy(to, skb->data, len);
  1886. }
  1887. static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
  1888. const int offset, void *to,
  1889. const unsigned int len)
  1890. {
  1891. memcpy(to, skb->data + offset, len);
  1892. }
  1893. static inline void skb_copy_to_linear_data(struct sk_buff *skb,
  1894. const void *from,
  1895. const unsigned int len)
  1896. {
  1897. memcpy(skb->data, from, len);
  1898. }
  1899. static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
  1900. const int offset,
  1901. const void *from,
  1902. const unsigned int len)
  1903. {
  1904. memcpy(skb->data + offset, from, len);
  1905. }
  1906. extern void skb_init(void);
  1907. static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
  1908. {
  1909. return skb->tstamp;
  1910. }
  1911. /**
  1912. * skb_get_timestamp - get timestamp from a skb
  1913. * @skb: skb to get stamp from
  1914. * @stamp: pointer to struct timeval to store stamp in
  1915. *
  1916. * Timestamps are stored in the skb as offsets to a base timestamp.
  1917. * This function converts the offset back to a struct timeval and stores
  1918. * it in stamp.
  1919. */
  1920. static inline void skb_get_timestamp(const struct sk_buff *skb,
  1921. struct timeval *stamp)
  1922. {
  1923. *stamp = ktime_to_timeval(skb->tstamp);
  1924. }
  1925. static inline void skb_get_timestampns(const struct sk_buff *skb,
  1926. struct timespec *stamp)
  1927. {
  1928. *stamp = ktime_to_timespec(skb->tstamp);
  1929. }
  1930. static inline void __net_timestamp(struct sk_buff *skb)
  1931. {
  1932. skb->tstamp = ktime_get_real();
  1933. }
  1934. static inline ktime_t net_timedelta(ktime_t t)
  1935. {
  1936. return ktime_sub(ktime_get_real(), t);
  1937. }
  1938. static inline ktime_t net_invalid_timestamp(void)
  1939. {
  1940. return ktime_set(0, 0);
  1941. }
  1942. extern void skb_timestamping_init(void);
  1943. #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
  1944. extern void skb_clone_tx_timestamp(struct sk_buff *skb);
  1945. extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
  1946. #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
  1947. static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
  1948. {
  1949. }
  1950. static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
  1951. {
  1952. return false;
  1953. }
  1954. #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
  1955. /**
  1956. * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
  1957. *
  1958. * @skb: clone of the the original outgoing packet
  1959. * @hwtstamps: hardware time stamps
  1960. *
  1961. */
  1962. void skb_complete_tx_timestamp(struct sk_buff *skb,
  1963. struct skb_shared_hwtstamps *hwtstamps);
  1964. /**
  1965. * skb_tstamp_tx - queue clone of skb with send time stamps
  1966. * @orig_skb: the original outgoing packet
  1967. * @hwtstamps: hardware time stamps, may be NULL if not available
  1968. *
  1969. * If the skb has a socket associated, then this function clones the
  1970. * skb (thus sharing the actual data and optional structures), stores
  1971. * the optional hardware time stamping information (if non NULL) or
  1972. * generates a software time stamp (otherwise), then queues the clone
  1973. * to the error queue of the socket. Errors are silently ignored.
  1974. */
  1975. extern void skb_tstamp_tx(struct sk_buff *orig_skb,
  1976. struct skb_shared_hwtstamps *hwtstamps);
  1977. static inline void sw_tx_timestamp(struct sk_buff *skb)
  1978. {
  1979. if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
  1980. !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
  1981. skb_tstamp_tx(skb, NULL);
  1982. }
  1983. /**
  1984. * skb_tx_timestamp() - Driver hook for transmit timestamping
  1985. *
  1986. * Ethernet MAC Drivers should call this function in their hard_xmit()
  1987. * function immediately before giving the sk_buff to the MAC hardware.
  1988. *
  1989. * @skb: A socket buffer.
  1990. */
  1991. static inline void skb_tx_timestamp(struct sk_buff *skb)
  1992. {
  1993. skb_clone_tx_timestamp(skb);
  1994. sw_tx_timestamp(skb);
  1995. }
  1996. extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
  1997. extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
  1998. static inline int skb_csum_unnecessary(const struct sk_buff *skb)
  1999. {
  2000. return skb->ip_summed & CHECKSUM_UNNECESSARY;
  2001. }
  2002. /**
  2003. * skb_checksum_complete - Calculate checksum of an entire packet
  2004. * @skb: packet to process
  2005. *
  2006. * This function calculates the checksum over the entire packet plus
  2007. * the value of skb->csum. The latter can be used to supply the
  2008. * checksum of a pseudo header as used by TCP/UDP. It returns the
  2009. * checksum.
  2010. *
  2011. * For protocols that contain complete checksums such as ICMP/TCP/UDP,
  2012. * this function can be used to verify that checksum on received
  2013. * packets. In that case the function should return zero if the
  2014. * checksum is correct. In particular, this function will return zero
  2015. * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
  2016. * hardware has already verified the correctness of the checksum.
  2017. */
  2018. static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
  2019. {
  2020. return skb_csum_unnecessary(skb) ?
  2021. 0 : __skb_checksum_complete(skb);
  2022. }
  2023. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2024. extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
  2025. static inline void nf_conntrack_put(struct nf_conntrack *nfct)
  2026. {
  2027. if (nfct && atomic_dec_and_test(&nfct->use))
  2028. nf_conntrack_destroy(nfct);
  2029. }
  2030. static inline void nf_conntrack_get(struct nf_conntrack *nfct)
  2031. {
  2032. if (nfct)
  2033. atomic_inc(&nfct->use);
  2034. }
  2035. #endif
  2036. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2037. static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
  2038. {
  2039. if (skb)
  2040. atomic_inc(&skb->users);
  2041. }
  2042. static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
  2043. {
  2044. if (skb)
  2045. kfree_skb(skb);
  2046. }
  2047. #endif
  2048. #ifdef CONFIG_BRIDGE_NETFILTER
  2049. static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
  2050. {
  2051. if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
  2052. kfree(nf_bridge);
  2053. }
  2054. static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
  2055. {
  2056. if (nf_bridge)
  2057. atomic_inc(&nf_bridge->use);
  2058. }
  2059. #endif /* CONFIG_BRIDGE_NETFILTER */
  2060. static inline void nf_reset(struct sk_buff *skb)
  2061. {
  2062. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2063. nf_conntrack_put(skb->nfct);
  2064. skb->nfct = NULL;
  2065. #endif
  2066. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2067. nf_conntrack_put_reasm(skb->nfct_reasm);
  2068. skb->nfct_reasm = NULL;
  2069. #endif
  2070. #ifdef CONFIG_BRIDGE_NETFILTER
  2071. nf_bridge_put(skb->nf_bridge);
  2072. skb->nf_bridge = NULL;
  2073. #endif
  2074. }
  2075. /* Note: This doesn't put any conntrack and bridge info in dst. */
  2076. static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  2077. {
  2078. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2079. dst->nfct = src->nfct;
  2080. nf_conntrack_get(src->nfct);
  2081. dst->nfctinfo = src->nfctinfo;
  2082. #endif
  2083. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2084. dst->nfct_reasm = src->nfct_reasm;
  2085. nf_conntrack_get_reasm(src->nfct_reasm);
  2086. #endif
  2087. #ifdef CONFIG_BRIDGE_NETFILTER
  2088. dst->nf_bridge = src->nf_bridge;
  2089. nf_bridge_get(src->nf_bridge);
  2090. #endif
  2091. }
  2092. static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  2093. {
  2094. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2095. nf_conntrack_put(dst->nfct);
  2096. #endif
  2097. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2098. nf_conntrack_put_reasm(dst->nfct_reasm);
  2099. #endif
  2100. #ifdef CONFIG_BRIDGE_NETFILTER
  2101. nf_bridge_put(dst->nf_bridge);
  2102. #endif
  2103. __nf_copy(dst, src);
  2104. }
  2105. #ifdef CONFIG_NETWORK_SECMARK
  2106. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  2107. {
  2108. to->secmark = from->secmark;
  2109. }
  2110. static inline void skb_init_secmark(struct sk_buff *skb)
  2111. {
  2112. skb->secmark = 0;
  2113. }
  2114. #else
  2115. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  2116. { }
  2117. static inline void skb_init_secmark(struct sk_buff *skb)
  2118. { }
  2119. #endif
  2120. static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
  2121. {
  2122. skb->queue_mapping = queue_mapping;
  2123. }
  2124. static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
  2125. {
  2126. return skb->queue_mapping;
  2127. }
  2128. static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
  2129. {
  2130. to->queue_mapping = from->queue_mapping;
  2131. }
  2132. static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
  2133. {
  2134. skb->queue_mapping = rx_queue + 1;
  2135. }
  2136. static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
  2137. {
  2138. return skb->queue_mapping - 1;
  2139. }
  2140. static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
  2141. {
  2142. return skb->queue_mapping != 0;
  2143. }
  2144. extern u16 __skb_tx_hash(const struct net_device *dev,
  2145. const struct sk_buff *skb,
  2146. unsigned int num_tx_queues);
  2147. #ifdef CONFIG_XFRM
  2148. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  2149. {
  2150. return skb->sp;
  2151. }
  2152. #else
  2153. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  2154. {
  2155. return NULL;
  2156. }
  2157. #endif
  2158. static inline int skb_is_gso(const struct sk_buff *skb)
  2159. {
  2160. return skb_shinfo(skb)->gso_size;
  2161. }
  2162. static inline int skb_is_gso_v6(const struct sk_buff *skb)
  2163. {
  2164. return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
  2165. }
  2166. extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
  2167. static inline bool skb_warn_if_lro(const struct sk_buff *skb)
  2168. {
  2169. /* LRO sets gso_size but not gso_type, whereas if GSO is really
  2170. * wanted then gso_type will be set. */
  2171. const struct skb_shared_info *shinfo = skb_shinfo(skb);
  2172. if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
  2173. unlikely(shinfo->gso_type == 0)) {
  2174. __skb_warn_lro_forwarding(skb);
  2175. return true;
  2176. }
  2177. return false;
  2178. }
  2179. static inline void skb_forward_csum(struct sk_buff *skb)
  2180. {
  2181. /* Unfortunately we don't support this one. Any brave souls? */
  2182. if (skb->ip_summed == CHECKSUM_COMPLETE)
  2183. skb->ip_summed = CHECKSUM_NONE;
  2184. }
  2185. /**
  2186. * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
  2187. * @skb: skb to check
  2188. *
  2189. * fresh skbs have their ip_summed set to CHECKSUM_NONE.
  2190. * Instead of forcing ip_summed to CHECKSUM_NONE, we can
  2191. * use this helper, to document places where we make this assertion.
  2192. */
  2193. static inline void skb_checksum_none_assert(const struct sk_buff *skb)
  2194. {
  2195. #ifdef DEBUG
  2196. BUG_ON(skb->ip_summed != CHECKSUM_NONE);
  2197. #endif
  2198. }
  2199. bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
  2200. static inline bool skb_is_recycleable(const struct sk_buff *skb, int skb_size)
  2201. {
  2202. if (irqs_disabled())
  2203. return false;
  2204. if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)
  2205. return false;
  2206. if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
  2207. return false;
  2208. skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
  2209. if (skb_end_pointer(skb) - skb->head < skb_size)
  2210. return false;
  2211. if (skb_shared(skb) || skb_cloned(skb))
  2212. return false;
  2213. return true;
  2214. }
  2215. #endif /* __KERNEL__ */
  2216. #endif /* _LINUX_SKBUFF_H */