power.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765
  1. /*
  2. * acpi_power.c - ACPI Bus Power Management ($Revision: 39 $)
  3. *
  4. * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
  5. * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
  6. *
  7. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or (at
  12. * your option) any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful, but
  15. * WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License along
  20. * with this program; if not, write to the Free Software Foundation, Inc.,
  21. * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
  22. *
  23. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  24. */
  25. /*
  26. * ACPI power-managed devices may be controlled in two ways:
  27. * 1. via "Device Specific (D-State) Control"
  28. * 2. via "Power Resource Control".
  29. * This module is used to manage devices relying on Power Resource Control.
  30. *
  31. * An ACPI "power resource object" describes a software controllable power
  32. * plane, clock plane, or other resource used by a power managed device.
  33. * A device may rely on multiple power resources, and a power resource
  34. * may be shared by multiple devices.
  35. */
  36. #include <linux/kernel.h>
  37. #include <linux/module.h>
  38. #include <linux/init.h>
  39. #include <linux/types.h>
  40. #include <linux/slab.h>
  41. #include <linux/pm_runtime.h>
  42. #include <acpi/acpi_bus.h>
  43. #include <acpi/acpi_drivers.h>
  44. #include "sleep.h"
  45. #include "internal.h"
  46. #define PREFIX "ACPI: "
  47. #define _COMPONENT ACPI_POWER_COMPONENT
  48. ACPI_MODULE_NAME("power");
  49. #define ACPI_POWER_CLASS "power_resource"
  50. #define ACPI_POWER_DEVICE_NAME "Power Resource"
  51. #define ACPI_POWER_FILE_INFO "info"
  52. #define ACPI_POWER_FILE_STATUS "state"
  53. #define ACPI_POWER_RESOURCE_STATE_OFF 0x00
  54. #define ACPI_POWER_RESOURCE_STATE_ON 0x01
  55. #define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF
  56. struct acpi_power_dependent_device {
  57. struct list_head node;
  58. struct acpi_device *adev;
  59. struct work_struct work;
  60. };
  61. struct acpi_power_resource {
  62. struct acpi_device device;
  63. struct list_head list_node;
  64. struct list_head dependent;
  65. char *name;
  66. u32 system_level;
  67. u32 order;
  68. unsigned int ref_count;
  69. struct mutex resource_lock;
  70. };
  71. struct acpi_power_resource_entry {
  72. struct list_head node;
  73. struct acpi_power_resource *resource;
  74. };
  75. static LIST_HEAD(acpi_power_resource_list);
  76. static DEFINE_MUTEX(power_resource_list_lock);
  77. /* --------------------------------------------------------------------------
  78. Power Resource Management
  79. -------------------------------------------------------------------------- */
  80. static struct acpi_power_resource *acpi_power_get_context(acpi_handle handle)
  81. {
  82. struct acpi_device *device;
  83. if (acpi_bus_get_device(handle, &device))
  84. return NULL;
  85. return container_of(device, struct acpi_power_resource, device);
  86. }
  87. static int acpi_power_resources_list_add(acpi_handle handle,
  88. struct list_head *list)
  89. {
  90. struct acpi_power_resource *resource = acpi_power_get_context(handle);
  91. struct acpi_power_resource_entry *entry;
  92. if (!resource || !list)
  93. return -EINVAL;
  94. entry = kzalloc(sizeof(*entry), GFP_KERNEL);
  95. if (!entry)
  96. return -ENOMEM;
  97. entry->resource = resource;
  98. if (!list_empty(list)) {
  99. struct acpi_power_resource_entry *e;
  100. list_for_each_entry(e, list, node)
  101. if (e->resource->order > resource->order) {
  102. list_add_tail(&entry->node, &e->node);
  103. return 0;
  104. }
  105. }
  106. list_add_tail(&entry->node, list);
  107. return 0;
  108. }
  109. void acpi_power_resources_list_free(struct list_head *list)
  110. {
  111. struct acpi_power_resource_entry *entry, *e;
  112. list_for_each_entry_safe(entry, e, list, node) {
  113. list_del(&entry->node);
  114. kfree(entry);
  115. }
  116. }
  117. int acpi_extract_power_resources(union acpi_object *package, unsigned int start,
  118. struct list_head *list)
  119. {
  120. unsigned int i;
  121. int err = 0;
  122. for (i = start; i < package->package.count; i++) {
  123. union acpi_object *element = &package->package.elements[i];
  124. acpi_handle rhandle;
  125. if (element->type != ACPI_TYPE_LOCAL_REFERENCE) {
  126. err = -ENODATA;
  127. break;
  128. }
  129. rhandle = element->reference.handle;
  130. if (!rhandle) {
  131. err = -ENODEV;
  132. break;
  133. }
  134. err = acpi_add_power_resource(rhandle);
  135. if (err)
  136. break;
  137. err = acpi_power_resources_list_add(rhandle, list);
  138. if (err)
  139. break;
  140. }
  141. if (err)
  142. acpi_power_resources_list_free(list);
  143. return err;
  144. }
  145. static int acpi_power_get_state(acpi_handle handle, int *state)
  146. {
  147. acpi_status status = AE_OK;
  148. unsigned long long sta = 0;
  149. char node_name[5];
  150. struct acpi_buffer buffer = { sizeof(node_name), node_name };
  151. if (!handle || !state)
  152. return -EINVAL;
  153. status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
  154. if (ACPI_FAILURE(status))
  155. return -ENODEV;
  156. *state = (sta & 0x01)?ACPI_POWER_RESOURCE_STATE_ON:
  157. ACPI_POWER_RESOURCE_STATE_OFF;
  158. acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer);
  159. ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource [%s] is %s\n",
  160. node_name,
  161. *state ? "on" : "off"));
  162. return 0;
  163. }
  164. static int acpi_power_get_list_state(struct list_head *list, int *state)
  165. {
  166. struct acpi_power_resource_entry *entry;
  167. int cur_state;
  168. if (!list || !state)
  169. return -EINVAL;
  170. /* The state of the list is 'on' IFF all resources are 'on'. */
  171. list_for_each_entry(entry, list, node) {
  172. struct acpi_power_resource *resource = entry->resource;
  173. acpi_handle handle = resource->device.handle;
  174. int result;
  175. mutex_lock(&resource->resource_lock);
  176. result = acpi_power_get_state(handle, &cur_state);
  177. mutex_unlock(&resource->resource_lock);
  178. if (result)
  179. return result;
  180. if (cur_state != ACPI_POWER_RESOURCE_STATE_ON)
  181. break;
  182. }
  183. ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource list is %s\n",
  184. cur_state ? "on" : "off"));
  185. *state = cur_state;
  186. return 0;
  187. }
  188. static void acpi_power_resume_dependent(struct work_struct *work)
  189. {
  190. struct acpi_power_dependent_device *dep;
  191. struct acpi_device_physical_node *pn;
  192. struct acpi_device *adev;
  193. int state;
  194. dep = container_of(work, struct acpi_power_dependent_device, work);
  195. adev = dep->adev;
  196. if (acpi_power_get_inferred_state(adev, &state))
  197. return;
  198. if (state > ACPI_STATE_D0)
  199. return;
  200. mutex_lock(&adev->physical_node_lock);
  201. list_for_each_entry(pn, &adev->physical_node_list, node)
  202. pm_request_resume(pn->dev);
  203. list_for_each_entry(pn, &adev->power_dependent, node)
  204. pm_request_resume(pn->dev);
  205. mutex_unlock(&adev->physical_node_lock);
  206. }
  207. static int __acpi_power_on(struct acpi_power_resource *resource)
  208. {
  209. acpi_status status = AE_OK;
  210. status = acpi_evaluate_object(resource->device.handle, "_ON", NULL, NULL);
  211. if (ACPI_FAILURE(status))
  212. return -ENODEV;
  213. ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned on\n",
  214. resource->name));
  215. return 0;
  216. }
  217. static int acpi_power_on(struct acpi_power_resource *resource)
  218. {
  219. int result = 0;;
  220. mutex_lock(&resource->resource_lock);
  221. if (resource->ref_count++) {
  222. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  223. "Power resource [%s] already on",
  224. resource->name));
  225. } else {
  226. result = __acpi_power_on(resource);
  227. if (result) {
  228. resource->ref_count--;
  229. } else {
  230. struct acpi_power_dependent_device *dep;
  231. list_for_each_entry(dep, &resource->dependent, node)
  232. schedule_work(&dep->work);
  233. }
  234. }
  235. mutex_unlock(&resource->resource_lock);
  236. return result;
  237. }
  238. static int acpi_power_off(struct acpi_power_resource *resource)
  239. {
  240. acpi_status status = AE_OK;
  241. int result = 0;
  242. mutex_lock(&resource->resource_lock);
  243. if (!resource->ref_count) {
  244. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  245. "Power resource [%s] already off",
  246. resource->name));
  247. goto unlock;
  248. }
  249. if (--resource->ref_count) {
  250. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  251. "Power resource [%s] still in use\n",
  252. resource->name));
  253. goto unlock;
  254. }
  255. status = acpi_evaluate_object(resource->device.handle, "_OFF", NULL, NULL);
  256. if (ACPI_FAILURE(status))
  257. result = -ENODEV;
  258. else
  259. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  260. "Power resource [%s] turned off\n",
  261. resource->name));
  262. unlock:
  263. mutex_unlock(&resource->resource_lock);
  264. return result;
  265. }
  266. static int acpi_power_off_list(struct list_head *list)
  267. {
  268. struct acpi_power_resource_entry *entry;
  269. int result = 0;
  270. list_for_each_entry_reverse(entry, list, node) {
  271. result = acpi_power_off(entry->resource);
  272. if (result)
  273. goto err;
  274. }
  275. return 0;
  276. err:
  277. list_for_each_entry_continue(entry, list, node)
  278. acpi_power_on(entry->resource);
  279. return result;
  280. }
  281. static int acpi_power_on_list(struct list_head *list)
  282. {
  283. struct acpi_power_resource_entry *entry;
  284. int result = 0;
  285. list_for_each_entry(entry, list, node) {
  286. result = acpi_power_on(entry->resource);
  287. if (result)
  288. goto err;
  289. }
  290. return 0;
  291. err:
  292. list_for_each_entry_continue_reverse(entry, list, node)
  293. acpi_power_off(entry->resource);
  294. return result;
  295. }
  296. static void acpi_power_add_dependent(struct acpi_power_resource *resource,
  297. struct acpi_device *adev)
  298. {
  299. struct acpi_power_dependent_device *dep;
  300. mutex_lock(&resource->resource_lock);
  301. list_for_each_entry(dep, &resource->dependent, node)
  302. if (dep->adev == adev)
  303. goto out;
  304. dep = kzalloc(sizeof(*dep), GFP_KERNEL);
  305. if (!dep)
  306. goto out;
  307. dep->adev = adev;
  308. INIT_WORK(&dep->work, acpi_power_resume_dependent);
  309. list_add_tail(&dep->node, &resource->dependent);
  310. out:
  311. mutex_unlock(&resource->resource_lock);
  312. }
  313. static void acpi_power_remove_dependent(struct acpi_power_resource *resource,
  314. struct acpi_device *adev)
  315. {
  316. struct acpi_power_dependent_device *dep;
  317. struct work_struct *work = NULL;
  318. mutex_lock(&resource->resource_lock);
  319. list_for_each_entry(dep, &resource->dependent, node)
  320. if (dep->adev == adev) {
  321. list_del(&dep->node);
  322. work = &dep->work;
  323. break;
  324. }
  325. mutex_unlock(&resource->resource_lock);
  326. if (work) {
  327. cancel_work_sync(work);
  328. kfree(dep);
  329. }
  330. }
  331. void acpi_power_add_remove_device(struct acpi_device *adev, bool add)
  332. {
  333. if (adev->power.flags.power_resources) {
  334. struct acpi_device_power_state *ps;
  335. struct acpi_power_resource_entry *entry;
  336. ps = &adev->power.states[ACPI_STATE_D0];
  337. list_for_each_entry(entry, &ps->resources, node) {
  338. struct acpi_power_resource *resource = entry->resource;
  339. if (add)
  340. acpi_power_add_dependent(resource, adev);
  341. else
  342. acpi_power_remove_dependent(resource, adev);
  343. }
  344. }
  345. }
  346. int acpi_power_min_system_level(struct list_head *list)
  347. {
  348. struct acpi_power_resource_entry *entry;
  349. int system_level = 5;
  350. list_for_each_entry(entry, list, node) {
  351. struct acpi_power_resource *resource = entry->resource;
  352. if (system_level > resource->system_level)
  353. system_level = resource->system_level;
  354. }
  355. return system_level;
  356. }
  357. /* --------------------------------------------------------------------------
  358. Device Power Management
  359. -------------------------------------------------------------------------- */
  360. /**
  361. * acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in
  362. * ACPI 3.0) _PSW (Power State Wake)
  363. * @dev: Device to handle.
  364. * @enable: 0 - disable, 1 - enable the wake capabilities of the device.
  365. * @sleep_state: Target sleep state of the system.
  366. * @dev_state: Target power state of the device.
  367. *
  368. * Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
  369. * State Wake) for the device, if present. On failure reset the device's
  370. * wakeup.flags.valid flag.
  371. *
  372. * RETURN VALUE:
  373. * 0 if either _DSW or _PSW has been successfully executed
  374. * 0 if neither _DSW nor _PSW has been found
  375. * -ENODEV if the execution of either _DSW or _PSW has failed
  376. */
  377. int acpi_device_sleep_wake(struct acpi_device *dev,
  378. int enable, int sleep_state, int dev_state)
  379. {
  380. union acpi_object in_arg[3];
  381. struct acpi_object_list arg_list = { 3, in_arg };
  382. acpi_status status = AE_OK;
  383. /*
  384. * Try to execute _DSW first.
  385. *
  386. * Three agruments are needed for the _DSW object:
  387. * Argument 0: enable/disable the wake capabilities
  388. * Argument 1: target system state
  389. * Argument 2: target device state
  390. * When _DSW object is called to disable the wake capabilities, maybe
  391. * the first argument is filled. The values of the other two agruments
  392. * are meaningless.
  393. */
  394. in_arg[0].type = ACPI_TYPE_INTEGER;
  395. in_arg[0].integer.value = enable;
  396. in_arg[1].type = ACPI_TYPE_INTEGER;
  397. in_arg[1].integer.value = sleep_state;
  398. in_arg[2].type = ACPI_TYPE_INTEGER;
  399. in_arg[2].integer.value = dev_state;
  400. status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL);
  401. if (ACPI_SUCCESS(status)) {
  402. return 0;
  403. } else if (status != AE_NOT_FOUND) {
  404. printk(KERN_ERR PREFIX "_DSW execution failed\n");
  405. dev->wakeup.flags.valid = 0;
  406. return -ENODEV;
  407. }
  408. /* Execute _PSW */
  409. arg_list.count = 1;
  410. in_arg[0].integer.value = enable;
  411. status = acpi_evaluate_object(dev->handle, "_PSW", &arg_list, NULL);
  412. if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) {
  413. printk(KERN_ERR PREFIX "_PSW execution failed\n");
  414. dev->wakeup.flags.valid = 0;
  415. return -ENODEV;
  416. }
  417. return 0;
  418. }
  419. /*
  420. * Prepare a wakeup device, two steps (Ref ACPI 2.0:P229):
  421. * 1. Power on the power resources required for the wakeup device
  422. * 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
  423. * State Wake) for the device, if present
  424. */
  425. int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state)
  426. {
  427. int err = 0;
  428. if (!dev || !dev->wakeup.flags.valid)
  429. return -EINVAL;
  430. mutex_lock(&acpi_device_lock);
  431. if (dev->wakeup.prepare_count++)
  432. goto out;
  433. err = acpi_power_on_list(&dev->wakeup.resources);
  434. if (err) {
  435. dev_err(&dev->dev, "Cannot turn wakeup power resources on\n");
  436. dev->wakeup.flags.valid = 0;
  437. } else {
  438. /*
  439. * Passing 3 as the third argument below means the device may be
  440. * put into arbitrary power state afterward.
  441. */
  442. err = acpi_device_sleep_wake(dev, 1, sleep_state, 3);
  443. }
  444. if (err)
  445. dev->wakeup.prepare_count = 0;
  446. out:
  447. mutex_unlock(&acpi_device_lock);
  448. return err;
  449. }
  450. /*
  451. * Shutdown a wakeup device, counterpart of above method
  452. * 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
  453. * State Wake) for the device, if present
  454. * 2. Shutdown down the power resources
  455. */
  456. int acpi_disable_wakeup_device_power(struct acpi_device *dev)
  457. {
  458. int err = 0;
  459. if (!dev || !dev->wakeup.flags.valid)
  460. return -EINVAL;
  461. mutex_lock(&acpi_device_lock);
  462. if (--dev->wakeup.prepare_count > 0)
  463. goto out;
  464. /*
  465. * Executing the code below even if prepare_count is already zero when
  466. * the function is called may be useful, for example for initialisation.
  467. */
  468. if (dev->wakeup.prepare_count < 0)
  469. dev->wakeup.prepare_count = 0;
  470. err = acpi_device_sleep_wake(dev, 0, 0, 0);
  471. if (err)
  472. goto out;
  473. err = acpi_power_off_list(&dev->wakeup.resources);
  474. if (err) {
  475. dev_err(&dev->dev, "Cannot turn wakeup power resources off\n");
  476. dev->wakeup.flags.valid = 0;
  477. }
  478. out:
  479. mutex_unlock(&acpi_device_lock);
  480. return err;
  481. }
  482. int acpi_power_get_inferred_state(struct acpi_device *device, int *state)
  483. {
  484. int result = 0;
  485. int list_state = 0;
  486. int i = 0;
  487. if (!device || !state)
  488. return -EINVAL;
  489. /*
  490. * We know a device's inferred power state when all the resources
  491. * required for a given D-state are 'on'.
  492. */
  493. for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
  494. struct list_head *list = &device->power.states[i].resources;
  495. if (list_empty(list))
  496. continue;
  497. result = acpi_power_get_list_state(list, &list_state);
  498. if (result)
  499. return result;
  500. if (list_state == ACPI_POWER_RESOURCE_STATE_ON) {
  501. *state = i;
  502. return 0;
  503. }
  504. }
  505. *state = ACPI_STATE_D3;
  506. return 0;
  507. }
  508. int acpi_power_on_resources(struct acpi_device *device, int state)
  509. {
  510. if (!device || state < ACPI_STATE_D0 || state > ACPI_STATE_D3_COLD)
  511. return -EINVAL;
  512. if (state == ACPI_STATE_D3_COLD)
  513. return 0;
  514. return acpi_power_on_list(&device->power.states[state].resources);
  515. }
  516. int acpi_power_transition(struct acpi_device *device, int state)
  517. {
  518. int result = 0;
  519. if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
  520. return -EINVAL;
  521. if (device->power.state == state || !device->flags.power_manageable)
  522. return 0;
  523. if ((device->power.state < ACPI_STATE_D0)
  524. || (device->power.state > ACPI_STATE_D3_COLD))
  525. return -ENODEV;
  526. /* TBD: Resources must be ordered. */
  527. /*
  528. * First we reference all power resources required in the target list
  529. * (e.g. so the device doesn't lose power while transitioning). Then,
  530. * we dereference all power resources used in the current list.
  531. */
  532. if (state < ACPI_STATE_D3_COLD)
  533. result = acpi_power_on_list(
  534. &device->power.states[state].resources);
  535. if (!result && device->power.state < ACPI_STATE_D3_COLD)
  536. acpi_power_off_list(
  537. &device->power.states[device->power.state].resources);
  538. /* We shouldn't change the state unless the above operations succeed. */
  539. device->power.state = result ? ACPI_STATE_UNKNOWN : state;
  540. return result;
  541. }
  542. static void acpi_release_power_resource(struct device *dev)
  543. {
  544. struct acpi_device *device = to_acpi_device(dev);
  545. struct acpi_power_resource *resource;
  546. resource = container_of(device, struct acpi_power_resource, device);
  547. mutex_lock(&power_resource_list_lock);
  548. list_del(&resource->list_node);
  549. mutex_unlock(&power_resource_list_lock);
  550. acpi_free_ids(device);
  551. kfree(resource);
  552. }
  553. int acpi_add_power_resource(acpi_handle handle)
  554. {
  555. struct acpi_power_resource *resource;
  556. struct acpi_device *device = NULL;
  557. union acpi_object acpi_object;
  558. struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object };
  559. acpi_status status;
  560. int state, result = -ENODEV;
  561. acpi_bus_get_device(handle, &device);
  562. if (device)
  563. return 0;
  564. resource = kzalloc(sizeof(*resource), GFP_KERNEL);
  565. if (!resource)
  566. return -ENOMEM;
  567. device = &resource->device;
  568. acpi_init_device_object(device, handle, ACPI_BUS_TYPE_POWER,
  569. ACPI_STA_DEFAULT);
  570. mutex_init(&resource->resource_lock);
  571. INIT_LIST_HEAD(&resource->dependent);
  572. resource->name = device->pnp.bus_id;
  573. strcpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME);
  574. strcpy(acpi_device_class(device), ACPI_POWER_CLASS);
  575. device->power.state = ACPI_STATE_UNKNOWN;
  576. /* Evalute the object to get the system level and resource order. */
  577. status = acpi_evaluate_object(handle, NULL, NULL, &buffer);
  578. if (ACPI_FAILURE(status))
  579. goto err;
  580. resource->system_level = acpi_object.power_resource.system_level;
  581. resource->order = acpi_object.power_resource.resource_order;
  582. result = acpi_power_get_state(handle, &state);
  583. if (result)
  584. goto err;
  585. printk(KERN_INFO PREFIX "%s [%s] (%s)\n", acpi_device_name(device),
  586. acpi_device_bid(device), state ? "on" : "off");
  587. device->flags.match_driver = true;
  588. result = acpi_device_register(device, acpi_release_power_resource);
  589. if (result)
  590. goto err;
  591. mutex_lock(&power_resource_list_lock);
  592. list_add(&resource->list_node, &acpi_power_resource_list);
  593. mutex_unlock(&power_resource_list_lock);
  594. return 0;
  595. err:
  596. acpi_release_power_resource(&device->dev);
  597. return result;
  598. }
  599. #ifdef CONFIG_ACPI_SLEEP
  600. void acpi_resume_power_resources(void)
  601. {
  602. struct acpi_power_resource *resource;
  603. mutex_lock(&power_resource_list_lock);
  604. list_for_each_entry(resource, &acpi_power_resource_list, list_node) {
  605. int result, state;
  606. mutex_lock(&resource->resource_lock);
  607. result = acpi_power_get_state(resource->device.handle, &state);
  608. if (!result && state == ACPI_POWER_RESOURCE_STATE_OFF
  609. && resource->ref_count) {
  610. dev_info(&resource->device.dev, "Turning ON\n");
  611. __acpi_power_on(resource);
  612. }
  613. mutex_unlock(&resource->resource_lock);
  614. }
  615. mutex_unlock(&power_resource_list_lock);
  616. }
  617. #endif