pid.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591
  1. /*
  2. * Generic pidhash and scalable, time-bounded PID allocator
  3. *
  4. * (C) 2002-2003 Nadia Yvette Chambers, IBM
  5. * (C) 2004 Nadia Yvette Chambers, Oracle
  6. * (C) 2002-2004 Ingo Molnar, Red Hat
  7. *
  8. * pid-structures are backing objects for tasks sharing a given ID to chain
  9. * against. There is very little to them aside from hashing them and
  10. * parking tasks using given ID's on a list.
  11. *
  12. * The hash is always changed with the tasklist_lock write-acquired,
  13. * and the hash is only accessed with the tasklist_lock at least
  14. * read-acquired, so there's no additional SMP locking needed here.
  15. *
  16. * We have a list of bitmap pages, which bitmaps represent the PID space.
  17. * Allocating and freeing PIDs is completely lockless. The worst-case
  18. * allocation scenario when all but one out of 1 million PIDs possible are
  19. * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
  20. * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
  21. *
  22. * Pid namespaces:
  23. * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
  24. * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
  25. * Many thanks to Oleg Nesterov for comments and help
  26. *
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/export.h>
  30. #include <linux/slab.h>
  31. #include <linux/init.h>
  32. #include <linux/rculist.h>
  33. #include <linux/bootmem.h>
  34. #include <linux/hash.h>
  35. #include <linux/pid_namespace.h>
  36. #include <linux/init_task.h>
  37. #include <linux/syscalls.h>
  38. #include <linux/proc_fs.h>
  39. #define pid_hashfn(nr, ns) \
  40. hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
  41. static struct hlist_head *pid_hash;
  42. static unsigned int pidhash_shift = 4;
  43. struct pid init_struct_pid = INIT_STRUCT_PID;
  44. int pid_max = PID_MAX_DEFAULT;
  45. #define RESERVED_PIDS 300
  46. int pid_max_min = RESERVED_PIDS + 1;
  47. int pid_max_max = PID_MAX_LIMIT;
  48. #define BITS_PER_PAGE (PAGE_SIZE*8)
  49. #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
  50. static inline int mk_pid(struct pid_namespace *pid_ns,
  51. struct pidmap *map, int off)
  52. {
  53. return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
  54. }
  55. #define find_next_offset(map, off) \
  56. find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
  57. /*
  58. * PID-map pages start out as NULL, they get allocated upon
  59. * first use and are never deallocated. This way a low pid_max
  60. * value does not cause lots of bitmaps to be allocated, but
  61. * the scheme scales to up to 4 million PIDs, runtime.
  62. */
  63. struct pid_namespace init_pid_ns = {
  64. .kref = {
  65. .refcount = ATOMIC_INIT(2),
  66. },
  67. .pidmap = {
  68. [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
  69. },
  70. .last_pid = 0,
  71. .level = 0,
  72. .child_reaper = &init_task,
  73. .user_ns = &init_user_ns,
  74. .proc_inum = PROC_PID_INIT_INO,
  75. };
  76. EXPORT_SYMBOL_GPL(init_pid_ns);
  77. /*
  78. * Note: disable interrupts while the pidmap_lock is held as an
  79. * interrupt might come in and do read_lock(&tasklist_lock).
  80. *
  81. * If we don't disable interrupts there is a nasty deadlock between
  82. * detach_pid()->free_pid() and another cpu that does
  83. * spin_lock(&pidmap_lock) followed by an interrupt routine that does
  84. * read_lock(&tasklist_lock);
  85. *
  86. * After we clean up the tasklist_lock and know there are no
  87. * irq handlers that take it we can leave the interrupts enabled.
  88. * For now it is easier to be safe than to prove it can't happen.
  89. */
  90. static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
  91. static void free_pidmap(struct upid *upid)
  92. {
  93. int nr = upid->nr;
  94. struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
  95. int offset = nr & BITS_PER_PAGE_MASK;
  96. clear_bit(offset, map->page);
  97. atomic_inc(&map->nr_free);
  98. }
  99. /*
  100. * If we started walking pids at 'base', is 'a' seen before 'b'?
  101. */
  102. static int pid_before(int base, int a, int b)
  103. {
  104. /*
  105. * This is the same as saying
  106. *
  107. * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
  108. * and that mapping orders 'a' and 'b' with respect to 'base'.
  109. */
  110. return (unsigned)(a - base) < (unsigned)(b - base);
  111. }
  112. /*
  113. * We might be racing with someone else trying to set pid_ns->last_pid
  114. * at the pid allocation time (there's also a sysctl for this, but racing
  115. * with this one is OK, see comment in kernel/pid_namespace.c about it).
  116. * We want the winner to have the "later" value, because if the
  117. * "earlier" value prevails, then a pid may get reused immediately.
  118. *
  119. * Since pids rollover, it is not sufficient to just pick the bigger
  120. * value. We have to consider where we started counting from.
  121. *
  122. * 'base' is the value of pid_ns->last_pid that we observed when
  123. * we started looking for a pid.
  124. *
  125. * 'pid' is the pid that we eventually found.
  126. */
  127. static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
  128. {
  129. int prev;
  130. int last_write = base;
  131. do {
  132. prev = last_write;
  133. last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
  134. } while ((prev != last_write) && (pid_before(base, last_write, pid)));
  135. }
  136. static int alloc_pidmap(struct pid_namespace *pid_ns)
  137. {
  138. int i, offset, max_scan, pid, last = pid_ns->last_pid;
  139. struct pidmap *map;
  140. pid = last + 1;
  141. if (pid >= pid_max)
  142. pid = RESERVED_PIDS;
  143. offset = pid & BITS_PER_PAGE_MASK;
  144. map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
  145. /*
  146. * If last_pid points into the middle of the map->page we
  147. * want to scan this bitmap block twice, the second time
  148. * we start with offset == 0 (or RESERVED_PIDS).
  149. */
  150. max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
  151. for (i = 0; i <= max_scan; ++i) {
  152. if (unlikely(!map->page)) {
  153. void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  154. /*
  155. * Free the page if someone raced with us
  156. * installing it:
  157. */
  158. spin_lock_irq(&pidmap_lock);
  159. if (!map->page) {
  160. map->page = page;
  161. page = NULL;
  162. }
  163. spin_unlock_irq(&pidmap_lock);
  164. kfree(page);
  165. if (unlikely(!map->page))
  166. break;
  167. }
  168. if (likely(atomic_read(&map->nr_free))) {
  169. do {
  170. if (!test_and_set_bit(offset, map->page)) {
  171. atomic_dec(&map->nr_free);
  172. set_last_pid(pid_ns, last, pid);
  173. return pid;
  174. }
  175. offset = find_next_offset(map, offset);
  176. pid = mk_pid(pid_ns, map, offset);
  177. } while (offset < BITS_PER_PAGE && pid < pid_max);
  178. }
  179. if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
  180. ++map;
  181. offset = 0;
  182. } else {
  183. map = &pid_ns->pidmap[0];
  184. offset = RESERVED_PIDS;
  185. if (unlikely(last == offset))
  186. break;
  187. }
  188. pid = mk_pid(pid_ns, map, offset);
  189. }
  190. return -1;
  191. }
  192. int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
  193. {
  194. int offset;
  195. struct pidmap *map, *end;
  196. if (last >= PID_MAX_LIMIT)
  197. return -1;
  198. offset = (last + 1) & BITS_PER_PAGE_MASK;
  199. map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
  200. end = &pid_ns->pidmap[PIDMAP_ENTRIES];
  201. for (; map < end; map++, offset = 0) {
  202. if (unlikely(!map->page))
  203. continue;
  204. offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
  205. if (offset < BITS_PER_PAGE)
  206. return mk_pid(pid_ns, map, offset);
  207. }
  208. return -1;
  209. }
  210. void put_pid(struct pid *pid)
  211. {
  212. struct pid_namespace *ns;
  213. if (!pid)
  214. return;
  215. ns = pid->numbers[pid->level].ns;
  216. if ((atomic_read(&pid->count) == 1) ||
  217. atomic_dec_and_test(&pid->count)) {
  218. kmem_cache_free(ns->pid_cachep, pid);
  219. put_pid_ns(ns);
  220. }
  221. }
  222. EXPORT_SYMBOL_GPL(put_pid);
  223. static void delayed_put_pid(struct rcu_head *rhp)
  224. {
  225. struct pid *pid = container_of(rhp, struct pid, rcu);
  226. put_pid(pid);
  227. }
  228. void free_pid(struct pid *pid)
  229. {
  230. /* We can be called with write_lock_irq(&tasklist_lock) held */
  231. int i;
  232. unsigned long flags;
  233. spin_lock_irqsave(&pidmap_lock, flags);
  234. for (i = 0; i <= pid->level; i++) {
  235. struct upid *upid = pid->numbers + i;
  236. struct pid_namespace *ns = upid->ns;
  237. hlist_del_rcu(&upid->pid_chain);
  238. switch(--ns->nr_hashed) {
  239. case 1:
  240. /* When all that is left in the pid namespace
  241. * is the reaper wake up the reaper. The reaper
  242. * may be sleeping in zap_pid_ns_processes().
  243. */
  244. wake_up_process(ns->child_reaper);
  245. break;
  246. case 0:
  247. ns->nr_hashed = -1;
  248. schedule_work(&ns->proc_work);
  249. break;
  250. }
  251. }
  252. spin_unlock_irqrestore(&pidmap_lock, flags);
  253. for (i = 0; i <= pid->level; i++)
  254. free_pidmap(pid->numbers + i);
  255. call_rcu(&pid->rcu, delayed_put_pid);
  256. }
  257. struct pid *alloc_pid(struct pid_namespace *ns)
  258. {
  259. struct pid *pid;
  260. enum pid_type type;
  261. int i, nr;
  262. struct pid_namespace *tmp;
  263. struct upid *upid;
  264. pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
  265. if (!pid)
  266. goto out;
  267. tmp = ns;
  268. pid->level = ns->level;
  269. for (i = ns->level; i >= 0; i--) {
  270. nr = alloc_pidmap(tmp);
  271. if (nr < 0)
  272. goto out_free;
  273. pid->numbers[i].nr = nr;
  274. pid->numbers[i].ns = tmp;
  275. tmp = tmp->parent;
  276. }
  277. if (unlikely(is_child_reaper(pid))) {
  278. if (pid_ns_prepare_proc(ns))
  279. goto out_free;
  280. }
  281. get_pid_ns(ns);
  282. atomic_set(&pid->count, 1);
  283. for (type = 0; type < PIDTYPE_MAX; ++type)
  284. INIT_HLIST_HEAD(&pid->tasks[type]);
  285. upid = pid->numbers + ns->level;
  286. spin_lock_irq(&pidmap_lock);
  287. if (ns->nr_hashed < 0)
  288. goto out_unlock;
  289. for ( ; upid >= pid->numbers; --upid) {
  290. hlist_add_head_rcu(&upid->pid_chain,
  291. &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
  292. upid->ns->nr_hashed++;
  293. }
  294. spin_unlock_irq(&pidmap_lock);
  295. out:
  296. return pid;
  297. out_unlock:
  298. spin_unlock(&pidmap_lock);
  299. out_free:
  300. while (++i <= ns->level)
  301. free_pidmap(pid->numbers + i);
  302. kmem_cache_free(ns->pid_cachep, pid);
  303. pid = NULL;
  304. goto out;
  305. }
  306. struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
  307. {
  308. struct hlist_node *elem;
  309. struct upid *pnr;
  310. hlist_for_each_entry_rcu(pnr, elem,
  311. &pid_hash[pid_hashfn(nr, ns)], pid_chain)
  312. if (pnr->nr == nr && pnr->ns == ns)
  313. return container_of(pnr, struct pid,
  314. numbers[ns->level]);
  315. return NULL;
  316. }
  317. EXPORT_SYMBOL_GPL(find_pid_ns);
  318. struct pid *find_vpid(int nr)
  319. {
  320. return find_pid_ns(nr, task_active_pid_ns(current));
  321. }
  322. EXPORT_SYMBOL_GPL(find_vpid);
  323. /*
  324. * attach_pid() must be called with the tasklist_lock write-held.
  325. */
  326. void attach_pid(struct task_struct *task, enum pid_type type,
  327. struct pid *pid)
  328. {
  329. struct pid_link *link;
  330. link = &task->pids[type];
  331. link->pid = pid;
  332. hlist_add_head_rcu(&link->node, &pid->tasks[type]);
  333. }
  334. static void __change_pid(struct task_struct *task, enum pid_type type,
  335. struct pid *new)
  336. {
  337. struct pid_link *link;
  338. struct pid *pid;
  339. int tmp;
  340. link = &task->pids[type];
  341. pid = link->pid;
  342. hlist_del_rcu(&link->node);
  343. link->pid = new;
  344. for (tmp = PIDTYPE_MAX; --tmp >= 0; )
  345. if (!hlist_empty(&pid->tasks[tmp]))
  346. return;
  347. free_pid(pid);
  348. }
  349. void detach_pid(struct task_struct *task, enum pid_type type)
  350. {
  351. __change_pid(task, type, NULL);
  352. }
  353. void change_pid(struct task_struct *task, enum pid_type type,
  354. struct pid *pid)
  355. {
  356. __change_pid(task, type, pid);
  357. attach_pid(task, type, pid);
  358. }
  359. /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
  360. void transfer_pid(struct task_struct *old, struct task_struct *new,
  361. enum pid_type type)
  362. {
  363. new->pids[type].pid = old->pids[type].pid;
  364. hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
  365. }
  366. struct task_struct *pid_task(struct pid *pid, enum pid_type type)
  367. {
  368. struct task_struct *result = NULL;
  369. if (pid) {
  370. struct hlist_node *first;
  371. first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
  372. lockdep_tasklist_lock_is_held());
  373. if (first)
  374. result = hlist_entry(first, struct task_struct, pids[(type)].node);
  375. }
  376. return result;
  377. }
  378. EXPORT_SYMBOL(pid_task);
  379. /*
  380. * Must be called under rcu_read_lock().
  381. */
  382. struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
  383. {
  384. rcu_lockdep_assert(rcu_read_lock_held(),
  385. "find_task_by_pid_ns() needs rcu_read_lock()"
  386. " protection");
  387. return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
  388. }
  389. struct task_struct *find_task_by_vpid(pid_t vnr)
  390. {
  391. return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
  392. }
  393. struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
  394. {
  395. struct pid *pid;
  396. rcu_read_lock();
  397. if (type != PIDTYPE_PID)
  398. task = task->group_leader;
  399. pid = get_pid(task->pids[type].pid);
  400. rcu_read_unlock();
  401. return pid;
  402. }
  403. EXPORT_SYMBOL_GPL(get_task_pid);
  404. struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
  405. {
  406. struct task_struct *result;
  407. rcu_read_lock();
  408. result = pid_task(pid, type);
  409. if (result)
  410. get_task_struct(result);
  411. rcu_read_unlock();
  412. return result;
  413. }
  414. EXPORT_SYMBOL_GPL(get_pid_task);
  415. struct pid *find_get_pid(pid_t nr)
  416. {
  417. struct pid *pid;
  418. rcu_read_lock();
  419. pid = get_pid(find_vpid(nr));
  420. rcu_read_unlock();
  421. return pid;
  422. }
  423. EXPORT_SYMBOL_GPL(find_get_pid);
  424. pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
  425. {
  426. struct upid *upid;
  427. pid_t nr = 0;
  428. if (pid && ns->level <= pid->level) {
  429. upid = &pid->numbers[ns->level];
  430. if (upid->ns == ns)
  431. nr = upid->nr;
  432. }
  433. return nr;
  434. }
  435. EXPORT_SYMBOL_GPL(pid_nr_ns);
  436. pid_t pid_vnr(struct pid *pid)
  437. {
  438. return pid_nr_ns(pid, task_active_pid_ns(current));
  439. }
  440. EXPORT_SYMBOL_GPL(pid_vnr);
  441. pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
  442. struct pid_namespace *ns)
  443. {
  444. pid_t nr = 0;
  445. rcu_read_lock();
  446. if (!ns)
  447. ns = task_active_pid_ns(current);
  448. if (likely(pid_alive(task))) {
  449. if (type != PIDTYPE_PID)
  450. task = task->group_leader;
  451. nr = pid_nr_ns(task->pids[type].pid, ns);
  452. }
  453. rcu_read_unlock();
  454. return nr;
  455. }
  456. EXPORT_SYMBOL(__task_pid_nr_ns);
  457. pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
  458. {
  459. return pid_nr_ns(task_tgid(tsk), ns);
  460. }
  461. EXPORT_SYMBOL(task_tgid_nr_ns);
  462. struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
  463. {
  464. return ns_of_pid(task_pid(tsk));
  465. }
  466. EXPORT_SYMBOL_GPL(task_active_pid_ns);
  467. /*
  468. * Used by proc to find the first pid that is greater than or equal to nr.
  469. *
  470. * If there is a pid at nr this function is exactly the same as find_pid_ns.
  471. */
  472. struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
  473. {
  474. struct pid *pid;
  475. do {
  476. pid = find_pid_ns(nr, ns);
  477. if (pid)
  478. break;
  479. nr = next_pidmap(ns, nr);
  480. } while (nr > 0);
  481. return pid;
  482. }
  483. /*
  484. * The pid hash table is scaled according to the amount of memory in the
  485. * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
  486. * more.
  487. */
  488. void __init pidhash_init(void)
  489. {
  490. unsigned int i, pidhash_size;
  491. pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
  492. HASH_EARLY | HASH_SMALL,
  493. &pidhash_shift, NULL,
  494. 0, 4096);
  495. pidhash_size = 1U << pidhash_shift;
  496. for (i = 0; i < pidhash_size; i++)
  497. INIT_HLIST_HEAD(&pid_hash[i]);
  498. }
  499. void __init pidmap_init(void)
  500. {
  501. /* bump default and minimum pid_max based on number of cpus */
  502. pid_max = min(pid_max_max, max_t(int, pid_max,
  503. PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
  504. pid_max_min = max_t(int, pid_max_min,
  505. PIDS_PER_CPU_MIN * num_possible_cpus());
  506. pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
  507. init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  508. /* Reserve PID 0. We never call free_pidmap(0) */
  509. set_bit(0, init_pid_ns.pidmap[0].page);
  510. atomic_dec(&init_pid_ns.pidmap[0].nr_free);
  511. init_pid_ns.nr_hashed = 1;
  512. init_pid_ns.pid_cachep = KMEM_CACHE(pid,
  513. SLAB_HWCACHE_ALIGN | SLAB_PANIC);
  514. }