file.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636
  1. /*
  2. * fs/f2fs/file.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/stat.h>
  14. #include <linux/buffer_head.h>
  15. #include <linux/writeback.h>
  16. #include <linux/falloc.h>
  17. #include <linux/types.h>
  18. #include <linux/uaccess.h>
  19. #include <linux/mount.h>
  20. #include "f2fs.h"
  21. #include "node.h"
  22. #include "segment.h"
  23. #include "xattr.h"
  24. #include "acl.h"
  25. static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
  26. struct vm_fault *vmf)
  27. {
  28. struct page *page = vmf->page;
  29. struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
  30. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  31. block_t old_blk_addr;
  32. struct dnode_of_data dn;
  33. int err;
  34. f2fs_balance_fs(sbi);
  35. sb_start_pagefault(inode->i_sb);
  36. mutex_lock_op(sbi, DATA_NEW);
  37. /* block allocation */
  38. set_new_dnode(&dn, inode, NULL, NULL, 0);
  39. err = get_dnode_of_data(&dn, page->index, 0);
  40. if (err) {
  41. mutex_unlock_op(sbi, DATA_NEW);
  42. goto out;
  43. }
  44. old_blk_addr = dn.data_blkaddr;
  45. if (old_blk_addr == NULL_ADDR) {
  46. err = reserve_new_block(&dn);
  47. if (err) {
  48. f2fs_put_dnode(&dn);
  49. mutex_unlock_op(sbi, DATA_NEW);
  50. goto out;
  51. }
  52. }
  53. f2fs_put_dnode(&dn);
  54. mutex_unlock_op(sbi, DATA_NEW);
  55. lock_page(page);
  56. if (page->mapping != inode->i_mapping ||
  57. page_offset(page) >= i_size_read(inode) ||
  58. !PageUptodate(page)) {
  59. unlock_page(page);
  60. err = -EFAULT;
  61. goto out;
  62. }
  63. /*
  64. * check to see if the page is mapped already (no holes)
  65. */
  66. if (PageMappedToDisk(page))
  67. goto out;
  68. /* fill the page */
  69. wait_on_page_writeback(page);
  70. /* page is wholly or partially inside EOF */
  71. if (((page->index + 1) << PAGE_CACHE_SHIFT) > i_size_read(inode)) {
  72. unsigned offset;
  73. offset = i_size_read(inode) & ~PAGE_CACHE_MASK;
  74. zero_user_segment(page, offset, PAGE_CACHE_SIZE);
  75. }
  76. set_page_dirty(page);
  77. SetPageUptodate(page);
  78. file_update_time(vma->vm_file);
  79. out:
  80. sb_end_pagefault(inode->i_sb);
  81. return block_page_mkwrite_return(err);
  82. }
  83. static const struct vm_operations_struct f2fs_file_vm_ops = {
  84. .fault = filemap_fault,
  85. .page_mkwrite = f2fs_vm_page_mkwrite,
  86. };
  87. static int need_to_sync_dir(struct f2fs_sb_info *sbi, struct inode *inode)
  88. {
  89. struct dentry *dentry;
  90. nid_t pino;
  91. inode = igrab(inode);
  92. dentry = d_find_any_alias(inode);
  93. if (!dentry) {
  94. iput(inode);
  95. return 0;
  96. }
  97. pino = dentry->d_parent->d_inode->i_ino;
  98. dput(dentry);
  99. iput(inode);
  100. return !is_checkpointed_node(sbi, pino);
  101. }
  102. int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  103. {
  104. struct inode *inode = file->f_mapping->host;
  105. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  106. unsigned long long cur_version;
  107. int ret = 0;
  108. bool need_cp = false;
  109. struct writeback_control wbc = {
  110. .sync_mode = WB_SYNC_ALL,
  111. .nr_to_write = LONG_MAX,
  112. .for_reclaim = 0,
  113. };
  114. if (inode->i_sb->s_flags & MS_RDONLY)
  115. return 0;
  116. ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
  117. if (ret)
  118. return ret;
  119. mutex_lock(&inode->i_mutex);
  120. if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
  121. goto out;
  122. mutex_lock(&sbi->cp_mutex);
  123. cur_version = le64_to_cpu(F2FS_CKPT(sbi)->checkpoint_ver);
  124. mutex_unlock(&sbi->cp_mutex);
  125. if (F2FS_I(inode)->data_version != cur_version &&
  126. !(inode->i_state & I_DIRTY))
  127. goto out;
  128. F2FS_I(inode)->data_version--;
  129. if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
  130. need_cp = true;
  131. if (is_inode_flag_set(F2FS_I(inode), FI_NEED_CP))
  132. need_cp = true;
  133. if (!space_for_roll_forward(sbi))
  134. need_cp = true;
  135. if (need_to_sync_dir(sbi, inode))
  136. need_cp = true;
  137. f2fs_write_inode(inode, NULL);
  138. if (need_cp) {
  139. /* all the dirty node pages should be flushed for POR */
  140. ret = f2fs_sync_fs(inode->i_sb, 1);
  141. clear_inode_flag(F2FS_I(inode), FI_NEED_CP);
  142. } else {
  143. while (sync_node_pages(sbi, inode->i_ino, &wbc) == 0)
  144. f2fs_write_inode(inode, NULL);
  145. filemap_fdatawait_range(sbi->node_inode->i_mapping,
  146. 0, LONG_MAX);
  147. }
  148. out:
  149. mutex_unlock(&inode->i_mutex);
  150. return ret;
  151. }
  152. static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
  153. {
  154. file_accessed(file);
  155. vma->vm_ops = &f2fs_file_vm_ops;
  156. return 0;
  157. }
  158. static int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
  159. {
  160. int nr_free = 0, ofs = dn->ofs_in_node;
  161. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  162. struct f2fs_node *raw_node;
  163. __le32 *addr;
  164. raw_node = page_address(dn->node_page);
  165. addr = blkaddr_in_node(raw_node) + ofs;
  166. for ( ; count > 0; count--, addr++, dn->ofs_in_node++) {
  167. block_t blkaddr = le32_to_cpu(*addr);
  168. if (blkaddr == NULL_ADDR)
  169. continue;
  170. update_extent_cache(NULL_ADDR, dn);
  171. invalidate_blocks(sbi, blkaddr);
  172. dec_valid_block_count(sbi, dn->inode, 1);
  173. nr_free++;
  174. }
  175. if (nr_free) {
  176. set_page_dirty(dn->node_page);
  177. sync_inode_page(dn);
  178. }
  179. dn->ofs_in_node = ofs;
  180. return nr_free;
  181. }
  182. void truncate_data_blocks(struct dnode_of_data *dn)
  183. {
  184. truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
  185. }
  186. static void truncate_partial_data_page(struct inode *inode, u64 from)
  187. {
  188. unsigned offset = from & (PAGE_CACHE_SIZE - 1);
  189. struct page *page;
  190. if (!offset)
  191. return;
  192. page = find_data_page(inode, from >> PAGE_CACHE_SHIFT);
  193. if (IS_ERR(page))
  194. return;
  195. lock_page(page);
  196. wait_on_page_writeback(page);
  197. zero_user(page, offset, PAGE_CACHE_SIZE - offset);
  198. set_page_dirty(page);
  199. f2fs_put_page(page, 1);
  200. }
  201. static int truncate_blocks(struct inode *inode, u64 from)
  202. {
  203. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  204. unsigned int blocksize = inode->i_sb->s_blocksize;
  205. struct dnode_of_data dn;
  206. pgoff_t free_from;
  207. int count = 0;
  208. int err;
  209. free_from = (pgoff_t)
  210. ((from + blocksize - 1) >> (sbi->log_blocksize));
  211. mutex_lock_op(sbi, DATA_TRUNC);
  212. set_new_dnode(&dn, inode, NULL, NULL, 0);
  213. err = get_dnode_of_data(&dn, free_from, RDONLY_NODE);
  214. if (err) {
  215. if (err == -ENOENT)
  216. goto free_next;
  217. mutex_unlock_op(sbi, DATA_TRUNC);
  218. return err;
  219. }
  220. if (IS_INODE(dn.node_page))
  221. count = ADDRS_PER_INODE;
  222. else
  223. count = ADDRS_PER_BLOCK;
  224. count -= dn.ofs_in_node;
  225. BUG_ON(count < 0);
  226. if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
  227. truncate_data_blocks_range(&dn, count);
  228. free_from += count;
  229. }
  230. f2fs_put_dnode(&dn);
  231. free_next:
  232. err = truncate_inode_blocks(inode, free_from);
  233. mutex_unlock_op(sbi, DATA_TRUNC);
  234. /* lastly zero out the first data page */
  235. truncate_partial_data_page(inode, from);
  236. return err;
  237. }
  238. void f2fs_truncate(struct inode *inode)
  239. {
  240. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  241. S_ISLNK(inode->i_mode)))
  242. return;
  243. if (!truncate_blocks(inode, i_size_read(inode))) {
  244. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  245. mark_inode_dirty(inode);
  246. }
  247. f2fs_balance_fs(F2FS_SB(inode->i_sb));
  248. }
  249. static int f2fs_getattr(struct vfsmount *mnt,
  250. struct dentry *dentry, struct kstat *stat)
  251. {
  252. struct inode *inode = dentry->d_inode;
  253. generic_fillattr(inode, stat);
  254. stat->blocks <<= 3;
  255. return 0;
  256. }
  257. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  258. static void __setattr_copy(struct inode *inode, const struct iattr *attr)
  259. {
  260. struct f2fs_inode_info *fi = F2FS_I(inode);
  261. unsigned int ia_valid = attr->ia_valid;
  262. if (ia_valid & ATTR_UID)
  263. inode->i_uid = attr->ia_uid;
  264. if (ia_valid & ATTR_GID)
  265. inode->i_gid = attr->ia_gid;
  266. if (ia_valid & ATTR_ATIME)
  267. inode->i_atime = timespec_trunc(attr->ia_atime,
  268. inode->i_sb->s_time_gran);
  269. if (ia_valid & ATTR_MTIME)
  270. inode->i_mtime = timespec_trunc(attr->ia_mtime,
  271. inode->i_sb->s_time_gran);
  272. if (ia_valid & ATTR_CTIME)
  273. inode->i_ctime = timespec_trunc(attr->ia_ctime,
  274. inode->i_sb->s_time_gran);
  275. if (ia_valid & ATTR_MODE) {
  276. umode_t mode = attr->ia_mode;
  277. if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
  278. mode &= ~S_ISGID;
  279. set_acl_inode(fi, mode);
  280. }
  281. }
  282. #else
  283. #define __setattr_copy setattr_copy
  284. #endif
  285. int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
  286. {
  287. struct inode *inode = dentry->d_inode;
  288. struct f2fs_inode_info *fi = F2FS_I(inode);
  289. int err;
  290. err = inode_change_ok(inode, attr);
  291. if (err)
  292. return err;
  293. if ((attr->ia_valid & ATTR_SIZE) &&
  294. attr->ia_size != i_size_read(inode)) {
  295. truncate_setsize(inode, attr->ia_size);
  296. f2fs_truncate(inode);
  297. }
  298. __setattr_copy(inode, attr);
  299. if (attr->ia_valid & ATTR_MODE) {
  300. err = f2fs_acl_chmod(inode);
  301. if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
  302. inode->i_mode = fi->i_acl_mode;
  303. clear_inode_flag(fi, FI_ACL_MODE);
  304. }
  305. }
  306. mark_inode_dirty(inode);
  307. return err;
  308. }
  309. const struct inode_operations f2fs_file_inode_operations = {
  310. .getattr = f2fs_getattr,
  311. .setattr = f2fs_setattr,
  312. .get_acl = f2fs_get_acl,
  313. #ifdef CONFIG_F2FS_FS_XATTR
  314. .setxattr = generic_setxattr,
  315. .getxattr = generic_getxattr,
  316. .listxattr = f2fs_listxattr,
  317. .removexattr = generic_removexattr,
  318. #endif
  319. };
  320. static void fill_zero(struct inode *inode, pgoff_t index,
  321. loff_t start, loff_t len)
  322. {
  323. struct page *page;
  324. if (!len)
  325. return;
  326. page = get_new_data_page(inode, index, false);
  327. if (!IS_ERR(page)) {
  328. wait_on_page_writeback(page);
  329. zero_user(page, start, len);
  330. set_page_dirty(page);
  331. f2fs_put_page(page, 1);
  332. }
  333. }
  334. int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
  335. {
  336. pgoff_t index;
  337. int err;
  338. for (index = pg_start; index < pg_end; index++) {
  339. struct dnode_of_data dn;
  340. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  341. mutex_lock_op(sbi, DATA_TRUNC);
  342. set_new_dnode(&dn, inode, NULL, NULL, 0);
  343. err = get_dnode_of_data(&dn, index, RDONLY_NODE);
  344. if (err) {
  345. mutex_unlock_op(sbi, DATA_TRUNC);
  346. if (err == -ENOENT)
  347. continue;
  348. return err;
  349. }
  350. if (dn.data_blkaddr != NULL_ADDR)
  351. truncate_data_blocks_range(&dn, 1);
  352. f2fs_put_dnode(&dn);
  353. mutex_unlock_op(sbi, DATA_TRUNC);
  354. }
  355. return 0;
  356. }
  357. static int punch_hole(struct inode *inode, loff_t offset, loff_t len, int mode)
  358. {
  359. pgoff_t pg_start, pg_end;
  360. loff_t off_start, off_end;
  361. int ret = 0;
  362. pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
  363. pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
  364. off_start = offset & (PAGE_CACHE_SIZE - 1);
  365. off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
  366. if (pg_start == pg_end) {
  367. fill_zero(inode, pg_start, off_start,
  368. off_end - off_start);
  369. } else {
  370. if (off_start)
  371. fill_zero(inode, pg_start++, off_start,
  372. PAGE_CACHE_SIZE - off_start);
  373. if (off_end)
  374. fill_zero(inode, pg_end, 0, off_end);
  375. if (pg_start < pg_end) {
  376. struct address_space *mapping = inode->i_mapping;
  377. loff_t blk_start, blk_end;
  378. blk_start = pg_start << PAGE_CACHE_SHIFT;
  379. blk_end = pg_end << PAGE_CACHE_SHIFT;
  380. truncate_inode_pages_range(mapping, blk_start,
  381. blk_end - 1);
  382. ret = truncate_hole(inode, pg_start, pg_end);
  383. }
  384. }
  385. if (!(mode & FALLOC_FL_KEEP_SIZE) &&
  386. i_size_read(inode) <= (offset + len)) {
  387. i_size_write(inode, offset);
  388. mark_inode_dirty(inode);
  389. }
  390. return ret;
  391. }
  392. static int expand_inode_data(struct inode *inode, loff_t offset,
  393. loff_t len, int mode)
  394. {
  395. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  396. pgoff_t index, pg_start, pg_end;
  397. loff_t new_size = i_size_read(inode);
  398. loff_t off_start, off_end;
  399. int ret = 0;
  400. ret = inode_newsize_ok(inode, (len + offset));
  401. if (ret)
  402. return ret;
  403. pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
  404. pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
  405. off_start = offset & (PAGE_CACHE_SIZE - 1);
  406. off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
  407. for (index = pg_start; index <= pg_end; index++) {
  408. struct dnode_of_data dn;
  409. mutex_lock_op(sbi, DATA_NEW);
  410. set_new_dnode(&dn, inode, NULL, NULL, 0);
  411. ret = get_dnode_of_data(&dn, index, 0);
  412. if (ret) {
  413. mutex_unlock_op(sbi, DATA_NEW);
  414. break;
  415. }
  416. if (dn.data_blkaddr == NULL_ADDR) {
  417. ret = reserve_new_block(&dn);
  418. if (ret) {
  419. f2fs_put_dnode(&dn);
  420. mutex_unlock_op(sbi, DATA_NEW);
  421. break;
  422. }
  423. }
  424. f2fs_put_dnode(&dn);
  425. mutex_unlock_op(sbi, DATA_NEW);
  426. if (pg_start == pg_end)
  427. new_size = offset + len;
  428. else if (index == pg_start && off_start)
  429. new_size = (index + 1) << PAGE_CACHE_SHIFT;
  430. else if (index == pg_end)
  431. new_size = (index << PAGE_CACHE_SHIFT) + off_end;
  432. else
  433. new_size += PAGE_CACHE_SIZE;
  434. }
  435. if (!(mode & FALLOC_FL_KEEP_SIZE) &&
  436. i_size_read(inode) < new_size) {
  437. i_size_write(inode, new_size);
  438. mark_inode_dirty(inode);
  439. }
  440. return ret;
  441. }
  442. static long f2fs_fallocate(struct file *file, int mode,
  443. loff_t offset, loff_t len)
  444. {
  445. struct inode *inode = file->f_path.dentry->d_inode;
  446. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  447. long ret;
  448. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
  449. return -EOPNOTSUPP;
  450. if (mode & FALLOC_FL_PUNCH_HOLE)
  451. ret = punch_hole(inode, offset, len, mode);
  452. else
  453. ret = expand_inode_data(inode, offset, len, mode);
  454. f2fs_balance_fs(sbi);
  455. return ret;
  456. }
  457. #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
  458. #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
  459. static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
  460. {
  461. if (S_ISDIR(mode))
  462. return flags;
  463. else if (S_ISREG(mode))
  464. return flags & F2FS_REG_FLMASK;
  465. else
  466. return flags & F2FS_OTHER_FLMASK;
  467. }
  468. long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
  469. {
  470. struct inode *inode = filp->f_dentry->d_inode;
  471. struct f2fs_inode_info *fi = F2FS_I(inode);
  472. unsigned int flags;
  473. int ret;
  474. switch (cmd) {
  475. case FS_IOC_GETFLAGS:
  476. flags = fi->i_flags & FS_FL_USER_VISIBLE;
  477. return put_user(flags, (int __user *) arg);
  478. case FS_IOC_SETFLAGS:
  479. {
  480. unsigned int oldflags;
  481. ret = mnt_want_write(filp->f_path.mnt);
  482. if (ret)
  483. return ret;
  484. if (!inode_owner_or_capable(inode)) {
  485. ret = -EACCES;
  486. goto out;
  487. }
  488. if (get_user(flags, (int __user *) arg)) {
  489. ret = -EFAULT;
  490. goto out;
  491. }
  492. flags = f2fs_mask_flags(inode->i_mode, flags);
  493. mutex_lock(&inode->i_mutex);
  494. oldflags = fi->i_flags;
  495. if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
  496. if (!capable(CAP_LINUX_IMMUTABLE)) {
  497. mutex_unlock(&inode->i_mutex);
  498. ret = -EPERM;
  499. goto out;
  500. }
  501. }
  502. flags = flags & FS_FL_USER_MODIFIABLE;
  503. flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
  504. fi->i_flags = flags;
  505. mutex_unlock(&inode->i_mutex);
  506. f2fs_set_inode_flags(inode);
  507. inode->i_ctime = CURRENT_TIME;
  508. mark_inode_dirty(inode);
  509. out:
  510. mnt_drop_write(filp->f_path.mnt);
  511. return ret;
  512. }
  513. default:
  514. return -ENOTTY;
  515. }
  516. }
  517. const struct file_operations f2fs_file_operations = {
  518. .llseek = generic_file_llseek,
  519. .read = do_sync_read,
  520. .write = do_sync_write,
  521. .aio_read = generic_file_aio_read,
  522. .aio_write = generic_file_aio_write,
  523. .open = generic_file_open,
  524. .mmap = f2fs_file_mmap,
  525. .fsync = f2fs_sync_file,
  526. .fallocate = f2fs_fallocate,
  527. .unlocked_ioctl = f2fs_ioctl,
  528. .splice_read = generic_file_splice_read,
  529. .splice_write = generic_file_splice_write,
  530. };