raid1.c 74 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801
  1. /*
  2. * raid1.c : Multiple Devices driver for Linux
  3. *
  4. * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
  5. *
  6. * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
  7. *
  8. * RAID-1 management functions.
  9. *
  10. * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  11. *
  12. * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  13. * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  14. *
  15. * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  16. * bitmapped intelligence in resync:
  17. *
  18. * - bitmap marked during normal i/o
  19. * - bitmap used to skip nondirty blocks during sync
  20. *
  21. * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  22. * - persistent bitmap code
  23. *
  24. * This program is free software; you can redistribute it and/or modify
  25. * it under the terms of the GNU General Public License as published by
  26. * the Free Software Foundation; either version 2, or (at your option)
  27. * any later version.
  28. *
  29. * You should have received a copy of the GNU General Public License
  30. * (for example /usr/src/linux/COPYING); if not, write to the Free
  31. * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  32. */
  33. #include <linux/slab.h>
  34. #include <linux/delay.h>
  35. #include <linux/blkdev.h>
  36. #include <linux/module.h>
  37. #include <linux/seq_file.h>
  38. #include <linux/ratelimit.h>
  39. #include "md.h"
  40. #include "raid1.h"
  41. #include "bitmap.h"
  42. /*
  43. * Number of guaranteed r1bios in case of extreme VM load:
  44. */
  45. #define NR_RAID1_BIOS 256
  46. /* When there are this many requests queue to be written by
  47. * the raid1 thread, we become 'congested' to provide back-pressure
  48. * for writeback.
  49. */
  50. static int max_queued_requests = 1024;
  51. static void allow_barrier(struct r1conf *conf);
  52. static void lower_barrier(struct r1conf *conf);
  53. static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
  54. {
  55. struct pool_info *pi = data;
  56. int size = offsetof(struct r1bio, bios[pi->raid_disks]);
  57. /* allocate a r1bio with room for raid_disks entries in the bios array */
  58. return kzalloc(size, gfp_flags);
  59. }
  60. static void r1bio_pool_free(void *r1_bio, void *data)
  61. {
  62. kfree(r1_bio);
  63. }
  64. #define RESYNC_BLOCK_SIZE (64*1024)
  65. //#define RESYNC_BLOCK_SIZE PAGE_SIZE
  66. #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
  67. #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  68. #define RESYNC_WINDOW (2048*1024)
  69. static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
  70. {
  71. struct pool_info *pi = data;
  72. struct page *page;
  73. struct r1bio *r1_bio;
  74. struct bio *bio;
  75. int i, j;
  76. r1_bio = r1bio_pool_alloc(gfp_flags, pi);
  77. if (!r1_bio)
  78. return NULL;
  79. /*
  80. * Allocate bios : 1 for reading, n-1 for writing
  81. */
  82. for (j = pi->raid_disks ; j-- ; ) {
  83. bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
  84. if (!bio)
  85. goto out_free_bio;
  86. r1_bio->bios[j] = bio;
  87. }
  88. /*
  89. * Allocate RESYNC_PAGES data pages and attach them to
  90. * the first bio.
  91. * If this is a user-requested check/repair, allocate
  92. * RESYNC_PAGES for each bio.
  93. */
  94. if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
  95. j = pi->raid_disks;
  96. else
  97. j = 1;
  98. while(j--) {
  99. bio = r1_bio->bios[j];
  100. for (i = 0; i < RESYNC_PAGES; i++) {
  101. page = alloc_page(gfp_flags);
  102. if (unlikely(!page))
  103. goto out_free_pages;
  104. bio->bi_io_vec[i].bv_page = page;
  105. bio->bi_vcnt = i+1;
  106. }
  107. }
  108. /* If not user-requests, copy the page pointers to all bios */
  109. if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
  110. for (i=0; i<RESYNC_PAGES ; i++)
  111. for (j=1; j<pi->raid_disks; j++)
  112. r1_bio->bios[j]->bi_io_vec[i].bv_page =
  113. r1_bio->bios[0]->bi_io_vec[i].bv_page;
  114. }
  115. r1_bio->master_bio = NULL;
  116. return r1_bio;
  117. out_free_pages:
  118. for (j=0 ; j < pi->raid_disks; j++)
  119. for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
  120. put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
  121. j = -1;
  122. out_free_bio:
  123. while ( ++j < pi->raid_disks )
  124. bio_put(r1_bio->bios[j]);
  125. r1bio_pool_free(r1_bio, data);
  126. return NULL;
  127. }
  128. static void r1buf_pool_free(void *__r1_bio, void *data)
  129. {
  130. struct pool_info *pi = data;
  131. int i,j;
  132. struct r1bio *r1bio = __r1_bio;
  133. for (i = 0; i < RESYNC_PAGES; i++)
  134. for (j = pi->raid_disks; j-- ;) {
  135. if (j == 0 ||
  136. r1bio->bios[j]->bi_io_vec[i].bv_page !=
  137. r1bio->bios[0]->bi_io_vec[i].bv_page)
  138. safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
  139. }
  140. for (i=0 ; i < pi->raid_disks; i++)
  141. bio_put(r1bio->bios[i]);
  142. r1bio_pool_free(r1bio, data);
  143. }
  144. static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
  145. {
  146. int i;
  147. for (i = 0; i < conf->raid_disks; i++) {
  148. struct bio **bio = r1_bio->bios + i;
  149. if (!BIO_SPECIAL(*bio))
  150. bio_put(*bio);
  151. *bio = NULL;
  152. }
  153. }
  154. static void free_r1bio(struct r1bio *r1_bio)
  155. {
  156. struct r1conf *conf = r1_bio->mddev->private;
  157. put_all_bios(conf, r1_bio);
  158. mempool_free(r1_bio, conf->r1bio_pool);
  159. }
  160. static void put_buf(struct r1bio *r1_bio)
  161. {
  162. struct r1conf *conf = r1_bio->mddev->private;
  163. int i;
  164. for (i=0; i<conf->raid_disks; i++) {
  165. struct bio *bio = r1_bio->bios[i];
  166. if (bio->bi_end_io)
  167. rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
  168. }
  169. mempool_free(r1_bio, conf->r1buf_pool);
  170. lower_barrier(conf);
  171. }
  172. static void reschedule_retry(struct r1bio *r1_bio)
  173. {
  174. unsigned long flags;
  175. struct mddev *mddev = r1_bio->mddev;
  176. struct r1conf *conf = mddev->private;
  177. spin_lock_irqsave(&conf->device_lock, flags);
  178. list_add(&r1_bio->retry_list, &conf->retry_list);
  179. conf->nr_queued ++;
  180. spin_unlock_irqrestore(&conf->device_lock, flags);
  181. wake_up(&conf->wait_barrier);
  182. md_wakeup_thread(mddev->thread);
  183. }
  184. /*
  185. * raid_end_bio_io() is called when we have finished servicing a mirrored
  186. * operation and are ready to return a success/failure code to the buffer
  187. * cache layer.
  188. */
  189. static void call_bio_endio(struct r1bio *r1_bio)
  190. {
  191. struct bio *bio = r1_bio->master_bio;
  192. int done;
  193. struct r1conf *conf = r1_bio->mddev->private;
  194. if (bio->bi_phys_segments) {
  195. unsigned long flags;
  196. spin_lock_irqsave(&conf->device_lock, flags);
  197. bio->bi_phys_segments--;
  198. done = (bio->bi_phys_segments == 0);
  199. spin_unlock_irqrestore(&conf->device_lock, flags);
  200. } else
  201. done = 1;
  202. if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
  203. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  204. if (done) {
  205. bio_endio(bio, 0);
  206. /*
  207. * Wake up any possible resync thread that waits for the device
  208. * to go idle.
  209. */
  210. allow_barrier(conf);
  211. }
  212. }
  213. static void raid_end_bio_io(struct r1bio *r1_bio)
  214. {
  215. struct bio *bio = r1_bio->master_bio;
  216. /* if nobody has done the final endio yet, do it now */
  217. if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
  218. pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
  219. (bio_data_dir(bio) == WRITE) ? "write" : "read",
  220. (unsigned long long) bio->bi_sector,
  221. (unsigned long long) bio->bi_sector +
  222. (bio->bi_size >> 9) - 1);
  223. call_bio_endio(r1_bio);
  224. }
  225. free_r1bio(r1_bio);
  226. }
  227. /*
  228. * Update disk head position estimator based on IRQ completion info.
  229. */
  230. static inline void update_head_pos(int disk, struct r1bio *r1_bio)
  231. {
  232. struct r1conf *conf = r1_bio->mddev->private;
  233. conf->mirrors[disk].head_position =
  234. r1_bio->sector + (r1_bio->sectors);
  235. }
  236. /*
  237. * Find the disk number which triggered given bio
  238. */
  239. static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
  240. {
  241. int mirror;
  242. int raid_disks = r1_bio->mddev->raid_disks;
  243. for (mirror = 0; mirror < raid_disks; mirror++)
  244. if (r1_bio->bios[mirror] == bio)
  245. break;
  246. BUG_ON(mirror == raid_disks);
  247. update_head_pos(mirror, r1_bio);
  248. return mirror;
  249. }
  250. static void raid1_end_read_request(struct bio *bio, int error)
  251. {
  252. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  253. struct r1bio *r1_bio = bio->bi_private;
  254. int mirror;
  255. struct r1conf *conf = r1_bio->mddev->private;
  256. mirror = r1_bio->read_disk;
  257. /*
  258. * this branch is our 'one mirror IO has finished' event handler:
  259. */
  260. update_head_pos(mirror, r1_bio);
  261. if (uptodate)
  262. set_bit(R1BIO_Uptodate, &r1_bio->state);
  263. else {
  264. /* If all other devices have failed, we want to return
  265. * the error upwards rather than fail the last device.
  266. * Here we redefine "uptodate" to mean "Don't want to retry"
  267. */
  268. unsigned long flags;
  269. spin_lock_irqsave(&conf->device_lock, flags);
  270. if (r1_bio->mddev->degraded == conf->raid_disks ||
  271. (r1_bio->mddev->degraded == conf->raid_disks-1 &&
  272. !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
  273. uptodate = 1;
  274. spin_unlock_irqrestore(&conf->device_lock, flags);
  275. }
  276. if (uptodate)
  277. raid_end_bio_io(r1_bio);
  278. else {
  279. /*
  280. * oops, read error:
  281. */
  282. char b[BDEVNAME_SIZE];
  283. printk_ratelimited(
  284. KERN_ERR "md/raid1:%s: %s: "
  285. "rescheduling sector %llu\n",
  286. mdname(conf->mddev),
  287. bdevname(conf->mirrors[mirror].rdev->bdev,
  288. b),
  289. (unsigned long long)r1_bio->sector);
  290. set_bit(R1BIO_ReadError, &r1_bio->state);
  291. reschedule_retry(r1_bio);
  292. }
  293. rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
  294. }
  295. static void close_write(struct r1bio *r1_bio)
  296. {
  297. /* it really is the end of this request */
  298. if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
  299. /* free extra copy of the data pages */
  300. int i = r1_bio->behind_page_count;
  301. while (i--)
  302. safe_put_page(r1_bio->behind_bvecs[i].bv_page);
  303. kfree(r1_bio->behind_bvecs);
  304. r1_bio->behind_bvecs = NULL;
  305. }
  306. /* clear the bitmap if all writes complete successfully */
  307. bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
  308. r1_bio->sectors,
  309. !test_bit(R1BIO_Degraded, &r1_bio->state),
  310. test_bit(R1BIO_BehindIO, &r1_bio->state));
  311. md_write_end(r1_bio->mddev);
  312. }
  313. static void r1_bio_write_done(struct r1bio *r1_bio)
  314. {
  315. if (!atomic_dec_and_test(&r1_bio->remaining))
  316. return;
  317. if (test_bit(R1BIO_WriteError, &r1_bio->state))
  318. reschedule_retry(r1_bio);
  319. else {
  320. close_write(r1_bio);
  321. if (test_bit(R1BIO_MadeGood, &r1_bio->state))
  322. reschedule_retry(r1_bio);
  323. else
  324. raid_end_bio_io(r1_bio);
  325. }
  326. }
  327. static void raid1_end_write_request(struct bio *bio, int error)
  328. {
  329. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  330. struct r1bio *r1_bio = bio->bi_private;
  331. int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
  332. struct r1conf *conf = r1_bio->mddev->private;
  333. struct bio *to_put = NULL;
  334. mirror = find_bio_disk(r1_bio, bio);
  335. /*
  336. * 'one mirror IO has finished' event handler:
  337. */
  338. if (!uptodate) {
  339. set_bit(WriteErrorSeen,
  340. &conf->mirrors[mirror].rdev->flags);
  341. set_bit(R1BIO_WriteError, &r1_bio->state);
  342. } else {
  343. /*
  344. * Set R1BIO_Uptodate in our master bio, so that we
  345. * will return a good error code for to the higher
  346. * levels even if IO on some other mirrored buffer
  347. * fails.
  348. *
  349. * The 'master' represents the composite IO operation
  350. * to user-side. So if something waits for IO, then it
  351. * will wait for the 'master' bio.
  352. */
  353. sector_t first_bad;
  354. int bad_sectors;
  355. r1_bio->bios[mirror] = NULL;
  356. to_put = bio;
  357. set_bit(R1BIO_Uptodate, &r1_bio->state);
  358. /* Maybe we can clear some bad blocks. */
  359. if (is_badblock(conf->mirrors[mirror].rdev,
  360. r1_bio->sector, r1_bio->sectors,
  361. &first_bad, &bad_sectors)) {
  362. r1_bio->bios[mirror] = IO_MADE_GOOD;
  363. set_bit(R1BIO_MadeGood, &r1_bio->state);
  364. }
  365. }
  366. if (behind) {
  367. if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
  368. atomic_dec(&r1_bio->behind_remaining);
  369. /*
  370. * In behind mode, we ACK the master bio once the I/O
  371. * has safely reached all non-writemostly
  372. * disks. Setting the Returned bit ensures that this
  373. * gets done only once -- we don't ever want to return
  374. * -EIO here, instead we'll wait
  375. */
  376. if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
  377. test_bit(R1BIO_Uptodate, &r1_bio->state)) {
  378. /* Maybe we can return now */
  379. if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
  380. struct bio *mbio = r1_bio->master_bio;
  381. pr_debug("raid1: behind end write sectors"
  382. " %llu-%llu\n",
  383. (unsigned long long) mbio->bi_sector,
  384. (unsigned long long) mbio->bi_sector +
  385. (mbio->bi_size >> 9) - 1);
  386. call_bio_endio(r1_bio);
  387. }
  388. }
  389. }
  390. if (r1_bio->bios[mirror] == NULL)
  391. rdev_dec_pending(conf->mirrors[mirror].rdev,
  392. conf->mddev);
  393. /*
  394. * Let's see if all mirrored write operations have finished
  395. * already.
  396. */
  397. r1_bio_write_done(r1_bio);
  398. if (to_put)
  399. bio_put(to_put);
  400. }
  401. /*
  402. * This routine returns the disk from which the requested read should
  403. * be done. There is a per-array 'next expected sequential IO' sector
  404. * number - if this matches on the next IO then we use the last disk.
  405. * There is also a per-disk 'last know head position' sector that is
  406. * maintained from IRQ contexts, both the normal and the resync IO
  407. * completion handlers update this position correctly. If there is no
  408. * perfect sequential match then we pick the disk whose head is closest.
  409. *
  410. * If there are 2 mirrors in the same 2 devices, performance degrades
  411. * because position is mirror, not device based.
  412. *
  413. * The rdev for the device selected will have nr_pending incremented.
  414. */
  415. static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
  416. {
  417. const sector_t this_sector = r1_bio->sector;
  418. int sectors;
  419. int best_good_sectors;
  420. int start_disk;
  421. int best_disk;
  422. int i;
  423. sector_t best_dist;
  424. struct md_rdev *rdev;
  425. int choose_first;
  426. rcu_read_lock();
  427. /*
  428. * Check if we can balance. We can balance on the whole
  429. * device if no resync is going on, or below the resync window.
  430. * We take the first readable disk when above the resync window.
  431. */
  432. retry:
  433. sectors = r1_bio->sectors;
  434. best_disk = -1;
  435. best_dist = MaxSector;
  436. best_good_sectors = 0;
  437. if (conf->mddev->recovery_cp < MaxSector &&
  438. (this_sector + sectors >= conf->next_resync)) {
  439. choose_first = 1;
  440. start_disk = 0;
  441. } else {
  442. choose_first = 0;
  443. start_disk = conf->last_used;
  444. }
  445. for (i = 0 ; i < conf->raid_disks ; i++) {
  446. sector_t dist;
  447. sector_t first_bad;
  448. int bad_sectors;
  449. int disk = start_disk + i;
  450. if (disk >= conf->raid_disks)
  451. disk -= conf->raid_disks;
  452. rdev = rcu_dereference(conf->mirrors[disk].rdev);
  453. if (r1_bio->bios[disk] == IO_BLOCKED
  454. || rdev == NULL
  455. || test_bit(Faulty, &rdev->flags))
  456. continue;
  457. if (!test_bit(In_sync, &rdev->flags) &&
  458. rdev->recovery_offset < this_sector + sectors)
  459. continue;
  460. if (test_bit(WriteMostly, &rdev->flags)) {
  461. /* Don't balance among write-mostly, just
  462. * use the first as a last resort */
  463. if (best_disk < 0)
  464. best_disk = disk;
  465. continue;
  466. }
  467. /* This is a reasonable device to use. It might
  468. * even be best.
  469. */
  470. if (is_badblock(rdev, this_sector, sectors,
  471. &first_bad, &bad_sectors)) {
  472. if (best_dist < MaxSector)
  473. /* already have a better device */
  474. continue;
  475. if (first_bad <= this_sector) {
  476. /* cannot read here. If this is the 'primary'
  477. * device, then we must not read beyond
  478. * bad_sectors from another device..
  479. */
  480. bad_sectors -= (this_sector - first_bad);
  481. if (choose_first && sectors > bad_sectors)
  482. sectors = bad_sectors;
  483. if (best_good_sectors > sectors)
  484. best_good_sectors = sectors;
  485. } else {
  486. sector_t good_sectors = first_bad - this_sector;
  487. if (good_sectors > best_good_sectors) {
  488. best_good_sectors = good_sectors;
  489. best_disk = disk;
  490. }
  491. if (choose_first)
  492. break;
  493. }
  494. continue;
  495. } else
  496. best_good_sectors = sectors;
  497. dist = abs(this_sector - conf->mirrors[disk].head_position);
  498. if (choose_first
  499. /* Don't change to another disk for sequential reads */
  500. || conf->next_seq_sect == this_sector
  501. || dist == 0
  502. /* If device is idle, use it */
  503. || atomic_read(&rdev->nr_pending) == 0) {
  504. best_disk = disk;
  505. break;
  506. }
  507. if (dist < best_dist) {
  508. best_dist = dist;
  509. best_disk = disk;
  510. }
  511. }
  512. if (best_disk >= 0) {
  513. rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
  514. if (!rdev)
  515. goto retry;
  516. atomic_inc(&rdev->nr_pending);
  517. if (test_bit(Faulty, &rdev->flags)) {
  518. /* cannot risk returning a device that failed
  519. * before we inc'ed nr_pending
  520. */
  521. rdev_dec_pending(rdev, conf->mddev);
  522. goto retry;
  523. }
  524. sectors = best_good_sectors;
  525. conf->next_seq_sect = this_sector + sectors;
  526. conf->last_used = best_disk;
  527. }
  528. rcu_read_unlock();
  529. *max_sectors = sectors;
  530. return best_disk;
  531. }
  532. int md_raid1_congested(struct mddev *mddev, int bits)
  533. {
  534. struct r1conf *conf = mddev->private;
  535. int i, ret = 0;
  536. if ((bits & (1 << BDI_async_congested)) &&
  537. conf->pending_count >= max_queued_requests)
  538. return 1;
  539. rcu_read_lock();
  540. for (i = 0; i < mddev->raid_disks; i++) {
  541. struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
  542. if (rdev && !test_bit(Faulty, &rdev->flags)) {
  543. struct request_queue *q = bdev_get_queue(rdev->bdev);
  544. BUG_ON(!q);
  545. /* Note the '|| 1' - when read_balance prefers
  546. * non-congested targets, it can be removed
  547. */
  548. if ((bits & (1<<BDI_async_congested)) || 1)
  549. ret |= bdi_congested(&q->backing_dev_info, bits);
  550. else
  551. ret &= bdi_congested(&q->backing_dev_info, bits);
  552. }
  553. }
  554. rcu_read_unlock();
  555. return ret;
  556. }
  557. EXPORT_SYMBOL_GPL(md_raid1_congested);
  558. static int raid1_congested(void *data, int bits)
  559. {
  560. struct mddev *mddev = data;
  561. return mddev_congested(mddev, bits) ||
  562. md_raid1_congested(mddev, bits);
  563. }
  564. static void flush_pending_writes(struct r1conf *conf)
  565. {
  566. /* Any writes that have been queued but are awaiting
  567. * bitmap updates get flushed here.
  568. */
  569. spin_lock_irq(&conf->device_lock);
  570. if (conf->pending_bio_list.head) {
  571. struct bio *bio;
  572. bio = bio_list_get(&conf->pending_bio_list);
  573. conf->pending_count = 0;
  574. spin_unlock_irq(&conf->device_lock);
  575. /* flush any pending bitmap writes to
  576. * disk before proceeding w/ I/O */
  577. bitmap_unplug(conf->mddev->bitmap);
  578. wake_up(&conf->wait_barrier);
  579. while (bio) { /* submit pending writes */
  580. struct bio *next = bio->bi_next;
  581. bio->bi_next = NULL;
  582. generic_make_request(bio);
  583. bio = next;
  584. }
  585. } else
  586. spin_unlock_irq(&conf->device_lock);
  587. }
  588. /* Barriers....
  589. * Sometimes we need to suspend IO while we do something else,
  590. * either some resync/recovery, or reconfigure the array.
  591. * To do this we raise a 'barrier'.
  592. * The 'barrier' is a counter that can be raised multiple times
  593. * to count how many activities are happening which preclude
  594. * normal IO.
  595. * We can only raise the barrier if there is no pending IO.
  596. * i.e. if nr_pending == 0.
  597. * We choose only to raise the barrier if no-one is waiting for the
  598. * barrier to go down. This means that as soon as an IO request
  599. * is ready, no other operations which require a barrier will start
  600. * until the IO request has had a chance.
  601. *
  602. * So: regular IO calls 'wait_barrier'. When that returns there
  603. * is no backgroup IO happening, It must arrange to call
  604. * allow_barrier when it has finished its IO.
  605. * backgroup IO calls must call raise_barrier. Once that returns
  606. * there is no normal IO happeing. It must arrange to call
  607. * lower_barrier when the particular background IO completes.
  608. */
  609. #define RESYNC_DEPTH 32
  610. static void raise_barrier(struct r1conf *conf)
  611. {
  612. spin_lock_irq(&conf->resync_lock);
  613. /* Wait until no block IO is waiting */
  614. wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
  615. conf->resync_lock, );
  616. /* block any new IO from starting */
  617. conf->barrier++;
  618. /* Now wait for all pending IO to complete */
  619. wait_event_lock_irq(conf->wait_barrier,
  620. !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
  621. conf->resync_lock, );
  622. spin_unlock_irq(&conf->resync_lock);
  623. }
  624. static void lower_barrier(struct r1conf *conf)
  625. {
  626. unsigned long flags;
  627. BUG_ON(conf->barrier <= 0);
  628. spin_lock_irqsave(&conf->resync_lock, flags);
  629. conf->barrier--;
  630. spin_unlock_irqrestore(&conf->resync_lock, flags);
  631. wake_up(&conf->wait_barrier);
  632. }
  633. static void wait_barrier(struct r1conf *conf)
  634. {
  635. spin_lock_irq(&conf->resync_lock);
  636. if (conf->barrier) {
  637. conf->nr_waiting++;
  638. wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
  639. conf->resync_lock,
  640. );
  641. conf->nr_waiting--;
  642. }
  643. conf->nr_pending++;
  644. spin_unlock_irq(&conf->resync_lock);
  645. }
  646. static void allow_barrier(struct r1conf *conf)
  647. {
  648. unsigned long flags;
  649. spin_lock_irqsave(&conf->resync_lock, flags);
  650. conf->nr_pending--;
  651. spin_unlock_irqrestore(&conf->resync_lock, flags);
  652. wake_up(&conf->wait_barrier);
  653. }
  654. static void freeze_array(struct r1conf *conf)
  655. {
  656. /* stop syncio and normal IO and wait for everything to
  657. * go quite.
  658. * We increment barrier and nr_waiting, and then
  659. * wait until nr_pending match nr_queued+1
  660. * This is called in the context of one normal IO request
  661. * that has failed. Thus any sync request that might be pending
  662. * will be blocked by nr_pending, and we need to wait for
  663. * pending IO requests to complete or be queued for re-try.
  664. * Thus the number queued (nr_queued) plus this request (1)
  665. * must match the number of pending IOs (nr_pending) before
  666. * we continue.
  667. */
  668. spin_lock_irq(&conf->resync_lock);
  669. conf->barrier++;
  670. conf->nr_waiting++;
  671. wait_event_lock_irq(conf->wait_barrier,
  672. conf->nr_pending == conf->nr_queued+1,
  673. conf->resync_lock,
  674. flush_pending_writes(conf));
  675. spin_unlock_irq(&conf->resync_lock);
  676. }
  677. static void unfreeze_array(struct r1conf *conf)
  678. {
  679. /* reverse the effect of the freeze */
  680. spin_lock_irq(&conf->resync_lock);
  681. conf->barrier--;
  682. conf->nr_waiting--;
  683. wake_up(&conf->wait_barrier);
  684. spin_unlock_irq(&conf->resync_lock);
  685. }
  686. /* duplicate the data pages for behind I/O
  687. */
  688. static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
  689. {
  690. int i;
  691. struct bio_vec *bvec;
  692. struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
  693. GFP_NOIO);
  694. if (unlikely(!bvecs))
  695. return;
  696. bio_for_each_segment(bvec, bio, i) {
  697. bvecs[i] = *bvec;
  698. bvecs[i].bv_page = alloc_page(GFP_NOIO);
  699. if (unlikely(!bvecs[i].bv_page))
  700. goto do_sync_io;
  701. memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
  702. kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
  703. kunmap(bvecs[i].bv_page);
  704. kunmap(bvec->bv_page);
  705. }
  706. r1_bio->behind_bvecs = bvecs;
  707. r1_bio->behind_page_count = bio->bi_vcnt;
  708. set_bit(R1BIO_BehindIO, &r1_bio->state);
  709. return;
  710. do_sync_io:
  711. for (i = 0; i < bio->bi_vcnt; i++)
  712. if (bvecs[i].bv_page)
  713. put_page(bvecs[i].bv_page);
  714. kfree(bvecs);
  715. pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
  716. }
  717. static int make_request(struct mddev *mddev, struct bio * bio)
  718. {
  719. struct r1conf *conf = mddev->private;
  720. struct mirror_info *mirror;
  721. struct r1bio *r1_bio;
  722. struct bio *read_bio;
  723. int i, disks;
  724. struct bitmap *bitmap;
  725. unsigned long flags;
  726. const int rw = bio_data_dir(bio);
  727. const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
  728. const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
  729. struct md_rdev *blocked_rdev;
  730. int plugged;
  731. int first_clone;
  732. int sectors_handled;
  733. int max_sectors;
  734. /*
  735. * Register the new request and wait if the reconstruction
  736. * thread has put up a bar for new requests.
  737. * Continue immediately if no resync is active currently.
  738. */
  739. md_write_start(mddev, bio); /* wait on superblock update early */
  740. if (bio_data_dir(bio) == WRITE &&
  741. bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
  742. bio->bi_sector < mddev->suspend_hi) {
  743. /* As the suspend_* range is controlled by
  744. * userspace, we want an interruptible
  745. * wait.
  746. */
  747. DEFINE_WAIT(w);
  748. for (;;) {
  749. flush_signals(current);
  750. prepare_to_wait(&conf->wait_barrier,
  751. &w, TASK_INTERRUPTIBLE);
  752. if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
  753. bio->bi_sector >= mddev->suspend_hi)
  754. break;
  755. schedule();
  756. }
  757. finish_wait(&conf->wait_barrier, &w);
  758. }
  759. wait_barrier(conf);
  760. bitmap = mddev->bitmap;
  761. /*
  762. * make_request() can abort the operation when READA is being
  763. * used and no empty request is available.
  764. *
  765. */
  766. r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
  767. r1_bio->master_bio = bio;
  768. r1_bio->sectors = bio->bi_size >> 9;
  769. r1_bio->state = 0;
  770. r1_bio->mddev = mddev;
  771. r1_bio->sector = bio->bi_sector;
  772. /* We might need to issue multiple reads to different
  773. * devices if there are bad blocks around, so we keep
  774. * track of the number of reads in bio->bi_phys_segments.
  775. * If this is 0, there is only one r1_bio and no locking
  776. * will be needed when requests complete. If it is
  777. * non-zero, then it is the number of not-completed requests.
  778. */
  779. bio->bi_phys_segments = 0;
  780. clear_bit(BIO_SEG_VALID, &bio->bi_flags);
  781. if (rw == READ) {
  782. /*
  783. * read balancing logic:
  784. */
  785. int rdisk;
  786. read_again:
  787. rdisk = read_balance(conf, r1_bio, &max_sectors);
  788. if (rdisk < 0) {
  789. /* couldn't find anywhere to read from */
  790. raid_end_bio_io(r1_bio);
  791. return 0;
  792. }
  793. mirror = conf->mirrors + rdisk;
  794. if (test_bit(WriteMostly, &mirror->rdev->flags) &&
  795. bitmap) {
  796. /* Reading from a write-mostly device must
  797. * take care not to over-take any writes
  798. * that are 'behind'
  799. */
  800. wait_event(bitmap->behind_wait,
  801. atomic_read(&bitmap->behind_writes) == 0);
  802. }
  803. r1_bio->read_disk = rdisk;
  804. read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
  805. md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
  806. max_sectors);
  807. r1_bio->bios[rdisk] = read_bio;
  808. read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
  809. read_bio->bi_bdev = mirror->rdev->bdev;
  810. read_bio->bi_end_io = raid1_end_read_request;
  811. read_bio->bi_rw = READ | do_sync;
  812. read_bio->bi_private = r1_bio;
  813. if (max_sectors < r1_bio->sectors) {
  814. /* could not read all from this device, so we will
  815. * need another r1_bio.
  816. */
  817. sectors_handled = (r1_bio->sector + max_sectors
  818. - bio->bi_sector);
  819. r1_bio->sectors = max_sectors;
  820. spin_lock_irq(&conf->device_lock);
  821. if (bio->bi_phys_segments == 0)
  822. bio->bi_phys_segments = 2;
  823. else
  824. bio->bi_phys_segments++;
  825. spin_unlock_irq(&conf->device_lock);
  826. /* Cannot call generic_make_request directly
  827. * as that will be queued in __make_request
  828. * and subsequent mempool_alloc might block waiting
  829. * for it. So hand bio over to raid1d.
  830. */
  831. reschedule_retry(r1_bio);
  832. r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
  833. r1_bio->master_bio = bio;
  834. r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
  835. r1_bio->state = 0;
  836. r1_bio->mddev = mddev;
  837. r1_bio->sector = bio->bi_sector + sectors_handled;
  838. goto read_again;
  839. } else
  840. generic_make_request(read_bio);
  841. return 0;
  842. }
  843. /*
  844. * WRITE:
  845. */
  846. if (conf->pending_count >= max_queued_requests) {
  847. md_wakeup_thread(mddev->thread);
  848. wait_event(conf->wait_barrier,
  849. conf->pending_count < max_queued_requests);
  850. }
  851. /* first select target devices under rcu_lock and
  852. * inc refcount on their rdev. Record them by setting
  853. * bios[x] to bio
  854. * If there are known/acknowledged bad blocks on any device on
  855. * which we have seen a write error, we want to avoid writing those
  856. * blocks.
  857. * This potentially requires several writes to write around
  858. * the bad blocks. Each set of writes gets it's own r1bio
  859. * with a set of bios attached.
  860. */
  861. plugged = mddev_check_plugged(mddev);
  862. disks = conf->raid_disks;
  863. retry_write:
  864. blocked_rdev = NULL;
  865. rcu_read_lock();
  866. max_sectors = r1_bio->sectors;
  867. for (i = 0; i < disks; i++) {
  868. struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
  869. if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
  870. atomic_inc(&rdev->nr_pending);
  871. blocked_rdev = rdev;
  872. break;
  873. }
  874. r1_bio->bios[i] = NULL;
  875. if (!rdev || test_bit(Faulty, &rdev->flags)) {
  876. set_bit(R1BIO_Degraded, &r1_bio->state);
  877. continue;
  878. }
  879. atomic_inc(&rdev->nr_pending);
  880. if (test_bit(WriteErrorSeen, &rdev->flags)) {
  881. sector_t first_bad;
  882. int bad_sectors;
  883. int is_bad;
  884. is_bad = is_badblock(rdev, r1_bio->sector,
  885. max_sectors,
  886. &first_bad, &bad_sectors);
  887. if (is_bad < 0) {
  888. /* mustn't write here until the bad block is
  889. * acknowledged*/
  890. set_bit(BlockedBadBlocks, &rdev->flags);
  891. blocked_rdev = rdev;
  892. break;
  893. }
  894. if (is_bad && first_bad <= r1_bio->sector) {
  895. /* Cannot write here at all */
  896. bad_sectors -= (r1_bio->sector - first_bad);
  897. if (bad_sectors < max_sectors)
  898. /* mustn't write more than bad_sectors
  899. * to other devices yet
  900. */
  901. max_sectors = bad_sectors;
  902. rdev_dec_pending(rdev, mddev);
  903. /* We don't set R1BIO_Degraded as that
  904. * only applies if the disk is
  905. * missing, so it might be re-added,
  906. * and we want to know to recover this
  907. * chunk.
  908. * In this case the device is here,
  909. * and the fact that this chunk is not
  910. * in-sync is recorded in the bad
  911. * block log
  912. */
  913. continue;
  914. }
  915. if (is_bad) {
  916. int good_sectors = first_bad - r1_bio->sector;
  917. if (good_sectors < max_sectors)
  918. max_sectors = good_sectors;
  919. }
  920. }
  921. r1_bio->bios[i] = bio;
  922. }
  923. rcu_read_unlock();
  924. if (unlikely(blocked_rdev)) {
  925. /* Wait for this device to become unblocked */
  926. int j;
  927. for (j = 0; j < i; j++)
  928. if (r1_bio->bios[j])
  929. rdev_dec_pending(conf->mirrors[j].rdev, mddev);
  930. r1_bio->state = 0;
  931. allow_barrier(conf);
  932. md_wait_for_blocked_rdev(blocked_rdev, mddev);
  933. wait_barrier(conf);
  934. goto retry_write;
  935. }
  936. if (max_sectors < r1_bio->sectors) {
  937. /* We are splitting this write into multiple parts, so
  938. * we need to prepare for allocating another r1_bio.
  939. */
  940. r1_bio->sectors = max_sectors;
  941. spin_lock_irq(&conf->device_lock);
  942. if (bio->bi_phys_segments == 0)
  943. bio->bi_phys_segments = 2;
  944. else
  945. bio->bi_phys_segments++;
  946. spin_unlock_irq(&conf->device_lock);
  947. }
  948. sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
  949. atomic_set(&r1_bio->remaining, 1);
  950. atomic_set(&r1_bio->behind_remaining, 0);
  951. first_clone = 1;
  952. for (i = 0; i < disks; i++) {
  953. struct bio *mbio;
  954. if (!r1_bio->bios[i])
  955. continue;
  956. mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
  957. md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
  958. if (first_clone) {
  959. /* do behind I/O ?
  960. * Not if there are too many, or cannot
  961. * allocate memory, or a reader on WriteMostly
  962. * is waiting for behind writes to flush */
  963. if (bitmap &&
  964. (atomic_read(&bitmap->behind_writes)
  965. < mddev->bitmap_info.max_write_behind) &&
  966. !waitqueue_active(&bitmap->behind_wait))
  967. alloc_behind_pages(mbio, r1_bio);
  968. bitmap_startwrite(bitmap, r1_bio->sector,
  969. r1_bio->sectors,
  970. test_bit(R1BIO_BehindIO,
  971. &r1_bio->state));
  972. first_clone = 0;
  973. }
  974. if (r1_bio->behind_bvecs) {
  975. struct bio_vec *bvec;
  976. int j;
  977. /* Yes, I really want the '__' version so that
  978. * we clear any unused pointer in the io_vec, rather
  979. * than leave them unchanged. This is important
  980. * because when we come to free the pages, we won't
  981. * know the original bi_idx, so we just free
  982. * them all
  983. */
  984. __bio_for_each_segment(bvec, mbio, j, 0)
  985. bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
  986. if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
  987. atomic_inc(&r1_bio->behind_remaining);
  988. }
  989. r1_bio->bios[i] = mbio;
  990. mbio->bi_sector = (r1_bio->sector +
  991. conf->mirrors[i].rdev->data_offset);
  992. mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
  993. mbio->bi_end_io = raid1_end_write_request;
  994. mbio->bi_rw = WRITE | do_flush_fua | do_sync;
  995. mbio->bi_private = r1_bio;
  996. atomic_inc(&r1_bio->remaining);
  997. spin_lock_irqsave(&conf->device_lock, flags);
  998. bio_list_add(&conf->pending_bio_list, mbio);
  999. conf->pending_count++;
  1000. spin_unlock_irqrestore(&conf->device_lock, flags);
  1001. }
  1002. /* Mustn't call r1_bio_write_done before this next test,
  1003. * as it could result in the bio being freed.
  1004. */
  1005. if (sectors_handled < (bio->bi_size >> 9)) {
  1006. r1_bio_write_done(r1_bio);
  1007. /* We need another r1_bio. It has already been counted
  1008. * in bio->bi_phys_segments
  1009. */
  1010. r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
  1011. r1_bio->master_bio = bio;
  1012. r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
  1013. r1_bio->state = 0;
  1014. r1_bio->mddev = mddev;
  1015. r1_bio->sector = bio->bi_sector + sectors_handled;
  1016. goto retry_write;
  1017. }
  1018. r1_bio_write_done(r1_bio);
  1019. /* In case raid1d snuck in to freeze_array */
  1020. wake_up(&conf->wait_barrier);
  1021. if (do_sync || !bitmap || !plugged)
  1022. md_wakeup_thread(mddev->thread);
  1023. return 0;
  1024. }
  1025. static void status(struct seq_file *seq, struct mddev *mddev)
  1026. {
  1027. struct r1conf *conf = mddev->private;
  1028. int i;
  1029. seq_printf(seq, " [%d/%d] [", conf->raid_disks,
  1030. conf->raid_disks - mddev->degraded);
  1031. rcu_read_lock();
  1032. for (i = 0; i < conf->raid_disks; i++) {
  1033. struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
  1034. seq_printf(seq, "%s",
  1035. rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
  1036. }
  1037. rcu_read_unlock();
  1038. seq_printf(seq, "]");
  1039. }
  1040. static void error(struct mddev *mddev, struct md_rdev *rdev)
  1041. {
  1042. char b[BDEVNAME_SIZE];
  1043. struct r1conf *conf = mddev->private;
  1044. /*
  1045. * If it is not operational, then we have already marked it as dead
  1046. * else if it is the last working disks, ignore the error, let the
  1047. * next level up know.
  1048. * else mark the drive as failed
  1049. */
  1050. if (test_bit(In_sync, &rdev->flags)
  1051. && (conf->raid_disks - mddev->degraded) == 1) {
  1052. /*
  1053. * Don't fail the drive, act as though we were just a
  1054. * normal single drive.
  1055. * However don't try a recovery from this drive as
  1056. * it is very likely to fail.
  1057. */
  1058. conf->recovery_disabled = mddev->recovery_disabled;
  1059. return;
  1060. }
  1061. set_bit(Blocked, &rdev->flags);
  1062. if (test_and_clear_bit(In_sync, &rdev->flags)) {
  1063. unsigned long flags;
  1064. spin_lock_irqsave(&conf->device_lock, flags);
  1065. mddev->degraded++;
  1066. set_bit(Faulty, &rdev->flags);
  1067. spin_unlock_irqrestore(&conf->device_lock, flags);
  1068. /*
  1069. * if recovery is running, make sure it aborts.
  1070. */
  1071. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  1072. } else
  1073. set_bit(Faulty, &rdev->flags);
  1074. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  1075. printk(KERN_ALERT
  1076. "md/raid1:%s: Disk failure on %s, disabling device.\n"
  1077. "md/raid1:%s: Operation continuing on %d devices.\n",
  1078. mdname(mddev), bdevname(rdev->bdev, b),
  1079. mdname(mddev), conf->raid_disks - mddev->degraded);
  1080. }
  1081. static void print_conf(struct r1conf *conf)
  1082. {
  1083. int i;
  1084. printk(KERN_DEBUG "RAID1 conf printout:\n");
  1085. if (!conf) {
  1086. printk(KERN_DEBUG "(!conf)\n");
  1087. return;
  1088. }
  1089. printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
  1090. conf->raid_disks);
  1091. rcu_read_lock();
  1092. for (i = 0; i < conf->raid_disks; i++) {
  1093. char b[BDEVNAME_SIZE];
  1094. struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
  1095. if (rdev)
  1096. printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
  1097. i, !test_bit(In_sync, &rdev->flags),
  1098. !test_bit(Faulty, &rdev->flags),
  1099. bdevname(rdev->bdev,b));
  1100. }
  1101. rcu_read_unlock();
  1102. }
  1103. static void close_sync(struct r1conf *conf)
  1104. {
  1105. wait_barrier(conf);
  1106. allow_barrier(conf);
  1107. mempool_destroy(conf->r1buf_pool);
  1108. conf->r1buf_pool = NULL;
  1109. }
  1110. static int raid1_spare_active(struct mddev *mddev)
  1111. {
  1112. int i;
  1113. struct r1conf *conf = mddev->private;
  1114. int count = 0;
  1115. unsigned long flags;
  1116. /*
  1117. * Find all failed disks within the RAID1 configuration
  1118. * and mark them readable.
  1119. * Called under mddev lock, so rcu protection not needed.
  1120. */
  1121. for (i = 0; i < conf->raid_disks; i++) {
  1122. struct md_rdev *rdev = conf->mirrors[i].rdev;
  1123. if (rdev
  1124. && !test_bit(Faulty, &rdev->flags)
  1125. && !test_and_set_bit(In_sync, &rdev->flags)) {
  1126. count++;
  1127. sysfs_notify_dirent_safe(rdev->sysfs_state);
  1128. }
  1129. }
  1130. spin_lock_irqsave(&conf->device_lock, flags);
  1131. mddev->degraded -= count;
  1132. spin_unlock_irqrestore(&conf->device_lock, flags);
  1133. print_conf(conf);
  1134. return count;
  1135. }
  1136. static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
  1137. {
  1138. struct r1conf *conf = mddev->private;
  1139. int err = -EEXIST;
  1140. int mirror = 0;
  1141. struct mirror_info *p;
  1142. int first = 0;
  1143. int last = mddev->raid_disks - 1;
  1144. if (mddev->recovery_disabled == conf->recovery_disabled)
  1145. return -EBUSY;
  1146. if (rdev->raid_disk >= 0)
  1147. first = last = rdev->raid_disk;
  1148. for (mirror = first; mirror <= last; mirror++)
  1149. if ( !(p=conf->mirrors+mirror)->rdev) {
  1150. disk_stack_limits(mddev->gendisk, rdev->bdev,
  1151. rdev->data_offset << 9);
  1152. /* as we don't honour merge_bvec_fn, we must
  1153. * never risk violating it, so limit
  1154. * ->max_segments to one lying with a single
  1155. * page, as a one page request is never in
  1156. * violation.
  1157. */
  1158. if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
  1159. blk_queue_max_segments(mddev->queue, 1);
  1160. blk_queue_segment_boundary(mddev->queue,
  1161. PAGE_CACHE_SIZE - 1);
  1162. }
  1163. p->head_position = 0;
  1164. rdev->raid_disk = mirror;
  1165. err = 0;
  1166. /* As all devices are equivalent, we don't need a full recovery
  1167. * if this was recently any drive of the array
  1168. */
  1169. if (rdev->saved_raid_disk < 0)
  1170. conf->fullsync = 1;
  1171. rcu_assign_pointer(p->rdev, rdev);
  1172. break;
  1173. }
  1174. md_integrity_add_rdev(rdev, mddev);
  1175. print_conf(conf);
  1176. return err;
  1177. }
  1178. static int raid1_remove_disk(struct mddev *mddev, int number)
  1179. {
  1180. struct r1conf *conf = mddev->private;
  1181. int err = 0;
  1182. struct md_rdev *rdev;
  1183. struct mirror_info *p = conf->mirrors+ number;
  1184. print_conf(conf);
  1185. rdev = p->rdev;
  1186. if (rdev) {
  1187. if (test_bit(In_sync, &rdev->flags) ||
  1188. atomic_read(&rdev->nr_pending)) {
  1189. err = -EBUSY;
  1190. goto abort;
  1191. }
  1192. /* Only remove non-faulty devices if recovery
  1193. * is not possible.
  1194. */
  1195. if (!test_bit(Faulty, &rdev->flags) &&
  1196. mddev->recovery_disabled != conf->recovery_disabled &&
  1197. mddev->degraded < conf->raid_disks) {
  1198. err = -EBUSY;
  1199. goto abort;
  1200. }
  1201. p->rdev = NULL;
  1202. synchronize_rcu();
  1203. if (atomic_read(&rdev->nr_pending)) {
  1204. /* lost the race, try later */
  1205. err = -EBUSY;
  1206. p->rdev = rdev;
  1207. goto abort;
  1208. }
  1209. err = md_integrity_register(mddev);
  1210. }
  1211. abort:
  1212. print_conf(conf);
  1213. return err;
  1214. }
  1215. static void end_sync_read(struct bio *bio, int error)
  1216. {
  1217. struct r1bio *r1_bio = bio->bi_private;
  1218. update_head_pos(r1_bio->read_disk, r1_bio);
  1219. /*
  1220. * we have read a block, now it needs to be re-written,
  1221. * or re-read if the read failed.
  1222. * We don't do much here, just schedule handling by raid1d
  1223. */
  1224. if (test_bit(BIO_UPTODATE, &bio->bi_flags))
  1225. set_bit(R1BIO_Uptodate, &r1_bio->state);
  1226. if (atomic_dec_and_test(&r1_bio->remaining))
  1227. reschedule_retry(r1_bio);
  1228. }
  1229. static void end_sync_write(struct bio *bio, int error)
  1230. {
  1231. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  1232. struct r1bio *r1_bio = bio->bi_private;
  1233. struct mddev *mddev = r1_bio->mddev;
  1234. struct r1conf *conf = mddev->private;
  1235. int mirror=0;
  1236. sector_t first_bad;
  1237. int bad_sectors;
  1238. mirror = find_bio_disk(r1_bio, bio);
  1239. if (!uptodate) {
  1240. sector_t sync_blocks = 0;
  1241. sector_t s = r1_bio->sector;
  1242. long sectors_to_go = r1_bio->sectors;
  1243. /* make sure these bits doesn't get cleared. */
  1244. do {
  1245. bitmap_end_sync(mddev->bitmap, s,
  1246. &sync_blocks, 1);
  1247. s += sync_blocks;
  1248. sectors_to_go -= sync_blocks;
  1249. } while (sectors_to_go > 0);
  1250. set_bit(WriteErrorSeen,
  1251. &conf->mirrors[mirror].rdev->flags);
  1252. set_bit(R1BIO_WriteError, &r1_bio->state);
  1253. } else if (is_badblock(conf->mirrors[mirror].rdev,
  1254. r1_bio->sector,
  1255. r1_bio->sectors,
  1256. &first_bad, &bad_sectors) &&
  1257. !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
  1258. r1_bio->sector,
  1259. r1_bio->sectors,
  1260. &first_bad, &bad_sectors)
  1261. )
  1262. set_bit(R1BIO_MadeGood, &r1_bio->state);
  1263. if (atomic_dec_and_test(&r1_bio->remaining)) {
  1264. int s = r1_bio->sectors;
  1265. if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
  1266. test_bit(R1BIO_WriteError, &r1_bio->state))
  1267. reschedule_retry(r1_bio);
  1268. else {
  1269. put_buf(r1_bio);
  1270. md_done_sync(mddev, s, uptodate);
  1271. }
  1272. }
  1273. }
  1274. static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
  1275. int sectors, struct page *page, int rw)
  1276. {
  1277. if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
  1278. /* success */
  1279. return 1;
  1280. if (rw == WRITE)
  1281. set_bit(WriteErrorSeen, &rdev->flags);
  1282. /* need to record an error - either for the block or the device */
  1283. if (!rdev_set_badblocks(rdev, sector, sectors, 0))
  1284. md_error(rdev->mddev, rdev);
  1285. return 0;
  1286. }
  1287. static int fix_sync_read_error(struct r1bio *r1_bio)
  1288. {
  1289. /* Try some synchronous reads of other devices to get
  1290. * good data, much like with normal read errors. Only
  1291. * read into the pages we already have so we don't
  1292. * need to re-issue the read request.
  1293. * We don't need to freeze the array, because being in an
  1294. * active sync request, there is no normal IO, and
  1295. * no overlapping syncs.
  1296. * We don't need to check is_badblock() again as we
  1297. * made sure that anything with a bad block in range
  1298. * will have bi_end_io clear.
  1299. */
  1300. struct mddev *mddev = r1_bio->mddev;
  1301. struct r1conf *conf = mddev->private;
  1302. struct bio *bio = r1_bio->bios[r1_bio->read_disk];
  1303. sector_t sect = r1_bio->sector;
  1304. int sectors = r1_bio->sectors;
  1305. int idx = 0;
  1306. while(sectors) {
  1307. int s = sectors;
  1308. int d = r1_bio->read_disk;
  1309. int success = 0;
  1310. struct md_rdev *rdev;
  1311. int start;
  1312. if (s > (PAGE_SIZE>>9))
  1313. s = PAGE_SIZE >> 9;
  1314. do {
  1315. if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
  1316. /* No rcu protection needed here devices
  1317. * can only be removed when no resync is
  1318. * active, and resync is currently active
  1319. */
  1320. rdev = conf->mirrors[d].rdev;
  1321. if (sync_page_io(rdev, sect, s<<9,
  1322. bio->bi_io_vec[idx].bv_page,
  1323. READ, false)) {
  1324. success = 1;
  1325. break;
  1326. }
  1327. }
  1328. d++;
  1329. if (d == conf->raid_disks)
  1330. d = 0;
  1331. } while (!success && d != r1_bio->read_disk);
  1332. if (!success) {
  1333. char b[BDEVNAME_SIZE];
  1334. int abort = 0;
  1335. /* Cannot read from anywhere, this block is lost.
  1336. * Record a bad block on each device. If that doesn't
  1337. * work just disable and interrupt the recovery.
  1338. * Don't fail devices as that won't really help.
  1339. */
  1340. printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
  1341. " for block %llu\n",
  1342. mdname(mddev),
  1343. bdevname(bio->bi_bdev, b),
  1344. (unsigned long long)r1_bio->sector);
  1345. for (d = 0; d < conf->raid_disks; d++) {
  1346. rdev = conf->mirrors[d].rdev;
  1347. if (!rdev || test_bit(Faulty, &rdev->flags))
  1348. continue;
  1349. if (!rdev_set_badblocks(rdev, sect, s, 0))
  1350. abort = 1;
  1351. }
  1352. if (abort) {
  1353. conf->recovery_disabled =
  1354. mddev->recovery_disabled;
  1355. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  1356. md_done_sync(mddev, r1_bio->sectors, 0);
  1357. put_buf(r1_bio);
  1358. return 0;
  1359. }
  1360. /* Try next page */
  1361. sectors -= s;
  1362. sect += s;
  1363. idx++;
  1364. continue;
  1365. }
  1366. start = d;
  1367. /* write it back and re-read */
  1368. while (d != r1_bio->read_disk) {
  1369. if (d == 0)
  1370. d = conf->raid_disks;
  1371. d--;
  1372. if (r1_bio->bios[d]->bi_end_io != end_sync_read)
  1373. continue;
  1374. rdev = conf->mirrors[d].rdev;
  1375. if (r1_sync_page_io(rdev, sect, s,
  1376. bio->bi_io_vec[idx].bv_page,
  1377. WRITE) == 0) {
  1378. r1_bio->bios[d]->bi_end_io = NULL;
  1379. rdev_dec_pending(rdev, mddev);
  1380. }
  1381. }
  1382. d = start;
  1383. while (d != r1_bio->read_disk) {
  1384. if (d == 0)
  1385. d = conf->raid_disks;
  1386. d--;
  1387. if (r1_bio->bios[d]->bi_end_io != end_sync_read)
  1388. continue;
  1389. rdev = conf->mirrors[d].rdev;
  1390. if (r1_sync_page_io(rdev, sect, s,
  1391. bio->bi_io_vec[idx].bv_page,
  1392. READ) != 0)
  1393. atomic_add(s, &rdev->corrected_errors);
  1394. }
  1395. sectors -= s;
  1396. sect += s;
  1397. idx ++;
  1398. }
  1399. set_bit(R1BIO_Uptodate, &r1_bio->state);
  1400. set_bit(BIO_UPTODATE, &bio->bi_flags);
  1401. return 1;
  1402. }
  1403. static int process_checks(struct r1bio *r1_bio)
  1404. {
  1405. /* We have read all readable devices. If we haven't
  1406. * got the block, then there is no hope left.
  1407. * If we have, then we want to do a comparison
  1408. * and skip the write if everything is the same.
  1409. * If any blocks failed to read, then we need to
  1410. * attempt an over-write
  1411. */
  1412. struct mddev *mddev = r1_bio->mddev;
  1413. struct r1conf *conf = mddev->private;
  1414. int primary;
  1415. int i;
  1416. for (primary = 0; primary < conf->raid_disks; primary++)
  1417. if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
  1418. test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
  1419. r1_bio->bios[primary]->bi_end_io = NULL;
  1420. rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
  1421. break;
  1422. }
  1423. r1_bio->read_disk = primary;
  1424. for (i = 0; i < conf->raid_disks; i++) {
  1425. int j;
  1426. int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
  1427. struct bio *pbio = r1_bio->bios[primary];
  1428. struct bio *sbio = r1_bio->bios[i];
  1429. int size;
  1430. if (r1_bio->bios[i]->bi_end_io != end_sync_read)
  1431. continue;
  1432. if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
  1433. for (j = vcnt; j-- ; ) {
  1434. struct page *p, *s;
  1435. p = pbio->bi_io_vec[j].bv_page;
  1436. s = sbio->bi_io_vec[j].bv_page;
  1437. if (memcmp(page_address(p),
  1438. page_address(s),
  1439. PAGE_SIZE))
  1440. break;
  1441. }
  1442. } else
  1443. j = 0;
  1444. if (j >= 0)
  1445. mddev->resync_mismatches += r1_bio->sectors;
  1446. if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
  1447. && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
  1448. /* No need to write to this device. */
  1449. sbio->bi_end_io = NULL;
  1450. rdev_dec_pending(conf->mirrors[i].rdev, mddev);
  1451. continue;
  1452. }
  1453. /* fixup the bio for reuse */
  1454. sbio->bi_vcnt = vcnt;
  1455. sbio->bi_size = r1_bio->sectors << 9;
  1456. sbio->bi_idx = 0;
  1457. sbio->bi_phys_segments = 0;
  1458. sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
  1459. sbio->bi_flags |= 1 << BIO_UPTODATE;
  1460. sbio->bi_next = NULL;
  1461. sbio->bi_sector = r1_bio->sector +
  1462. conf->mirrors[i].rdev->data_offset;
  1463. sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
  1464. size = sbio->bi_size;
  1465. for (j = 0; j < vcnt ; j++) {
  1466. struct bio_vec *bi;
  1467. bi = &sbio->bi_io_vec[j];
  1468. bi->bv_offset = 0;
  1469. if (size > PAGE_SIZE)
  1470. bi->bv_len = PAGE_SIZE;
  1471. else
  1472. bi->bv_len = size;
  1473. size -= PAGE_SIZE;
  1474. memcpy(page_address(bi->bv_page),
  1475. page_address(pbio->bi_io_vec[j].bv_page),
  1476. PAGE_SIZE);
  1477. }
  1478. }
  1479. return 0;
  1480. }
  1481. static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
  1482. {
  1483. struct r1conf *conf = mddev->private;
  1484. int i;
  1485. int disks = conf->raid_disks;
  1486. struct bio *bio, *wbio;
  1487. bio = r1_bio->bios[r1_bio->read_disk];
  1488. if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
  1489. /* ouch - failed to read all of that. */
  1490. if (!fix_sync_read_error(r1_bio))
  1491. return;
  1492. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  1493. if (process_checks(r1_bio) < 0)
  1494. return;
  1495. /*
  1496. * schedule writes
  1497. */
  1498. atomic_set(&r1_bio->remaining, 1);
  1499. for (i = 0; i < disks ; i++) {
  1500. wbio = r1_bio->bios[i];
  1501. if (wbio->bi_end_io == NULL ||
  1502. (wbio->bi_end_io == end_sync_read &&
  1503. (i == r1_bio->read_disk ||
  1504. !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
  1505. continue;
  1506. wbio->bi_rw = WRITE;
  1507. wbio->bi_end_io = end_sync_write;
  1508. atomic_inc(&r1_bio->remaining);
  1509. md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
  1510. generic_make_request(wbio);
  1511. }
  1512. if (atomic_dec_and_test(&r1_bio->remaining)) {
  1513. /* if we're here, all write(s) have completed, so clean up */
  1514. md_done_sync(mddev, r1_bio->sectors, 1);
  1515. put_buf(r1_bio);
  1516. }
  1517. }
  1518. /*
  1519. * This is a kernel thread which:
  1520. *
  1521. * 1. Retries failed read operations on working mirrors.
  1522. * 2. Updates the raid superblock when problems encounter.
  1523. * 3. Performs writes following reads for array synchronising.
  1524. */
  1525. static void fix_read_error(struct r1conf *conf, int read_disk,
  1526. sector_t sect, int sectors)
  1527. {
  1528. struct mddev *mddev = conf->mddev;
  1529. while(sectors) {
  1530. int s = sectors;
  1531. int d = read_disk;
  1532. int success = 0;
  1533. int start;
  1534. struct md_rdev *rdev;
  1535. if (s > (PAGE_SIZE>>9))
  1536. s = PAGE_SIZE >> 9;
  1537. do {
  1538. /* Note: no rcu protection needed here
  1539. * as this is synchronous in the raid1d thread
  1540. * which is the thread that might remove
  1541. * a device. If raid1d ever becomes multi-threaded....
  1542. */
  1543. sector_t first_bad;
  1544. int bad_sectors;
  1545. rdev = conf->mirrors[d].rdev;
  1546. if (rdev &&
  1547. test_bit(In_sync, &rdev->flags) &&
  1548. is_badblock(rdev, sect, s,
  1549. &first_bad, &bad_sectors) == 0 &&
  1550. sync_page_io(rdev, sect, s<<9,
  1551. conf->tmppage, READ, false))
  1552. success = 1;
  1553. else {
  1554. d++;
  1555. if (d == conf->raid_disks)
  1556. d = 0;
  1557. }
  1558. } while (!success && d != read_disk);
  1559. if (!success) {
  1560. /* Cannot read from anywhere - mark it bad */
  1561. struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
  1562. if (!rdev_set_badblocks(rdev, sect, s, 0))
  1563. md_error(mddev, rdev);
  1564. break;
  1565. }
  1566. /* write it back and re-read */
  1567. start = d;
  1568. while (d != read_disk) {
  1569. if (d==0)
  1570. d = conf->raid_disks;
  1571. d--;
  1572. rdev = conf->mirrors[d].rdev;
  1573. if (rdev &&
  1574. test_bit(In_sync, &rdev->flags))
  1575. r1_sync_page_io(rdev, sect, s,
  1576. conf->tmppage, WRITE);
  1577. }
  1578. d = start;
  1579. while (d != read_disk) {
  1580. char b[BDEVNAME_SIZE];
  1581. if (d==0)
  1582. d = conf->raid_disks;
  1583. d--;
  1584. rdev = conf->mirrors[d].rdev;
  1585. if (rdev &&
  1586. test_bit(In_sync, &rdev->flags)) {
  1587. if (r1_sync_page_io(rdev, sect, s,
  1588. conf->tmppage, READ)) {
  1589. atomic_add(s, &rdev->corrected_errors);
  1590. printk(KERN_INFO
  1591. "md/raid1:%s: read error corrected "
  1592. "(%d sectors at %llu on %s)\n",
  1593. mdname(mddev), s,
  1594. (unsigned long long)(sect +
  1595. rdev->data_offset),
  1596. bdevname(rdev->bdev, b));
  1597. }
  1598. }
  1599. }
  1600. sectors -= s;
  1601. sect += s;
  1602. }
  1603. }
  1604. static void bi_complete(struct bio *bio, int error)
  1605. {
  1606. complete((struct completion *)bio->bi_private);
  1607. }
  1608. static int submit_bio_wait(int rw, struct bio *bio)
  1609. {
  1610. struct completion event;
  1611. rw |= REQ_SYNC;
  1612. init_completion(&event);
  1613. bio->bi_private = &event;
  1614. bio->bi_end_io = bi_complete;
  1615. submit_bio(rw, bio);
  1616. wait_for_completion(&event);
  1617. return test_bit(BIO_UPTODATE, &bio->bi_flags);
  1618. }
  1619. static int narrow_write_error(struct r1bio *r1_bio, int i)
  1620. {
  1621. struct mddev *mddev = r1_bio->mddev;
  1622. struct r1conf *conf = mddev->private;
  1623. struct md_rdev *rdev = conf->mirrors[i].rdev;
  1624. int vcnt, idx;
  1625. struct bio_vec *vec;
  1626. /* bio has the data to be written to device 'i' where
  1627. * we just recently had a write error.
  1628. * We repeatedly clone the bio and trim down to one block,
  1629. * then try the write. Where the write fails we record
  1630. * a bad block.
  1631. * It is conceivable that the bio doesn't exactly align with
  1632. * blocks. We must handle this somehow.
  1633. *
  1634. * We currently own a reference on the rdev.
  1635. */
  1636. int block_sectors;
  1637. sector_t sector;
  1638. int sectors;
  1639. int sect_to_write = r1_bio->sectors;
  1640. int ok = 1;
  1641. if (rdev->badblocks.shift < 0)
  1642. return 0;
  1643. block_sectors = 1 << rdev->badblocks.shift;
  1644. sector = r1_bio->sector;
  1645. sectors = ((sector + block_sectors)
  1646. & ~(sector_t)(block_sectors - 1))
  1647. - sector;
  1648. if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
  1649. vcnt = r1_bio->behind_page_count;
  1650. vec = r1_bio->behind_bvecs;
  1651. idx = 0;
  1652. while (vec[idx].bv_page == NULL)
  1653. idx++;
  1654. } else {
  1655. vcnt = r1_bio->master_bio->bi_vcnt;
  1656. vec = r1_bio->master_bio->bi_io_vec;
  1657. idx = r1_bio->master_bio->bi_idx;
  1658. }
  1659. while (sect_to_write) {
  1660. struct bio *wbio;
  1661. if (sectors > sect_to_write)
  1662. sectors = sect_to_write;
  1663. /* Write at 'sector' for 'sectors'*/
  1664. wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
  1665. memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
  1666. wbio->bi_sector = r1_bio->sector;
  1667. wbio->bi_rw = WRITE;
  1668. wbio->bi_vcnt = vcnt;
  1669. wbio->bi_size = r1_bio->sectors << 9;
  1670. wbio->bi_idx = idx;
  1671. md_trim_bio(wbio, sector - r1_bio->sector, sectors);
  1672. wbio->bi_sector += rdev->data_offset;
  1673. wbio->bi_bdev = rdev->bdev;
  1674. if (submit_bio_wait(WRITE, wbio) == 0)
  1675. /* failure! */
  1676. ok = rdev_set_badblocks(rdev, sector,
  1677. sectors, 0)
  1678. && ok;
  1679. bio_put(wbio);
  1680. sect_to_write -= sectors;
  1681. sector += sectors;
  1682. sectors = block_sectors;
  1683. }
  1684. return ok;
  1685. }
  1686. static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
  1687. {
  1688. int m;
  1689. int s = r1_bio->sectors;
  1690. for (m = 0; m < conf->raid_disks ; m++) {
  1691. struct md_rdev *rdev = conf->mirrors[m].rdev;
  1692. struct bio *bio = r1_bio->bios[m];
  1693. if (bio->bi_end_io == NULL)
  1694. continue;
  1695. if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
  1696. test_bit(R1BIO_MadeGood, &r1_bio->state)) {
  1697. rdev_clear_badblocks(rdev, r1_bio->sector, s);
  1698. }
  1699. if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
  1700. test_bit(R1BIO_WriteError, &r1_bio->state)) {
  1701. if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
  1702. md_error(conf->mddev, rdev);
  1703. }
  1704. }
  1705. put_buf(r1_bio);
  1706. md_done_sync(conf->mddev, s, 1);
  1707. }
  1708. static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
  1709. {
  1710. int m;
  1711. for (m = 0; m < conf->raid_disks ; m++)
  1712. if (r1_bio->bios[m] == IO_MADE_GOOD) {
  1713. struct md_rdev *rdev = conf->mirrors[m].rdev;
  1714. rdev_clear_badblocks(rdev,
  1715. r1_bio->sector,
  1716. r1_bio->sectors);
  1717. rdev_dec_pending(rdev, conf->mddev);
  1718. } else if (r1_bio->bios[m] != NULL) {
  1719. /* This drive got a write error. We need to
  1720. * narrow down and record precise write
  1721. * errors.
  1722. */
  1723. if (!narrow_write_error(r1_bio, m)) {
  1724. md_error(conf->mddev,
  1725. conf->mirrors[m].rdev);
  1726. /* an I/O failed, we can't clear the bitmap */
  1727. set_bit(R1BIO_Degraded, &r1_bio->state);
  1728. }
  1729. rdev_dec_pending(conf->mirrors[m].rdev,
  1730. conf->mddev);
  1731. }
  1732. if (test_bit(R1BIO_WriteError, &r1_bio->state))
  1733. close_write(r1_bio);
  1734. raid_end_bio_io(r1_bio);
  1735. }
  1736. static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
  1737. {
  1738. int disk;
  1739. int max_sectors;
  1740. struct mddev *mddev = conf->mddev;
  1741. struct bio *bio;
  1742. char b[BDEVNAME_SIZE];
  1743. struct md_rdev *rdev;
  1744. clear_bit(R1BIO_ReadError, &r1_bio->state);
  1745. /* we got a read error. Maybe the drive is bad. Maybe just
  1746. * the block and we can fix it.
  1747. * We freeze all other IO, and try reading the block from
  1748. * other devices. When we find one, we re-write
  1749. * and check it that fixes the read error.
  1750. * This is all done synchronously while the array is
  1751. * frozen
  1752. */
  1753. if (mddev->ro == 0) {
  1754. freeze_array(conf);
  1755. fix_read_error(conf, r1_bio->read_disk,
  1756. r1_bio->sector, r1_bio->sectors);
  1757. unfreeze_array(conf);
  1758. } else
  1759. md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
  1760. bio = r1_bio->bios[r1_bio->read_disk];
  1761. bdevname(bio->bi_bdev, b);
  1762. read_more:
  1763. disk = read_balance(conf, r1_bio, &max_sectors);
  1764. if (disk == -1) {
  1765. printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
  1766. " read error for block %llu\n",
  1767. mdname(mddev), b, (unsigned long long)r1_bio->sector);
  1768. raid_end_bio_io(r1_bio);
  1769. } else {
  1770. const unsigned long do_sync
  1771. = r1_bio->master_bio->bi_rw & REQ_SYNC;
  1772. if (bio) {
  1773. r1_bio->bios[r1_bio->read_disk] =
  1774. mddev->ro ? IO_BLOCKED : NULL;
  1775. bio_put(bio);
  1776. }
  1777. r1_bio->read_disk = disk;
  1778. bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
  1779. md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
  1780. r1_bio->bios[r1_bio->read_disk] = bio;
  1781. rdev = conf->mirrors[disk].rdev;
  1782. printk_ratelimited(KERN_ERR
  1783. "md/raid1:%s: redirecting sector %llu"
  1784. " to other mirror: %s\n",
  1785. mdname(mddev),
  1786. (unsigned long long)r1_bio->sector,
  1787. bdevname(rdev->bdev, b));
  1788. bio->bi_sector = r1_bio->sector + rdev->data_offset;
  1789. bio->bi_bdev = rdev->bdev;
  1790. bio->bi_end_io = raid1_end_read_request;
  1791. bio->bi_rw = READ | do_sync;
  1792. bio->bi_private = r1_bio;
  1793. if (max_sectors < r1_bio->sectors) {
  1794. /* Drat - have to split this up more */
  1795. struct bio *mbio = r1_bio->master_bio;
  1796. int sectors_handled = (r1_bio->sector + max_sectors
  1797. - mbio->bi_sector);
  1798. r1_bio->sectors = max_sectors;
  1799. spin_lock_irq(&conf->device_lock);
  1800. if (mbio->bi_phys_segments == 0)
  1801. mbio->bi_phys_segments = 2;
  1802. else
  1803. mbio->bi_phys_segments++;
  1804. spin_unlock_irq(&conf->device_lock);
  1805. generic_make_request(bio);
  1806. bio = NULL;
  1807. r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
  1808. r1_bio->master_bio = mbio;
  1809. r1_bio->sectors = (mbio->bi_size >> 9)
  1810. - sectors_handled;
  1811. r1_bio->state = 0;
  1812. set_bit(R1BIO_ReadError, &r1_bio->state);
  1813. r1_bio->mddev = mddev;
  1814. r1_bio->sector = mbio->bi_sector + sectors_handled;
  1815. goto read_more;
  1816. } else
  1817. generic_make_request(bio);
  1818. }
  1819. }
  1820. static void raid1d(struct mddev *mddev)
  1821. {
  1822. struct r1bio *r1_bio;
  1823. unsigned long flags;
  1824. struct r1conf *conf = mddev->private;
  1825. struct list_head *head = &conf->retry_list;
  1826. struct blk_plug plug;
  1827. md_check_recovery(mddev);
  1828. blk_start_plug(&plug);
  1829. for (;;) {
  1830. if (atomic_read(&mddev->plug_cnt) == 0)
  1831. flush_pending_writes(conf);
  1832. spin_lock_irqsave(&conf->device_lock, flags);
  1833. if (list_empty(head)) {
  1834. spin_unlock_irqrestore(&conf->device_lock, flags);
  1835. break;
  1836. }
  1837. r1_bio = list_entry(head->prev, struct r1bio, retry_list);
  1838. list_del(head->prev);
  1839. conf->nr_queued--;
  1840. spin_unlock_irqrestore(&conf->device_lock, flags);
  1841. mddev = r1_bio->mddev;
  1842. conf = mddev->private;
  1843. if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
  1844. if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
  1845. test_bit(R1BIO_WriteError, &r1_bio->state))
  1846. handle_sync_write_finished(conf, r1_bio);
  1847. else
  1848. sync_request_write(mddev, r1_bio);
  1849. } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
  1850. test_bit(R1BIO_WriteError, &r1_bio->state))
  1851. handle_write_finished(conf, r1_bio);
  1852. else if (test_bit(R1BIO_ReadError, &r1_bio->state))
  1853. handle_read_error(conf, r1_bio);
  1854. else
  1855. /* just a partial read to be scheduled from separate
  1856. * context
  1857. */
  1858. generic_make_request(r1_bio->bios[r1_bio->read_disk]);
  1859. cond_resched();
  1860. if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
  1861. md_check_recovery(mddev);
  1862. }
  1863. blk_finish_plug(&plug);
  1864. }
  1865. static int init_resync(struct r1conf *conf)
  1866. {
  1867. int buffs;
  1868. buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
  1869. BUG_ON(conf->r1buf_pool);
  1870. conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
  1871. conf->poolinfo);
  1872. if (!conf->r1buf_pool)
  1873. return -ENOMEM;
  1874. conf->next_resync = 0;
  1875. return 0;
  1876. }
  1877. /*
  1878. * perform a "sync" on one "block"
  1879. *
  1880. * We need to make sure that no normal I/O request - particularly write
  1881. * requests - conflict with active sync requests.
  1882. *
  1883. * This is achieved by tracking pending requests and a 'barrier' concept
  1884. * that can be installed to exclude normal IO requests.
  1885. */
  1886. static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
  1887. {
  1888. struct r1conf *conf = mddev->private;
  1889. struct r1bio *r1_bio;
  1890. struct bio *bio;
  1891. sector_t max_sector, nr_sectors;
  1892. int disk = -1;
  1893. int i;
  1894. int wonly = -1;
  1895. int write_targets = 0, read_targets = 0;
  1896. sector_t sync_blocks;
  1897. int still_degraded = 0;
  1898. int good_sectors = RESYNC_SECTORS;
  1899. int min_bad = 0; /* number of sectors that are bad in all devices */
  1900. if (!conf->r1buf_pool)
  1901. if (init_resync(conf))
  1902. return 0;
  1903. max_sector = mddev->dev_sectors;
  1904. if (sector_nr >= max_sector) {
  1905. /* If we aborted, we need to abort the
  1906. * sync on the 'current' bitmap chunk (there will
  1907. * only be one in raid1 resync.
  1908. * We can find the current addess in mddev->curr_resync
  1909. */
  1910. if (mddev->curr_resync < max_sector) /* aborted */
  1911. bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
  1912. &sync_blocks, 1);
  1913. else /* completed sync */
  1914. conf->fullsync = 0;
  1915. bitmap_close_sync(mddev->bitmap);
  1916. close_sync(conf);
  1917. return 0;
  1918. }
  1919. if (mddev->bitmap == NULL &&
  1920. mddev->recovery_cp == MaxSector &&
  1921. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
  1922. conf->fullsync == 0) {
  1923. *skipped = 1;
  1924. return max_sector - sector_nr;
  1925. }
  1926. /* before building a request, check if we can skip these blocks..
  1927. * This call the bitmap_start_sync doesn't actually record anything
  1928. */
  1929. if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
  1930. !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  1931. /* We can skip this block, and probably several more */
  1932. *skipped = 1;
  1933. return sync_blocks;
  1934. }
  1935. /*
  1936. * If there is non-resync activity waiting for a turn,
  1937. * and resync is going fast enough,
  1938. * then let it though before starting on this new sync request.
  1939. */
  1940. if (!go_faster && conf->nr_waiting)
  1941. msleep_interruptible(1000);
  1942. bitmap_cond_end_sync(mddev->bitmap, sector_nr);
  1943. r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
  1944. raise_barrier(conf);
  1945. conf->next_resync = sector_nr;
  1946. rcu_read_lock();
  1947. /*
  1948. * If we get a correctably read error during resync or recovery,
  1949. * we might want to read from a different device. So we
  1950. * flag all drives that could conceivably be read from for READ,
  1951. * and any others (which will be non-In_sync devices) for WRITE.
  1952. * If a read fails, we try reading from something else for which READ
  1953. * is OK.
  1954. */
  1955. r1_bio->mddev = mddev;
  1956. r1_bio->sector = sector_nr;
  1957. r1_bio->state = 0;
  1958. set_bit(R1BIO_IsSync, &r1_bio->state);
  1959. for (i=0; i < conf->raid_disks; i++) {
  1960. struct md_rdev *rdev;
  1961. bio = r1_bio->bios[i];
  1962. /* take from bio_init */
  1963. bio->bi_next = NULL;
  1964. bio->bi_flags &= ~(BIO_POOL_MASK-1);
  1965. bio->bi_flags |= 1 << BIO_UPTODATE;
  1966. bio->bi_comp_cpu = -1;
  1967. bio->bi_rw = READ;
  1968. bio->bi_vcnt = 0;
  1969. bio->bi_idx = 0;
  1970. bio->bi_phys_segments = 0;
  1971. bio->bi_size = 0;
  1972. bio->bi_end_io = NULL;
  1973. bio->bi_private = NULL;
  1974. rdev = rcu_dereference(conf->mirrors[i].rdev);
  1975. if (rdev == NULL ||
  1976. test_bit(Faulty, &rdev->flags)) {
  1977. still_degraded = 1;
  1978. } else if (!test_bit(In_sync, &rdev->flags)) {
  1979. bio->bi_rw = WRITE;
  1980. bio->bi_end_io = end_sync_write;
  1981. write_targets ++;
  1982. } else {
  1983. /* may need to read from here */
  1984. sector_t first_bad = MaxSector;
  1985. int bad_sectors;
  1986. if (is_badblock(rdev, sector_nr, good_sectors,
  1987. &first_bad, &bad_sectors)) {
  1988. if (first_bad > sector_nr)
  1989. good_sectors = first_bad - sector_nr;
  1990. else {
  1991. bad_sectors -= (sector_nr - first_bad);
  1992. if (min_bad == 0 ||
  1993. min_bad > bad_sectors)
  1994. min_bad = bad_sectors;
  1995. }
  1996. }
  1997. if (sector_nr < first_bad) {
  1998. if (test_bit(WriteMostly, &rdev->flags)) {
  1999. if (wonly < 0)
  2000. wonly = i;
  2001. } else {
  2002. if (disk < 0)
  2003. disk = i;
  2004. }
  2005. bio->bi_rw = READ;
  2006. bio->bi_end_io = end_sync_read;
  2007. read_targets++;
  2008. }
  2009. }
  2010. if (bio->bi_end_io) {
  2011. atomic_inc(&rdev->nr_pending);
  2012. bio->bi_sector = sector_nr + rdev->data_offset;
  2013. bio->bi_bdev = rdev->bdev;
  2014. bio->bi_private = r1_bio;
  2015. }
  2016. }
  2017. rcu_read_unlock();
  2018. if (disk < 0)
  2019. disk = wonly;
  2020. r1_bio->read_disk = disk;
  2021. if (read_targets == 0 && min_bad > 0) {
  2022. /* These sectors are bad on all InSync devices, so we
  2023. * need to mark them bad on all write targets
  2024. */
  2025. int ok = 1;
  2026. for (i = 0 ; i < conf->raid_disks ; i++)
  2027. if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
  2028. struct md_rdev *rdev =
  2029. rcu_dereference(conf->mirrors[i].rdev);
  2030. ok = rdev_set_badblocks(rdev, sector_nr,
  2031. min_bad, 0
  2032. ) && ok;
  2033. }
  2034. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  2035. *skipped = 1;
  2036. put_buf(r1_bio);
  2037. if (!ok) {
  2038. /* Cannot record the badblocks, so need to
  2039. * abort the resync.
  2040. * If there are multiple read targets, could just
  2041. * fail the really bad ones ???
  2042. */
  2043. conf->recovery_disabled = mddev->recovery_disabled;
  2044. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2045. return 0;
  2046. } else
  2047. return min_bad;
  2048. }
  2049. if (min_bad > 0 && min_bad < good_sectors) {
  2050. /* only resync enough to reach the next bad->good
  2051. * transition */
  2052. good_sectors = min_bad;
  2053. }
  2054. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
  2055. /* extra read targets are also write targets */
  2056. write_targets += read_targets-1;
  2057. if (write_targets == 0 || read_targets == 0) {
  2058. /* There is nowhere to write, so all non-sync
  2059. * drives must be failed - so we are finished
  2060. */
  2061. sector_t rv = max_sector - sector_nr;
  2062. *skipped = 1;
  2063. put_buf(r1_bio);
  2064. return rv;
  2065. }
  2066. if (max_sector > mddev->resync_max)
  2067. max_sector = mddev->resync_max; /* Don't do IO beyond here */
  2068. if (max_sector > sector_nr + good_sectors)
  2069. max_sector = sector_nr + good_sectors;
  2070. nr_sectors = 0;
  2071. sync_blocks = 0;
  2072. do {
  2073. struct page *page;
  2074. int len = PAGE_SIZE;
  2075. if (sector_nr + (len>>9) > max_sector)
  2076. len = (max_sector - sector_nr) << 9;
  2077. if (len == 0)
  2078. break;
  2079. if (sync_blocks == 0) {
  2080. if (!bitmap_start_sync(mddev->bitmap, sector_nr,
  2081. &sync_blocks, still_degraded) &&
  2082. !conf->fullsync &&
  2083. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  2084. break;
  2085. BUG_ON(sync_blocks < (PAGE_SIZE>>9));
  2086. if ((len >> 9) > sync_blocks)
  2087. len = sync_blocks<<9;
  2088. }
  2089. for (i=0 ; i < conf->raid_disks; i++) {
  2090. bio = r1_bio->bios[i];
  2091. if (bio->bi_end_io) {
  2092. page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
  2093. if (bio_add_page(bio, page, len, 0) == 0) {
  2094. /* stop here */
  2095. bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
  2096. while (i > 0) {
  2097. i--;
  2098. bio = r1_bio->bios[i];
  2099. if (bio->bi_end_io==NULL)
  2100. continue;
  2101. /* remove last page from this bio */
  2102. bio->bi_vcnt--;
  2103. bio->bi_size -= len;
  2104. bio->bi_flags &= ~(1<< BIO_SEG_VALID);
  2105. }
  2106. goto bio_full;
  2107. }
  2108. }
  2109. }
  2110. nr_sectors += len>>9;
  2111. sector_nr += len>>9;
  2112. sync_blocks -= (len>>9);
  2113. } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
  2114. bio_full:
  2115. r1_bio->sectors = nr_sectors;
  2116. /* For a user-requested sync, we read all readable devices and do a
  2117. * compare
  2118. */
  2119. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  2120. atomic_set(&r1_bio->remaining, read_targets);
  2121. for (i=0; i<conf->raid_disks; i++) {
  2122. bio = r1_bio->bios[i];
  2123. if (bio->bi_end_io == end_sync_read) {
  2124. md_sync_acct(bio->bi_bdev, nr_sectors);
  2125. generic_make_request(bio);
  2126. }
  2127. }
  2128. } else {
  2129. atomic_set(&r1_bio->remaining, 1);
  2130. bio = r1_bio->bios[r1_bio->read_disk];
  2131. md_sync_acct(bio->bi_bdev, nr_sectors);
  2132. generic_make_request(bio);
  2133. }
  2134. return nr_sectors;
  2135. }
  2136. static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
  2137. {
  2138. if (sectors)
  2139. return sectors;
  2140. return mddev->dev_sectors;
  2141. }
  2142. static struct r1conf *setup_conf(struct mddev *mddev)
  2143. {
  2144. struct r1conf *conf;
  2145. int i;
  2146. struct mirror_info *disk;
  2147. struct md_rdev *rdev;
  2148. int err = -ENOMEM;
  2149. conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
  2150. if (!conf)
  2151. goto abort;
  2152. conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
  2153. GFP_KERNEL);
  2154. if (!conf->mirrors)
  2155. goto abort;
  2156. conf->tmppage = alloc_page(GFP_KERNEL);
  2157. if (!conf->tmppage)
  2158. goto abort;
  2159. conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
  2160. if (!conf->poolinfo)
  2161. goto abort;
  2162. conf->poolinfo->raid_disks = mddev->raid_disks;
  2163. conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
  2164. r1bio_pool_free,
  2165. conf->poolinfo);
  2166. if (!conf->r1bio_pool)
  2167. goto abort;
  2168. conf->poolinfo->mddev = mddev;
  2169. spin_lock_init(&conf->device_lock);
  2170. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2171. int disk_idx = rdev->raid_disk;
  2172. if (disk_idx >= mddev->raid_disks
  2173. || disk_idx < 0)
  2174. continue;
  2175. disk = conf->mirrors + disk_idx;
  2176. disk->rdev = rdev;
  2177. disk->head_position = 0;
  2178. }
  2179. conf->raid_disks = mddev->raid_disks;
  2180. conf->mddev = mddev;
  2181. INIT_LIST_HEAD(&conf->retry_list);
  2182. spin_lock_init(&conf->resync_lock);
  2183. init_waitqueue_head(&conf->wait_barrier);
  2184. bio_list_init(&conf->pending_bio_list);
  2185. conf->pending_count = 0;
  2186. conf->recovery_disabled = mddev->recovery_disabled - 1;
  2187. conf->last_used = -1;
  2188. for (i = 0; i < conf->raid_disks; i++) {
  2189. disk = conf->mirrors + i;
  2190. if (!disk->rdev ||
  2191. !test_bit(In_sync, &disk->rdev->flags)) {
  2192. disk->head_position = 0;
  2193. if (disk->rdev)
  2194. conf->fullsync = 1;
  2195. } else if (conf->last_used < 0)
  2196. /*
  2197. * The first working device is used as a
  2198. * starting point to read balancing.
  2199. */
  2200. conf->last_used = i;
  2201. }
  2202. err = -EIO;
  2203. if (conf->last_used < 0) {
  2204. printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
  2205. mdname(mddev));
  2206. goto abort;
  2207. }
  2208. err = -ENOMEM;
  2209. conf->thread = md_register_thread(raid1d, mddev, NULL);
  2210. if (!conf->thread) {
  2211. printk(KERN_ERR
  2212. "md/raid1:%s: couldn't allocate thread\n",
  2213. mdname(mddev));
  2214. goto abort;
  2215. }
  2216. return conf;
  2217. abort:
  2218. if (conf) {
  2219. if (conf->r1bio_pool)
  2220. mempool_destroy(conf->r1bio_pool);
  2221. kfree(conf->mirrors);
  2222. safe_put_page(conf->tmppage);
  2223. kfree(conf->poolinfo);
  2224. kfree(conf);
  2225. }
  2226. return ERR_PTR(err);
  2227. }
  2228. static int run(struct mddev *mddev)
  2229. {
  2230. struct r1conf *conf;
  2231. int i;
  2232. struct md_rdev *rdev;
  2233. if (mddev->level != 1) {
  2234. printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
  2235. mdname(mddev), mddev->level);
  2236. return -EIO;
  2237. }
  2238. if (mddev->reshape_position != MaxSector) {
  2239. printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
  2240. mdname(mddev));
  2241. return -EIO;
  2242. }
  2243. /*
  2244. * copy the already verified devices into our private RAID1
  2245. * bookkeeping area. [whatever we allocate in run(),
  2246. * should be freed in stop()]
  2247. */
  2248. if (mddev->private == NULL)
  2249. conf = setup_conf(mddev);
  2250. else
  2251. conf = mddev->private;
  2252. if (IS_ERR(conf))
  2253. return PTR_ERR(conf);
  2254. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2255. if (!mddev->gendisk)
  2256. continue;
  2257. disk_stack_limits(mddev->gendisk, rdev->bdev,
  2258. rdev->data_offset << 9);
  2259. /* as we don't honour merge_bvec_fn, we must never risk
  2260. * violating it, so limit ->max_segments to 1 lying within
  2261. * a single page, as a one page request is never in violation.
  2262. */
  2263. if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
  2264. blk_queue_max_segments(mddev->queue, 1);
  2265. blk_queue_segment_boundary(mddev->queue,
  2266. PAGE_CACHE_SIZE - 1);
  2267. }
  2268. }
  2269. mddev->degraded = 0;
  2270. for (i=0; i < conf->raid_disks; i++)
  2271. if (conf->mirrors[i].rdev == NULL ||
  2272. !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
  2273. test_bit(Faulty, &conf->mirrors[i].rdev->flags))
  2274. mddev->degraded++;
  2275. if (conf->raid_disks - mddev->degraded == 1)
  2276. mddev->recovery_cp = MaxSector;
  2277. if (mddev->recovery_cp != MaxSector)
  2278. printk(KERN_NOTICE "md/raid1:%s: not clean"
  2279. " -- starting background reconstruction\n",
  2280. mdname(mddev));
  2281. printk(KERN_INFO
  2282. "md/raid1:%s: active with %d out of %d mirrors\n",
  2283. mdname(mddev), mddev->raid_disks - mddev->degraded,
  2284. mddev->raid_disks);
  2285. /*
  2286. * Ok, everything is just fine now
  2287. */
  2288. mddev->thread = conf->thread;
  2289. conf->thread = NULL;
  2290. mddev->private = conf;
  2291. md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
  2292. if (mddev->queue) {
  2293. mddev->queue->backing_dev_info.congested_fn = raid1_congested;
  2294. mddev->queue->backing_dev_info.congested_data = mddev;
  2295. }
  2296. return md_integrity_register(mddev);
  2297. }
  2298. static int stop(struct mddev *mddev)
  2299. {
  2300. struct r1conf *conf = mddev->private;
  2301. struct bitmap *bitmap = mddev->bitmap;
  2302. /* wait for behind writes to complete */
  2303. if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
  2304. printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
  2305. mdname(mddev));
  2306. /* need to kick something here to make sure I/O goes? */
  2307. wait_event(bitmap->behind_wait,
  2308. atomic_read(&bitmap->behind_writes) == 0);
  2309. }
  2310. raise_barrier(conf);
  2311. lower_barrier(conf);
  2312. md_unregister_thread(&mddev->thread);
  2313. if (conf->r1bio_pool)
  2314. mempool_destroy(conf->r1bio_pool);
  2315. kfree(conf->mirrors);
  2316. kfree(conf->poolinfo);
  2317. kfree(conf);
  2318. mddev->private = NULL;
  2319. return 0;
  2320. }
  2321. static int raid1_resize(struct mddev *mddev, sector_t sectors)
  2322. {
  2323. /* no resync is happening, and there is enough space
  2324. * on all devices, so we can resize.
  2325. * We need to make sure resync covers any new space.
  2326. * If the array is shrinking we should possibly wait until
  2327. * any io in the removed space completes, but it hardly seems
  2328. * worth it.
  2329. */
  2330. md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
  2331. if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
  2332. return -EINVAL;
  2333. set_capacity(mddev->gendisk, mddev->array_sectors);
  2334. revalidate_disk(mddev->gendisk);
  2335. if (sectors > mddev->dev_sectors &&
  2336. mddev->recovery_cp > mddev->dev_sectors) {
  2337. mddev->recovery_cp = mddev->dev_sectors;
  2338. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2339. }
  2340. mddev->dev_sectors = sectors;
  2341. mddev->resync_max_sectors = sectors;
  2342. return 0;
  2343. }
  2344. static int raid1_reshape(struct mddev *mddev)
  2345. {
  2346. /* We need to:
  2347. * 1/ resize the r1bio_pool
  2348. * 2/ resize conf->mirrors
  2349. *
  2350. * We allocate a new r1bio_pool if we can.
  2351. * Then raise a device barrier and wait until all IO stops.
  2352. * Then resize conf->mirrors and swap in the new r1bio pool.
  2353. *
  2354. * At the same time, we "pack" the devices so that all the missing
  2355. * devices have the higher raid_disk numbers.
  2356. */
  2357. mempool_t *newpool, *oldpool;
  2358. struct pool_info *newpoolinfo;
  2359. struct mirror_info *newmirrors;
  2360. struct r1conf *conf = mddev->private;
  2361. int cnt, raid_disks;
  2362. unsigned long flags;
  2363. int d, d2, err;
  2364. /* Cannot change chunk_size, layout, or level */
  2365. if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
  2366. mddev->layout != mddev->new_layout ||
  2367. mddev->level != mddev->new_level) {
  2368. mddev->new_chunk_sectors = mddev->chunk_sectors;
  2369. mddev->new_layout = mddev->layout;
  2370. mddev->new_level = mddev->level;
  2371. return -EINVAL;
  2372. }
  2373. err = md_allow_write(mddev);
  2374. if (err)
  2375. return err;
  2376. raid_disks = mddev->raid_disks + mddev->delta_disks;
  2377. if (raid_disks < conf->raid_disks) {
  2378. cnt=0;
  2379. for (d= 0; d < conf->raid_disks; d++)
  2380. if (conf->mirrors[d].rdev)
  2381. cnt++;
  2382. if (cnt > raid_disks)
  2383. return -EBUSY;
  2384. }
  2385. newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
  2386. if (!newpoolinfo)
  2387. return -ENOMEM;
  2388. newpoolinfo->mddev = mddev;
  2389. newpoolinfo->raid_disks = raid_disks;
  2390. newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
  2391. r1bio_pool_free, newpoolinfo);
  2392. if (!newpool) {
  2393. kfree(newpoolinfo);
  2394. return -ENOMEM;
  2395. }
  2396. newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
  2397. if (!newmirrors) {
  2398. kfree(newpoolinfo);
  2399. mempool_destroy(newpool);
  2400. return -ENOMEM;
  2401. }
  2402. raise_barrier(conf);
  2403. /* ok, everything is stopped */
  2404. oldpool = conf->r1bio_pool;
  2405. conf->r1bio_pool = newpool;
  2406. for (d = d2 = 0; d < conf->raid_disks; d++) {
  2407. struct md_rdev *rdev = conf->mirrors[d].rdev;
  2408. if (rdev && rdev->raid_disk != d2) {
  2409. sysfs_unlink_rdev(mddev, rdev);
  2410. rdev->raid_disk = d2;
  2411. sysfs_unlink_rdev(mddev, rdev);
  2412. if (sysfs_link_rdev(mddev, rdev))
  2413. printk(KERN_WARNING
  2414. "md/raid1:%s: cannot register rd%d\n",
  2415. mdname(mddev), rdev->raid_disk);
  2416. }
  2417. if (rdev)
  2418. newmirrors[d2++].rdev = rdev;
  2419. }
  2420. kfree(conf->mirrors);
  2421. conf->mirrors = newmirrors;
  2422. kfree(conf->poolinfo);
  2423. conf->poolinfo = newpoolinfo;
  2424. spin_lock_irqsave(&conf->device_lock, flags);
  2425. mddev->degraded += (raid_disks - conf->raid_disks);
  2426. spin_unlock_irqrestore(&conf->device_lock, flags);
  2427. conf->raid_disks = mddev->raid_disks = raid_disks;
  2428. mddev->delta_disks = 0;
  2429. conf->last_used = 0; /* just make sure it is in-range */
  2430. lower_barrier(conf);
  2431. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2432. md_wakeup_thread(mddev->thread);
  2433. mempool_destroy(oldpool);
  2434. return 0;
  2435. }
  2436. static void raid1_quiesce(struct mddev *mddev, int state)
  2437. {
  2438. struct r1conf *conf = mddev->private;
  2439. switch(state) {
  2440. case 2: /* wake for suspend */
  2441. wake_up(&conf->wait_barrier);
  2442. break;
  2443. case 1:
  2444. raise_barrier(conf);
  2445. break;
  2446. case 0:
  2447. lower_barrier(conf);
  2448. break;
  2449. }
  2450. }
  2451. static void *raid1_takeover(struct mddev *mddev)
  2452. {
  2453. /* raid1 can take over:
  2454. * raid5 with 2 devices, any layout or chunk size
  2455. */
  2456. if (mddev->level == 5 && mddev->raid_disks == 2) {
  2457. struct r1conf *conf;
  2458. mddev->new_level = 1;
  2459. mddev->new_layout = 0;
  2460. mddev->new_chunk_sectors = 0;
  2461. conf = setup_conf(mddev);
  2462. if (!IS_ERR(conf))
  2463. conf->barrier = 1;
  2464. return conf;
  2465. }
  2466. return ERR_PTR(-EINVAL);
  2467. }
  2468. static struct md_personality raid1_personality =
  2469. {
  2470. .name = "raid1",
  2471. .level = 1,
  2472. .owner = THIS_MODULE,
  2473. .make_request = make_request,
  2474. .run = run,
  2475. .stop = stop,
  2476. .status = status,
  2477. .error_handler = error,
  2478. .hot_add_disk = raid1_add_disk,
  2479. .hot_remove_disk= raid1_remove_disk,
  2480. .spare_active = raid1_spare_active,
  2481. .sync_request = sync_request,
  2482. .resize = raid1_resize,
  2483. .size = raid1_size,
  2484. .check_reshape = raid1_reshape,
  2485. .quiesce = raid1_quiesce,
  2486. .takeover = raid1_takeover,
  2487. };
  2488. static int __init raid_init(void)
  2489. {
  2490. return register_md_personality(&raid1_personality);
  2491. }
  2492. static void raid_exit(void)
  2493. {
  2494. unregister_md_personality(&raid1_personality);
  2495. }
  2496. module_init(raid_init);
  2497. module_exit(raid_exit);
  2498. MODULE_LICENSE("GPL");
  2499. MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
  2500. MODULE_ALIAS("md-personality-3"); /* RAID1 */
  2501. MODULE_ALIAS("md-raid1");
  2502. MODULE_ALIAS("md-level-1");
  2503. module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);