mmu.c 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084
  1. /*
  2. * linux/arch/arm/mm/mmu.c
  3. *
  4. * Copyright (C) 1995-2005 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/kernel.h>
  12. #include <linux/errno.h>
  13. #include <linux/init.h>
  14. #include <linux/mman.h>
  15. #include <linux/nodemask.h>
  16. #include <linux/memblock.h>
  17. #include <linux/fs.h>
  18. #include <linux/vmalloc.h>
  19. #include <asm/cputype.h>
  20. #include <asm/sections.h>
  21. #include <asm/cachetype.h>
  22. #include <asm/setup.h>
  23. #include <asm/sizes.h>
  24. #include <asm/smp_plat.h>
  25. #include <asm/tlb.h>
  26. #include <asm/highmem.h>
  27. #include <asm/traps.h>
  28. #include <asm/mach/arch.h>
  29. #include <asm/mach/map.h>
  30. #include "mm.h"
  31. /*
  32. * empty_zero_page is a special page that is used for
  33. * zero-initialized data and COW.
  34. */
  35. struct page *empty_zero_page;
  36. EXPORT_SYMBOL(empty_zero_page);
  37. /*
  38. * The pmd table for the upper-most set of pages.
  39. */
  40. pmd_t *top_pmd;
  41. #define CPOLICY_UNCACHED 0
  42. #define CPOLICY_BUFFERED 1
  43. #define CPOLICY_WRITETHROUGH 2
  44. #define CPOLICY_WRITEBACK 3
  45. #define CPOLICY_WRITEALLOC 4
  46. static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  47. static unsigned int ecc_mask __initdata = 0;
  48. pgprot_t pgprot_user;
  49. pgprot_t pgprot_kernel;
  50. EXPORT_SYMBOL(pgprot_user);
  51. EXPORT_SYMBOL(pgprot_kernel);
  52. struct cachepolicy {
  53. const char policy[16];
  54. unsigned int cr_mask;
  55. pmdval_t pmd;
  56. pteval_t pte;
  57. };
  58. static struct cachepolicy cache_policies[] __initdata = {
  59. {
  60. .policy = "uncached",
  61. .cr_mask = CR_W|CR_C,
  62. .pmd = PMD_SECT_UNCACHED,
  63. .pte = L_PTE_MT_UNCACHED,
  64. }, {
  65. .policy = "buffered",
  66. .cr_mask = CR_C,
  67. .pmd = PMD_SECT_BUFFERED,
  68. .pte = L_PTE_MT_BUFFERABLE,
  69. }, {
  70. .policy = "writethrough",
  71. .cr_mask = 0,
  72. .pmd = PMD_SECT_WT,
  73. .pte = L_PTE_MT_WRITETHROUGH,
  74. }, {
  75. .policy = "writeback",
  76. .cr_mask = 0,
  77. .pmd = PMD_SECT_WB,
  78. .pte = L_PTE_MT_WRITEBACK,
  79. }, {
  80. .policy = "writealloc",
  81. .cr_mask = 0,
  82. .pmd = PMD_SECT_WBWA,
  83. .pte = L_PTE_MT_WRITEALLOC,
  84. }
  85. };
  86. /*
  87. * These are useful for identifying cache coherency
  88. * problems by allowing the cache or the cache and
  89. * writebuffer to be turned off. (Note: the write
  90. * buffer should not be on and the cache off).
  91. */
  92. static int __init early_cachepolicy(char *p)
  93. {
  94. int i;
  95. for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
  96. int len = strlen(cache_policies[i].policy);
  97. if (memcmp(p, cache_policies[i].policy, len) == 0) {
  98. cachepolicy = i;
  99. cr_alignment &= ~cache_policies[i].cr_mask;
  100. cr_no_alignment &= ~cache_policies[i].cr_mask;
  101. break;
  102. }
  103. }
  104. if (i == ARRAY_SIZE(cache_policies))
  105. printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
  106. /*
  107. * This restriction is partly to do with the way we boot; it is
  108. * unpredictable to have memory mapped using two different sets of
  109. * memory attributes (shared, type, and cache attribs). We can not
  110. * change these attributes once the initial assembly has setup the
  111. * page tables.
  112. */
  113. if (cpu_architecture() >= CPU_ARCH_ARMv6) {
  114. printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
  115. cachepolicy = CPOLICY_WRITEBACK;
  116. }
  117. flush_cache_all();
  118. set_cr(cr_alignment);
  119. return 0;
  120. }
  121. early_param("cachepolicy", early_cachepolicy);
  122. static int __init early_nocache(char *__unused)
  123. {
  124. char *p = "buffered";
  125. printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
  126. early_cachepolicy(p);
  127. return 0;
  128. }
  129. early_param("nocache", early_nocache);
  130. static int __init early_nowrite(char *__unused)
  131. {
  132. char *p = "uncached";
  133. printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
  134. early_cachepolicy(p);
  135. return 0;
  136. }
  137. early_param("nowb", early_nowrite);
  138. static int __init early_ecc(char *p)
  139. {
  140. if (memcmp(p, "on", 2) == 0)
  141. ecc_mask = PMD_PROTECTION;
  142. else if (memcmp(p, "off", 3) == 0)
  143. ecc_mask = 0;
  144. return 0;
  145. }
  146. early_param("ecc", early_ecc);
  147. static int __init noalign_setup(char *__unused)
  148. {
  149. cr_alignment &= ~CR_A;
  150. cr_no_alignment &= ~CR_A;
  151. set_cr(cr_alignment);
  152. return 1;
  153. }
  154. __setup("noalign", noalign_setup);
  155. #ifndef CONFIG_SMP
  156. void adjust_cr(unsigned long mask, unsigned long set)
  157. {
  158. unsigned long flags;
  159. mask &= ~CR_A;
  160. set &= mask;
  161. local_irq_save(flags);
  162. cr_no_alignment = (cr_no_alignment & ~mask) | set;
  163. cr_alignment = (cr_alignment & ~mask) | set;
  164. set_cr((get_cr() & ~mask) | set);
  165. local_irq_restore(flags);
  166. }
  167. #endif
  168. #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
  169. #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
  170. static struct mem_type mem_types[] = {
  171. [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
  172. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
  173. L_PTE_SHARED,
  174. .prot_l1 = PMD_TYPE_TABLE,
  175. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
  176. .domain = DOMAIN_IO,
  177. },
  178. [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
  179. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
  180. .prot_l1 = PMD_TYPE_TABLE,
  181. .prot_sect = PROT_SECT_DEVICE,
  182. .domain = DOMAIN_IO,
  183. },
  184. [MT_DEVICE_CACHED] = { /* ioremap_cached */
  185. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
  186. .prot_l1 = PMD_TYPE_TABLE,
  187. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
  188. .domain = DOMAIN_IO,
  189. },
  190. [MT_DEVICE_WC] = { /* ioremap_wc */
  191. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
  192. .prot_l1 = PMD_TYPE_TABLE,
  193. .prot_sect = PROT_SECT_DEVICE,
  194. .domain = DOMAIN_IO,
  195. },
  196. [MT_UNCACHED] = {
  197. .prot_pte = PROT_PTE_DEVICE,
  198. .prot_l1 = PMD_TYPE_TABLE,
  199. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  200. .domain = DOMAIN_IO,
  201. },
  202. [MT_CACHECLEAN] = {
  203. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  204. .domain = DOMAIN_KERNEL,
  205. },
  206. [MT_MINICLEAN] = {
  207. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
  208. .domain = DOMAIN_KERNEL,
  209. },
  210. [MT_LOW_VECTORS] = {
  211. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  212. L_PTE_RDONLY,
  213. .prot_l1 = PMD_TYPE_TABLE,
  214. .domain = DOMAIN_USER,
  215. },
  216. [MT_HIGH_VECTORS] = {
  217. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  218. L_PTE_USER | L_PTE_RDONLY,
  219. .prot_l1 = PMD_TYPE_TABLE,
  220. .domain = DOMAIN_USER,
  221. },
  222. [MT_MEMORY] = {
  223. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
  224. .prot_l1 = PMD_TYPE_TABLE,
  225. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
  226. .domain = DOMAIN_KERNEL,
  227. },
  228. [MT_ROM] = {
  229. .prot_sect = PMD_TYPE_SECT,
  230. .domain = DOMAIN_KERNEL,
  231. },
  232. [MT_MEMORY_NONCACHED] = {
  233. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  234. L_PTE_MT_BUFFERABLE,
  235. .prot_l1 = PMD_TYPE_TABLE,
  236. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
  237. .domain = DOMAIN_KERNEL,
  238. },
  239. [MT_MEMORY_DTCM] = {
  240. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  241. L_PTE_XN,
  242. .prot_l1 = PMD_TYPE_TABLE,
  243. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  244. .domain = DOMAIN_KERNEL,
  245. },
  246. [MT_MEMORY_ITCM] = {
  247. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
  248. .prot_l1 = PMD_TYPE_TABLE,
  249. .domain = DOMAIN_KERNEL,
  250. },
  251. [MT_MEMORY_SO] = {
  252. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  253. L_PTE_MT_UNCACHED,
  254. .prot_l1 = PMD_TYPE_TABLE,
  255. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
  256. PMD_SECT_UNCACHED | PMD_SECT_XN,
  257. .domain = DOMAIN_KERNEL,
  258. },
  259. };
  260. const struct mem_type *get_mem_type(unsigned int type)
  261. {
  262. return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
  263. }
  264. EXPORT_SYMBOL(get_mem_type);
  265. /*
  266. * Adjust the PMD section entries according to the CPU in use.
  267. */
  268. static void __init build_mem_type_table(void)
  269. {
  270. struct cachepolicy *cp;
  271. unsigned int cr = get_cr();
  272. pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
  273. int cpu_arch = cpu_architecture();
  274. int i;
  275. if (cpu_arch < CPU_ARCH_ARMv6) {
  276. #if defined(CONFIG_CPU_DCACHE_DISABLE)
  277. if (cachepolicy > CPOLICY_BUFFERED)
  278. cachepolicy = CPOLICY_BUFFERED;
  279. #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
  280. if (cachepolicy > CPOLICY_WRITETHROUGH)
  281. cachepolicy = CPOLICY_WRITETHROUGH;
  282. #endif
  283. }
  284. if (cpu_arch < CPU_ARCH_ARMv5) {
  285. if (cachepolicy >= CPOLICY_WRITEALLOC)
  286. cachepolicy = CPOLICY_WRITEBACK;
  287. ecc_mask = 0;
  288. }
  289. if (is_smp())
  290. cachepolicy = CPOLICY_WRITEALLOC;
  291. /*
  292. * Strip out features not present on earlier architectures.
  293. * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
  294. * without extended page tables don't have the 'Shared' bit.
  295. */
  296. if (cpu_arch < CPU_ARCH_ARMv5)
  297. for (i = 0; i < ARRAY_SIZE(mem_types); i++)
  298. mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
  299. if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
  300. for (i = 0; i < ARRAY_SIZE(mem_types); i++)
  301. mem_types[i].prot_sect &= ~PMD_SECT_S;
  302. /*
  303. * ARMv5 and lower, bit 4 must be set for page tables (was: cache
  304. * "update-able on write" bit on ARM610). However, Xscale and
  305. * Xscale3 require this bit to be cleared.
  306. */
  307. if (cpu_is_xscale() || cpu_is_xsc3()) {
  308. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  309. mem_types[i].prot_sect &= ~PMD_BIT4;
  310. mem_types[i].prot_l1 &= ~PMD_BIT4;
  311. }
  312. } else if (cpu_arch < CPU_ARCH_ARMv6) {
  313. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  314. if (mem_types[i].prot_l1)
  315. mem_types[i].prot_l1 |= PMD_BIT4;
  316. if (mem_types[i].prot_sect)
  317. mem_types[i].prot_sect |= PMD_BIT4;
  318. }
  319. }
  320. /*
  321. * Mark the device areas according to the CPU/architecture.
  322. */
  323. if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
  324. if (!cpu_is_xsc3()) {
  325. /*
  326. * Mark device regions on ARMv6+ as execute-never
  327. * to prevent speculative instruction fetches.
  328. */
  329. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
  330. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
  331. mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
  332. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
  333. }
  334. if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
  335. /*
  336. * For ARMv7 with TEX remapping,
  337. * - shared device is SXCB=1100
  338. * - nonshared device is SXCB=0100
  339. * - write combine device mem is SXCB=0001
  340. * (Uncached Normal memory)
  341. */
  342. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
  343. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
  344. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  345. } else if (cpu_is_xsc3()) {
  346. /*
  347. * For Xscale3,
  348. * - shared device is TEXCB=00101
  349. * - nonshared device is TEXCB=01000
  350. * - write combine device mem is TEXCB=00100
  351. * (Inner/Outer Uncacheable in xsc3 parlance)
  352. */
  353. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
  354. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
  355. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  356. } else {
  357. /*
  358. * For ARMv6 and ARMv7 without TEX remapping,
  359. * - shared device is TEXCB=00001
  360. * - nonshared device is TEXCB=01000
  361. * - write combine device mem is TEXCB=00100
  362. * (Uncached Normal in ARMv6 parlance).
  363. */
  364. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
  365. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
  366. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  367. }
  368. } else {
  369. /*
  370. * On others, write combining is "Uncached/Buffered"
  371. */
  372. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  373. }
  374. /*
  375. * Now deal with the memory-type mappings
  376. */
  377. cp = &cache_policies[cachepolicy];
  378. vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
  379. /*
  380. * Only use write-through for non-SMP systems
  381. */
  382. if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
  383. vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
  384. /*
  385. * Enable CPU-specific coherency if supported.
  386. * (Only available on XSC3 at the moment.)
  387. */
  388. if (arch_is_coherent() && cpu_is_xsc3()) {
  389. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  390. mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
  391. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
  392. mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
  393. }
  394. /*
  395. * ARMv6 and above have extended page tables.
  396. */
  397. if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
  398. /*
  399. * Mark cache clean areas and XIP ROM read only
  400. * from SVC mode and no access from userspace.
  401. */
  402. mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  403. mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  404. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  405. if (is_smp()) {
  406. /*
  407. * Mark memory with the "shared" attribute
  408. * for SMP systems
  409. */
  410. user_pgprot |= L_PTE_SHARED;
  411. kern_pgprot |= L_PTE_SHARED;
  412. vecs_pgprot |= L_PTE_SHARED;
  413. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
  414. mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
  415. mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
  416. mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
  417. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  418. mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
  419. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
  420. mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
  421. }
  422. }
  423. /*
  424. * Non-cacheable Normal - intended for memory areas that must
  425. * not cause dirty cache line writebacks when used
  426. */
  427. if (cpu_arch >= CPU_ARCH_ARMv6) {
  428. if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
  429. /* Non-cacheable Normal is XCB = 001 */
  430. mem_types[MT_MEMORY_NONCACHED].prot_sect |=
  431. PMD_SECT_BUFFERED;
  432. } else {
  433. /* For both ARMv6 and non-TEX-remapping ARMv7 */
  434. mem_types[MT_MEMORY_NONCACHED].prot_sect |=
  435. PMD_SECT_TEX(1);
  436. }
  437. } else {
  438. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
  439. }
  440. for (i = 0; i < 16; i++) {
  441. unsigned long v = pgprot_val(protection_map[i]);
  442. protection_map[i] = __pgprot(v | user_pgprot);
  443. }
  444. mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
  445. mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
  446. pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
  447. pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
  448. L_PTE_DIRTY | kern_pgprot);
  449. mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
  450. mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
  451. mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
  452. mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
  453. mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
  454. mem_types[MT_ROM].prot_sect |= cp->pmd;
  455. switch (cp->pmd) {
  456. case PMD_SECT_WT:
  457. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
  458. break;
  459. case PMD_SECT_WB:
  460. case PMD_SECT_WBWA:
  461. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
  462. break;
  463. }
  464. printk("Memory policy: ECC %sabled, Data cache %s\n",
  465. ecc_mask ? "en" : "dis", cp->policy);
  466. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  467. struct mem_type *t = &mem_types[i];
  468. if (t->prot_l1)
  469. t->prot_l1 |= PMD_DOMAIN(t->domain);
  470. if (t->prot_sect)
  471. t->prot_sect |= PMD_DOMAIN(t->domain);
  472. }
  473. }
  474. #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
  475. pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
  476. unsigned long size, pgprot_t vma_prot)
  477. {
  478. if (!pfn_valid(pfn))
  479. return pgprot_noncached(vma_prot);
  480. else if (file->f_flags & O_SYNC)
  481. return pgprot_writecombine(vma_prot);
  482. return vma_prot;
  483. }
  484. EXPORT_SYMBOL(phys_mem_access_prot);
  485. #endif
  486. #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
  487. static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
  488. {
  489. void *ptr = __va(memblock_alloc(sz, align));
  490. memset(ptr, 0, sz);
  491. return ptr;
  492. }
  493. static void __init *early_alloc(unsigned long sz)
  494. {
  495. return early_alloc_aligned(sz, sz);
  496. }
  497. static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
  498. {
  499. if (pmd_none(*pmd)) {
  500. pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
  501. __pmd_populate(pmd, __pa(pte), prot);
  502. }
  503. BUG_ON(pmd_bad(*pmd));
  504. return pte_offset_kernel(pmd, addr);
  505. }
  506. static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
  507. unsigned long end, unsigned long pfn,
  508. const struct mem_type *type)
  509. {
  510. pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
  511. do {
  512. set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
  513. pfn++;
  514. } while (pte++, addr += PAGE_SIZE, addr != end);
  515. }
  516. static void __init alloc_init_section(pud_t *pud, unsigned long addr,
  517. unsigned long end, phys_addr_t phys,
  518. const struct mem_type *type)
  519. {
  520. pmd_t *pmd = pmd_offset(pud, addr);
  521. /*
  522. * Try a section mapping - end, addr and phys must all be aligned
  523. * to a section boundary. Note that PMDs refer to the individual
  524. * L1 entries, whereas PGDs refer to a group of L1 entries making
  525. * up one logical pointer to an L2 table.
  526. */
  527. if (((addr | end | phys) & ~SECTION_MASK) == 0) {
  528. pmd_t *p = pmd;
  529. if (addr & SECTION_SIZE)
  530. pmd++;
  531. do {
  532. *pmd = __pmd(phys | type->prot_sect);
  533. phys += SECTION_SIZE;
  534. } while (pmd++, addr += SECTION_SIZE, addr != end);
  535. flush_pmd_entry(p);
  536. } else {
  537. /*
  538. * No need to loop; pte's aren't interested in the
  539. * individual L1 entries.
  540. */
  541. alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
  542. }
  543. }
  544. static void alloc_init_pud(pgd_t *pgd, unsigned long addr, unsigned long end,
  545. unsigned long phys, const struct mem_type *type)
  546. {
  547. pud_t *pud = pud_offset(pgd, addr);
  548. unsigned long next;
  549. do {
  550. next = pud_addr_end(addr, end);
  551. alloc_init_section(pud, addr, next, phys, type);
  552. phys += next - addr;
  553. } while (pud++, addr = next, addr != end);
  554. }
  555. static void __init create_36bit_mapping(struct map_desc *md,
  556. const struct mem_type *type)
  557. {
  558. unsigned long addr, length, end;
  559. phys_addr_t phys;
  560. pgd_t *pgd;
  561. addr = md->virtual;
  562. phys = __pfn_to_phys(md->pfn);
  563. length = PAGE_ALIGN(md->length);
  564. if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
  565. printk(KERN_ERR "MM: CPU does not support supersection "
  566. "mapping for 0x%08llx at 0x%08lx\n",
  567. (long long)__pfn_to_phys((u64)md->pfn), addr);
  568. return;
  569. }
  570. /* N.B. ARMv6 supersections are only defined to work with domain 0.
  571. * Since domain assignments can in fact be arbitrary, the
  572. * 'domain == 0' check below is required to insure that ARMv6
  573. * supersections are only allocated for domain 0 regardless
  574. * of the actual domain assignments in use.
  575. */
  576. if (type->domain) {
  577. printk(KERN_ERR "MM: invalid domain in supersection "
  578. "mapping for 0x%08llx at 0x%08lx\n",
  579. (long long)__pfn_to_phys((u64)md->pfn), addr);
  580. return;
  581. }
  582. if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
  583. printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
  584. " at 0x%08lx invalid alignment\n",
  585. (long long)__pfn_to_phys((u64)md->pfn), addr);
  586. return;
  587. }
  588. /*
  589. * Shift bits [35:32] of address into bits [23:20] of PMD
  590. * (See ARMv6 spec).
  591. */
  592. phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
  593. pgd = pgd_offset_k(addr);
  594. end = addr + length;
  595. do {
  596. pud_t *pud = pud_offset(pgd, addr);
  597. pmd_t *pmd = pmd_offset(pud, addr);
  598. int i;
  599. for (i = 0; i < 16; i++)
  600. *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
  601. addr += SUPERSECTION_SIZE;
  602. phys += SUPERSECTION_SIZE;
  603. pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
  604. } while (addr != end);
  605. }
  606. /*
  607. * Create the page directory entries and any necessary
  608. * page tables for the mapping specified by `md'. We
  609. * are able to cope here with varying sizes and address
  610. * offsets, and we take full advantage of sections and
  611. * supersections.
  612. */
  613. static void __init create_mapping(struct map_desc *md)
  614. {
  615. unsigned long addr, length, end;
  616. phys_addr_t phys;
  617. const struct mem_type *type;
  618. pgd_t *pgd;
  619. if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
  620. printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
  621. " at 0x%08lx in user region\n",
  622. (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
  623. return;
  624. }
  625. if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
  626. md->virtual >= PAGE_OFFSET &&
  627. (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
  628. printk(KERN_WARNING "BUG: mapping for 0x%08llx"
  629. " at 0x%08lx out of vmalloc space\n",
  630. (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
  631. }
  632. type = &mem_types[md->type];
  633. /*
  634. * Catch 36-bit addresses
  635. */
  636. if (md->pfn >= 0x100000) {
  637. create_36bit_mapping(md, type);
  638. return;
  639. }
  640. addr = md->virtual & PAGE_MASK;
  641. phys = __pfn_to_phys(md->pfn);
  642. length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
  643. if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
  644. printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
  645. "be mapped using pages, ignoring.\n",
  646. (long long)__pfn_to_phys(md->pfn), addr);
  647. return;
  648. }
  649. pgd = pgd_offset_k(addr);
  650. end = addr + length;
  651. do {
  652. unsigned long next = pgd_addr_end(addr, end);
  653. alloc_init_pud(pgd, addr, next, phys, type);
  654. phys += next - addr;
  655. addr = next;
  656. } while (pgd++, addr != end);
  657. }
  658. /*
  659. * Create the architecture specific mappings
  660. */
  661. void __init iotable_init(struct map_desc *io_desc, int nr)
  662. {
  663. struct map_desc *md;
  664. struct vm_struct *vm;
  665. if (!nr)
  666. return;
  667. vm = early_alloc_aligned(sizeof(*vm) * nr, __alignof__(*vm));
  668. for (md = io_desc; nr; md++, nr--) {
  669. create_mapping(md);
  670. vm->addr = (void *)(md->virtual & PAGE_MASK);
  671. vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
  672. vm->phys_addr = __pfn_to_phys(md->pfn);
  673. vm->flags = VM_IOREMAP;
  674. vm->caller = iotable_init;
  675. vm_area_add_early(vm++);
  676. }
  677. }
  678. static void * __initdata vmalloc_min =
  679. (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
  680. /*
  681. * vmalloc=size forces the vmalloc area to be exactly 'size'
  682. * bytes. This can be used to increase (or decrease) the vmalloc
  683. * area - the default is 240m.
  684. */
  685. static int __init early_vmalloc(char *arg)
  686. {
  687. unsigned long vmalloc_reserve = memparse(arg, NULL);
  688. if (vmalloc_reserve < SZ_16M) {
  689. vmalloc_reserve = SZ_16M;
  690. printk(KERN_WARNING
  691. "vmalloc area too small, limiting to %luMB\n",
  692. vmalloc_reserve >> 20);
  693. }
  694. if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
  695. vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
  696. printk(KERN_WARNING
  697. "vmalloc area is too big, limiting to %luMB\n",
  698. vmalloc_reserve >> 20);
  699. }
  700. vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
  701. return 0;
  702. }
  703. early_param("vmalloc", early_vmalloc);
  704. static phys_addr_t lowmem_limit __initdata = 0;
  705. void __init sanity_check_meminfo(void)
  706. {
  707. int i, j, highmem = 0;
  708. for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
  709. struct membank *bank = &meminfo.bank[j];
  710. *bank = meminfo.bank[i];
  711. #ifdef CONFIG_HIGHMEM
  712. if (__va(bank->start) >= vmalloc_min ||
  713. __va(bank->start) < (void *)PAGE_OFFSET)
  714. highmem = 1;
  715. bank->highmem = highmem;
  716. /*
  717. * Split those memory banks which are partially overlapping
  718. * the vmalloc area greatly simplifying things later.
  719. */
  720. if (__va(bank->start) < vmalloc_min &&
  721. bank->size > vmalloc_min - __va(bank->start)) {
  722. if (meminfo.nr_banks >= NR_BANKS) {
  723. printk(KERN_CRIT "NR_BANKS too low, "
  724. "ignoring high memory\n");
  725. } else {
  726. memmove(bank + 1, bank,
  727. (meminfo.nr_banks - i) * sizeof(*bank));
  728. meminfo.nr_banks++;
  729. i++;
  730. bank[1].size -= vmalloc_min - __va(bank->start);
  731. bank[1].start = __pa(vmalloc_min - 1) + 1;
  732. bank[1].highmem = highmem = 1;
  733. j++;
  734. }
  735. bank->size = vmalloc_min - __va(bank->start);
  736. }
  737. #else
  738. bank->highmem = highmem;
  739. /*
  740. * Check whether this memory bank would entirely overlap
  741. * the vmalloc area.
  742. */
  743. if (__va(bank->start) >= vmalloc_min ||
  744. __va(bank->start) < (void *)PAGE_OFFSET) {
  745. printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
  746. "(vmalloc region overlap).\n",
  747. (unsigned long long)bank->start,
  748. (unsigned long long)bank->start + bank->size - 1);
  749. continue;
  750. }
  751. /*
  752. * Check whether this memory bank would partially overlap
  753. * the vmalloc area.
  754. */
  755. if (__va(bank->start + bank->size) > vmalloc_min ||
  756. __va(bank->start + bank->size) < __va(bank->start)) {
  757. unsigned long newsize = vmalloc_min - __va(bank->start);
  758. printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
  759. "to -%.8llx (vmalloc region overlap).\n",
  760. (unsigned long long)bank->start,
  761. (unsigned long long)bank->start + bank->size - 1,
  762. (unsigned long long)bank->start + newsize - 1);
  763. bank->size = newsize;
  764. }
  765. #endif
  766. if (!bank->highmem && bank->start + bank->size > lowmem_limit)
  767. lowmem_limit = bank->start + bank->size;
  768. j++;
  769. }
  770. #ifdef CONFIG_HIGHMEM
  771. if (highmem) {
  772. const char *reason = NULL;
  773. if (cache_is_vipt_aliasing()) {
  774. /*
  775. * Interactions between kmap and other mappings
  776. * make highmem support with aliasing VIPT caches
  777. * rather difficult.
  778. */
  779. reason = "with VIPT aliasing cache";
  780. }
  781. if (reason) {
  782. printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
  783. reason);
  784. while (j > 0 && meminfo.bank[j - 1].highmem)
  785. j--;
  786. }
  787. }
  788. #endif
  789. meminfo.nr_banks = j;
  790. high_memory = __va(lowmem_limit - 1) + 1;
  791. memblock_set_current_limit(lowmem_limit);
  792. }
  793. static inline void prepare_page_table(void)
  794. {
  795. unsigned long addr;
  796. phys_addr_t end;
  797. /*
  798. * Clear out all the mappings below the kernel image.
  799. */
  800. for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
  801. pmd_clear(pmd_off_k(addr));
  802. #ifdef CONFIG_XIP_KERNEL
  803. /* The XIP kernel is mapped in the module area -- skip over it */
  804. addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
  805. #endif
  806. for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
  807. pmd_clear(pmd_off_k(addr));
  808. /*
  809. * Find the end of the first block of lowmem.
  810. */
  811. end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
  812. if (end >= lowmem_limit)
  813. end = lowmem_limit;
  814. /*
  815. * Clear out all the kernel space mappings, except for the first
  816. * memory bank, up to the vmalloc region.
  817. */
  818. for (addr = __phys_to_virt(end);
  819. addr < VMALLOC_START; addr += PMD_SIZE)
  820. pmd_clear(pmd_off_k(addr));
  821. }
  822. #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
  823. /*
  824. * Reserve the special regions of memory
  825. */
  826. void __init arm_mm_memblock_reserve(void)
  827. {
  828. /*
  829. * Reserve the page tables. These are already in use,
  830. * and can only be in node 0.
  831. */
  832. memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
  833. #ifdef CONFIG_SA1111
  834. /*
  835. * Because of the SA1111 DMA bug, we want to preserve our
  836. * precious DMA-able memory...
  837. */
  838. memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
  839. #endif
  840. }
  841. /*
  842. * Set up the device mappings. Since we clear out the page tables for all
  843. * mappings above VMALLOC_START, we will remove any debug device mappings.
  844. * This means you have to be careful how you debug this function, or any
  845. * called function. This means you can't use any function or debugging
  846. * method which may touch any device, otherwise the kernel _will_ crash.
  847. */
  848. static void __init devicemaps_init(struct machine_desc *mdesc)
  849. {
  850. struct map_desc map;
  851. unsigned long addr;
  852. /*
  853. * Allocate the vector page early.
  854. */
  855. vectors_page = early_alloc(PAGE_SIZE);
  856. for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
  857. pmd_clear(pmd_off_k(addr));
  858. /*
  859. * Map the kernel if it is XIP.
  860. * It is always first in the modulearea.
  861. */
  862. #ifdef CONFIG_XIP_KERNEL
  863. map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
  864. map.virtual = MODULES_VADDR;
  865. map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
  866. map.type = MT_ROM;
  867. create_mapping(&map);
  868. #endif
  869. /*
  870. * Map the cache flushing regions.
  871. */
  872. #ifdef FLUSH_BASE
  873. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
  874. map.virtual = FLUSH_BASE;
  875. map.length = SZ_1M;
  876. map.type = MT_CACHECLEAN;
  877. create_mapping(&map);
  878. #endif
  879. #ifdef FLUSH_BASE_MINICACHE
  880. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
  881. map.virtual = FLUSH_BASE_MINICACHE;
  882. map.length = SZ_1M;
  883. map.type = MT_MINICLEAN;
  884. create_mapping(&map);
  885. #endif
  886. /*
  887. * Create a mapping for the machine vectors at the high-vectors
  888. * location (0xffff0000). If we aren't using high-vectors, also
  889. * create a mapping at the low-vectors virtual address.
  890. */
  891. map.pfn = __phys_to_pfn(virt_to_phys(vectors_page));
  892. map.virtual = 0xffff0000;
  893. map.length = PAGE_SIZE;
  894. map.type = MT_HIGH_VECTORS;
  895. create_mapping(&map);
  896. if (!vectors_high()) {
  897. map.virtual = 0;
  898. map.type = MT_LOW_VECTORS;
  899. create_mapping(&map);
  900. }
  901. /*
  902. * Ask the machine support to map in the statically mapped devices.
  903. */
  904. if (mdesc->map_io)
  905. mdesc->map_io();
  906. /*
  907. * Finally flush the caches and tlb to ensure that we're in a
  908. * consistent state wrt the writebuffer. This also ensures that
  909. * any write-allocated cache lines in the vector page are written
  910. * back. After this point, we can start to touch devices again.
  911. */
  912. local_flush_tlb_all();
  913. flush_cache_all();
  914. }
  915. static void __init kmap_init(void)
  916. {
  917. #ifdef CONFIG_HIGHMEM
  918. pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
  919. PKMAP_BASE, _PAGE_KERNEL_TABLE);
  920. #endif
  921. }
  922. static void __init map_lowmem(void)
  923. {
  924. struct memblock_region *reg;
  925. /* Map all the lowmem memory banks. */
  926. for_each_memblock(memory, reg) {
  927. phys_addr_t start = reg->base;
  928. phys_addr_t end = start + reg->size;
  929. struct map_desc map;
  930. if (end > lowmem_limit)
  931. end = lowmem_limit;
  932. if (start >= end)
  933. break;
  934. map.pfn = __phys_to_pfn(start);
  935. map.virtual = __phys_to_virt(start);
  936. map.length = end - start;
  937. map.type = MT_MEMORY;
  938. create_mapping(&map);
  939. }
  940. }
  941. /*
  942. * paging_init() sets up the page tables, initialises the zone memory
  943. * maps, and sets up the zero page, bad page and bad page tables.
  944. */
  945. void __init paging_init(struct machine_desc *mdesc)
  946. {
  947. void *zero_page;
  948. memblock_set_current_limit(lowmem_limit);
  949. build_mem_type_table();
  950. prepare_page_table();
  951. map_lowmem();
  952. devicemaps_init(mdesc);
  953. kmap_init();
  954. top_pmd = pmd_off_k(0xffff0000);
  955. /* allocate the zero page. */
  956. zero_page = early_alloc(PAGE_SIZE);
  957. bootmem_init();
  958. empty_zero_page = virt_to_page(zero_page);
  959. __flush_dcache_page(NULL, empty_zero_page);
  960. }