pgtable.h 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
  1. /*
  2. * arch/arm/include/asm/pgtable.h
  3. *
  4. * Copyright (C) 1995-2002 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #ifndef _ASMARM_PGTABLE_H
  11. #define _ASMARM_PGTABLE_H
  12. #include <linux/const.h>
  13. #include <asm-generic/4level-fixup.h>
  14. #include <asm/proc-fns.h>
  15. #ifndef CONFIG_MMU
  16. #include "pgtable-nommu.h"
  17. #else
  18. #include <asm/memory.h>
  19. #include <asm/pgtable-hwdef.h>
  20. #include <asm/pgtable-2level.h>
  21. /*
  22. * Just any arbitrary offset to the start of the vmalloc VM area: the
  23. * current 8MB value just means that there will be a 8MB "hole" after the
  24. * physical memory until the kernel virtual memory starts. That means that
  25. * any out-of-bounds memory accesses will hopefully be caught.
  26. * The vmalloc() routines leaves a hole of 4kB between each vmalloced
  27. * area for the same reason. ;)
  28. */
  29. #define VMALLOC_OFFSET (8*1024*1024)
  30. #define VMALLOC_START (((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
  31. #define VMALLOC_END 0xff000000UL
  32. #define LIBRARY_TEXT_START 0x0c000000
  33. #ifndef __ASSEMBLY__
  34. extern void __pte_error(const char *file, int line, pte_t);
  35. extern void __pmd_error(const char *file, int line, pmd_t);
  36. extern void __pgd_error(const char *file, int line, pgd_t);
  37. #define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte)
  38. #define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd)
  39. #define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd)
  40. /*
  41. * This is the lowest virtual address we can permit any user space
  42. * mapping to be mapped at. This is particularly important for
  43. * non-high vector CPUs.
  44. */
  45. #define FIRST_USER_ADDRESS PAGE_SIZE
  46. /*
  47. * The pgprot_* and protection_map entries will be fixed up in runtime
  48. * to include the cachable and bufferable bits based on memory policy,
  49. * as well as any architecture dependent bits like global/ASID and SMP
  50. * shared mapping bits.
  51. */
  52. #define _L_PTE_DEFAULT L_PTE_PRESENT | L_PTE_YOUNG
  53. extern pgprot_t pgprot_user;
  54. extern pgprot_t pgprot_kernel;
  55. #define _MOD_PROT(p, b) __pgprot(pgprot_val(p) | (b))
  56. #define PAGE_NONE _MOD_PROT(pgprot_user, L_PTE_XN | L_PTE_RDONLY)
  57. #define PAGE_SHARED _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_XN)
  58. #define PAGE_SHARED_EXEC _MOD_PROT(pgprot_user, L_PTE_USER)
  59. #define PAGE_COPY _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
  60. #define PAGE_COPY_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
  61. #define PAGE_READONLY _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
  62. #define PAGE_READONLY_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
  63. #define PAGE_KERNEL _MOD_PROT(pgprot_kernel, L_PTE_XN)
  64. #define PAGE_KERNEL_EXEC pgprot_kernel
  65. #define __PAGE_NONE __pgprot(_L_PTE_DEFAULT | L_PTE_RDONLY | L_PTE_XN)
  66. #define __PAGE_SHARED __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_XN)
  67. #define __PAGE_SHARED_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER)
  68. #define __PAGE_COPY __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
  69. #define __PAGE_COPY_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
  70. #define __PAGE_READONLY __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
  71. #define __PAGE_READONLY_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
  72. #define __pgprot_modify(prot,mask,bits) \
  73. __pgprot((pgprot_val(prot) & ~(mask)) | (bits))
  74. #define pgprot_noncached(prot) \
  75. __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
  76. #define pgprot_writecombine(prot) \
  77. __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE)
  78. #define pgprot_stronglyordered(prot) \
  79. __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
  80. #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
  81. #define pgprot_dmacoherent(prot) \
  82. __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE | L_PTE_XN)
  83. #define __HAVE_PHYS_MEM_ACCESS_PROT
  84. struct file;
  85. extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
  86. unsigned long size, pgprot_t vma_prot);
  87. #else
  88. #define pgprot_dmacoherent(prot) \
  89. __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED | L_PTE_XN)
  90. #endif
  91. #endif /* __ASSEMBLY__ */
  92. /*
  93. * The table below defines the page protection levels that we insert into our
  94. * Linux page table version. These get translated into the best that the
  95. * architecture can perform. Note that on most ARM hardware:
  96. * 1) We cannot do execute protection
  97. * 2) If we could do execute protection, then read is implied
  98. * 3) write implies read permissions
  99. */
  100. #define __P000 __PAGE_NONE
  101. #define __P001 __PAGE_READONLY
  102. #define __P010 __PAGE_COPY
  103. #define __P011 __PAGE_COPY
  104. #define __P100 __PAGE_READONLY_EXEC
  105. #define __P101 __PAGE_READONLY_EXEC
  106. #define __P110 __PAGE_COPY_EXEC
  107. #define __P111 __PAGE_COPY_EXEC
  108. #define __S000 __PAGE_NONE
  109. #define __S001 __PAGE_READONLY
  110. #define __S010 __PAGE_SHARED
  111. #define __S011 __PAGE_SHARED
  112. #define __S100 __PAGE_READONLY_EXEC
  113. #define __S101 __PAGE_READONLY_EXEC
  114. #define __S110 __PAGE_SHARED_EXEC
  115. #define __S111 __PAGE_SHARED_EXEC
  116. #ifndef __ASSEMBLY__
  117. /*
  118. * ZERO_PAGE is a global shared page that is always zero: used
  119. * for zero-mapped memory areas etc..
  120. */
  121. extern struct page *empty_zero_page;
  122. #define ZERO_PAGE(vaddr) (empty_zero_page)
  123. extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
  124. /* to find an entry in a page-table-directory */
  125. #define pgd_index(addr) ((addr) >> PGDIR_SHIFT)
  126. #define pgd_offset(mm, addr) ((mm)->pgd + pgd_index(addr))
  127. /* to find an entry in a kernel page-table-directory */
  128. #define pgd_offset_k(addr) pgd_offset(&init_mm, addr)
  129. /*
  130. * The "pgd_xxx()" functions here are trivial for a folded two-level
  131. * setup: the pgd is never bad, and a pmd always exists (as it's folded
  132. * into the pgd entry)
  133. */
  134. #define pgd_none(pgd) (0)
  135. #define pgd_bad(pgd) (0)
  136. #define pgd_present(pgd) (1)
  137. #define pgd_clear(pgdp) do { } while (0)
  138. #define set_pgd(pgd,pgdp) do { } while (0)
  139. #define set_pud(pud,pudp) do { } while (0)
  140. /* Find an entry in the second-level page table.. */
  141. #define pmd_offset(dir, addr) ((pmd_t *)(dir))
  142. #define pmd_none(pmd) (!pmd_val(pmd))
  143. #define pmd_present(pmd) (pmd_val(pmd))
  144. #define pmd_bad(pmd) (pmd_val(pmd) & 2)
  145. #define copy_pmd(pmdpd,pmdps) \
  146. do { \
  147. pmdpd[0] = pmdps[0]; \
  148. pmdpd[1] = pmdps[1]; \
  149. flush_pmd_entry(pmdpd); \
  150. } while (0)
  151. #define pmd_clear(pmdp) \
  152. do { \
  153. pmdp[0] = __pmd(0); \
  154. pmdp[1] = __pmd(0); \
  155. clean_pmd_entry(pmdp); \
  156. } while (0)
  157. static inline pte_t *pmd_page_vaddr(pmd_t pmd)
  158. {
  159. return __va(pmd_val(pmd) & PHYS_MASK & (s32)PAGE_MASK);
  160. }
  161. #define pmd_page(pmd) pfn_to_page(__phys_to_pfn(pmd_val(pmd) & PHYS_MASK))
  162. /* we don't need complex calculations here as the pmd is folded into the pgd */
  163. #define pmd_addr_end(addr,end) (end)
  164. #ifndef CONFIG_HIGHPTE
  165. #define __pte_map(pmd) pmd_page_vaddr(*(pmd))
  166. #define __pte_unmap(pte) do { } while (0)
  167. #else
  168. #define __pte_map(pmd) (pte_t *)kmap_atomic(pmd_page(*(pmd)))
  169. #define __pte_unmap(pte) kunmap_atomic(pte)
  170. #endif
  171. #define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
  172. #define pte_offset_kernel(pmd,addr) (pmd_page_vaddr(*(pmd)) + pte_index(addr))
  173. #define pte_offset_map(pmd,addr) (__pte_map(pmd) + pte_index(addr))
  174. #define pte_unmap(pte) __pte_unmap(pte)
  175. #define pte_pfn(pte) ((pte_val(pte) & PHYS_MASK) >> PAGE_SHIFT)
  176. #define pfn_pte(pfn,prot) __pte(__pfn_to_phys(pfn) | pgprot_val(prot))
  177. #define pte_page(pte) pfn_to_page(pte_pfn(pte))
  178. #define mk_pte(page,prot) pfn_pte(page_to_pfn(page), prot)
  179. #define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,pte,ext)
  180. #define pte_clear(mm,addr,ptep) set_pte_ext(ptep, __pte(0), 0)
  181. #if __LINUX_ARM_ARCH__ < 6
  182. static inline void __sync_icache_dcache(pte_t pteval)
  183. {
  184. }
  185. #else
  186. extern void __sync_icache_dcache(pte_t pteval);
  187. #endif
  188. static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
  189. pte_t *ptep, pte_t pteval)
  190. {
  191. if (addr >= TASK_SIZE)
  192. set_pte_ext(ptep, pteval, 0);
  193. else {
  194. __sync_icache_dcache(pteval);
  195. set_pte_ext(ptep, pteval, PTE_EXT_NG);
  196. }
  197. }
  198. #define pte_none(pte) (!pte_val(pte))
  199. #define pte_present(pte) (pte_val(pte) & L_PTE_PRESENT)
  200. #define pte_write(pte) (!(pte_val(pte) & L_PTE_RDONLY))
  201. #define pte_dirty(pte) (pte_val(pte) & L_PTE_DIRTY)
  202. #define pte_young(pte) (pte_val(pte) & L_PTE_YOUNG)
  203. #define pte_exec(pte) (!(pte_val(pte) & L_PTE_XN))
  204. #define pte_special(pte) (0)
  205. #define pte_present_user(pte) \
  206. ((pte_val(pte) & (L_PTE_PRESENT | L_PTE_USER)) == \
  207. (L_PTE_PRESENT | L_PTE_USER))
  208. #define PTE_BIT_FUNC(fn,op) \
  209. static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }
  210. PTE_BIT_FUNC(wrprotect, |= L_PTE_RDONLY);
  211. PTE_BIT_FUNC(mkwrite, &= ~L_PTE_RDONLY);
  212. PTE_BIT_FUNC(mkclean, &= ~L_PTE_DIRTY);
  213. PTE_BIT_FUNC(mkdirty, |= L_PTE_DIRTY);
  214. PTE_BIT_FUNC(mkold, &= ~L_PTE_YOUNG);
  215. PTE_BIT_FUNC(mkyoung, |= L_PTE_YOUNG);
  216. static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
  217. static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
  218. {
  219. const pteval_t mask = L_PTE_XN | L_PTE_RDONLY | L_PTE_USER;
  220. pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
  221. return pte;
  222. }
  223. /*
  224. * Encode and decode a swap entry. Swap entries are stored in the Linux
  225. * page tables as follows:
  226. *
  227. * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
  228. * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
  229. * <--------------- offset --------------------> <- type --> 0 0 0
  230. *
  231. * This gives us up to 63 swap files and 32GB per swap file. Note that
  232. * the offset field is always non-zero.
  233. */
  234. #define __SWP_TYPE_SHIFT 3
  235. #define __SWP_TYPE_BITS 6
  236. #define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1)
  237. #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
  238. #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
  239. #define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT)
  240. #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
  241. #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
  242. #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
  243. /*
  244. * It is an error for the kernel to have more swap files than we can
  245. * encode in the PTEs. This ensures that we know when MAX_SWAPFILES
  246. * is increased beyond what we presently support.
  247. */
  248. #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
  249. /*
  250. * Encode and decode a file entry. File entries are stored in the Linux
  251. * page tables as follows:
  252. *
  253. * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
  254. * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
  255. * <----------------------- offset ------------------------> 1 0 0
  256. */
  257. #define pte_file(pte) (pte_val(pte) & L_PTE_FILE)
  258. #define pte_to_pgoff(x) (pte_val(x) >> 3)
  259. #define pgoff_to_pte(x) __pte(((x) << 3) | L_PTE_FILE)
  260. #define PTE_FILE_MAX_BITS 29
  261. /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
  262. /* FIXME: this is not correct */
  263. #define kern_addr_valid(addr) (1)
  264. #include <asm-generic/pgtable.h>
  265. /*
  266. * We provide our own arch_get_unmapped_area to cope with VIPT caches.
  267. */
  268. #define HAVE_ARCH_UNMAPPED_AREA
  269. /*
  270. * remap a physical page `pfn' of size `size' with page protection `prot'
  271. * into virtual address `from'
  272. */
  273. #define io_remap_pfn_range(vma,from,pfn,size,prot) \
  274. remap_pfn_range(vma, from, pfn, size, prot)
  275. #define pgtable_cache_init() do { } while (0)
  276. void identity_mapping_add(pgd_t *, unsigned long, unsigned long);
  277. void identity_mapping_del(pgd_t *, unsigned long, unsigned long);
  278. #endif /* !__ASSEMBLY__ */
  279. #endif /* CONFIG_MMU */
  280. #endif /* _ASMARM_PGTABLE_H */