disk-io.c 109 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <linux/uuid.h>
  33. #include <asm/unaligned.h>
  34. #include "compat.h"
  35. #include "ctree.h"
  36. #include "disk-io.h"
  37. #include "transaction.h"
  38. #include "btrfs_inode.h"
  39. #include "volumes.h"
  40. #include "print-tree.h"
  41. #include "async-thread.h"
  42. #include "locking.h"
  43. #include "tree-log.h"
  44. #include "free-space-cache.h"
  45. #include "inode-map.h"
  46. #include "check-integrity.h"
  47. #include "rcu-string.h"
  48. #include "dev-replace.h"
  49. #include "raid56.h"
  50. #ifdef CONFIG_X86
  51. #include <asm/cpufeature.h>
  52. #endif
  53. static struct extent_io_ops btree_extent_io_ops;
  54. static void end_workqueue_fn(struct btrfs_work *work);
  55. static void free_fs_root(struct btrfs_root *root);
  56. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  57. int read_only);
  58. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  59. struct btrfs_root *root);
  60. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  61. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  62. struct btrfs_root *root);
  63. static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
  64. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  65. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  66. struct extent_io_tree *dirty_pages,
  67. int mark);
  68. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  69. struct extent_io_tree *pinned_extents);
  70. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  71. static void btrfs_error_commit_super(struct btrfs_root *root);
  72. /*
  73. * end_io_wq structs are used to do processing in task context when an IO is
  74. * complete. This is used during reads to verify checksums, and it is used
  75. * by writes to insert metadata for new file extents after IO is complete.
  76. */
  77. struct end_io_wq {
  78. struct bio *bio;
  79. bio_end_io_t *end_io;
  80. void *private;
  81. struct btrfs_fs_info *info;
  82. int error;
  83. int metadata;
  84. struct list_head list;
  85. struct btrfs_work work;
  86. };
  87. /*
  88. * async submit bios are used to offload expensive checksumming
  89. * onto the worker threads. They checksum file and metadata bios
  90. * just before they are sent down the IO stack.
  91. */
  92. struct async_submit_bio {
  93. struct inode *inode;
  94. struct bio *bio;
  95. struct list_head list;
  96. extent_submit_bio_hook_t *submit_bio_start;
  97. extent_submit_bio_hook_t *submit_bio_done;
  98. int rw;
  99. int mirror_num;
  100. unsigned long bio_flags;
  101. /*
  102. * bio_offset is optional, can be used if the pages in the bio
  103. * can't tell us where in the file the bio should go
  104. */
  105. u64 bio_offset;
  106. struct btrfs_work work;
  107. int error;
  108. };
  109. /*
  110. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  111. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  112. * the level the eb occupies in the tree.
  113. *
  114. * Different roots are used for different purposes and may nest inside each
  115. * other and they require separate keysets. As lockdep keys should be
  116. * static, assign keysets according to the purpose of the root as indicated
  117. * by btrfs_root->objectid. This ensures that all special purpose roots
  118. * have separate keysets.
  119. *
  120. * Lock-nesting across peer nodes is always done with the immediate parent
  121. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  122. * subclass to avoid triggering lockdep warning in such cases.
  123. *
  124. * The key is set by the readpage_end_io_hook after the buffer has passed
  125. * csum validation but before the pages are unlocked. It is also set by
  126. * btrfs_init_new_buffer on freshly allocated blocks.
  127. *
  128. * We also add a check to make sure the highest level of the tree is the
  129. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  130. * needs update as well.
  131. */
  132. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  133. # if BTRFS_MAX_LEVEL != 8
  134. # error
  135. # endif
  136. static struct btrfs_lockdep_keyset {
  137. u64 id; /* root objectid */
  138. const char *name_stem; /* lock name stem */
  139. char names[BTRFS_MAX_LEVEL + 1][20];
  140. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  141. } btrfs_lockdep_keysets[] = {
  142. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  143. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  144. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  145. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  146. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  147. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  148. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  149. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  150. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  151. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  152. { .id = 0, .name_stem = "tree" },
  153. };
  154. void __init btrfs_init_lockdep(void)
  155. {
  156. int i, j;
  157. /* initialize lockdep class names */
  158. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  159. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  160. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  161. snprintf(ks->names[j], sizeof(ks->names[j]),
  162. "btrfs-%s-%02d", ks->name_stem, j);
  163. }
  164. }
  165. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  166. int level)
  167. {
  168. struct btrfs_lockdep_keyset *ks;
  169. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  170. /* find the matching keyset, id 0 is the default entry */
  171. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  172. if (ks->id == objectid)
  173. break;
  174. lockdep_set_class_and_name(&eb->lock,
  175. &ks->keys[level], ks->names[level]);
  176. }
  177. #endif
  178. /*
  179. * extents on the btree inode are pretty simple, there's one extent
  180. * that covers the entire device
  181. */
  182. static struct extent_map *btree_get_extent(struct inode *inode,
  183. struct page *page, size_t pg_offset, u64 start, u64 len,
  184. int create)
  185. {
  186. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  187. struct extent_map *em;
  188. int ret;
  189. read_lock(&em_tree->lock);
  190. em = lookup_extent_mapping(em_tree, start, len);
  191. if (em) {
  192. em->bdev =
  193. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  194. read_unlock(&em_tree->lock);
  195. goto out;
  196. }
  197. read_unlock(&em_tree->lock);
  198. em = alloc_extent_map();
  199. if (!em) {
  200. em = ERR_PTR(-ENOMEM);
  201. goto out;
  202. }
  203. em->start = 0;
  204. em->len = (u64)-1;
  205. em->block_len = (u64)-1;
  206. em->block_start = 0;
  207. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  208. write_lock(&em_tree->lock);
  209. ret = add_extent_mapping(em_tree, em, 0);
  210. if (ret == -EEXIST) {
  211. free_extent_map(em);
  212. em = lookup_extent_mapping(em_tree, start, len);
  213. if (!em)
  214. em = ERR_PTR(-EIO);
  215. } else if (ret) {
  216. free_extent_map(em);
  217. em = ERR_PTR(ret);
  218. }
  219. write_unlock(&em_tree->lock);
  220. out:
  221. return em;
  222. }
  223. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  224. {
  225. return crc32c(seed, data, len);
  226. }
  227. void btrfs_csum_final(u32 crc, char *result)
  228. {
  229. put_unaligned_le32(~crc, result);
  230. }
  231. /*
  232. * compute the csum for a btree block, and either verify it or write it
  233. * into the csum field of the block.
  234. */
  235. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  236. int verify)
  237. {
  238. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  239. char *result = NULL;
  240. unsigned long len;
  241. unsigned long cur_len;
  242. unsigned long offset = BTRFS_CSUM_SIZE;
  243. char *kaddr;
  244. unsigned long map_start;
  245. unsigned long map_len;
  246. int err;
  247. u32 crc = ~(u32)0;
  248. unsigned long inline_result;
  249. len = buf->len - offset;
  250. while (len > 0) {
  251. err = map_private_extent_buffer(buf, offset, 32,
  252. &kaddr, &map_start, &map_len);
  253. if (err)
  254. return 1;
  255. cur_len = min(len, map_len - (offset - map_start));
  256. crc = btrfs_csum_data(kaddr + offset - map_start,
  257. crc, cur_len);
  258. len -= cur_len;
  259. offset += cur_len;
  260. }
  261. if (csum_size > sizeof(inline_result)) {
  262. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  263. if (!result)
  264. return 1;
  265. } else {
  266. result = (char *)&inline_result;
  267. }
  268. btrfs_csum_final(crc, result);
  269. if (verify) {
  270. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  271. u32 val;
  272. u32 found = 0;
  273. memcpy(&found, result, csum_size);
  274. read_extent_buffer(buf, &val, 0, csum_size);
  275. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  276. "failed on %llu wanted %X found %X "
  277. "level %d\n",
  278. root->fs_info->sb->s_id,
  279. (unsigned long long)buf->start, val, found,
  280. btrfs_header_level(buf));
  281. if (result != (char *)&inline_result)
  282. kfree(result);
  283. return 1;
  284. }
  285. } else {
  286. write_extent_buffer(buf, result, 0, csum_size);
  287. }
  288. if (result != (char *)&inline_result)
  289. kfree(result);
  290. return 0;
  291. }
  292. /*
  293. * we can't consider a given block up to date unless the transid of the
  294. * block matches the transid in the parent node's pointer. This is how we
  295. * detect blocks that either didn't get written at all or got written
  296. * in the wrong place.
  297. */
  298. static int verify_parent_transid(struct extent_io_tree *io_tree,
  299. struct extent_buffer *eb, u64 parent_transid,
  300. int atomic)
  301. {
  302. struct extent_state *cached_state = NULL;
  303. int ret;
  304. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  305. return 0;
  306. if (atomic)
  307. return -EAGAIN;
  308. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  309. 0, &cached_state);
  310. if (extent_buffer_uptodate(eb) &&
  311. btrfs_header_generation(eb) == parent_transid) {
  312. ret = 0;
  313. goto out;
  314. }
  315. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  316. "found %llu\n",
  317. (unsigned long long)eb->start,
  318. (unsigned long long)parent_transid,
  319. (unsigned long long)btrfs_header_generation(eb));
  320. ret = 1;
  321. clear_extent_buffer_uptodate(eb);
  322. out:
  323. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  324. &cached_state, GFP_NOFS);
  325. return ret;
  326. }
  327. /*
  328. * Return 0 if the superblock checksum type matches the checksum value of that
  329. * algorithm. Pass the raw disk superblock data.
  330. */
  331. static int btrfs_check_super_csum(char *raw_disk_sb)
  332. {
  333. struct btrfs_super_block *disk_sb =
  334. (struct btrfs_super_block *)raw_disk_sb;
  335. u16 csum_type = btrfs_super_csum_type(disk_sb);
  336. int ret = 0;
  337. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  338. u32 crc = ~(u32)0;
  339. const int csum_size = sizeof(crc);
  340. char result[csum_size];
  341. /*
  342. * The super_block structure does not span the whole
  343. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  344. * is filled with zeros and is included in the checkum.
  345. */
  346. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  347. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  348. btrfs_csum_final(crc, result);
  349. if (memcmp(raw_disk_sb, result, csum_size))
  350. ret = 1;
  351. if (ret && btrfs_super_generation(disk_sb) < 10) {
  352. printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
  353. ret = 0;
  354. }
  355. }
  356. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  357. printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
  358. csum_type);
  359. ret = 1;
  360. }
  361. return ret;
  362. }
  363. /*
  364. * helper to read a given tree block, doing retries as required when
  365. * the checksums don't match and we have alternate mirrors to try.
  366. */
  367. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  368. struct extent_buffer *eb,
  369. u64 start, u64 parent_transid)
  370. {
  371. struct extent_io_tree *io_tree;
  372. int failed = 0;
  373. int ret;
  374. int num_copies = 0;
  375. int mirror_num = 0;
  376. int failed_mirror = 0;
  377. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  378. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  379. while (1) {
  380. ret = read_extent_buffer_pages(io_tree, eb, start,
  381. WAIT_COMPLETE,
  382. btree_get_extent, mirror_num);
  383. if (!ret) {
  384. if (!verify_parent_transid(io_tree, eb,
  385. parent_transid, 0))
  386. break;
  387. else
  388. ret = -EIO;
  389. }
  390. /*
  391. * This buffer's crc is fine, but its contents are corrupted, so
  392. * there is no reason to read the other copies, they won't be
  393. * any less wrong.
  394. */
  395. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  396. break;
  397. num_copies = btrfs_num_copies(root->fs_info,
  398. eb->start, eb->len);
  399. if (num_copies == 1)
  400. break;
  401. if (!failed_mirror) {
  402. failed = 1;
  403. failed_mirror = eb->read_mirror;
  404. }
  405. mirror_num++;
  406. if (mirror_num == failed_mirror)
  407. mirror_num++;
  408. if (mirror_num > num_copies)
  409. break;
  410. }
  411. if (failed && !ret && failed_mirror)
  412. repair_eb_io_failure(root, eb, failed_mirror);
  413. return ret;
  414. }
  415. /*
  416. * checksum a dirty tree block before IO. This has extra checks to make sure
  417. * we only fill in the checksum field in the first page of a multi-page block
  418. */
  419. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  420. {
  421. struct extent_io_tree *tree;
  422. u64 start = page_offset(page);
  423. u64 found_start;
  424. struct extent_buffer *eb;
  425. tree = &BTRFS_I(page->mapping->host)->io_tree;
  426. eb = (struct extent_buffer *)page->private;
  427. if (page != eb->pages[0])
  428. return 0;
  429. found_start = btrfs_header_bytenr(eb);
  430. if (found_start != start) {
  431. WARN_ON(1);
  432. return 0;
  433. }
  434. if (!PageUptodate(page)) {
  435. WARN_ON(1);
  436. return 0;
  437. }
  438. csum_tree_block(root, eb, 0);
  439. return 0;
  440. }
  441. static int check_tree_block_fsid(struct btrfs_root *root,
  442. struct extent_buffer *eb)
  443. {
  444. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  445. u8 fsid[BTRFS_UUID_SIZE];
  446. int ret = 1;
  447. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  448. BTRFS_FSID_SIZE);
  449. while (fs_devices) {
  450. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  451. ret = 0;
  452. break;
  453. }
  454. fs_devices = fs_devices->seed;
  455. }
  456. return ret;
  457. }
  458. #define CORRUPT(reason, eb, root, slot) \
  459. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  460. "root=%llu, slot=%d\n", reason, \
  461. (unsigned long long)btrfs_header_bytenr(eb), \
  462. (unsigned long long)root->objectid, slot)
  463. static noinline int check_leaf(struct btrfs_root *root,
  464. struct extent_buffer *leaf)
  465. {
  466. struct btrfs_key key;
  467. struct btrfs_key leaf_key;
  468. u32 nritems = btrfs_header_nritems(leaf);
  469. int slot;
  470. if (nritems == 0)
  471. return 0;
  472. /* Check the 0 item */
  473. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  474. BTRFS_LEAF_DATA_SIZE(root)) {
  475. CORRUPT("invalid item offset size pair", leaf, root, 0);
  476. return -EIO;
  477. }
  478. /*
  479. * Check to make sure each items keys are in the correct order and their
  480. * offsets make sense. We only have to loop through nritems-1 because
  481. * we check the current slot against the next slot, which verifies the
  482. * next slot's offset+size makes sense and that the current's slot
  483. * offset is correct.
  484. */
  485. for (slot = 0; slot < nritems - 1; slot++) {
  486. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  487. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  488. /* Make sure the keys are in the right order */
  489. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  490. CORRUPT("bad key order", leaf, root, slot);
  491. return -EIO;
  492. }
  493. /*
  494. * Make sure the offset and ends are right, remember that the
  495. * item data starts at the end of the leaf and grows towards the
  496. * front.
  497. */
  498. if (btrfs_item_offset_nr(leaf, slot) !=
  499. btrfs_item_end_nr(leaf, slot + 1)) {
  500. CORRUPT("slot offset bad", leaf, root, slot);
  501. return -EIO;
  502. }
  503. /*
  504. * Check to make sure that we don't point outside of the leaf,
  505. * just incase all the items are consistent to eachother, but
  506. * all point outside of the leaf.
  507. */
  508. if (btrfs_item_end_nr(leaf, slot) >
  509. BTRFS_LEAF_DATA_SIZE(root)) {
  510. CORRUPT("slot end outside of leaf", leaf, root, slot);
  511. return -EIO;
  512. }
  513. }
  514. return 0;
  515. }
  516. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  517. struct extent_state *state, int mirror)
  518. {
  519. struct extent_io_tree *tree;
  520. u64 found_start;
  521. int found_level;
  522. struct extent_buffer *eb;
  523. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  524. int ret = 0;
  525. int reads_done;
  526. if (!page->private)
  527. goto out;
  528. tree = &BTRFS_I(page->mapping->host)->io_tree;
  529. eb = (struct extent_buffer *)page->private;
  530. /* the pending IO might have been the only thing that kept this buffer
  531. * in memory. Make sure we have a ref for all this other checks
  532. */
  533. extent_buffer_get(eb);
  534. reads_done = atomic_dec_and_test(&eb->io_pages);
  535. if (!reads_done)
  536. goto err;
  537. eb->read_mirror = mirror;
  538. if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
  539. ret = -EIO;
  540. goto err;
  541. }
  542. found_start = btrfs_header_bytenr(eb);
  543. if (found_start != eb->start) {
  544. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  545. "%llu %llu\n",
  546. (unsigned long long)found_start,
  547. (unsigned long long)eb->start);
  548. ret = -EIO;
  549. goto err;
  550. }
  551. if (check_tree_block_fsid(root, eb)) {
  552. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  553. (unsigned long long)eb->start);
  554. ret = -EIO;
  555. goto err;
  556. }
  557. found_level = btrfs_header_level(eb);
  558. if (found_level >= BTRFS_MAX_LEVEL) {
  559. btrfs_info(root->fs_info, "bad tree block level %d\n",
  560. (int)btrfs_header_level(eb));
  561. ret = -EIO;
  562. goto err;
  563. }
  564. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  565. eb, found_level);
  566. ret = csum_tree_block(root, eb, 1);
  567. if (ret) {
  568. ret = -EIO;
  569. goto err;
  570. }
  571. /*
  572. * If this is a leaf block and it is corrupt, set the corrupt bit so
  573. * that we don't try and read the other copies of this block, just
  574. * return -EIO.
  575. */
  576. if (found_level == 0 && check_leaf(root, eb)) {
  577. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  578. ret = -EIO;
  579. }
  580. if (!ret)
  581. set_extent_buffer_uptodate(eb);
  582. err:
  583. if (reads_done &&
  584. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  585. btree_readahead_hook(root, eb, eb->start, ret);
  586. if (ret) {
  587. /*
  588. * our io error hook is going to dec the io pages
  589. * again, we have to make sure it has something
  590. * to decrement
  591. */
  592. atomic_inc(&eb->io_pages);
  593. clear_extent_buffer_uptodate(eb);
  594. }
  595. free_extent_buffer(eb);
  596. out:
  597. return ret;
  598. }
  599. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  600. {
  601. struct extent_buffer *eb;
  602. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  603. eb = (struct extent_buffer *)page->private;
  604. set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  605. eb->read_mirror = failed_mirror;
  606. atomic_dec(&eb->io_pages);
  607. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  608. btree_readahead_hook(root, eb, eb->start, -EIO);
  609. return -EIO; /* we fixed nothing */
  610. }
  611. static void end_workqueue_bio(struct bio *bio, int err)
  612. {
  613. struct end_io_wq *end_io_wq = bio->bi_private;
  614. struct btrfs_fs_info *fs_info;
  615. fs_info = end_io_wq->info;
  616. end_io_wq->error = err;
  617. end_io_wq->work.func = end_workqueue_fn;
  618. end_io_wq->work.flags = 0;
  619. if (bio->bi_rw & REQ_WRITE) {
  620. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
  621. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  622. &end_io_wq->work);
  623. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
  624. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  625. &end_io_wq->work);
  626. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  627. btrfs_queue_worker(&fs_info->endio_raid56_workers,
  628. &end_io_wq->work);
  629. else
  630. btrfs_queue_worker(&fs_info->endio_write_workers,
  631. &end_io_wq->work);
  632. } else {
  633. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  634. btrfs_queue_worker(&fs_info->endio_raid56_workers,
  635. &end_io_wq->work);
  636. else if (end_io_wq->metadata)
  637. btrfs_queue_worker(&fs_info->endio_meta_workers,
  638. &end_io_wq->work);
  639. else
  640. btrfs_queue_worker(&fs_info->endio_workers,
  641. &end_io_wq->work);
  642. }
  643. }
  644. /*
  645. * For the metadata arg you want
  646. *
  647. * 0 - if data
  648. * 1 - if normal metadta
  649. * 2 - if writing to the free space cache area
  650. * 3 - raid parity work
  651. */
  652. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  653. int metadata)
  654. {
  655. struct end_io_wq *end_io_wq;
  656. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  657. if (!end_io_wq)
  658. return -ENOMEM;
  659. end_io_wq->private = bio->bi_private;
  660. end_io_wq->end_io = bio->bi_end_io;
  661. end_io_wq->info = info;
  662. end_io_wq->error = 0;
  663. end_io_wq->bio = bio;
  664. end_io_wq->metadata = metadata;
  665. bio->bi_private = end_io_wq;
  666. bio->bi_end_io = end_workqueue_bio;
  667. return 0;
  668. }
  669. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  670. {
  671. unsigned long limit = min_t(unsigned long,
  672. info->workers.max_workers,
  673. info->fs_devices->open_devices);
  674. return 256 * limit;
  675. }
  676. static void run_one_async_start(struct btrfs_work *work)
  677. {
  678. struct async_submit_bio *async;
  679. int ret;
  680. async = container_of(work, struct async_submit_bio, work);
  681. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  682. async->mirror_num, async->bio_flags,
  683. async->bio_offset);
  684. if (ret)
  685. async->error = ret;
  686. }
  687. static void run_one_async_done(struct btrfs_work *work)
  688. {
  689. struct btrfs_fs_info *fs_info;
  690. struct async_submit_bio *async;
  691. int limit;
  692. async = container_of(work, struct async_submit_bio, work);
  693. fs_info = BTRFS_I(async->inode)->root->fs_info;
  694. limit = btrfs_async_submit_limit(fs_info);
  695. limit = limit * 2 / 3;
  696. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  697. waitqueue_active(&fs_info->async_submit_wait))
  698. wake_up(&fs_info->async_submit_wait);
  699. /* If an error occured we just want to clean up the bio and move on */
  700. if (async->error) {
  701. bio_endio(async->bio, async->error);
  702. return;
  703. }
  704. async->submit_bio_done(async->inode, async->rw, async->bio,
  705. async->mirror_num, async->bio_flags,
  706. async->bio_offset);
  707. }
  708. static void run_one_async_free(struct btrfs_work *work)
  709. {
  710. struct async_submit_bio *async;
  711. async = container_of(work, struct async_submit_bio, work);
  712. kfree(async);
  713. }
  714. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  715. int rw, struct bio *bio, int mirror_num,
  716. unsigned long bio_flags,
  717. u64 bio_offset,
  718. extent_submit_bio_hook_t *submit_bio_start,
  719. extent_submit_bio_hook_t *submit_bio_done)
  720. {
  721. struct async_submit_bio *async;
  722. async = kmalloc(sizeof(*async), GFP_NOFS);
  723. if (!async)
  724. return -ENOMEM;
  725. async->inode = inode;
  726. async->rw = rw;
  727. async->bio = bio;
  728. async->mirror_num = mirror_num;
  729. async->submit_bio_start = submit_bio_start;
  730. async->submit_bio_done = submit_bio_done;
  731. async->work.func = run_one_async_start;
  732. async->work.ordered_func = run_one_async_done;
  733. async->work.ordered_free = run_one_async_free;
  734. async->work.flags = 0;
  735. async->bio_flags = bio_flags;
  736. async->bio_offset = bio_offset;
  737. async->error = 0;
  738. atomic_inc(&fs_info->nr_async_submits);
  739. if (rw & REQ_SYNC)
  740. btrfs_set_work_high_prio(&async->work);
  741. btrfs_queue_worker(&fs_info->workers, &async->work);
  742. while (atomic_read(&fs_info->async_submit_draining) &&
  743. atomic_read(&fs_info->nr_async_submits)) {
  744. wait_event(fs_info->async_submit_wait,
  745. (atomic_read(&fs_info->nr_async_submits) == 0));
  746. }
  747. return 0;
  748. }
  749. static int btree_csum_one_bio(struct bio *bio)
  750. {
  751. struct bio_vec *bvec = bio->bi_io_vec;
  752. int bio_index = 0;
  753. struct btrfs_root *root;
  754. int ret = 0;
  755. WARN_ON(bio->bi_vcnt <= 0);
  756. while (bio_index < bio->bi_vcnt) {
  757. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  758. ret = csum_dirty_buffer(root, bvec->bv_page);
  759. if (ret)
  760. break;
  761. bio_index++;
  762. bvec++;
  763. }
  764. return ret;
  765. }
  766. static int __btree_submit_bio_start(struct inode *inode, int rw,
  767. struct bio *bio, int mirror_num,
  768. unsigned long bio_flags,
  769. u64 bio_offset)
  770. {
  771. /*
  772. * when we're called for a write, we're already in the async
  773. * submission context. Just jump into btrfs_map_bio
  774. */
  775. return btree_csum_one_bio(bio);
  776. }
  777. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  778. int mirror_num, unsigned long bio_flags,
  779. u64 bio_offset)
  780. {
  781. int ret;
  782. /*
  783. * when we're called for a write, we're already in the async
  784. * submission context. Just jump into btrfs_map_bio
  785. */
  786. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  787. if (ret)
  788. bio_endio(bio, ret);
  789. return ret;
  790. }
  791. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  792. {
  793. if (bio_flags & EXTENT_BIO_TREE_LOG)
  794. return 0;
  795. #ifdef CONFIG_X86
  796. if (cpu_has_xmm4_2)
  797. return 0;
  798. #endif
  799. return 1;
  800. }
  801. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  802. int mirror_num, unsigned long bio_flags,
  803. u64 bio_offset)
  804. {
  805. int async = check_async_write(inode, bio_flags);
  806. int ret;
  807. if (!(rw & REQ_WRITE)) {
  808. /*
  809. * called for a read, do the setup so that checksum validation
  810. * can happen in the async kernel threads
  811. */
  812. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  813. bio, 1);
  814. if (ret)
  815. goto out_w_error;
  816. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  817. mirror_num, 0);
  818. } else if (!async) {
  819. ret = btree_csum_one_bio(bio);
  820. if (ret)
  821. goto out_w_error;
  822. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  823. mirror_num, 0);
  824. } else {
  825. /*
  826. * kthread helpers are used to submit writes so that
  827. * checksumming can happen in parallel across all CPUs
  828. */
  829. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  830. inode, rw, bio, mirror_num, 0,
  831. bio_offset,
  832. __btree_submit_bio_start,
  833. __btree_submit_bio_done);
  834. }
  835. if (ret) {
  836. out_w_error:
  837. bio_endio(bio, ret);
  838. }
  839. return ret;
  840. }
  841. #ifdef CONFIG_MIGRATION
  842. static int btree_migratepage(struct address_space *mapping,
  843. struct page *newpage, struct page *page,
  844. enum migrate_mode mode)
  845. {
  846. /*
  847. * we can't safely write a btree page from here,
  848. * we haven't done the locking hook
  849. */
  850. if (PageDirty(page))
  851. return -EAGAIN;
  852. /*
  853. * Buffers may be managed in a filesystem specific way.
  854. * We must have no buffers or drop them.
  855. */
  856. if (page_has_private(page) &&
  857. !try_to_release_page(page, GFP_KERNEL))
  858. return -EAGAIN;
  859. return migrate_page(mapping, newpage, page, mode);
  860. }
  861. #endif
  862. static int btree_writepages(struct address_space *mapping,
  863. struct writeback_control *wbc)
  864. {
  865. struct extent_io_tree *tree;
  866. struct btrfs_fs_info *fs_info;
  867. int ret;
  868. tree = &BTRFS_I(mapping->host)->io_tree;
  869. if (wbc->sync_mode == WB_SYNC_NONE) {
  870. if (wbc->for_kupdate)
  871. return 0;
  872. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  873. /* this is a bit racy, but that's ok */
  874. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  875. BTRFS_DIRTY_METADATA_THRESH);
  876. if (ret < 0)
  877. return 0;
  878. }
  879. return btree_write_cache_pages(mapping, wbc);
  880. }
  881. static int btree_readpage(struct file *file, struct page *page)
  882. {
  883. struct extent_io_tree *tree;
  884. tree = &BTRFS_I(page->mapping->host)->io_tree;
  885. return extent_read_full_page(tree, page, btree_get_extent, 0);
  886. }
  887. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  888. {
  889. if (PageWriteback(page) || PageDirty(page))
  890. return 0;
  891. return try_release_extent_buffer(page);
  892. }
  893. static void btree_invalidatepage(struct page *page, unsigned long offset)
  894. {
  895. struct extent_io_tree *tree;
  896. tree = &BTRFS_I(page->mapping->host)->io_tree;
  897. extent_invalidatepage(tree, page, offset);
  898. btree_releasepage(page, GFP_NOFS);
  899. if (PagePrivate(page)) {
  900. printk(KERN_WARNING "btrfs warning page private not zero "
  901. "on page %llu\n", (unsigned long long)page_offset(page));
  902. ClearPagePrivate(page);
  903. set_page_private(page, 0);
  904. page_cache_release(page);
  905. }
  906. }
  907. static int btree_set_page_dirty(struct page *page)
  908. {
  909. #ifdef DEBUG
  910. struct extent_buffer *eb;
  911. BUG_ON(!PagePrivate(page));
  912. eb = (struct extent_buffer *)page->private;
  913. BUG_ON(!eb);
  914. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  915. BUG_ON(!atomic_read(&eb->refs));
  916. btrfs_assert_tree_locked(eb);
  917. #endif
  918. return __set_page_dirty_nobuffers(page);
  919. }
  920. static const struct address_space_operations btree_aops = {
  921. .readpage = btree_readpage,
  922. .writepages = btree_writepages,
  923. .releasepage = btree_releasepage,
  924. .invalidatepage = btree_invalidatepage,
  925. #ifdef CONFIG_MIGRATION
  926. .migratepage = btree_migratepage,
  927. #endif
  928. .set_page_dirty = btree_set_page_dirty,
  929. };
  930. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  931. u64 parent_transid)
  932. {
  933. struct extent_buffer *buf = NULL;
  934. struct inode *btree_inode = root->fs_info->btree_inode;
  935. int ret = 0;
  936. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  937. if (!buf)
  938. return 0;
  939. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  940. buf, 0, WAIT_NONE, btree_get_extent, 0);
  941. free_extent_buffer(buf);
  942. return ret;
  943. }
  944. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  945. int mirror_num, struct extent_buffer **eb)
  946. {
  947. struct extent_buffer *buf = NULL;
  948. struct inode *btree_inode = root->fs_info->btree_inode;
  949. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  950. int ret;
  951. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  952. if (!buf)
  953. return 0;
  954. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  955. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  956. btree_get_extent, mirror_num);
  957. if (ret) {
  958. free_extent_buffer(buf);
  959. return ret;
  960. }
  961. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  962. free_extent_buffer(buf);
  963. return -EIO;
  964. } else if (extent_buffer_uptodate(buf)) {
  965. *eb = buf;
  966. } else {
  967. free_extent_buffer(buf);
  968. }
  969. return 0;
  970. }
  971. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  972. u64 bytenr, u32 blocksize)
  973. {
  974. struct inode *btree_inode = root->fs_info->btree_inode;
  975. struct extent_buffer *eb;
  976. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  977. bytenr, blocksize);
  978. return eb;
  979. }
  980. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  981. u64 bytenr, u32 blocksize)
  982. {
  983. struct inode *btree_inode = root->fs_info->btree_inode;
  984. struct extent_buffer *eb;
  985. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  986. bytenr, blocksize);
  987. return eb;
  988. }
  989. int btrfs_write_tree_block(struct extent_buffer *buf)
  990. {
  991. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  992. buf->start + buf->len - 1);
  993. }
  994. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  995. {
  996. return filemap_fdatawait_range(buf->pages[0]->mapping,
  997. buf->start, buf->start + buf->len - 1);
  998. }
  999. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  1000. u32 blocksize, u64 parent_transid)
  1001. {
  1002. struct extent_buffer *buf = NULL;
  1003. int ret;
  1004. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  1005. if (!buf)
  1006. return NULL;
  1007. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  1008. return buf;
  1009. }
  1010. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1011. struct extent_buffer *buf)
  1012. {
  1013. struct btrfs_fs_info *fs_info = root->fs_info;
  1014. if (btrfs_header_generation(buf) ==
  1015. fs_info->running_transaction->transid) {
  1016. btrfs_assert_tree_locked(buf);
  1017. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1018. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1019. -buf->len,
  1020. fs_info->dirty_metadata_batch);
  1021. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1022. btrfs_set_lock_blocking(buf);
  1023. clear_extent_buffer_dirty(buf);
  1024. }
  1025. }
  1026. }
  1027. static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  1028. u32 stripesize, struct btrfs_root *root,
  1029. struct btrfs_fs_info *fs_info,
  1030. u64 objectid)
  1031. {
  1032. root->node = NULL;
  1033. root->commit_root = NULL;
  1034. root->sectorsize = sectorsize;
  1035. root->nodesize = nodesize;
  1036. root->leafsize = leafsize;
  1037. root->stripesize = stripesize;
  1038. root->ref_cows = 0;
  1039. root->track_dirty = 0;
  1040. root->in_radix = 0;
  1041. root->orphan_item_inserted = 0;
  1042. root->orphan_cleanup_state = 0;
  1043. root->objectid = objectid;
  1044. root->last_trans = 0;
  1045. root->highest_objectid = 0;
  1046. root->name = NULL;
  1047. root->inode_tree = RB_ROOT;
  1048. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1049. root->block_rsv = NULL;
  1050. root->orphan_block_rsv = NULL;
  1051. INIT_LIST_HEAD(&root->dirty_list);
  1052. INIT_LIST_HEAD(&root->root_list);
  1053. INIT_LIST_HEAD(&root->logged_list[0]);
  1054. INIT_LIST_HEAD(&root->logged_list[1]);
  1055. spin_lock_init(&root->orphan_lock);
  1056. spin_lock_init(&root->inode_lock);
  1057. spin_lock_init(&root->accounting_lock);
  1058. spin_lock_init(&root->log_extents_lock[0]);
  1059. spin_lock_init(&root->log_extents_lock[1]);
  1060. mutex_init(&root->objectid_mutex);
  1061. mutex_init(&root->log_mutex);
  1062. init_waitqueue_head(&root->log_writer_wait);
  1063. init_waitqueue_head(&root->log_commit_wait[0]);
  1064. init_waitqueue_head(&root->log_commit_wait[1]);
  1065. atomic_set(&root->log_commit[0], 0);
  1066. atomic_set(&root->log_commit[1], 0);
  1067. atomic_set(&root->log_writers, 0);
  1068. atomic_set(&root->log_batch, 0);
  1069. atomic_set(&root->orphan_inodes, 0);
  1070. root->log_transid = 0;
  1071. root->last_log_commit = 0;
  1072. extent_io_tree_init(&root->dirty_log_pages,
  1073. fs_info->btree_inode->i_mapping);
  1074. memset(&root->root_key, 0, sizeof(root->root_key));
  1075. memset(&root->root_item, 0, sizeof(root->root_item));
  1076. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1077. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1078. root->defrag_trans_start = fs_info->generation;
  1079. init_completion(&root->kobj_unregister);
  1080. root->defrag_running = 0;
  1081. root->root_key.objectid = objectid;
  1082. root->anon_dev = 0;
  1083. spin_lock_init(&root->root_item_lock);
  1084. }
  1085. static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
  1086. struct btrfs_fs_info *fs_info,
  1087. u64 objectid,
  1088. struct btrfs_root *root)
  1089. {
  1090. int ret;
  1091. u32 blocksize;
  1092. u64 generation;
  1093. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1094. tree_root->sectorsize, tree_root->stripesize,
  1095. root, fs_info, objectid);
  1096. ret = btrfs_find_last_root(tree_root, objectid,
  1097. &root->root_item, &root->root_key);
  1098. if (ret > 0)
  1099. return -ENOENT;
  1100. else if (ret < 0)
  1101. return ret;
  1102. generation = btrfs_root_generation(&root->root_item);
  1103. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1104. root->commit_root = NULL;
  1105. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1106. blocksize, generation);
  1107. if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
  1108. free_extent_buffer(root->node);
  1109. root->node = NULL;
  1110. return -EIO;
  1111. }
  1112. root->commit_root = btrfs_root_node(root);
  1113. return 0;
  1114. }
  1115. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1116. {
  1117. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1118. if (root)
  1119. root->fs_info = fs_info;
  1120. return root;
  1121. }
  1122. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1123. struct btrfs_fs_info *fs_info,
  1124. u64 objectid)
  1125. {
  1126. struct extent_buffer *leaf;
  1127. struct btrfs_root *tree_root = fs_info->tree_root;
  1128. struct btrfs_root *root;
  1129. struct btrfs_key key;
  1130. int ret = 0;
  1131. u64 bytenr;
  1132. uuid_le uuid;
  1133. root = btrfs_alloc_root(fs_info);
  1134. if (!root)
  1135. return ERR_PTR(-ENOMEM);
  1136. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1137. tree_root->sectorsize, tree_root->stripesize,
  1138. root, fs_info, objectid);
  1139. root->root_key.objectid = objectid;
  1140. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1141. root->root_key.offset = 0;
  1142. leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
  1143. 0, objectid, NULL, 0, 0, 0);
  1144. if (IS_ERR(leaf)) {
  1145. ret = PTR_ERR(leaf);
  1146. leaf = NULL;
  1147. goto fail;
  1148. }
  1149. bytenr = leaf->start;
  1150. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1151. btrfs_set_header_bytenr(leaf, leaf->start);
  1152. btrfs_set_header_generation(leaf, trans->transid);
  1153. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1154. btrfs_set_header_owner(leaf, objectid);
  1155. root->node = leaf;
  1156. write_extent_buffer(leaf, fs_info->fsid,
  1157. (unsigned long)btrfs_header_fsid(leaf),
  1158. BTRFS_FSID_SIZE);
  1159. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1160. (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
  1161. BTRFS_UUID_SIZE);
  1162. btrfs_mark_buffer_dirty(leaf);
  1163. root->commit_root = btrfs_root_node(root);
  1164. root->track_dirty = 1;
  1165. root->root_item.flags = 0;
  1166. root->root_item.byte_limit = 0;
  1167. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1168. btrfs_set_root_generation(&root->root_item, trans->transid);
  1169. btrfs_set_root_level(&root->root_item, 0);
  1170. btrfs_set_root_refs(&root->root_item, 1);
  1171. btrfs_set_root_used(&root->root_item, leaf->len);
  1172. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1173. btrfs_set_root_dirid(&root->root_item, 0);
  1174. uuid_le_gen(&uuid);
  1175. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1176. root->root_item.drop_level = 0;
  1177. key.objectid = objectid;
  1178. key.type = BTRFS_ROOT_ITEM_KEY;
  1179. key.offset = 0;
  1180. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1181. if (ret)
  1182. goto fail;
  1183. btrfs_tree_unlock(leaf);
  1184. return root;
  1185. fail:
  1186. if (leaf) {
  1187. btrfs_tree_unlock(leaf);
  1188. free_extent_buffer(leaf);
  1189. }
  1190. kfree(root);
  1191. return ERR_PTR(ret);
  1192. }
  1193. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1194. struct btrfs_fs_info *fs_info)
  1195. {
  1196. struct btrfs_root *root;
  1197. struct btrfs_root *tree_root = fs_info->tree_root;
  1198. struct extent_buffer *leaf;
  1199. root = btrfs_alloc_root(fs_info);
  1200. if (!root)
  1201. return ERR_PTR(-ENOMEM);
  1202. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1203. tree_root->sectorsize, tree_root->stripesize,
  1204. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1205. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1206. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1207. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1208. /*
  1209. * log trees do not get reference counted because they go away
  1210. * before a real commit is actually done. They do store pointers
  1211. * to file data extents, and those reference counts still get
  1212. * updated (along with back refs to the log tree).
  1213. */
  1214. root->ref_cows = 0;
  1215. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1216. BTRFS_TREE_LOG_OBJECTID, NULL,
  1217. 0, 0, 0);
  1218. if (IS_ERR(leaf)) {
  1219. kfree(root);
  1220. return ERR_CAST(leaf);
  1221. }
  1222. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1223. btrfs_set_header_bytenr(leaf, leaf->start);
  1224. btrfs_set_header_generation(leaf, trans->transid);
  1225. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1226. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1227. root->node = leaf;
  1228. write_extent_buffer(root->node, root->fs_info->fsid,
  1229. (unsigned long)btrfs_header_fsid(root->node),
  1230. BTRFS_FSID_SIZE);
  1231. btrfs_mark_buffer_dirty(root->node);
  1232. btrfs_tree_unlock(root->node);
  1233. return root;
  1234. }
  1235. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1236. struct btrfs_fs_info *fs_info)
  1237. {
  1238. struct btrfs_root *log_root;
  1239. log_root = alloc_log_tree(trans, fs_info);
  1240. if (IS_ERR(log_root))
  1241. return PTR_ERR(log_root);
  1242. WARN_ON(fs_info->log_root_tree);
  1243. fs_info->log_root_tree = log_root;
  1244. return 0;
  1245. }
  1246. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1247. struct btrfs_root *root)
  1248. {
  1249. struct btrfs_root *log_root;
  1250. struct btrfs_inode_item *inode_item;
  1251. log_root = alloc_log_tree(trans, root->fs_info);
  1252. if (IS_ERR(log_root))
  1253. return PTR_ERR(log_root);
  1254. log_root->last_trans = trans->transid;
  1255. log_root->root_key.offset = root->root_key.objectid;
  1256. inode_item = &log_root->root_item.inode;
  1257. inode_item->generation = cpu_to_le64(1);
  1258. inode_item->size = cpu_to_le64(3);
  1259. inode_item->nlink = cpu_to_le32(1);
  1260. inode_item->nbytes = cpu_to_le64(root->leafsize);
  1261. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  1262. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1263. WARN_ON(root->log_root);
  1264. root->log_root = log_root;
  1265. root->log_transid = 0;
  1266. root->last_log_commit = 0;
  1267. return 0;
  1268. }
  1269. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  1270. struct btrfs_key *location)
  1271. {
  1272. struct btrfs_root *root;
  1273. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1274. struct btrfs_path *path;
  1275. struct extent_buffer *l;
  1276. u64 generation;
  1277. u32 blocksize;
  1278. int ret = 0;
  1279. int slot;
  1280. root = btrfs_alloc_root(fs_info);
  1281. if (!root)
  1282. return ERR_PTR(-ENOMEM);
  1283. if (location->offset == (u64)-1) {
  1284. ret = find_and_setup_root(tree_root, fs_info,
  1285. location->objectid, root);
  1286. if (ret) {
  1287. kfree(root);
  1288. return ERR_PTR(ret);
  1289. }
  1290. goto out;
  1291. }
  1292. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1293. tree_root->sectorsize, tree_root->stripesize,
  1294. root, fs_info, location->objectid);
  1295. path = btrfs_alloc_path();
  1296. if (!path) {
  1297. kfree(root);
  1298. return ERR_PTR(-ENOMEM);
  1299. }
  1300. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  1301. if (ret == 0) {
  1302. l = path->nodes[0];
  1303. slot = path->slots[0];
  1304. btrfs_read_root_item(l, slot, &root->root_item);
  1305. memcpy(&root->root_key, location, sizeof(*location));
  1306. }
  1307. btrfs_free_path(path);
  1308. if (ret) {
  1309. kfree(root);
  1310. if (ret > 0)
  1311. ret = -ENOENT;
  1312. return ERR_PTR(ret);
  1313. }
  1314. generation = btrfs_root_generation(&root->root_item);
  1315. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1316. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1317. blocksize, generation);
  1318. if (!root->node || !extent_buffer_uptodate(root->node)) {
  1319. ret = (!root->node) ? -ENOMEM : -EIO;
  1320. free_extent_buffer(root->node);
  1321. kfree(root);
  1322. return ERR_PTR(ret);
  1323. }
  1324. root->commit_root = btrfs_root_node(root);
  1325. out:
  1326. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  1327. root->ref_cows = 1;
  1328. btrfs_check_and_init_root_item(&root->root_item);
  1329. }
  1330. return root;
  1331. }
  1332. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1333. struct btrfs_key *location)
  1334. {
  1335. struct btrfs_root *root;
  1336. int ret;
  1337. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1338. return fs_info->tree_root;
  1339. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1340. return fs_info->extent_root;
  1341. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1342. return fs_info->chunk_root;
  1343. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1344. return fs_info->dev_root;
  1345. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1346. return fs_info->csum_root;
  1347. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1348. return fs_info->quota_root ? fs_info->quota_root :
  1349. ERR_PTR(-ENOENT);
  1350. again:
  1351. spin_lock(&fs_info->fs_roots_radix_lock);
  1352. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1353. (unsigned long)location->objectid);
  1354. spin_unlock(&fs_info->fs_roots_radix_lock);
  1355. if (root)
  1356. return root;
  1357. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1358. if (IS_ERR(root))
  1359. return root;
  1360. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1361. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1362. GFP_NOFS);
  1363. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1364. ret = -ENOMEM;
  1365. goto fail;
  1366. }
  1367. btrfs_init_free_ino_ctl(root);
  1368. mutex_init(&root->fs_commit_mutex);
  1369. spin_lock_init(&root->cache_lock);
  1370. init_waitqueue_head(&root->cache_wait);
  1371. ret = get_anon_bdev(&root->anon_dev);
  1372. if (ret)
  1373. goto fail;
  1374. if (btrfs_root_refs(&root->root_item) == 0) {
  1375. ret = -ENOENT;
  1376. goto fail;
  1377. }
  1378. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1379. if (ret < 0)
  1380. goto fail;
  1381. if (ret == 0)
  1382. root->orphan_item_inserted = 1;
  1383. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1384. if (ret)
  1385. goto fail;
  1386. spin_lock(&fs_info->fs_roots_radix_lock);
  1387. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1388. (unsigned long)root->root_key.objectid,
  1389. root);
  1390. if (ret == 0)
  1391. root->in_radix = 1;
  1392. spin_unlock(&fs_info->fs_roots_radix_lock);
  1393. radix_tree_preload_end();
  1394. if (ret) {
  1395. if (ret == -EEXIST) {
  1396. free_fs_root(root);
  1397. goto again;
  1398. }
  1399. goto fail;
  1400. }
  1401. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1402. root->root_key.objectid);
  1403. WARN_ON(ret);
  1404. return root;
  1405. fail:
  1406. free_fs_root(root);
  1407. return ERR_PTR(ret);
  1408. }
  1409. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1410. {
  1411. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1412. int ret = 0;
  1413. struct btrfs_device *device;
  1414. struct backing_dev_info *bdi;
  1415. rcu_read_lock();
  1416. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1417. if (!device->bdev)
  1418. continue;
  1419. bdi = blk_get_backing_dev_info(device->bdev);
  1420. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1421. ret = 1;
  1422. break;
  1423. }
  1424. }
  1425. rcu_read_unlock();
  1426. return ret;
  1427. }
  1428. /*
  1429. * If this fails, caller must call bdi_destroy() to get rid of the
  1430. * bdi again.
  1431. */
  1432. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1433. {
  1434. int err;
  1435. bdi->capabilities = BDI_CAP_MAP_COPY;
  1436. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1437. if (err)
  1438. return err;
  1439. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1440. bdi->congested_fn = btrfs_congested_fn;
  1441. bdi->congested_data = info;
  1442. return 0;
  1443. }
  1444. /*
  1445. * called by the kthread helper functions to finally call the bio end_io
  1446. * functions. This is where read checksum verification actually happens
  1447. */
  1448. static void end_workqueue_fn(struct btrfs_work *work)
  1449. {
  1450. struct bio *bio;
  1451. struct end_io_wq *end_io_wq;
  1452. struct btrfs_fs_info *fs_info;
  1453. int error;
  1454. end_io_wq = container_of(work, struct end_io_wq, work);
  1455. bio = end_io_wq->bio;
  1456. fs_info = end_io_wq->info;
  1457. error = end_io_wq->error;
  1458. bio->bi_private = end_io_wq->private;
  1459. bio->bi_end_io = end_io_wq->end_io;
  1460. kfree(end_io_wq);
  1461. bio_endio(bio, error);
  1462. }
  1463. /*
  1464. * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
  1465. * anything except sleeping. This function is used to check the status of
  1466. * the fs.
  1467. */
  1468. static inline int need_cleaner_sleep(struct btrfs_root *root)
  1469. {
  1470. return (root->fs_info->sb->s_flags & MS_RDONLY ||
  1471. btrfs_fs_closing(root->fs_info));
  1472. }
  1473. static int cleaner_kthread(void *arg)
  1474. {
  1475. struct btrfs_root *root = arg;
  1476. int again;
  1477. do {
  1478. again = 0;
  1479. /* Make the cleaner go to sleep early. */
  1480. if (need_cleaner_sleep(root))
  1481. goto sleep;
  1482. if (!mutex_trylock(&root->fs_info->cleaner_mutex))
  1483. goto sleep;
  1484. btrfs_run_delayed_iputs(root);
  1485. again = btrfs_clean_one_deleted_snapshot(root);
  1486. mutex_unlock(&root->fs_info->cleaner_mutex);
  1487. /*
  1488. * The defragger has dealt with the R/O remount and umount,
  1489. * needn't do anything special here.
  1490. */
  1491. btrfs_run_defrag_inodes(root->fs_info);
  1492. sleep:
  1493. if (!try_to_freeze() && !again) {
  1494. set_current_state(TASK_INTERRUPTIBLE);
  1495. if (!kthread_should_stop())
  1496. schedule();
  1497. __set_current_state(TASK_RUNNING);
  1498. }
  1499. } while (!kthread_should_stop());
  1500. return 0;
  1501. }
  1502. static int transaction_kthread(void *arg)
  1503. {
  1504. struct btrfs_root *root = arg;
  1505. struct btrfs_trans_handle *trans;
  1506. struct btrfs_transaction *cur;
  1507. u64 transid;
  1508. unsigned long now;
  1509. unsigned long delay;
  1510. bool cannot_commit;
  1511. do {
  1512. cannot_commit = false;
  1513. delay = HZ * 30;
  1514. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1515. spin_lock(&root->fs_info->trans_lock);
  1516. cur = root->fs_info->running_transaction;
  1517. if (!cur) {
  1518. spin_unlock(&root->fs_info->trans_lock);
  1519. goto sleep;
  1520. }
  1521. now = get_seconds();
  1522. if (!cur->blocked &&
  1523. (now < cur->start_time || now - cur->start_time < 30)) {
  1524. spin_unlock(&root->fs_info->trans_lock);
  1525. delay = HZ * 5;
  1526. goto sleep;
  1527. }
  1528. transid = cur->transid;
  1529. spin_unlock(&root->fs_info->trans_lock);
  1530. /* If the file system is aborted, this will always fail. */
  1531. trans = btrfs_attach_transaction(root);
  1532. if (IS_ERR(trans)) {
  1533. if (PTR_ERR(trans) != -ENOENT)
  1534. cannot_commit = true;
  1535. goto sleep;
  1536. }
  1537. if (transid == trans->transid) {
  1538. btrfs_commit_transaction(trans, root);
  1539. } else {
  1540. btrfs_end_transaction(trans, root);
  1541. }
  1542. sleep:
  1543. wake_up_process(root->fs_info->cleaner_kthread);
  1544. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1545. if (!try_to_freeze()) {
  1546. set_current_state(TASK_INTERRUPTIBLE);
  1547. if (!kthread_should_stop() &&
  1548. (!btrfs_transaction_blocked(root->fs_info) ||
  1549. cannot_commit))
  1550. schedule_timeout(delay);
  1551. __set_current_state(TASK_RUNNING);
  1552. }
  1553. } while (!kthread_should_stop());
  1554. return 0;
  1555. }
  1556. /*
  1557. * this will find the highest generation in the array of
  1558. * root backups. The index of the highest array is returned,
  1559. * or -1 if we can't find anything.
  1560. *
  1561. * We check to make sure the array is valid by comparing the
  1562. * generation of the latest root in the array with the generation
  1563. * in the super block. If they don't match we pitch it.
  1564. */
  1565. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1566. {
  1567. u64 cur;
  1568. int newest_index = -1;
  1569. struct btrfs_root_backup *root_backup;
  1570. int i;
  1571. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1572. root_backup = info->super_copy->super_roots + i;
  1573. cur = btrfs_backup_tree_root_gen(root_backup);
  1574. if (cur == newest_gen)
  1575. newest_index = i;
  1576. }
  1577. /* check to see if we actually wrapped around */
  1578. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1579. root_backup = info->super_copy->super_roots;
  1580. cur = btrfs_backup_tree_root_gen(root_backup);
  1581. if (cur == newest_gen)
  1582. newest_index = 0;
  1583. }
  1584. return newest_index;
  1585. }
  1586. /*
  1587. * find the oldest backup so we know where to store new entries
  1588. * in the backup array. This will set the backup_root_index
  1589. * field in the fs_info struct
  1590. */
  1591. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1592. u64 newest_gen)
  1593. {
  1594. int newest_index = -1;
  1595. newest_index = find_newest_super_backup(info, newest_gen);
  1596. /* if there was garbage in there, just move along */
  1597. if (newest_index == -1) {
  1598. info->backup_root_index = 0;
  1599. } else {
  1600. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1601. }
  1602. }
  1603. /*
  1604. * copy all the root pointers into the super backup array.
  1605. * this will bump the backup pointer by one when it is
  1606. * done
  1607. */
  1608. static void backup_super_roots(struct btrfs_fs_info *info)
  1609. {
  1610. int next_backup;
  1611. struct btrfs_root_backup *root_backup;
  1612. int last_backup;
  1613. next_backup = info->backup_root_index;
  1614. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1615. BTRFS_NUM_BACKUP_ROOTS;
  1616. /*
  1617. * just overwrite the last backup if we're at the same generation
  1618. * this happens only at umount
  1619. */
  1620. root_backup = info->super_for_commit->super_roots + last_backup;
  1621. if (btrfs_backup_tree_root_gen(root_backup) ==
  1622. btrfs_header_generation(info->tree_root->node))
  1623. next_backup = last_backup;
  1624. root_backup = info->super_for_commit->super_roots + next_backup;
  1625. /*
  1626. * make sure all of our padding and empty slots get zero filled
  1627. * regardless of which ones we use today
  1628. */
  1629. memset(root_backup, 0, sizeof(*root_backup));
  1630. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1631. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1632. btrfs_set_backup_tree_root_gen(root_backup,
  1633. btrfs_header_generation(info->tree_root->node));
  1634. btrfs_set_backup_tree_root_level(root_backup,
  1635. btrfs_header_level(info->tree_root->node));
  1636. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1637. btrfs_set_backup_chunk_root_gen(root_backup,
  1638. btrfs_header_generation(info->chunk_root->node));
  1639. btrfs_set_backup_chunk_root_level(root_backup,
  1640. btrfs_header_level(info->chunk_root->node));
  1641. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1642. btrfs_set_backup_extent_root_gen(root_backup,
  1643. btrfs_header_generation(info->extent_root->node));
  1644. btrfs_set_backup_extent_root_level(root_backup,
  1645. btrfs_header_level(info->extent_root->node));
  1646. /*
  1647. * we might commit during log recovery, which happens before we set
  1648. * the fs_root. Make sure it is valid before we fill it in.
  1649. */
  1650. if (info->fs_root && info->fs_root->node) {
  1651. btrfs_set_backup_fs_root(root_backup,
  1652. info->fs_root->node->start);
  1653. btrfs_set_backup_fs_root_gen(root_backup,
  1654. btrfs_header_generation(info->fs_root->node));
  1655. btrfs_set_backup_fs_root_level(root_backup,
  1656. btrfs_header_level(info->fs_root->node));
  1657. }
  1658. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1659. btrfs_set_backup_dev_root_gen(root_backup,
  1660. btrfs_header_generation(info->dev_root->node));
  1661. btrfs_set_backup_dev_root_level(root_backup,
  1662. btrfs_header_level(info->dev_root->node));
  1663. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1664. btrfs_set_backup_csum_root_gen(root_backup,
  1665. btrfs_header_generation(info->csum_root->node));
  1666. btrfs_set_backup_csum_root_level(root_backup,
  1667. btrfs_header_level(info->csum_root->node));
  1668. btrfs_set_backup_total_bytes(root_backup,
  1669. btrfs_super_total_bytes(info->super_copy));
  1670. btrfs_set_backup_bytes_used(root_backup,
  1671. btrfs_super_bytes_used(info->super_copy));
  1672. btrfs_set_backup_num_devices(root_backup,
  1673. btrfs_super_num_devices(info->super_copy));
  1674. /*
  1675. * if we don't copy this out to the super_copy, it won't get remembered
  1676. * for the next commit
  1677. */
  1678. memcpy(&info->super_copy->super_roots,
  1679. &info->super_for_commit->super_roots,
  1680. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1681. }
  1682. /*
  1683. * this copies info out of the root backup array and back into
  1684. * the in-memory super block. It is meant to help iterate through
  1685. * the array, so you send it the number of backups you've already
  1686. * tried and the last backup index you used.
  1687. *
  1688. * this returns -1 when it has tried all the backups
  1689. */
  1690. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1691. struct btrfs_super_block *super,
  1692. int *num_backups_tried, int *backup_index)
  1693. {
  1694. struct btrfs_root_backup *root_backup;
  1695. int newest = *backup_index;
  1696. if (*num_backups_tried == 0) {
  1697. u64 gen = btrfs_super_generation(super);
  1698. newest = find_newest_super_backup(info, gen);
  1699. if (newest == -1)
  1700. return -1;
  1701. *backup_index = newest;
  1702. *num_backups_tried = 1;
  1703. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1704. /* we've tried all the backups, all done */
  1705. return -1;
  1706. } else {
  1707. /* jump to the next oldest backup */
  1708. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1709. BTRFS_NUM_BACKUP_ROOTS;
  1710. *backup_index = newest;
  1711. *num_backups_tried += 1;
  1712. }
  1713. root_backup = super->super_roots + newest;
  1714. btrfs_set_super_generation(super,
  1715. btrfs_backup_tree_root_gen(root_backup));
  1716. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1717. btrfs_set_super_root_level(super,
  1718. btrfs_backup_tree_root_level(root_backup));
  1719. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1720. /*
  1721. * fixme: the total bytes and num_devices need to match or we should
  1722. * need a fsck
  1723. */
  1724. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1725. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1726. return 0;
  1727. }
  1728. /* helper to cleanup workers */
  1729. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1730. {
  1731. btrfs_stop_workers(&fs_info->generic_worker);
  1732. btrfs_stop_workers(&fs_info->fixup_workers);
  1733. btrfs_stop_workers(&fs_info->delalloc_workers);
  1734. btrfs_stop_workers(&fs_info->workers);
  1735. btrfs_stop_workers(&fs_info->endio_workers);
  1736. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1737. btrfs_stop_workers(&fs_info->endio_raid56_workers);
  1738. btrfs_stop_workers(&fs_info->rmw_workers);
  1739. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1740. btrfs_stop_workers(&fs_info->endio_write_workers);
  1741. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  1742. btrfs_stop_workers(&fs_info->submit_workers);
  1743. btrfs_stop_workers(&fs_info->delayed_workers);
  1744. btrfs_stop_workers(&fs_info->caching_workers);
  1745. btrfs_stop_workers(&fs_info->readahead_workers);
  1746. btrfs_stop_workers(&fs_info->flush_workers);
  1747. btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
  1748. }
  1749. /* helper to cleanup tree roots */
  1750. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1751. {
  1752. free_extent_buffer(info->tree_root->node);
  1753. free_extent_buffer(info->tree_root->commit_root);
  1754. info->tree_root->node = NULL;
  1755. info->tree_root->commit_root = NULL;
  1756. if (info->dev_root) {
  1757. free_extent_buffer(info->dev_root->node);
  1758. free_extent_buffer(info->dev_root->commit_root);
  1759. info->dev_root->node = NULL;
  1760. info->dev_root->commit_root = NULL;
  1761. }
  1762. if (info->extent_root) {
  1763. free_extent_buffer(info->extent_root->node);
  1764. free_extent_buffer(info->extent_root->commit_root);
  1765. info->extent_root->node = NULL;
  1766. info->extent_root->commit_root = NULL;
  1767. }
  1768. if (info->csum_root) {
  1769. free_extent_buffer(info->csum_root->node);
  1770. free_extent_buffer(info->csum_root->commit_root);
  1771. info->csum_root->node = NULL;
  1772. info->csum_root->commit_root = NULL;
  1773. }
  1774. if (info->quota_root) {
  1775. free_extent_buffer(info->quota_root->node);
  1776. free_extent_buffer(info->quota_root->commit_root);
  1777. info->quota_root->node = NULL;
  1778. info->quota_root->commit_root = NULL;
  1779. }
  1780. if (chunk_root) {
  1781. free_extent_buffer(info->chunk_root->node);
  1782. free_extent_buffer(info->chunk_root->commit_root);
  1783. info->chunk_root->node = NULL;
  1784. info->chunk_root->commit_root = NULL;
  1785. }
  1786. }
  1787. static void del_fs_roots(struct btrfs_fs_info *fs_info)
  1788. {
  1789. int ret;
  1790. struct btrfs_root *gang[8];
  1791. int i;
  1792. while (!list_empty(&fs_info->dead_roots)) {
  1793. gang[0] = list_entry(fs_info->dead_roots.next,
  1794. struct btrfs_root, root_list);
  1795. list_del(&gang[0]->root_list);
  1796. if (gang[0]->in_radix) {
  1797. btrfs_free_fs_root(fs_info, gang[0]);
  1798. } else {
  1799. free_extent_buffer(gang[0]->node);
  1800. free_extent_buffer(gang[0]->commit_root);
  1801. kfree(gang[0]);
  1802. }
  1803. }
  1804. while (1) {
  1805. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1806. (void **)gang, 0,
  1807. ARRAY_SIZE(gang));
  1808. if (!ret)
  1809. break;
  1810. for (i = 0; i < ret; i++)
  1811. btrfs_free_fs_root(fs_info, gang[i]);
  1812. }
  1813. }
  1814. int open_ctree(struct super_block *sb,
  1815. struct btrfs_fs_devices *fs_devices,
  1816. char *options)
  1817. {
  1818. u32 sectorsize;
  1819. u32 nodesize;
  1820. u32 leafsize;
  1821. u32 blocksize;
  1822. u32 stripesize;
  1823. u64 generation;
  1824. u64 features;
  1825. struct btrfs_key location;
  1826. struct buffer_head *bh;
  1827. struct btrfs_super_block *disk_super;
  1828. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1829. struct btrfs_root *tree_root;
  1830. struct btrfs_root *extent_root;
  1831. struct btrfs_root *csum_root;
  1832. struct btrfs_root *chunk_root;
  1833. struct btrfs_root *dev_root;
  1834. struct btrfs_root *quota_root;
  1835. struct btrfs_root *log_tree_root;
  1836. int ret;
  1837. int err = -EINVAL;
  1838. int num_backups_tried = 0;
  1839. int backup_index = 0;
  1840. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1841. extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
  1842. csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
  1843. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1844. dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
  1845. quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
  1846. if (!tree_root || !extent_root || !csum_root ||
  1847. !chunk_root || !dev_root || !quota_root) {
  1848. err = -ENOMEM;
  1849. goto fail;
  1850. }
  1851. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1852. if (ret) {
  1853. err = ret;
  1854. goto fail;
  1855. }
  1856. ret = setup_bdi(fs_info, &fs_info->bdi);
  1857. if (ret) {
  1858. err = ret;
  1859. goto fail_srcu;
  1860. }
  1861. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
  1862. if (ret) {
  1863. err = ret;
  1864. goto fail_bdi;
  1865. }
  1866. fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
  1867. (1 + ilog2(nr_cpu_ids));
  1868. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
  1869. if (ret) {
  1870. err = ret;
  1871. goto fail_dirty_metadata_bytes;
  1872. }
  1873. fs_info->btree_inode = new_inode(sb);
  1874. if (!fs_info->btree_inode) {
  1875. err = -ENOMEM;
  1876. goto fail_delalloc_bytes;
  1877. }
  1878. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1879. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1880. INIT_LIST_HEAD(&fs_info->trans_list);
  1881. INIT_LIST_HEAD(&fs_info->dead_roots);
  1882. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1883. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1884. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1885. spin_lock_init(&fs_info->delalloc_lock);
  1886. spin_lock_init(&fs_info->trans_lock);
  1887. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1888. spin_lock_init(&fs_info->delayed_iput_lock);
  1889. spin_lock_init(&fs_info->defrag_inodes_lock);
  1890. spin_lock_init(&fs_info->free_chunk_lock);
  1891. spin_lock_init(&fs_info->tree_mod_seq_lock);
  1892. spin_lock_init(&fs_info->super_lock);
  1893. rwlock_init(&fs_info->tree_mod_log_lock);
  1894. mutex_init(&fs_info->reloc_mutex);
  1895. seqlock_init(&fs_info->profiles_lock);
  1896. init_completion(&fs_info->kobj_unregister);
  1897. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1898. INIT_LIST_HEAD(&fs_info->space_info);
  1899. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  1900. btrfs_mapping_init(&fs_info->mapping_tree);
  1901. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  1902. BTRFS_BLOCK_RSV_GLOBAL);
  1903. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  1904. BTRFS_BLOCK_RSV_DELALLOC);
  1905. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  1906. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  1907. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  1908. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  1909. BTRFS_BLOCK_RSV_DELOPS);
  1910. atomic_set(&fs_info->nr_async_submits, 0);
  1911. atomic_set(&fs_info->async_delalloc_pages, 0);
  1912. atomic_set(&fs_info->async_submit_draining, 0);
  1913. atomic_set(&fs_info->nr_async_bios, 0);
  1914. atomic_set(&fs_info->defrag_running, 0);
  1915. atomic64_set(&fs_info->tree_mod_seq, 0);
  1916. fs_info->sb = sb;
  1917. fs_info->max_inline = 8192 * 1024;
  1918. fs_info->metadata_ratio = 0;
  1919. fs_info->defrag_inodes = RB_ROOT;
  1920. fs_info->trans_no_join = 0;
  1921. fs_info->free_chunk_space = 0;
  1922. fs_info->tree_mod_log = RB_ROOT;
  1923. /* readahead state */
  1924. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1925. spin_lock_init(&fs_info->reada_lock);
  1926. fs_info->thread_pool_size = min_t(unsigned long,
  1927. num_online_cpus() + 2, 8);
  1928. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1929. spin_lock_init(&fs_info->ordered_extent_lock);
  1930. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1931. GFP_NOFS);
  1932. if (!fs_info->delayed_root) {
  1933. err = -ENOMEM;
  1934. goto fail_iput;
  1935. }
  1936. btrfs_init_delayed_root(fs_info->delayed_root);
  1937. mutex_init(&fs_info->scrub_lock);
  1938. atomic_set(&fs_info->scrubs_running, 0);
  1939. atomic_set(&fs_info->scrub_pause_req, 0);
  1940. atomic_set(&fs_info->scrubs_paused, 0);
  1941. atomic_set(&fs_info->scrub_cancel_req, 0);
  1942. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1943. init_rwsem(&fs_info->scrub_super_lock);
  1944. fs_info->scrub_workers_refcnt = 0;
  1945. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  1946. fs_info->check_integrity_print_mask = 0;
  1947. #endif
  1948. spin_lock_init(&fs_info->balance_lock);
  1949. mutex_init(&fs_info->balance_mutex);
  1950. atomic_set(&fs_info->balance_running, 0);
  1951. atomic_set(&fs_info->balance_pause_req, 0);
  1952. atomic_set(&fs_info->balance_cancel_req, 0);
  1953. fs_info->balance_ctl = NULL;
  1954. init_waitqueue_head(&fs_info->balance_wait_q);
  1955. sb->s_blocksize = 4096;
  1956. sb->s_blocksize_bits = blksize_bits(4096);
  1957. sb->s_bdi = &fs_info->bdi;
  1958. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1959. set_nlink(fs_info->btree_inode, 1);
  1960. /*
  1961. * we set the i_size on the btree inode to the max possible int.
  1962. * the real end of the address space is determined by all of
  1963. * the devices in the system
  1964. */
  1965. fs_info->btree_inode->i_size = OFFSET_MAX;
  1966. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1967. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1968. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1969. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1970. fs_info->btree_inode->i_mapping);
  1971. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1972. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1973. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1974. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1975. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1976. sizeof(struct btrfs_key));
  1977. set_bit(BTRFS_INODE_DUMMY,
  1978. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1979. insert_inode_hash(fs_info->btree_inode);
  1980. spin_lock_init(&fs_info->block_group_cache_lock);
  1981. fs_info->block_group_cache_tree = RB_ROOT;
  1982. fs_info->first_logical_byte = (u64)-1;
  1983. extent_io_tree_init(&fs_info->freed_extents[0],
  1984. fs_info->btree_inode->i_mapping);
  1985. extent_io_tree_init(&fs_info->freed_extents[1],
  1986. fs_info->btree_inode->i_mapping);
  1987. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1988. fs_info->do_barriers = 1;
  1989. mutex_init(&fs_info->ordered_operations_mutex);
  1990. mutex_init(&fs_info->tree_log_mutex);
  1991. mutex_init(&fs_info->chunk_mutex);
  1992. mutex_init(&fs_info->transaction_kthread_mutex);
  1993. mutex_init(&fs_info->cleaner_mutex);
  1994. mutex_init(&fs_info->volume_mutex);
  1995. init_rwsem(&fs_info->extent_commit_sem);
  1996. init_rwsem(&fs_info->cleanup_work_sem);
  1997. init_rwsem(&fs_info->subvol_sem);
  1998. fs_info->dev_replace.lock_owner = 0;
  1999. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  2000. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  2001. mutex_init(&fs_info->dev_replace.lock_management_lock);
  2002. mutex_init(&fs_info->dev_replace.lock);
  2003. spin_lock_init(&fs_info->qgroup_lock);
  2004. mutex_init(&fs_info->qgroup_ioctl_lock);
  2005. fs_info->qgroup_tree = RB_ROOT;
  2006. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  2007. fs_info->qgroup_seq = 1;
  2008. fs_info->quota_enabled = 0;
  2009. fs_info->pending_quota_state = 0;
  2010. fs_info->qgroup_ulist = NULL;
  2011. mutex_init(&fs_info->qgroup_rescan_lock);
  2012. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2013. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2014. init_waitqueue_head(&fs_info->transaction_throttle);
  2015. init_waitqueue_head(&fs_info->transaction_wait);
  2016. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2017. init_waitqueue_head(&fs_info->async_submit_wait);
  2018. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2019. if (ret) {
  2020. err = ret;
  2021. goto fail_alloc;
  2022. }
  2023. __setup_root(4096, 4096, 4096, 4096, tree_root,
  2024. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2025. invalidate_bdev(fs_devices->latest_bdev);
  2026. /*
  2027. * Read super block and check the signature bytes only
  2028. */
  2029. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2030. if (!bh) {
  2031. err = -EINVAL;
  2032. goto fail_alloc;
  2033. }
  2034. /*
  2035. * We want to check superblock checksum, the type is stored inside.
  2036. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2037. */
  2038. if (btrfs_check_super_csum(bh->b_data)) {
  2039. printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
  2040. err = -EINVAL;
  2041. goto fail_alloc;
  2042. }
  2043. /*
  2044. * super_copy is zeroed at allocation time and we never touch the
  2045. * following bytes up to INFO_SIZE, the checksum is calculated from
  2046. * the whole block of INFO_SIZE
  2047. */
  2048. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2049. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2050. sizeof(*fs_info->super_for_commit));
  2051. brelse(bh);
  2052. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2053. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2054. if (ret) {
  2055. printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
  2056. err = -EINVAL;
  2057. goto fail_alloc;
  2058. }
  2059. disk_super = fs_info->super_copy;
  2060. if (!btrfs_super_root(disk_super))
  2061. goto fail_alloc;
  2062. /* check FS state, whether FS is broken. */
  2063. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2064. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2065. /*
  2066. * run through our array of backup supers and setup
  2067. * our ring pointer to the oldest one
  2068. */
  2069. generation = btrfs_super_generation(disk_super);
  2070. find_oldest_super_backup(fs_info, generation);
  2071. /*
  2072. * In the long term, we'll store the compression type in the super
  2073. * block, and it'll be used for per file compression control.
  2074. */
  2075. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2076. ret = btrfs_parse_options(tree_root, options);
  2077. if (ret) {
  2078. err = ret;
  2079. goto fail_alloc;
  2080. }
  2081. features = btrfs_super_incompat_flags(disk_super) &
  2082. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2083. if (features) {
  2084. printk(KERN_ERR "BTRFS: couldn't mount because of "
  2085. "unsupported optional features (%Lx).\n",
  2086. (unsigned long long)features);
  2087. err = -EINVAL;
  2088. goto fail_alloc;
  2089. }
  2090. if (btrfs_super_leafsize(disk_super) !=
  2091. btrfs_super_nodesize(disk_super)) {
  2092. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2093. "blocksizes don't match. node %d leaf %d\n",
  2094. btrfs_super_nodesize(disk_super),
  2095. btrfs_super_leafsize(disk_super));
  2096. err = -EINVAL;
  2097. goto fail_alloc;
  2098. }
  2099. if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  2100. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2101. "blocksize (%d) was too large\n",
  2102. btrfs_super_leafsize(disk_super));
  2103. err = -EINVAL;
  2104. goto fail_alloc;
  2105. }
  2106. features = btrfs_super_incompat_flags(disk_super);
  2107. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2108. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2109. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2110. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2111. printk(KERN_ERR "btrfs: has skinny extents\n");
  2112. /*
  2113. * flag our filesystem as having big metadata blocks if
  2114. * they are bigger than the page size
  2115. */
  2116. if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
  2117. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2118. printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
  2119. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2120. }
  2121. nodesize = btrfs_super_nodesize(disk_super);
  2122. leafsize = btrfs_super_leafsize(disk_super);
  2123. sectorsize = btrfs_super_sectorsize(disk_super);
  2124. stripesize = btrfs_super_stripesize(disk_super);
  2125. fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
  2126. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2127. /*
  2128. * mixed block groups end up with duplicate but slightly offset
  2129. * extent buffers for the same range. It leads to corruptions
  2130. */
  2131. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2132. (sectorsize != leafsize)) {
  2133. printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
  2134. "are not allowed for mixed block groups on %s\n",
  2135. sb->s_id);
  2136. goto fail_alloc;
  2137. }
  2138. /*
  2139. * Needn't use the lock because there is no other task which will
  2140. * update the flag.
  2141. */
  2142. btrfs_set_super_incompat_flags(disk_super, features);
  2143. features = btrfs_super_compat_ro_flags(disk_super) &
  2144. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2145. if (!(sb->s_flags & MS_RDONLY) && features) {
  2146. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  2147. "unsupported option features (%Lx).\n",
  2148. (unsigned long long)features);
  2149. err = -EINVAL;
  2150. goto fail_alloc;
  2151. }
  2152. btrfs_init_workers(&fs_info->generic_worker,
  2153. "genwork", 1, NULL);
  2154. btrfs_init_workers(&fs_info->workers, "worker",
  2155. fs_info->thread_pool_size,
  2156. &fs_info->generic_worker);
  2157. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  2158. fs_info->thread_pool_size,
  2159. &fs_info->generic_worker);
  2160. btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
  2161. fs_info->thread_pool_size,
  2162. &fs_info->generic_worker);
  2163. btrfs_init_workers(&fs_info->submit_workers, "submit",
  2164. min_t(u64, fs_devices->num_devices,
  2165. fs_info->thread_pool_size),
  2166. &fs_info->generic_worker);
  2167. btrfs_init_workers(&fs_info->caching_workers, "cache",
  2168. 2, &fs_info->generic_worker);
  2169. /* a higher idle thresh on the submit workers makes it much more
  2170. * likely that bios will be send down in a sane order to the
  2171. * devices
  2172. */
  2173. fs_info->submit_workers.idle_thresh = 64;
  2174. fs_info->workers.idle_thresh = 16;
  2175. fs_info->workers.ordered = 1;
  2176. fs_info->delalloc_workers.idle_thresh = 2;
  2177. fs_info->delalloc_workers.ordered = 1;
  2178. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  2179. &fs_info->generic_worker);
  2180. btrfs_init_workers(&fs_info->endio_workers, "endio",
  2181. fs_info->thread_pool_size,
  2182. &fs_info->generic_worker);
  2183. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  2184. fs_info->thread_pool_size,
  2185. &fs_info->generic_worker);
  2186. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  2187. "endio-meta-write", fs_info->thread_pool_size,
  2188. &fs_info->generic_worker);
  2189. btrfs_init_workers(&fs_info->endio_raid56_workers,
  2190. "endio-raid56", fs_info->thread_pool_size,
  2191. &fs_info->generic_worker);
  2192. btrfs_init_workers(&fs_info->rmw_workers,
  2193. "rmw", fs_info->thread_pool_size,
  2194. &fs_info->generic_worker);
  2195. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  2196. fs_info->thread_pool_size,
  2197. &fs_info->generic_worker);
  2198. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  2199. 1, &fs_info->generic_worker);
  2200. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  2201. fs_info->thread_pool_size,
  2202. &fs_info->generic_worker);
  2203. btrfs_init_workers(&fs_info->readahead_workers, "readahead",
  2204. fs_info->thread_pool_size,
  2205. &fs_info->generic_worker);
  2206. btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
  2207. &fs_info->generic_worker);
  2208. /*
  2209. * endios are largely parallel and should have a very
  2210. * low idle thresh
  2211. */
  2212. fs_info->endio_workers.idle_thresh = 4;
  2213. fs_info->endio_meta_workers.idle_thresh = 4;
  2214. fs_info->endio_raid56_workers.idle_thresh = 4;
  2215. fs_info->rmw_workers.idle_thresh = 2;
  2216. fs_info->endio_write_workers.idle_thresh = 2;
  2217. fs_info->endio_meta_write_workers.idle_thresh = 2;
  2218. fs_info->readahead_workers.idle_thresh = 2;
  2219. /*
  2220. * btrfs_start_workers can really only fail because of ENOMEM so just
  2221. * return -ENOMEM if any of these fail.
  2222. */
  2223. ret = btrfs_start_workers(&fs_info->workers);
  2224. ret |= btrfs_start_workers(&fs_info->generic_worker);
  2225. ret |= btrfs_start_workers(&fs_info->submit_workers);
  2226. ret |= btrfs_start_workers(&fs_info->delalloc_workers);
  2227. ret |= btrfs_start_workers(&fs_info->fixup_workers);
  2228. ret |= btrfs_start_workers(&fs_info->endio_workers);
  2229. ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
  2230. ret |= btrfs_start_workers(&fs_info->rmw_workers);
  2231. ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
  2232. ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
  2233. ret |= btrfs_start_workers(&fs_info->endio_write_workers);
  2234. ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
  2235. ret |= btrfs_start_workers(&fs_info->delayed_workers);
  2236. ret |= btrfs_start_workers(&fs_info->caching_workers);
  2237. ret |= btrfs_start_workers(&fs_info->readahead_workers);
  2238. ret |= btrfs_start_workers(&fs_info->flush_workers);
  2239. ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
  2240. if (ret) {
  2241. err = -ENOMEM;
  2242. goto fail_sb_buffer;
  2243. }
  2244. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2245. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2246. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2247. tree_root->nodesize = nodesize;
  2248. tree_root->leafsize = leafsize;
  2249. tree_root->sectorsize = sectorsize;
  2250. tree_root->stripesize = stripesize;
  2251. sb->s_blocksize = sectorsize;
  2252. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2253. if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) {
  2254. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  2255. goto fail_sb_buffer;
  2256. }
  2257. if (sectorsize != PAGE_SIZE) {
  2258. printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
  2259. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2260. goto fail_sb_buffer;
  2261. }
  2262. mutex_lock(&fs_info->chunk_mutex);
  2263. ret = btrfs_read_sys_array(tree_root);
  2264. mutex_unlock(&fs_info->chunk_mutex);
  2265. if (ret) {
  2266. printk(KERN_WARNING "btrfs: failed to read the system "
  2267. "array on %s\n", sb->s_id);
  2268. goto fail_sb_buffer;
  2269. }
  2270. blocksize = btrfs_level_size(tree_root,
  2271. btrfs_super_chunk_root_level(disk_super));
  2272. generation = btrfs_super_chunk_root_generation(disk_super);
  2273. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2274. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2275. chunk_root->node = read_tree_block(chunk_root,
  2276. btrfs_super_chunk_root(disk_super),
  2277. blocksize, generation);
  2278. if (!chunk_root->node ||
  2279. !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2280. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  2281. sb->s_id);
  2282. goto fail_tree_roots;
  2283. }
  2284. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2285. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2286. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2287. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  2288. BTRFS_UUID_SIZE);
  2289. ret = btrfs_read_chunk_tree(chunk_root);
  2290. if (ret) {
  2291. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  2292. sb->s_id);
  2293. goto fail_tree_roots;
  2294. }
  2295. /*
  2296. * keep the device that is marked to be the target device for the
  2297. * dev_replace procedure
  2298. */
  2299. btrfs_close_extra_devices(fs_info, fs_devices, 0);
  2300. if (!fs_devices->latest_bdev) {
  2301. printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
  2302. sb->s_id);
  2303. goto fail_tree_roots;
  2304. }
  2305. retry_root_backup:
  2306. blocksize = btrfs_level_size(tree_root,
  2307. btrfs_super_root_level(disk_super));
  2308. generation = btrfs_super_generation(disk_super);
  2309. tree_root->node = read_tree_block(tree_root,
  2310. btrfs_super_root(disk_super),
  2311. blocksize, generation);
  2312. if (!tree_root->node ||
  2313. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2314. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  2315. sb->s_id);
  2316. goto recovery_tree_root;
  2317. }
  2318. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2319. tree_root->commit_root = btrfs_root_node(tree_root);
  2320. ret = find_and_setup_root(tree_root, fs_info,
  2321. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  2322. if (ret)
  2323. goto recovery_tree_root;
  2324. extent_root->track_dirty = 1;
  2325. ret = find_and_setup_root(tree_root, fs_info,
  2326. BTRFS_DEV_TREE_OBJECTID, dev_root);
  2327. if (ret)
  2328. goto recovery_tree_root;
  2329. dev_root->track_dirty = 1;
  2330. ret = find_and_setup_root(tree_root, fs_info,
  2331. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  2332. if (ret)
  2333. goto recovery_tree_root;
  2334. csum_root->track_dirty = 1;
  2335. ret = find_and_setup_root(tree_root, fs_info,
  2336. BTRFS_QUOTA_TREE_OBJECTID, quota_root);
  2337. if (ret) {
  2338. kfree(quota_root);
  2339. quota_root = fs_info->quota_root = NULL;
  2340. } else {
  2341. quota_root->track_dirty = 1;
  2342. fs_info->quota_enabled = 1;
  2343. fs_info->pending_quota_state = 1;
  2344. }
  2345. fs_info->generation = generation;
  2346. fs_info->last_trans_committed = generation;
  2347. ret = btrfs_recover_balance(fs_info);
  2348. if (ret) {
  2349. printk(KERN_WARNING "btrfs: failed to recover balance\n");
  2350. goto fail_block_groups;
  2351. }
  2352. ret = btrfs_init_dev_stats(fs_info);
  2353. if (ret) {
  2354. printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
  2355. ret);
  2356. goto fail_block_groups;
  2357. }
  2358. ret = btrfs_init_dev_replace(fs_info);
  2359. if (ret) {
  2360. pr_err("btrfs: failed to init dev_replace: %d\n", ret);
  2361. goto fail_block_groups;
  2362. }
  2363. btrfs_close_extra_devices(fs_info, fs_devices, 1);
  2364. ret = btrfs_init_space_info(fs_info);
  2365. if (ret) {
  2366. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  2367. goto fail_block_groups;
  2368. }
  2369. ret = btrfs_read_block_groups(extent_root);
  2370. if (ret) {
  2371. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  2372. goto fail_block_groups;
  2373. }
  2374. fs_info->num_tolerated_disk_barrier_failures =
  2375. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2376. if (fs_info->fs_devices->missing_devices >
  2377. fs_info->num_tolerated_disk_barrier_failures &&
  2378. !(sb->s_flags & MS_RDONLY)) {
  2379. printk(KERN_WARNING
  2380. "Btrfs: too many missing devices, writeable mount is not allowed\n");
  2381. goto fail_block_groups;
  2382. }
  2383. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2384. "btrfs-cleaner");
  2385. if (IS_ERR(fs_info->cleaner_kthread))
  2386. goto fail_block_groups;
  2387. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2388. tree_root,
  2389. "btrfs-transaction");
  2390. if (IS_ERR(fs_info->transaction_kthread))
  2391. goto fail_cleaner;
  2392. if (!btrfs_test_opt(tree_root, SSD) &&
  2393. !btrfs_test_opt(tree_root, NOSSD) &&
  2394. !fs_info->fs_devices->rotating) {
  2395. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  2396. "mode\n");
  2397. btrfs_set_opt(fs_info->mount_opt, SSD);
  2398. }
  2399. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2400. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2401. ret = btrfsic_mount(tree_root, fs_devices,
  2402. btrfs_test_opt(tree_root,
  2403. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2404. 1 : 0,
  2405. fs_info->check_integrity_print_mask);
  2406. if (ret)
  2407. printk(KERN_WARNING "btrfs: failed to initialize"
  2408. " integrity check module %s\n", sb->s_id);
  2409. }
  2410. #endif
  2411. ret = btrfs_read_qgroup_config(fs_info);
  2412. if (ret)
  2413. goto fail_trans_kthread;
  2414. /* do not make disk changes in broken FS */
  2415. if (btrfs_super_log_root(disk_super) != 0) {
  2416. u64 bytenr = btrfs_super_log_root(disk_super);
  2417. if (fs_devices->rw_devices == 0) {
  2418. printk(KERN_WARNING "Btrfs log replay required "
  2419. "on RO media\n");
  2420. err = -EIO;
  2421. goto fail_qgroup;
  2422. }
  2423. blocksize =
  2424. btrfs_level_size(tree_root,
  2425. btrfs_super_log_root_level(disk_super));
  2426. log_tree_root = btrfs_alloc_root(fs_info);
  2427. if (!log_tree_root) {
  2428. err = -ENOMEM;
  2429. goto fail_qgroup;
  2430. }
  2431. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2432. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2433. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2434. blocksize,
  2435. generation + 1);
  2436. if (!log_tree_root->node ||
  2437. !extent_buffer_uptodate(log_tree_root->node)) {
  2438. printk(KERN_ERR "btrfs: failed to read log tree\n");
  2439. free_extent_buffer(log_tree_root->node);
  2440. kfree(log_tree_root);
  2441. goto fail_trans_kthread;
  2442. }
  2443. /* returns with log_tree_root freed on success */
  2444. ret = btrfs_recover_log_trees(log_tree_root);
  2445. if (ret) {
  2446. btrfs_error(tree_root->fs_info, ret,
  2447. "Failed to recover log tree");
  2448. free_extent_buffer(log_tree_root->node);
  2449. kfree(log_tree_root);
  2450. goto fail_trans_kthread;
  2451. }
  2452. if (sb->s_flags & MS_RDONLY) {
  2453. ret = btrfs_commit_super(tree_root);
  2454. if (ret)
  2455. goto fail_trans_kthread;
  2456. }
  2457. }
  2458. ret = btrfs_find_orphan_roots(tree_root);
  2459. if (ret)
  2460. goto fail_trans_kthread;
  2461. if (!(sb->s_flags & MS_RDONLY)) {
  2462. ret = btrfs_cleanup_fs_roots(fs_info);
  2463. if (ret)
  2464. goto fail_trans_kthread;
  2465. ret = btrfs_recover_relocation(tree_root);
  2466. if (ret < 0) {
  2467. printk(KERN_WARNING
  2468. "btrfs: failed to recover relocation\n");
  2469. err = -EINVAL;
  2470. goto fail_qgroup;
  2471. }
  2472. }
  2473. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2474. location.type = BTRFS_ROOT_ITEM_KEY;
  2475. location.offset = (u64)-1;
  2476. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2477. if (IS_ERR(fs_info->fs_root)) {
  2478. err = PTR_ERR(fs_info->fs_root);
  2479. goto fail_qgroup;
  2480. }
  2481. if (sb->s_flags & MS_RDONLY)
  2482. return 0;
  2483. down_read(&fs_info->cleanup_work_sem);
  2484. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2485. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2486. up_read(&fs_info->cleanup_work_sem);
  2487. close_ctree(tree_root);
  2488. return ret;
  2489. }
  2490. up_read(&fs_info->cleanup_work_sem);
  2491. ret = btrfs_resume_balance_async(fs_info);
  2492. if (ret) {
  2493. printk(KERN_WARNING "btrfs: failed to resume balance\n");
  2494. close_ctree(tree_root);
  2495. return ret;
  2496. }
  2497. ret = btrfs_resume_dev_replace_async(fs_info);
  2498. if (ret) {
  2499. pr_warn("btrfs: failed to resume dev_replace\n");
  2500. close_ctree(tree_root);
  2501. return ret;
  2502. }
  2503. return 0;
  2504. fail_qgroup:
  2505. btrfs_free_qgroup_config(fs_info);
  2506. fail_trans_kthread:
  2507. kthread_stop(fs_info->transaction_kthread);
  2508. btrfs_cleanup_transaction(fs_info->tree_root);
  2509. del_fs_roots(fs_info);
  2510. fail_cleaner:
  2511. kthread_stop(fs_info->cleaner_kthread);
  2512. /*
  2513. * make sure we're done with the btree inode before we stop our
  2514. * kthreads
  2515. */
  2516. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2517. fail_block_groups:
  2518. btrfs_put_block_group_cache(fs_info);
  2519. btrfs_free_block_groups(fs_info);
  2520. fail_tree_roots:
  2521. free_root_pointers(fs_info, 1);
  2522. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2523. fail_sb_buffer:
  2524. btrfs_stop_all_workers(fs_info);
  2525. fail_alloc:
  2526. fail_iput:
  2527. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2528. iput(fs_info->btree_inode);
  2529. fail_delalloc_bytes:
  2530. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2531. fail_dirty_metadata_bytes:
  2532. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2533. fail_bdi:
  2534. bdi_destroy(&fs_info->bdi);
  2535. fail_srcu:
  2536. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2537. fail:
  2538. btrfs_free_stripe_hash_table(fs_info);
  2539. btrfs_close_devices(fs_info->fs_devices);
  2540. return err;
  2541. recovery_tree_root:
  2542. if (!btrfs_test_opt(tree_root, RECOVERY))
  2543. goto fail_tree_roots;
  2544. free_root_pointers(fs_info, 0);
  2545. /* don't use the log in recovery mode, it won't be valid */
  2546. btrfs_set_super_log_root(disk_super, 0);
  2547. /* we can't trust the free space cache either */
  2548. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2549. ret = next_root_backup(fs_info, fs_info->super_copy,
  2550. &num_backups_tried, &backup_index);
  2551. if (ret == -1)
  2552. goto fail_block_groups;
  2553. goto retry_root_backup;
  2554. }
  2555. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2556. {
  2557. if (uptodate) {
  2558. set_buffer_uptodate(bh);
  2559. } else {
  2560. struct btrfs_device *device = (struct btrfs_device *)
  2561. bh->b_private;
  2562. printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
  2563. "I/O error on %s\n",
  2564. rcu_str_deref(device->name));
  2565. /* note, we dont' set_buffer_write_io_error because we have
  2566. * our own ways of dealing with the IO errors
  2567. */
  2568. clear_buffer_uptodate(bh);
  2569. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2570. }
  2571. unlock_buffer(bh);
  2572. put_bh(bh);
  2573. }
  2574. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2575. {
  2576. struct buffer_head *bh;
  2577. struct buffer_head *latest = NULL;
  2578. struct btrfs_super_block *super;
  2579. int i;
  2580. u64 transid = 0;
  2581. u64 bytenr;
  2582. /* we would like to check all the supers, but that would make
  2583. * a btrfs mount succeed after a mkfs from a different FS.
  2584. * So, we need to add a special mount option to scan for
  2585. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2586. */
  2587. for (i = 0; i < 1; i++) {
  2588. bytenr = btrfs_sb_offset(i);
  2589. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  2590. break;
  2591. bh = __bread(bdev, bytenr / 4096, 4096);
  2592. if (!bh)
  2593. continue;
  2594. super = (struct btrfs_super_block *)bh->b_data;
  2595. if (btrfs_super_bytenr(super) != bytenr ||
  2596. super->magic != cpu_to_le64(BTRFS_MAGIC)) {
  2597. brelse(bh);
  2598. continue;
  2599. }
  2600. if (!latest || btrfs_super_generation(super) > transid) {
  2601. brelse(latest);
  2602. latest = bh;
  2603. transid = btrfs_super_generation(super);
  2604. } else {
  2605. brelse(bh);
  2606. }
  2607. }
  2608. return latest;
  2609. }
  2610. /*
  2611. * this should be called twice, once with wait == 0 and
  2612. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2613. * we write are pinned.
  2614. *
  2615. * They are released when wait == 1 is done.
  2616. * max_mirrors must be the same for both runs, and it indicates how
  2617. * many supers on this one device should be written.
  2618. *
  2619. * max_mirrors == 0 means to write them all.
  2620. */
  2621. static int write_dev_supers(struct btrfs_device *device,
  2622. struct btrfs_super_block *sb,
  2623. int do_barriers, int wait, int max_mirrors)
  2624. {
  2625. struct buffer_head *bh;
  2626. int i;
  2627. int ret;
  2628. int errors = 0;
  2629. u32 crc;
  2630. u64 bytenr;
  2631. if (max_mirrors == 0)
  2632. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2633. for (i = 0; i < max_mirrors; i++) {
  2634. bytenr = btrfs_sb_offset(i);
  2635. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2636. break;
  2637. if (wait) {
  2638. bh = __find_get_block(device->bdev, bytenr / 4096,
  2639. BTRFS_SUPER_INFO_SIZE);
  2640. if (!bh) {
  2641. errors++;
  2642. continue;
  2643. }
  2644. wait_on_buffer(bh);
  2645. if (!buffer_uptodate(bh))
  2646. errors++;
  2647. /* drop our reference */
  2648. brelse(bh);
  2649. /* drop the reference from the wait == 0 run */
  2650. brelse(bh);
  2651. continue;
  2652. } else {
  2653. btrfs_set_super_bytenr(sb, bytenr);
  2654. crc = ~(u32)0;
  2655. crc = btrfs_csum_data((char *)sb +
  2656. BTRFS_CSUM_SIZE, crc,
  2657. BTRFS_SUPER_INFO_SIZE -
  2658. BTRFS_CSUM_SIZE);
  2659. btrfs_csum_final(crc, sb->csum);
  2660. /*
  2661. * one reference for us, and we leave it for the
  2662. * caller
  2663. */
  2664. bh = __getblk(device->bdev, bytenr / 4096,
  2665. BTRFS_SUPER_INFO_SIZE);
  2666. if (!bh) {
  2667. printk(KERN_ERR "btrfs: couldn't get super "
  2668. "buffer head for bytenr %Lu\n", bytenr);
  2669. errors++;
  2670. continue;
  2671. }
  2672. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2673. /* one reference for submit_bh */
  2674. get_bh(bh);
  2675. set_buffer_uptodate(bh);
  2676. lock_buffer(bh);
  2677. bh->b_end_io = btrfs_end_buffer_write_sync;
  2678. bh->b_private = device;
  2679. }
  2680. /*
  2681. * we fua the first super. The others we allow
  2682. * to go down lazy.
  2683. */
  2684. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2685. if (ret)
  2686. errors++;
  2687. }
  2688. return errors < i ? 0 : -1;
  2689. }
  2690. /*
  2691. * endio for the write_dev_flush, this will wake anyone waiting
  2692. * for the barrier when it is done
  2693. */
  2694. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2695. {
  2696. if (err) {
  2697. if (err == -EOPNOTSUPP)
  2698. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2699. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2700. }
  2701. if (bio->bi_private)
  2702. complete(bio->bi_private);
  2703. bio_put(bio);
  2704. }
  2705. /*
  2706. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2707. * sent down. With wait == 1, it waits for the previous flush.
  2708. *
  2709. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2710. * capable
  2711. */
  2712. static int write_dev_flush(struct btrfs_device *device, int wait)
  2713. {
  2714. struct bio *bio;
  2715. int ret = 0;
  2716. if (device->nobarriers)
  2717. return 0;
  2718. if (wait) {
  2719. bio = device->flush_bio;
  2720. if (!bio)
  2721. return 0;
  2722. wait_for_completion(&device->flush_wait);
  2723. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2724. printk_in_rcu("btrfs: disabling barriers on dev %s\n",
  2725. rcu_str_deref(device->name));
  2726. device->nobarriers = 1;
  2727. } else if (!bio_flagged(bio, BIO_UPTODATE)) {
  2728. ret = -EIO;
  2729. btrfs_dev_stat_inc_and_print(device,
  2730. BTRFS_DEV_STAT_FLUSH_ERRS);
  2731. }
  2732. /* drop the reference from the wait == 0 run */
  2733. bio_put(bio);
  2734. device->flush_bio = NULL;
  2735. return ret;
  2736. }
  2737. /*
  2738. * one reference for us, and we leave it for the
  2739. * caller
  2740. */
  2741. device->flush_bio = NULL;
  2742. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  2743. if (!bio)
  2744. return -ENOMEM;
  2745. bio->bi_end_io = btrfs_end_empty_barrier;
  2746. bio->bi_bdev = device->bdev;
  2747. init_completion(&device->flush_wait);
  2748. bio->bi_private = &device->flush_wait;
  2749. device->flush_bio = bio;
  2750. bio_get(bio);
  2751. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2752. return 0;
  2753. }
  2754. /*
  2755. * send an empty flush down to each device in parallel,
  2756. * then wait for them
  2757. */
  2758. static int barrier_all_devices(struct btrfs_fs_info *info)
  2759. {
  2760. struct list_head *head;
  2761. struct btrfs_device *dev;
  2762. int errors_send = 0;
  2763. int errors_wait = 0;
  2764. int ret;
  2765. /* send down all the barriers */
  2766. head = &info->fs_devices->devices;
  2767. list_for_each_entry_rcu(dev, head, dev_list) {
  2768. if (!dev->bdev) {
  2769. errors_send++;
  2770. continue;
  2771. }
  2772. if (!dev->in_fs_metadata || !dev->writeable)
  2773. continue;
  2774. ret = write_dev_flush(dev, 0);
  2775. if (ret)
  2776. errors_send++;
  2777. }
  2778. /* wait for all the barriers */
  2779. list_for_each_entry_rcu(dev, head, dev_list) {
  2780. if (!dev->bdev) {
  2781. errors_wait++;
  2782. continue;
  2783. }
  2784. if (!dev->in_fs_metadata || !dev->writeable)
  2785. continue;
  2786. ret = write_dev_flush(dev, 1);
  2787. if (ret)
  2788. errors_wait++;
  2789. }
  2790. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  2791. errors_wait > info->num_tolerated_disk_barrier_failures)
  2792. return -EIO;
  2793. return 0;
  2794. }
  2795. int btrfs_calc_num_tolerated_disk_barrier_failures(
  2796. struct btrfs_fs_info *fs_info)
  2797. {
  2798. struct btrfs_ioctl_space_info space;
  2799. struct btrfs_space_info *sinfo;
  2800. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  2801. BTRFS_BLOCK_GROUP_SYSTEM,
  2802. BTRFS_BLOCK_GROUP_METADATA,
  2803. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  2804. int num_types = 4;
  2805. int i;
  2806. int c;
  2807. int num_tolerated_disk_barrier_failures =
  2808. (int)fs_info->fs_devices->num_devices;
  2809. for (i = 0; i < num_types; i++) {
  2810. struct btrfs_space_info *tmp;
  2811. sinfo = NULL;
  2812. rcu_read_lock();
  2813. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  2814. if (tmp->flags == types[i]) {
  2815. sinfo = tmp;
  2816. break;
  2817. }
  2818. }
  2819. rcu_read_unlock();
  2820. if (!sinfo)
  2821. continue;
  2822. down_read(&sinfo->groups_sem);
  2823. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  2824. if (!list_empty(&sinfo->block_groups[c])) {
  2825. u64 flags;
  2826. btrfs_get_block_group_info(
  2827. &sinfo->block_groups[c], &space);
  2828. if (space.total_bytes == 0 ||
  2829. space.used_bytes == 0)
  2830. continue;
  2831. flags = space.flags;
  2832. /*
  2833. * return
  2834. * 0: if dup, single or RAID0 is configured for
  2835. * any of metadata, system or data, else
  2836. * 1: if RAID5 is configured, or if RAID1 or
  2837. * RAID10 is configured and only two mirrors
  2838. * are used, else
  2839. * 2: if RAID6 is configured, else
  2840. * num_mirrors - 1: if RAID1 or RAID10 is
  2841. * configured and more than
  2842. * 2 mirrors are used.
  2843. */
  2844. if (num_tolerated_disk_barrier_failures > 0 &&
  2845. ((flags & (BTRFS_BLOCK_GROUP_DUP |
  2846. BTRFS_BLOCK_GROUP_RAID0)) ||
  2847. ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
  2848. == 0)))
  2849. num_tolerated_disk_barrier_failures = 0;
  2850. else if (num_tolerated_disk_barrier_failures > 1) {
  2851. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2852. BTRFS_BLOCK_GROUP_RAID5 |
  2853. BTRFS_BLOCK_GROUP_RAID10)) {
  2854. num_tolerated_disk_barrier_failures = 1;
  2855. } else if (flags &
  2856. BTRFS_BLOCK_GROUP_RAID6) {
  2857. num_tolerated_disk_barrier_failures = 2;
  2858. }
  2859. }
  2860. }
  2861. }
  2862. up_read(&sinfo->groups_sem);
  2863. }
  2864. return num_tolerated_disk_barrier_failures;
  2865. }
  2866. static int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2867. {
  2868. struct list_head *head;
  2869. struct btrfs_device *dev;
  2870. struct btrfs_super_block *sb;
  2871. struct btrfs_dev_item *dev_item;
  2872. int ret;
  2873. int do_barriers;
  2874. int max_errors;
  2875. int total_errors = 0;
  2876. u64 flags;
  2877. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2878. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2879. backup_super_roots(root->fs_info);
  2880. sb = root->fs_info->super_for_commit;
  2881. dev_item = &sb->dev_item;
  2882. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2883. head = &root->fs_info->fs_devices->devices;
  2884. if (do_barriers) {
  2885. ret = barrier_all_devices(root->fs_info);
  2886. if (ret) {
  2887. mutex_unlock(
  2888. &root->fs_info->fs_devices->device_list_mutex);
  2889. btrfs_error(root->fs_info, ret,
  2890. "errors while submitting device barriers.");
  2891. return ret;
  2892. }
  2893. }
  2894. list_for_each_entry_rcu(dev, head, dev_list) {
  2895. if (!dev->bdev) {
  2896. total_errors++;
  2897. continue;
  2898. }
  2899. if (!dev->in_fs_metadata || !dev->writeable)
  2900. continue;
  2901. btrfs_set_stack_device_generation(dev_item, 0);
  2902. btrfs_set_stack_device_type(dev_item, dev->type);
  2903. btrfs_set_stack_device_id(dev_item, dev->devid);
  2904. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2905. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2906. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2907. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2908. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2909. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2910. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2911. flags = btrfs_super_flags(sb);
  2912. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2913. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2914. if (ret)
  2915. total_errors++;
  2916. }
  2917. if (total_errors > max_errors) {
  2918. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2919. total_errors);
  2920. /* This shouldn't happen. FUA is masked off if unsupported */
  2921. BUG();
  2922. }
  2923. total_errors = 0;
  2924. list_for_each_entry_rcu(dev, head, dev_list) {
  2925. if (!dev->bdev)
  2926. continue;
  2927. if (!dev->in_fs_metadata || !dev->writeable)
  2928. continue;
  2929. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2930. if (ret)
  2931. total_errors++;
  2932. }
  2933. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2934. if (total_errors > max_errors) {
  2935. btrfs_error(root->fs_info, -EIO,
  2936. "%d errors while writing supers", total_errors);
  2937. return -EIO;
  2938. }
  2939. return 0;
  2940. }
  2941. int write_ctree_super(struct btrfs_trans_handle *trans,
  2942. struct btrfs_root *root, int max_mirrors)
  2943. {
  2944. int ret;
  2945. ret = write_all_supers(root, max_mirrors);
  2946. return ret;
  2947. }
  2948. void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2949. {
  2950. spin_lock(&fs_info->fs_roots_radix_lock);
  2951. radix_tree_delete(&fs_info->fs_roots_radix,
  2952. (unsigned long)root->root_key.objectid);
  2953. spin_unlock(&fs_info->fs_roots_radix_lock);
  2954. if (btrfs_root_refs(&root->root_item) == 0)
  2955. synchronize_srcu(&fs_info->subvol_srcu);
  2956. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  2957. btrfs_free_log(NULL, root);
  2958. btrfs_free_log_root_tree(NULL, fs_info);
  2959. }
  2960. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  2961. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  2962. free_fs_root(root);
  2963. }
  2964. static void free_fs_root(struct btrfs_root *root)
  2965. {
  2966. iput(root->cache_inode);
  2967. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2968. if (root->anon_dev)
  2969. free_anon_bdev(root->anon_dev);
  2970. free_extent_buffer(root->node);
  2971. free_extent_buffer(root->commit_root);
  2972. kfree(root->free_ino_ctl);
  2973. kfree(root->free_ino_pinned);
  2974. kfree(root->name);
  2975. kfree(root);
  2976. }
  2977. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2978. {
  2979. u64 root_objectid = 0;
  2980. struct btrfs_root *gang[8];
  2981. int i;
  2982. int ret;
  2983. while (1) {
  2984. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2985. (void **)gang, root_objectid,
  2986. ARRAY_SIZE(gang));
  2987. if (!ret)
  2988. break;
  2989. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2990. for (i = 0; i < ret; i++) {
  2991. int err;
  2992. root_objectid = gang[i]->root_key.objectid;
  2993. err = btrfs_orphan_cleanup(gang[i]);
  2994. if (err)
  2995. return err;
  2996. }
  2997. root_objectid++;
  2998. }
  2999. return 0;
  3000. }
  3001. int btrfs_commit_super(struct btrfs_root *root)
  3002. {
  3003. struct btrfs_trans_handle *trans;
  3004. int ret;
  3005. mutex_lock(&root->fs_info->cleaner_mutex);
  3006. btrfs_run_delayed_iputs(root);
  3007. mutex_unlock(&root->fs_info->cleaner_mutex);
  3008. wake_up_process(root->fs_info->cleaner_kthread);
  3009. /* wait until ongoing cleanup work done */
  3010. down_write(&root->fs_info->cleanup_work_sem);
  3011. up_write(&root->fs_info->cleanup_work_sem);
  3012. trans = btrfs_join_transaction(root);
  3013. if (IS_ERR(trans))
  3014. return PTR_ERR(trans);
  3015. ret = btrfs_commit_transaction(trans, root);
  3016. if (ret)
  3017. return ret;
  3018. /* run commit again to drop the original snapshot */
  3019. trans = btrfs_join_transaction(root);
  3020. if (IS_ERR(trans))
  3021. return PTR_ERR(trans);
  3022. ret = btrfs_commit_transaction(trans, root);
  3023. if (ret)
  3024. return ret;
  3025. ret = btrfs_write_and_wait_transaction(NULL, root);
  3026. if (ret) {
  3027. btrfs_error(root->fs_info, ret,
  3028. "Failed to sync btree inode to disk.");
  3029. return ret;
  3030. }
  3031. ret = write_ctree_super(NULL, root, 0);
  3032. return ret;
  3033. }
  3034. int close_ctree(struct btrfs_root *root)
  3035. {
  3036. struct btrfs_fs_info *fs_info = root->fs_info;
  3037. int ret;
  3038. fs_info->closing = 1;
  3039. smp_mb();
  3040. /* pause restriper - we want to resume on mount */
  3041. btrfs_pause_balance(fs_info);
  3042. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3043. btrfs_scrub_cancel(fs_info);
  3044. /* wait for any defraggers to finish */
  3045. wait_event(fs_info->transaction_wait,
  3046. (atomic_read(&fs_info->defrag_running) == 0));
  3047. /* clear out the rbtree of defraggable inodes */
  3048. btrfs_cleanup_defrag_inodes(fs_info);
  3049. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3050. ret = btrfs_commit_super(root);
  3051. if (ret)
  3052. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  3053. }
  3054. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3055. btrfs_error_commit_super(root);
  3056. btrfs_put_block_group_cache(fs_info);
  3057. kthread_stop(fs_info->transaction_kthread);
  3058. kthread_stop(fs_info->cleaner_kthread);
  3059. fs_info->closing = 2;
  3060. smp_mb();
  3061. btrfs_free_qgroup_config(root->fs_info);
  3062. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3063. printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
  3064. percpu_counter_sum(&fs_info->delalloc_bytes));
  3065. }
  3066. btrfs_free_block_groups(fs_info);
  3067. btrfs_stop_all_workers(fs_info);
  3068. del_fs_roots(fs_info);
  3069. free_root_pointers(fs_info, 1);
  3070. iput(fs_info->btree_inode);
  3071. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3072. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  3073. btrfsic_unmount(root, fs_info->fs_devices);
  3074. #endif
  3075. btrfs_close_devices(fs_info->fs_devices);
  3076. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3077. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3078. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3079. bdi_destroy(&fs_info->bdi);
  3080. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3081. btrfs_free_stripe_hash_table(fs_info);
  3082. return 0;
  3083. }
  3084. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3085. int atomic)
  3086. {
  3087. int ret;
  3088. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3089. ret = extent_buffer_uptodate(buf);
  3090. if (!ret)
  3091. return ret;
  3092. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3093. parent_transid, atomic);
  3094. if (ret == -EAGAIN)
  3095. return ret;
  3096. return !ret;
  3097. }
  3098. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  3099. {
  3100. return set_extent_buffer_uptodate(buf);
  3101. }
  3102. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3103. {
  3104. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3105. u64 transid = btrfs_header_generation(buf);
  3106. int was_dirty;
  3107. btrfs_assert_tree_locked(buf);
  3108. if (transid != root->fs_info->generation)
  3109. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3110. "found %llu running %llu\n",
  3111. (unsigned long long)buf->start,
  3112. (unsigned long long)transid,
  3113. (unsigned long long)root->fs_info->generation);
  3114. was_dirty = set_extent_buffer_dirty(buf);
  3115. if (!was_dirty)
  3116. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3117. buf->len,
  3118. root->fs_info->dirty_metadata_batch);
  3119. }
  3120. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3121. int flush_delayed)
  3122. {
  3123. /*
  3124. * looks as though older kernels can get into trouble with
  3125. * this code, they end up stuck in balance_dirty_pages forever
  3126. */
  3127. int ret;
  3128. if (current->flags & PF_MEMALLOC)
  3129. return;
  3130. if (flush_delayed)
  3131. btrfs_balance_delayed_items(root);
  3132. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3133. BTRFS_DIRTY_METADATA_THRESH);
  3134. if (ret > 0) {
  3135. balance_dirty_pages_ratelimited(
  3136. root->fs_info->btree_inode->i_mapping);
  3137. }
  3138. return;
  3139. }
  3140. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3141. {
  3142. __btrfs_btree_balance_dirty(root, 1);
  3143. }
  3144. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3145. {
  3146. __btrfs_btree_balance_dirty(root, 0);
  3147. }
  3148. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3149. {
  3150. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3151. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3152. }
  3153. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3154. int read_only)
  3155. {
  3156. /*
  3157. * Placeholder for checks
  3158. */
  3159. return 0;
  3160. }
  3161. static void btrfs_error_commit_super(struct btrfs_root *root)
  3162. {
  3163. mutex_lock(&root->fs_info->cleaner_mutex);
  3164. btrfs_run_delayed_iputs(root);
  3165. mutex_unlock(&root->fs_info->cleaner_mutex);
  3166. down_write(&root->fs_info->cleanup_work_sem);
  3167. up_write(&root->fs_info->cleanup_work_sem);
  3168. /* cleanup FS via transaction */
  3169. btrfs_cleanup_transaction(root);
  3170. }
  3171. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  3172. struct btrfs_root *root)
  3173. {
  3174. struct btrfs_inode *btrfs_inode;
  3175. struct list_head splice;
  3176. INIT_LIST_HEAD(&splice);
  3177. mutex_lock(&root->fs_info->ordered_operations_mutex);
  3178. spin_lock(&root->fs_info->ordered_extent_lock);
  3179. list_splice_init(&t->ordered_operations, &splice);
  3180. while (!list_empty(&splice)) {
  3181. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3182. ordered_operations);
  3183. list_del_init(&btrfs_inode->ordered_operations);
  3184. spin_unlock(&root->fs_info->ordered_extent_lock);
  3185. btrfs_invalidate_inodes(btrfs_inode->root);
  3186. spin_lock(&root->fs_info->ordered_extent_lock);
  3187. }
  3188. spin_unlock(&root->fs_info->ordered_extent_lock);
  3189. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  3190. }
  3191. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3192. {
  3193. struct btrfs_ordered_extent *ordered;
  3194. spin_lock(&root->fs_info->ordered_extent_lock);
  3195. /*
  3196. * This will just short circuit the ordered completion stuff which will
  3197. * make sure the ordered extent gets properly cleaned up.
  3198. */
  3199. list_for_each_entry(ordered, &root->fs_info->ordered_extents,
  3200. root_extent_list)
  3201. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3202. spin_unlock(&root->fs_info->ordered_extent_lock);
  3203. }
  3204. int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3205. struct btrfs_root *root)
  3206. {
  3207. struct rb_node *node;
  3208. struct btrfs_delayed_ref_root *delayed_refs;
  3209. struct btrfs_delayed_ref_node *ref;
  3210. int ret = 0;
  3211. delayed_refs = &trans->delayed_refs;
  3212. spin_lock(&delayed_refs->lock);
  3213. if (delayed_refs->num_entries == 0) {
  3214. spin_unlock(&delayed_refs->lock);
  3215. printk(KERN_INFO "delayed_refs has NO entry\n");
  3216. return ret;
  3217. }
  3218. while ((node = rb_first(&delayed_refs->root)) != NULL) {
  3219. struct btrfs_delayed_ref_head *head = NULL;
  3220. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  3221. atomic_set(&ref->refs, 1);
  3222. if (btrfs_delayed_ref_is_head(ref)) {
  3223. head = btrfs_delayed_node_to_head(ref);
  3224. if (!mutex_trylock(&head->mutex)) {
  3225. atomic_inc(&ref->refs);
  3226. spin_unlock(&delayed_refs->lock);
  3227. /* Need to wait for the delayed ref to run */
  3228. mutex_lock(&head->mutex);
  3229. mutex_unlock(&head->mutex);
  3230. btrfs_put_delayed_ref(ref);
  3231. spin_lock(&delayed_refs->lock);
  3232. continue;
  3233. }
  3234. if (head->must_insert_reserved)
  3235. btrfs_pin_extent(root, ref->bytenr,
  3236. ref->num_bytes, 1);
  3237. btrfs_free_delayed_extent_op(head->extent_op);
  3238. delayed_refs->num_heads--;
  3239. if (list_empty(&head->cluster))
  3240. delayed_refs->num_heads_ready--;
  3241. list_del_init(&head->cluster);
  3242. }
  3243. ref->in_tree = 0;
  3244. rb_erase(&ref->rb_node, &delayed_refs->root);
  3245. delayed_refs->num_entries--;
  3246. if (head)
  3247. mutex_unlock(&head->mutex);
  3248. spin_unlock(&delayed_refs->lock);
  3249. btrfs_put_delayed_ref(ref);
  3250. cond_resched();
  3251. spin_lock(&delayed_refs->lock);
  3252. }
  3253. spin_unlock(&delayed_refs->lock);
  3254. return ret;
  3255. }
  3256. static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
  3257. {
  3258. struct btrfs_pending_snapshot *snapshot;
  3259. struct list_head splice;
  3260. INIT_LIST_HEAD(&splice);
  3261. list_splice_init(&t->pending_snapshots, &splice);
  3262. while (!list_empty(&splice)) {
  3263. snapshot = list_entry(splice.next,
  3264. struct btrfs_pending_snapshot,
  3265. list);
  3266. snapshot->error = -ECANCELED;
  3267. list_del_init(&snapshot->list);
  3268. }
  3269. }
  3270. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3271. {
  3272. struct btrfs_inode *btrfs_inode;
  3273. struct list_head splice;
  3274. INIT_LIST_HEAD(&splice);
  3275. spin_lock(&root->fs_info->delalloc_lock);
  3276. list_splice_init(&root->fs_info->delalloc_inodes, &splice);
  3277. while (!list_empty(&splice)) {
  3278. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3279. delalloc_inodes);
  3280. list_del_init(&btrfs_inode->delalloc_inodes);
  3281. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3282. &btrfs_inode->runtime_flags);
  3283. spin_unlock(&root->fs_info->delalloc_lock);
  3284. btrfs_invalidate_inodes(btrfs_inode->root);
  3285. spin_lock(&root->fs_info->delalloc_lock);
  3286. }
  3287. spin_unlock(&root->fs_info->delalloc_lock);
  3288. }
  3289. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3290. struct extent_io_tree *dirty_pages,
  3291. int mark)
  3292. {
  3293. int ret;
  3294. struct extent_buffer *eb;
  3295. u64 start = 0;
  3296. u64 end;
  3297. while (1) {
  3298. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3299. mark, NULL);
  3300. if (ret)
  3301. break;
  3302. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3303. while (start <= end) {
  3304. eb = btrfs_find_tree_block(root, start,
  3305. root->leafsize);
  3306. start += root->leafsize;
  3307. if (!eb)
  3308. continue;
  3309. wait_on_extent_buffer_writeback(eb);
  3310. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3311. &eb->bflags))
  3312. clear_extent_buffer_dirty(eb);
  3313. free_extent_buffer_stale(eb);
  3314. }
  3315. }
  3316. return ret;
  3317. }
  3318. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3319. struct extent_io_tree *pinned_extents)
  3320. {
  3321. struct extent_io_tree *unpin;
  3322. u64 start;
  3323. u64 end;
  3324. int ret;
  3325. bool loop = true;
  3326. unpin = pinned_extents;
  3327. again:
  3328. while (1) {
  3329. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3330. EXTENT_DIRTY, NULL);
  3331. if (ret)
  3332. break;
  3333. /* opt_discard */
  3334. if (btrfs_test_opt(root, DISCARD))
  3335. ret = btrfs_error_discard_extent(root, start,
  3336. end + 1 - start,
  3337. NULL);
  3338. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3339. btrfs_error_unpin_extent_range(root, start, end);
  3340. cond_resched();
  3341. }
  3342. if (loop) {
  3343. if (unpin == &root->fs_info->freed_extents[0])
  3344. unpin = &root->fs_info->freed_extents[1];
  3345. else
  3346. unpin = &root->fs_info->freed_extents[0];
  3347. loop = false;
  3348. goto again;
  3349. }
  3350. return 0;
  3351. }
  3352. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3353. struct btrfs_root *root)
  3354. {
  3355. btrfs_destroy_delayed_refs(cur_trans, root);
  3356. btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
  3357. cur_trans->dirty_pages.dirty_bytes);
  3358. /* FIXME: cleanup wait for commit */
  3359. cur_trans->in_commit = 1;
  3360. cur_trans->blocked = 1;
  3361. wake_up(&root->fs_info->transaction_blocked_wait);
  3362. btrfs_evict_pending_snapshots(cur_trans);
  3363. cur_trans->blocked = 0;
  3364. wake_up(&root->fs_info->transaction_wait);
  3365. cur_trans->commit_done = 1;
  3366. wake_up(&cur_trans->commit_wait);
  3367. btrfs_destroy_delayed_inodes(root);
  3368. btrfs_assert_delayed_root_empty(root);
  3369. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3370. EXTENT_DIRTY);
  3371. btrfs_destroy_pinned_extent(root,
  3372. root->fs_info->pinned_extents);
  3373. /*
  3374. memset(cur_trans, 0, sizeof(*cur_trans));
  3375. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3376. */
  3377. }
  3378. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  3379. {
  3380. struct btrfs_transaction *t;
  3381. LIST_HEAD(list);
  3382. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3383. spin_lock(&root->fs_info->trans_lock);
  3384. list_splice_init(&root->fs_info->trans_list, &list);
  3385. root->fs_info->trans_no_join = 1;
  3386. spin_unlock(&root->fs_info->trans_lock);
  3387. while (!list_empty(&list)) {
  3388. t = list_entry(list.next, struct btrfs_transaction, list);
  3389. btrfs_destroy_ordered_operations(t, root);
  3390. btrfs_destroy_ordered_extents(root);
  3391. btrfs_destroy_delayed_refs(t, root);
  3392. /* FIXME: cleanup wait for commit */
  3393. t->in_commit = 1;
  3394. t->blocked = 1;
  3395. smp_mb();
  3396. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  3397. wake_up(&root->fs_info->transaction_blocked_wait);
  3398. btrfs_evict_pending_snapshots(t);
  3399. t->blocked = 0;
  3400. smp_mb();
  3401. if (waitqueue_active(&root->fs_info->transaction_wait))
  3402. wake_up(&root->fs_info->transaction_wait);
  3403. t->commit_done = 1;
  3404. smp_mb();
  3405. if (waitqueue_active(&t->commit_wait))
  3406. wake_up(&t->commit_wait);
  3407. btrfs_destroy_delayed_inodes(root);
  3408. btrfs_assert_delayed_root_empty(root);
  3409. btrfs_destroy_delalloc_inodes(root);
  3410. spin_lock(&root->fs_info->trans_lock);
  3411. root->fs_info->running_transaction = NULL;
  3412. spin_unlock(&root->fs_info->trans_lock);
  3413. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  3414. EXTENT_DIRTY);
  3415. btrfs_destroy_pinned_extent(root,
  3416. root->fs_info->pinned_extents);
  3417. atomic_set(&t->use_count, 0);
  3418. list_del_init(&t->list);
  3419. memset(t, 0, sizeof(*t));
  3420. kmem_cache_free(btrfs_transaction_cachep, t);
  3421. }
  3422. spin_lock(&root->fs_info->trans_lock);
  3423. root->fs_info->trans_no_join = 0;
  3424. spin_unlock(&root->fs_info->trans_lock);
  3425. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3426. return 0;
  3427. }
  3428. static struct extent_io_ops btree_extent_io_ops = {
  3429. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3430. .readpage_io_failed_hook = btree_io_failed_hook,
  3431. .submit_bio_hook = btree_submit_bio_hook,
  3432. /* note we're sharing with inode.c for the merge bio hook */
  3433. .merge_bio_hook = btrfs_merge_bio_hook,
  3434. };