edac_mc.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849
  1. /*
  2. * edac_mc kernel module
  3. * (C) 2005, 2006 Linux Networx (http://lnxi.com)
  4. * This file may be distributed under the terms of the
  5. * GNU General Public License.
  6. *
  7. * Written by Thayne Harbaugh
  8. * Based on work by Dan Hollis <goemon at anime dot net> and others.
  9. * http://www.anime.net/~goemon/linux-ecc/
  10. *
  11. * Modified by Dave Peterson and Doug Thompson
  12. *
  13. */
  14. #include <linux/module.h>
  15. #include <linux/proc_fs.h>
  16. #include <linux/kernel.h>
  17. #include <linux/types.h>
  18. #include <linux/smp.h>
  19. #include <linux/init.h>
  20. #include <linux/sysctl.h>
  21. #include <linux/highmem.h>
  22. #include <linux/timer.h>
  23. #include <linux/slab.h>
  24. #include <linux/jiffies.h>
  25. #include <linux/spinlock.h>
  26. #include <linux/list.h>
  27. #include <linux/sysdev.h>
  28. #include <linux/ctype.h>
  29. #include <linux/edac.h>
  30. #include <asm/uaccess.h>
  31. #include <asm/page.h>
  32. #include <asm/edac.h>
  33. #include "edac_core.h"
  34. #include "edac_module.h"
  35. /* lock to memory controller's control array */
  36. static DEFINE_MUTEX(mem_ctls_mutex);
  37. static struct list_head mc_devices = LIST_HEAD_INIT(mc_devices);
  38. #ifdef CONFIG_EDAC_DEBUG
  39. static void edac_mc_dump_channel(struct channel_info *chan)
  40. {
  41. debugf4("\tchannel = %p\n", chan);
  42. debugf4("\tchannel->chan_idx = %d\n", chan->chan_idx);
  43. debugf4("\tchannel->ce_count = %d\n", chan->ce_count);
  44. debugf4("\tchannel->label = '%s'\n", chan->label);
  45. debugf4("\tchannel->csrow = %p\n\n", chan->csrow);
  46. }
  47. static void edac_mc_dump_csrow(struct csrow_info *csrow)
  48. {
  49. debugf4("\tcsrow = %p\n", csrow);
  50. debugf4("\tcsrow->csrow_idx = %d\n", csrow->csrow_idx);
  51. debugf4("\tcsrow->first_page = 0x%lx\n", csrow->first_page);
  52. debugf4("\tcsrow->last_page = 0x%lx\n", csrow->last_page);
  53. debugf4("\tcsrow->page_mask = 0x%lx\n", csrow->page_mask);
  54. debugf4("\tcsrow->nr_pages = 0x%x\n", csrow->nr_pages);
  55. debugf4("\tcsrow->nr_channels = %d\n", csrow->nr_channels);
  56. debugf4("\tcsrow->channels = %p\n", csrow->channels);
  57. debugf4("\tcsrow->mci = %p\n\n", csrow->mci);
  58. }
  59. static void edac_mc_dump_mci(struct mem_ctl_info *mci)
  60. {
  61. debugf3("\tmci = %p\n", mci);
  62. debugf3("\tmci->mtype_cap = %lx\n", mci->mtype_cap);
  63. debugf3("\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
  64. debugf3("\tmci->edac_cap = %lx\n", mci->edac_cap);
  65. debugf4("\tmci->edac_check = %p\n", mci->edac_check);
  66. debugf3("\tmci->nr_csrows = %d, csrows = %p\n",
  67. mci->nr_csrows, mci->csrows);
  68. debugf3("\tdev = %p\n", mci->dev);
  69. debugf3("\tmod_name:ctl_name = %s:%s\n", mci->mod_name, mci->ctl_name);
  70. debugf3("\tpvt_info = %p\n\n", mci->pvt_info);
  71. }
  72. #endif /* CONFIG_EDAC_DEBUG */
  73. /* 'ptr' points to a possibly unaligned item X such that sizeof(X) is 'size'.
  74. * Adjust 'ptr' so that its alignment is at least as stringent as what the
  75. * compiler would provide for X and return the aligned result.
  76. *
  77. * If 'size' is a constant, the compiler will optimize this whole function
  78. * down to either a no-op or the addition of a constant to the value of 'ptr'.
  79. */
  80. char *edac_align_ptr(void *ptr, unsigned size)
  81. {
  82. unsigned align, r;
  83. /* Here we assume that the alignment of a "long long" is the most
  84. * stringent alignment that the compiler will ever provide by default.
  85. * As far as I know, this is a reasonable assumption.
  86. */
  87. if (size > sizeof(long))
  88. align = sizeof(long long);
  89. else if (size > sizeof(int))
  90. align = sizeof(long);
  91. else if (size > sizeof(short))
  92. align = sizeof(int);
  93. else if (size > sizeof(char))
  94. align = sizeof(short);
  95. else
  96. return (char *)ptr;
  97. r = size % align;
  98. if (r == 0)
  99. return (char *)ptr;
  100. return (char *)(((unsigned long)ptr) + align - r);
  101. }
  102. /**
  103. * edac_mc_alloc: Allocate a struct mem_ctl_info structure
  104. * @size_pvt: size of private storage needed
  105. * @nr_csrows: Number of CWROWS needed for this MC
  106. * @nr_chans: Number of channels for the MC
  107. *
  108. * Everything is kmalloc'ed as one big chunk - more efficient.
  109. * Only can be used if all structures have the same lifetime - otherwise
  110. * you have to allocate and initialize your own structures.
  111. *
  112. * Use edac_mc_free() to free mc structures allocated by this function.
  113. *
  114. * Returns:
  115. * NULL allocation failed
  116. * struct mem_ctl_info pointer
  117. */
  118. struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows,
  119. unsigned nr_chans)
  120. {
  121. struct mem_ctl_info *mci;
  122. struct csrow_info *csi, *csrow;
  123. struct channel_info *chi, *chp, *chan;
  124. void *pvt;
  125. unsigned size;
  126. int row, chn;
  127. /* Figure out the offsets of the various items from the start of an mc
  128. * structure. We want the alignment of each item to be at least as
  129. * stringent as what the compiler would provide if we could simply
  130. * hardcode everything into a single struct.
  131. */
  132. mci = (struct mem_ctl_info *)0;
  133. csi = (struct csrow_info *)edac_align_ptr(&mci[1], sizeof(*csi));
  134. chi = (struct channel_info *)
  135. edac_align_ptr(&csi[nr_csrows], sizeof(*chi));
  136. pvt = edac_align_ptr(&chi[nr_chans * nr_csrows], sz_pvt);
  137. size = ((unsigned long)pvt) + sz_pvt;
  138. if ((mci = kmalloc(size, GFP_KERNEL)) == NULL)
  139. return NULL;
  140. /* Adjust pointers so they point within the memory we just allocated
  141. * rather than an imaginary chunk of memory located at address 0.
  142. */
  143. csi = (struct csrow_info *)(((char *)mci) + ((unsigned long)csi));
  144. chi = (struct channel_info *)(((char *)mci) + ((unsigned long)chi));
  145. pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
  146. memset(mci, 0, size); /* clear all fields */
  147. mci->csrows = csi;
  148. mci->pvt_info = pvt;
  149. mci->nr_csrows = nr_csrows;
  150. for (row = 0; row < nr_csrows; row++) {
  151. csrow = &csi[row];
  152. csrow->csrow_idx = row;
  153. csrow->mci = mci;
  154. csrow->nr_channels = nr_chans;
  155. chp = &chi[row * nr_chans];
  156. csrow->channels = chp;
  157. for (chn = 0; chn < nr_chans; chn++) {
  158. chan = &chp[chn];
  159. chan->chan_idx = chn;
  160. chan->csrow = csrow;
  161. }
  162. }
  163. mci->op_state = OP_ALLOC;
  164. return mci;
  165. }
  166. EXPORT_SYMBOL_GPL(edac_mc_alloc);
  167. /**
  168. * edac_mc_free: Free a previously allocated 'mci' structure
  169. * @mci: pointer to a struct mem_ctl_info structure
  170. */
  171. void edac_mc_free(struct mem_ctl_info *mci)
  172. {
  173. kfree(mci);
  174. }
  175. EXPORT_SYMBOL_GPL(edac_mc_free);
  176. static struct mem_ctl_info *find_mci_by_dev(struct device *dev)
  177. {
  178. struct mem_ctl_info *mci;
  179. struct list_head *item;
  180. debugf3("%s()\n", __func__);
  181. list_for_each(item, &mc_devices) {
  182. mci = list_entry(item, struct mem_ctl_info, link);
  183. if (mci->dev == dev)
  184. return mci;
  185. }
  186. return NULL;
  187. }
  188. /*
  189. * handler for EDAC to check if NMI type handler has asserted interrupt
  190. */
  191. static int edac_mc_assert_error_check_and_clear(void)
  192. {
  193. int old_state;
  194. if (edac_op_state == EDAC_OPSTATE_POLL)
  195. return 1;
  196. old_state = edac_err_assert;
  197. edac_err_assert = 0;
  198. return old_state;
  199. }
  200. /*
  201. * edac_mc_workq_function
  202. * performs the operation scheduled by a workq request
  203. */
  204. static void edac_mc_workq_function(struct work_struct *work_req)
  205. {
  206. struct delayed_work *d_work = (struct delayed_work *)work_req;
  207. struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
  208. mutex_lock(&mem_ctls_mutex);
  209. /* Only poll controllers that are running polled and have a check */
  210. if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL))
  211. mci->edac_check(mci);
  212. /*
  213. * FIXME: temp place holder for PCI checks,
  214. * goes away when we break out PCI
  215. */
  216. edac_pci_do_parity_check();
  217. mutex_unlock(&mem_ctls_mutex);
  218. /* Reschedule */
  219. queue_delayed_work(edac_workqueue, &mci->work,
  220. msecs_to_jiffies(edac_mc_get_poll_msec()));
  221. }
  222. /*
  223. * edac_mc_workq_setup
  224. * initialize a workq item for this mci
  225. * passing in the new delay period in msec
  226. */
  227. void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec)
  228. {
  229. debugf0("%s()\n", __func__);
  230. INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
  231. queue_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec));
  232. }
  233. /*
  234. * edac_mc_workq_teardown
  235. * stop the workq processing on this mci
  236. */
  237. void edac_mc_workq_teardown(struct mem_ctl_info *mci)
  238. {
  239. int status;
  240. status = cancel_delayed_work(&mci->work);
  241. if (status == 0) {
  242. /* workq instance might be running, wait for it */
  243. flush_workqueue(edac_workqueue);
  244. }
  245. }
  246. /*
  247. * edac_reset_delay_period
  248. */
  249. void edac_reset_delay_period(struct mem_ctl_info *mci, unsigned long value)
  250. {
  251. mutex_lock(&mem_ctls_mutex);
  252. /* cancel the current workq request */
  253. edac_mc_workq_teardown(mci);
  254. /* restart the workq request, with new delay value */
  255. edac_mc_workq_setup(mci, value);
  256. mutex_unlock(&mem_ctls_mutex);
  257. }
  258. /* Return 0 on success, 1 on failure.
  259. * Before calling this function, caller must
  260. * assign a unique value to mci->mc_idx.
  261. */
  262. static int add_mc_to_global_list(struct mem_ctl_info *mci)
  263. {
  264. struct list_head *item, *insert_before;
  265. struct mem_ctl_info *p;
  266. insert_before = &mc_devices;
  267. if (unlikely((p = find_mci_by_dev(mci->dev)) != NULL))
  268. goto fail0;
  269. list_for_each(item, &mc_devices) {
  270. p = list_entry(item, struct mem_ctl_info, link);
  271. if (p->mc_idx >= mci->mc_idx) {
  272. if (unlikely(p->mc_idx == mci->mc_idx))
  273. goto fail1;
  274. insert_before = item;
  275. break;
  276. }
  277. }
  278. list_add_tail_rcu(&mci->link, insert_before);
  279. atomic_inc(&edac_handlers);
  280. return 0;
  281. fail0:
  282. edac_printk(KERN_WARNING, EDAC_MC,
  283. "%s (%s) %s %s already assigned %d\n", p->dev->bus_id,
  284. dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
  285. return 1;
  286. fail1:
  287. edac_printk(KERN_WARNING, EDAC_MC,
  288. "bug in low-level driver: attempt to assign\n"
  289. " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
  290. return 1;
  291. }
  292. static void complete_mc_list_del(struct rcu_head *head)
  293. {
  294. struct mem_ctl_info *mci;
  295. mci = container_of(head, struct mem_ctl_info, rcu);
  296. INIT_LIST_HEAD(&mci->link);
  297. complete(&mci->complete);
  298. }
  299. static void del_mc_from_global_list(struct mem_ctl_info *mci)
  300. {
  301. atomic_dec(&edac_handlers);
  302. list_del_rcu(&mci->link);
  303. init_completion(&mci->complete);
  304. call_rcu(&mci->rcu, complete_mc_list_del);
  305. wait_for_completion(&mci->complete);
  306. }
  307. /**
  308. * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
  309. *
  310. * If found, return a pointer to the structure.
  311. * Else return NULL.
  312. *
  313. * Caller must hold mem_ctls_mutex.
  314. */
  315. struct mem_ctl_info *edac_mc_find(int idx)
  316. {
  317. struct list_head *item;
  318. struct mem_ctl_info *mci;
  319. list_for_each(item, &mc_devices) {
  320. mci = list_entry(item, struct mem_ctl_info, link);
  321. if (mci->mc_idx >= idx) {
  322. if (mci->mc_idx == idx)
  323. return mci;
  324. break;
  325. }
  326. }
  327. return NULL;
  328. }
  329. EXPORT_SYMBOL(edac_mc_find);
  330. /**
  331. * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
  332. * create sysfs entries associated with mci structure
  333. * @mci: pointer to the mci structure to be added to the list
  334. * @mc_idx: A unique numeric identifier to be assigned to the 'mci' structure.
  335. *
  336. * Return:
  337. * 0 Success
  338. * !0 Failure
  339. */
  340. /* FIXME - should a warning be printed if no error detection? correction? */
  341. int edac_mc_add_mc(struct mem_ctl_info *mci, int mc_idx)
  342. {
  343. debugf0("%s()\n", __func__);
  344. mci->mc_idx = mc_idx;
  345. #ifdef CONFIG_EDAC_DEBUG
  346. if (edac_debug_level >= 3)
  347. edac_mc_dump_mci(mci);
  348. if (edac_debug_level >= 4) {
  349. int i;
  350. for (i = 0; i < mci->nr_csrows; i++) {
  351. int j;
  352. edac_mc_dump_csrow(&mci->csrows[i]);
  353. for (j = 0; j < mci->csrows[i].nr_channels; j++)
  354. edac_mc_dump_channel(&mci->csrows[i].
  355. channels[j]);
  356. }
  357. }
  358. #endif
  359. mutex_lock(&mem_ctls_mutex);
  360. if (add_mc_to_global_list(mci))
  361. goto fail0;
  362. /* set load time so that error rate can be tracked */
  363. mci->start_time = jiffies;
  364. if (edac_create_sysfs_mci_device(mci)) {
  365. edac_mc_printk(mci, KERN_WARNING,
  366. "failed to create sysfs device\n");
  367. goto fail1;
  368. }
  369. /* If there IS a check routine, then we are running POLLED */
  370. if (mci->edac_check != NULL) {
  371. /* This instance is NOW RUNNING */
  372. mci->op_state = OP_RUNNING_POLL;
  373. edac_mc_workq_setup(mci, edac_mc_get_poll_msec());
  374. } else {
  375. mci->op_state = OP_RUNNING_INTERRUPT;
  376. }
  377. /* Report action taken */
  378. edac_mc_printk(mci, KERN_INFO, "Giving out device to %s %s: DEV %s\n",
  379. mci->mod_name, mci->ctl_name, dev_name(mci));
  380. mutex_unlock(&mem_ctls_mutex);
  381. return 0;
  382. fail1:
  383. del_mc_from_global_list(mci);
  384. fail0:
  385. mutex_unlock(&mem_ctls_mutex);
  386. return 1;
  387. }
  388. EXPORT_SYMBOL_GPL(edac_mc_add_mc);
  389. /**
  390. * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
  391. * remove mci structure from global list
  392. * @pdev: Pointer to 'struct device' representing mci structure to remove.
  393. *
  394. * Return pointer to removed mci structure, or NULL if device not found.
  395. */
  396. struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
  397. {
  398. struct mem_ctl_info *mci;
  399. debugf0("MC: %s()\n", __func__);
  400. mutex_lock(&mem_ctls_mutex);
  401. if ((mci = find_mci_by_dev(dev)) == NULL) {
  402. mutex_unlock(&mem_ctls_mutex);
  403. return NULL;
  404. }
  405. /* marking MCI offline */
  406. mci->op_state = OP_OFFLINE;
  407. /* flush workq processes */
  408. edac_mc_workq_teardown(mci);
  409. edac_remove_sysfs_mci_device(mci);
  410. del_mc_from_global_list(mci);
  411. mutex_unlock(&mem_ctls_mutex);
  412. edac_printk(KERN_INFO, EDAC_MC,
  413. "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
  414. mci->mod_name, mci->ctl_name, dev_name(mci));
  415. return mci;
  416. }
  417. EXPORT_SYMBOL_GPL(edac_mc_del_mc);
  418. static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
  419. u32 size)
  420. {
  421. struct page *pg;
  422. void *virt_addr;
  423. unsigned long flags = 0;
  424. debugf3("%s()\n", __func__);
  425. /* ECC error page was not in our memory. Ignore it. */
  426. if (!pfn_valid(page))
  427. return;
  428. /* Find the actual page structure then map it and fix */
  429. pg = pfn_to_page(page);
  430. if (PageHighMem(pg))
  431. local_irq_save(flags);
  432. virt_addr = kmap_atomic(pg, KM_BOUNCE_READ);
  433. /* Perform architecture specific atomic scrub operation */
  434. atomic_scrub(virt_addr + offset, size);
  435. /* Unmap and complete */
  436. kunmap_atomic(virt_addr, KM_BOUNCE_READ);
  437. if (PageHighMem(pg))
  438. local_irq_restore(flags);
  439. }
  440. /* FIXME - should return -1 */
  441. int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
  442. {
  443. struct csrow_info *csrows = mci->csrows;
  444. int row, i;
  445. debugf1("MC%d: %s(): 0x%lx\n", mci->mc_idx, __func__, page);
  446. row = -1;
  447. for (i = 0; i < mci->nr_csrows; i++) {
  448. struct csrow_info *csrow = &csrows[i];
  449. if (csrow->nr_pages == 0)
  450. continue;
  451. debugf3("MC%d: %s(): first(0x%lx) page(0x%lx) last(0x%lx) "
  452. "mask(0x%lx)\n", mci->mc_idx, __func__,
  453. csrow->first_page, page, csrow->last_page,
  454. csrow->page_mask);
  455. if ((page >= csrow->first_page) &&
  456. (page <= csrow->last_page) &&
  457. ((page & csrow->page_mask) ==
  458. (csrow->first_page & csrow->page_mask))) {
  459. row = i;
  460. break;
  461. }
  462. }
  463. if (row == -1)
  464. edac_mc_printk(mci, KERN_ERR,
  465. "could not look up page error address %lx\n",
  466. (unsigned long)page);
  467. return row;
  468. }
  469. EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
  470. /* FIXME - setable log (warning/emerg) levels */
  471. /* FIXME - integrate with evlog: http://evlog.sourceforge.net/ */
  472. void edac_mc_handle_ce(struct mem_ctl_info *mci,
  473. unsigned long page_frame_number,
  474. unsigned long offset_in_page, unsigned long syndrome,
  475. int row, int channel, const char *msg)
  476. {
  477. unsigned long remapped_page;
  478. debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
  479. /* FIXME - maybe make panic on INTERNAL ERROR an option */
  480. if (row >= mci->nr_csrows || row < 0) {
  481. /* something is wrong */
  482. edac_mc_printk(mci, KERN_ERR,
  483. "INTERNAL ERROR: row out of range "
  484. "(%d >= %d)\n", row, mci->nr_csrows);
  485. edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
  486. return;
  487. }
  488. if (channel >= mci->csrows[row].nr_channels || channel < 0) {
  489. /* something is wrong */
  490. edac_mc_printk(mci, KERN_ERR,
  491. "INTERNAL ERROR: channel out of range "
  492. "(%d >= %d)\n", channel,
  493. mci->csrows[row].nr_channels);
  494. edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
  495. return;
  496. }
  497. if (edac_mc_get_log_ce())
  498. /* FIXME - put in DIMM location */
  499. edac_mc_printk(mci, KERN_WARNING,
  500. "CE page 0x%lx, offset 0x%lx, grain %d, syndrome "
  501. "0x%lx, row %d, channel %d, label \"%s\": %s\n",
  502. page_frame_number, offset_in_page,
  503. mci->csrows[row].grain, syndrome, row, channel,
  504. mci->csrows[row].channels[channel].label, msg);
  505. mci->ce_count++;
  506. mci->csrows[row].ce_count++;
  507. mci->csrows[row].channels[channel].ce_count++;
  508. if (mci->scrub_mode & SCRUB_SW_SRC) {
  509. /*
  510. * Some MC's can remap memory so that it is still available
  511. * at a different address when PCI devices map into memory.
  512. * MC's that can't do this lose the memory where PCI devices
  513. * are mapped. This mapping is MC dependant and so we call
  514. * back into the MC driver for it to map the MC page to
  515. * a physical (CPU) page which can then be mapped to a virtual
  516. * page - which can then be scrubbed.
  517. */
  518. remapped_page = mci->ctl_page_to_phys ?
  519. mci->ctl_page_to_phys(mci, page_frame_number) :
  520. page_frame_number;
  521. edac_mc_scrub_block(remapped_page, offset_in_page,
  522. mci->csrows[row].grain);
  523. }
  524. }
  525. EXPORT_SYMBOL_GPL(edac_mc_handle_ce);
  526. void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci, const char *msg)
  527. {
  528. if (edac_mc_get_log_ce())
  529. edac_mc_printk(mci, KERN_WARNING,
  530. "CE - no information available: %s\n", msg);
  531. mci->ce_noinfo_count++;
  532. mci->ce_count++;
  533. }
  534. EXPORT_SYMBOL_GPL(edac_mc_handle_ce_no_info);
  535. void edac_mc_handle_ue(struct mem_ctl_info *mci,
  536. unsigned long page_frame_number,
  537. unsigned long offset_in_page, int row, const char *msg)
  538. {
  539. int len = EDAC_MC_LABEL_LEN * 4;
  540. char labels[len + 1];
  541. char *pos = labels;
  542. int chan;
  543. int chars;
  544. debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
  545. /* FIXME - maybe make panic on INTERNAL ERROR an option */
  546. if (row >= mci->nr_csrows || row < 0) {
  547. /* something is wrong */
  548. edac_mc_printk(mci, KERN_ERR,
  549. "INTERNAL ERROR: row out of range "
  550. "(%d >= %d)\n", row, mci->nr_csrows);
  551. edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
  552. return;
  553. }
  554. chars = snprintf(pos, len + 1, "%s",
  555. mci->csrows[row].channels[0].label);
  556. len -= chars;
  557. pos += chars;
  558. for (chan = 1; (chan < mci->csrows[row].nr_channels) && (len > 0);
  559. chan++) {
  560. chars = snprintf(pos, len + 1, ":%s",
  561. mci->csrows[row].channels[chan].label);
  562. len -= chars;
  563. pos += chars;
  564. }
  565. if (edac_mc_get_log_ue())
  566. edac_mc_printk(mci, KERN_EMERG,
  567. "UE page 0x%lx, offset 0x%lx, grain %d, row %d, "
  568. "labels \"%s\": %s\n", page_frame_number,
  569. offset_in_page, mci->csrows[row].grain, row,
  570. labels, msg);
  571. if (edac_mc_get_panic_on_ue())
  572. panic("EDAC MC%d: UE page 0x%lx, offset 0x%lx, grain %d, "
  573. "row %d, labels \"%s\": %s\n", mci->mc_idx,
  574. page_frame_number, offset_in_page,
  575. mci->csrows[row].grain, row, labels, msg);
  576. mci->ue_count++;
  577. mci->csrows[row].ue_count++;
  578. }
  579. EXPORT_SYMBOL_GPL(edac_mc_handle_ue);
  580. void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci, const char *msg)
  581. {
  582. if (edac_mc_get_panic_on_ue())
  583. panic("EDAC MC%d: Uncorrected Error", mci->mc_idx);
  584. if (edac_mc_get_log_ue())
  585. edac_mc_printk(mci, KERN_WARNING,
  586. "UE - no information available: %s\n", msg);
  587. mci->ue_noinfo_count++;
  588. mci->ue_count++;
  589. }
  590. EXPORT_SYMBOL_GPL(edac_mc_handle_ue_no_info);
  591. /*************************************************************
  592. * On Fully Buffered DIMM modules, this help function is
  593. * called to process UE events
  594. */
  595. void edac_mc_handle_fbd_ue(struct mem_ctl_info *mci,
  596. unsigned int csrow,
  597. unsigned int channela,
  598. unsigned int channelb, char *msg)
  599. {
  600. int len = EDAC_MC_LABEL_LEN * 4;
  601. char labels[len + 1];
  602. char *pos = labels;
  603. int chars;
  604. if (csrow >= mci->nr_csrows) {
  605. /* something is wrong */
  606. edac_mc_printk(mci, KERN_ERR,
  607. "INTERNAL ERROR: row out of range (%d >= %d)\n",
  608. csrow, mci->nr_csrows);
  609. edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
  610. return;
  611. }
  612. if (channela >= mci->csrows[csrow].nr_channels) {
  613. /* something is wrong */
  614. edac_mc_printk(mci, KERN_ERR,
  615. "INTERNAL ERROR: channel-a out of range "
  616. "(%d >= %d)\n",
  617. channela, mci->csrows[csrow].nr_channels);
  618. edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
  619. return;
  620. }
  621. if (channelb >= mci->csrows[csrow].nr_channels) {
  622. /* something is wrong */
  623. edac_mc_printk(mci, KERN_ERR,
  624. "INTERNAL ERROR: channel-b out of range "
  625. "(%d >= %d)\n",
  626. channelb, mci->csrows[csrow].nr_channels);
  627. edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
  628. return;
  629. }
  630. mci->ue_count++;
  631. mci->csrows[csrow].ue_count++;
  632. /* Generate the DIMM labels from the specified channels */
  633. chars = snprintf(pos, len + 1, "%s",
  634. mci->csrows[csrow].channels[channela].label);
  635. len -= chars;
  636. pos += chars;
  637. chars = snprintf(pos, len + 1, "-%s",
  638. mci->csrows[csrow].channels[channelb].label);
  639. if (edac_mc_get_log_ue())
  640. edac_mc_printk(mci, KERN_EMERG,
  641. "UE row %d, channel-a= %d channel-b= %d "
  642. "labels \"%s\": %s\n", csrow, channela, channelb,
  643. labels, msg);
  644. if (edac_mc_get_panic_on_ue())
  645. panic("UE row %d, channel-a= %d channel-b= %d "
  646. "labels \"%s\": %s\n", csrow, channela,
  647. channelb, labels, msg);
  648. }
  649. EXPORT_SYMBOL(edac_mc_handle_fbd_ue);
  650. /*************************************************************
  651. * On Fully Buffered DIMM modules, this help function is
  652. * called to process CE events
  653. */
  654. void edac_mc_handle_fbd_ce(struct mem_ctl_info *mci,
  655. unsigned int csrow, unsigned int channel, char *msg)
  656. {
  657. /* Ensure boundary values */
  658. if (csrow >= mci->nr_csrows) {
  659. /* something is wrong */
  660. edac_mc_printk(mci, KERN_ERR,
  661. "INTERNAL ERROR: row out of range (%d >= %d)\n",
  662. csrow, mci->nr_csrows);
  663. edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
  664. return;
  665. }
  666. if (channel >= mci->csrows[csrow].nr_channels) {
  667. /* something is wrong */
  668. edac_mc_printk(mci, KERN_ERR,
  669. "INTERNAL ERROR: channel out of range (%d >= %d)\n",
  670. channel, mci->csrows[csrow].nr_channels);
  671. edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
  672. return;
  673. }
  674. if (edac_mc_get_log_ce())
  675. /* FIXME - put in DIMM location */
  676. edac_mc_printk(mci, KERN_WARNING,
  677. "CE row %d, channel %d, label \"%s\": %s\n",
  678. csrow, channel,
  679. mci->csrows[csrow].channels[channel].label, msg);
  680. mci->ce_count++;
  681. mci->csrows[csrow].ce_count++;
  682. mci->csrows[csrow].channels[channel].ce_count++;
  683. }
  684. EXPORT_SYMBOL(edac_mc_handle_fbd_ce);
  685. /*
  686. * Iterate over all MC instances and check for ECC, et al, errors
  687. */
  688. void edac_check_mc_devices(void)
  689. {
  690. struct list_head *item;
  691. struct mem_ctl_info *mci;
  692. debugf3("%s()\n", __func__);
  693. mutex_lock(&mem_ctls_mutex);
  694. list_for_each(item, &mc_devices) {
  695. mci = list_entry(item, struct mem_ctl_info, link);
  696. if (mci->edac_check != NULL)
  697. mci->edac_check(mci);
  698. }
  699. mutex_unlock(&mem_ctls_mutex);
  700. }