intel_display.c 252 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/cpufreq.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include "drmP.h"
  35. #include "intel_drv.h"
  36. #include "i915_drm.h"
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include "drm_dp_helper.h"
  40. #include "drm_crtc_helper.h"
  41. #include <linux/dma_remapping.h>
  42. #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  43. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  44. static void intel_update_watermarks(struct drm_device *dev);
  45. static void intel_increase_pllclock(struct drm_crtc *crtc);
  46. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  47. typedef struct {
  48. /* given values */
  49. int n;
  50. int m1, m2;
  51. int p1, p2;
  52. /* derived values */
  53. int dot;
  54. int vco;
  55. int m;
  56. int p;
  57. } intel_clock_t;
  58. typedef struct {
  59. int min, max;
  60. } intel_range_t;
  61. typedef struct {
  62. int dot_limit;
  63. int p2_slow, p2_fast;
  64. } intel_p2_t;
  65. #define INTEL_P2_NUM 2
  66. typedef struct intel_limit intel_limit_t;
  67. struct intel_limit {
  68. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  69. intel_p2_t p2;
  70. bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
  71. int, int, intel_clock_t *, intel_clock_t *);
  72. };
  73. /* FDI */
  74. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  75. static bool
  76. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  77. int target, int refclk, intel_clock_t *match_clock,
  78. intel_clock_t *best_clock);
  79. static bool
  80. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  81. int target, int refclk, intel_clock_t *match_clock,
  82. intel_clock_t *best_clock);
  83. static bool
  84. intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
  85. int target, int refclk, intel_clock_t *match_clock,
  86. intel_clock_t *best_clock);
  87. static bool
  88. intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
  89. int target, int refclk, intel_clock_t *match_clock,
  90. intel_clock_t *best_clock);
  91. static inline u32 /* units of 100MHz */
  92. intel_fdi_link_freq(struct drm_device *dev)
  93. {
  94. if (IS_GEN5(dev)) {
  95. struct drm_i915_private *dev_priv = dev->dev_private;
  96. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  97. } else
  98. return 27;
  99. }
  100. static const intel_limit_t intel_limits_i8xx_dvo = {
  101. .dot = { .min = 25000, .max = 350000 },
  102. .vco = { .min = 930000, .max = 1400000 },
  103. .n = { .min = 3, .max = 16 },
  104. .m = { .min = 96, .max = 140 },
  105. .m1 = { .min = 18, .max = 26 },
  106. .m2 = { .min = 6, .max = 16 },
  107. .p = { .min = 4, .max = 128 },
  108. .p1 = { .min = 2, .max = 33 },
  109. .p2 = { .dot_limit = 165000,
  110. .p2_slow = 4, .p2_fast = 2 },
  111. .find_pll = intel_find_best_PLL,
  112. };
  113. static const intel_limit_t intel_limits_i8xx_lvds = {
  114. .dot = { .min = 25000, .max = 350000 },
  115. .vco = { .min = 930000, .max = 1400000 },
  116. .n = { .min = 3, .max = 16 },
  117. .m = { .min = 96, .max = 140 },
  118. .m1 = { .min = 18, .max = 26 },
  119. .m2 = { .min = 6, .max = 16 },
  120. .p = { .min = 4, .max = 128 },
  121. .p1 = { .min = 1, .max = 6 },
  122. .p2 = { .dot_limit = 165000,
  123. .p2_slow = 14, .p2_fast = 7 },
  124. .find_pll = intel_find_best_PLL,
  125. };
  126. static const intel_limit_t intel_limits_i9xx_sdvo = {
  127. .dot = { .min = 20000, .max = 400000 },
  128. .vco = { .min = 1400000, .max = 2800000 },
  129. .n = { .min = 1, .max = 6 },
  130. .m = { .min = 70, .max = 120 },
  131. .m1 = { .min = 10, .max = 22 },
  132. .m2 = { .min = 5, .max = 9 },
  133. .p = { .min = 5, .max = 80 },
  134. .p1 = { .min = 1, .max = 8 },
  135. .p2 = { .dot_limit = 200000,
  136. .p2_slow = 10, .p2_fast = 5 },
  137. .find_pll = intel_find_best_PLL,
  138. };
  139. static const intel_limit_t intel_limits_i9xx_lvds = {
  140. .dot = { .min = 20000, .max = 400000 },
  141. .vco = { .min = 1400000, .max = 2800000 },
  142. .n = { .min = 1, .max = 6 },
  143. .m = { .min = 70, .max = 120 },
  144. .m1 = { .min = 10, .max = 22 },
  145. .m2 = { .min = 5, .max = 9 },
  146. .p = { .min = 7, .max = 98 },
  147. .p1 = { .min = 1, .max = 8 },
  148. .p2 = { .dot_limit = 112000,
  149. .p2_slow = 14, .p2_fast = 7 },
  150. .find_pll = intel_find_best_PLL,
  151. };
  152. static const intel_limit_t intel_limits_g4x_sdvo = {
  153. .dot = { .min = 25000, .max = 270000 },
  154. .vco = { .min = 1750000, .max = 3500000},
  155. .n = { .min = 1, .max = 4 },
  156. .m = { .min = 104, .max = 138 },
  157. .m1 = { .min = 17, .max = 23 },
  158. .m2 = { .min = 5, .max = 11 },
  159. .p = { .min = 10, .max = 30 },
  160. .p1 = { .min = 1, .max = 3},
  161. .p2 = { .dot_limit = 270000,
  162. .p2_slow = 10,
  163. .p2_fast = 10
  164. },
  165. .find_pll = intel_g4x_find_best_PLL,
  166. };
  167. static const intel_limit_t intel_limits_g4x_hdmi = {
  168. .dot = { .min = 22000, .max = 400000 },
  169. .vco = { .min = 1750000, .max = 3500000},
  170. .n = { .min = 1, .max = 4 },
  171. .m = { .min = 104, .max = 138 },
  172. .m1 = { .min = 16, .max = 23 },
  173. .m2 = { .min = 5, .max = 11 },
  174. .p = { .min = 5, .max = 80 },
  175. .p1 = { .min = 1, .max = 8},
  176. .p2 = { .dot_limit = 165000,
  177. .p2_slow = 10, .p2_fast = 5 },
  178. .find_pll = intel_g4x_find_best_PLL,
  179. };
  180. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  181. .dot = { .min = 20000, .max = 115000 },
  182. .vco = { .min = 1750000, .max = 3500000 },
  183. .n = { .min = 1, .max = 3 },
  184. .m = { .min = 104, .max = 138 },
  185. .m1 = { .min = 17, .max = 23 },
  186. .m2 = { .min = 5, .max = 11 },
  187. .p = { .min = 28, .max = 112 },
  188. .p1 = { .min = 2, .max = 8 },
  189. .p2 = { .dot_limit = 0,
  190. .p2_slow = 14, .p2_fast = 14
  191. },
  192. .find_pll = intel_g4x_find_best_PLL,
  193. };
  194. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  195. .dot = { .min = 80000, .max = 224000 },
  196. .vco = { .min = 1750000, .max = 3500000 },
  197. .n = { .min = 1, .max = 3 },
  198. .m = { .min = 104, .max = 138 },
  199. .m1 = { .min = 17, .max = 23 },
  200. .m2 = { .min = 5, .max = 11 },
  201. .p = { .min = 14, .max = 42 },
  202. .p1 = { .min = 2, .max = 6 },
  203. .p2 = { .dot_limit = 0,
  204. .p2_slow = 7, .p2_fast = 7
  205. },
  206. .find_pll = intel_g4x_find_best_PLL,
  207. };
  208. static const intel_limit_t intel_limits_g4x_display_port = {
  209. .dot = { .min = 161670, .max = 227000 },
  210. .vco = { .min = 1750000, .max = 3500000},
  211. .n = { .min = 1, .max = 2 },
  212. .m = { .min = 97, .max = 108 },
  213. .m1 = { .min = 0x10, .max = 0x12 },
  214. .m2 = { .min = 0x05, .max = 0x06 },
  215. .p = { .min = 10, .max = 20 },
  216. .p1 = { .min = 1, .max = 2},
  217. .p2 = { .dot_limit = 0,
  218. .p2_slow = 10, .p2_fast = 10 },
  219. .find_pll = intel_find_pll_g4x_dp,
  220. };
  221. static const intel_limit_t intel_limits_pineview_sdvo = {
  222. .dot = { .min = 20000, .max = 400000},
  223. .vco = { .min = 1700000, .max = 3500000 },
  224. /* Pineview's Ncounter is a ring counter */
  225. .n = { .min = 3, .max = 6 },
  226. .m = { .min = 2, .max = 256 },
  227. /* Pineview only has one combined m divider, which we treat as m2. */
  228. .m1 = { .min = 0, .max = 0 },
  229. .m2 = { .min = 0, .max = 254 },
  230. .p = { .min = 5, .max = 80 },
  231. .p1 = { .min = 1, .max = 8 },
  232. .p2 = { .dot_limit = 200000,
  233. .p2_slow = 10, .p2_fast = 5 },
  234. .find_pll = intel_find_best_PLL,
  235. };
  236. static const intel_limit_t intel_limits_pineview_lvds = {
  237. .dot = { .min = 20000, .max = 400000 },
  238. .vco = { .min = 1700000, .max = 3500000 },
  239. .n = { .min = 3, .max = 6 },
  240. .m = { .min = 2, .max = 256 },
  241. .m1 = { .min = 0, .max = 0 },
  242. .m2 = { .min = 0, .max = 254 },
  243. .p = { .min = 7, .max = 112 },
  244. .p1 = { .min = 1, .max = 8 },
  245. .p2 = { .dot_limit = 112000,
  246. .p2_slow = 14, .p2_fast = 14 },
  247. .find_pll = intel_find_best_PLL,
  248. };
  249. /* Ironlake / Sandybridge
  250. *
  251. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  252. * the range value for them is (actual_value - 2).
  253. */
  254. static const intel_limit_t intel_limits_ironlake_dac = {
  255. .dot = { .min = 25000, .max = 350000 },
  256. .vco = { .min = 1760000, .max = 3510000 },
  257. .n = { .min = 1, .max = 5 },
  258. .m = { .min = 79, .max = 127 },
  259. .m1 = { .min = 12, .max = 22 },
  260. .m2 = { .min = 5, .max = 9 },
  261. .p = { .min = 5, .max = 80 },
  262. .p1 = { .min = 1, .max = 8 },
  263. .p2 = { .dot_limit = 225000,
  264. .p2_slow = 10, .p2_fast = 5 },
  265. .find_pll = intel_g4x_find_best_PLL,
  266. };
  267. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  268. .dot = { .min = 25000, .max = 350000 },
  269. .vco = { .min = 1760000, .max = 3510000 },
  270. .n = { .min = 1, .max = 3 },
  271. .m = { .min = 79, .max = 118 },
  272. .m1 = { .min = 12, .max = 22 },
  273. .m2 = { .min = 5, .max = 9 },
  274. .p = { .min = 28, .max = 112 },
  275. .p1 = { .min = 2, .max = 8 },
  276. .p2 = { .dot_limit = 225000,
  277. .p2_slow = 14, .p2_fast = 14 },
  278. .find_pll = intel_g4x_find_best_PLL,
  279. };
  280. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  281. .dot = { .min = 25000, .max = 350000 },
  282. .vco = { .min = 1760000, .max = 3510000 },
  283. .n = { .min = 1, .max = 3 },
  284. .m = { .min = 79, .max = 127 },
  285. .m1 = { .min = 12, .max = 22 },
  286. .m2 = { .min = 5, .max = 9 },
  287. .p = { .min = 14, .max = 56 },
  288. .p1 = { .min = 2, .max = 8 },
  289. .p2 = { .dot_limit = 225000,
  290. .p2_slow = 7, .p2_fast = 7 },
  291. .find_pll = intel_g4x_find_best_PLL,
  292. };
  293. /* LVDS 100mhz refclk limits. */
  294. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  295. .dot = { .min = 25000, .max = 350000 },
  296. .vco = { .min = 1760000, .max = 3510000 },
  297. .n = { .min = 1, .max = 2 },
  298. .m = { .min = 79, .max = 126 },
  299. .m1 = { .min = 12, .max = 22 },
  300. .m2 = { .min = 5, .max = 9 },
  301. .p = { .min = 28, .max = 112 },
  302. .p1 = { .min = 2, .max = 8 },
  303. .p2 = { .dot_limit = 225000,
  304. .p2_slow = 14, .p2_fast = 14 },
  305. .find_pll = intel_g4x_find_best_PLL,
  306. };
  307. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  308. .dot = { .min = 25000, .max = 350000 },
  309. .vco = { .min = 1760000, .max = 3510000 },
  310. .n = { .min = 1, .max = 3 },
  311. .m = { .min = 79, .max = 126 },
  312. .m1 = { .min = 12, .max = 22 },
  313. .m2 = { .min = 5, .max = 9 },
  314. .p = { .min = 14, .max = 42 },
  315. .p1 = { .min = 2, .max = 6 },
  316. .p2 = { .dot_limit = 225000,
  317. .p2_slow = 7, .p2_fast = 7 },
  318. .find_pll = intel_g4x_find_best_PLL,
  319. };
  320. static const intel_limit_t intel_limits_ironlake_display_port = {
  321. .dot = { .min = 25000, .max = 350000 },
  322. .vco = { .min = 1760000, .max = 3510000},
  323. .n = { .min = 1, .max = 2 },
  324. .m = { .min = 81, .max = 90 },
  325. .m1 = { .min = 12, .max = 22 },
  326. .m2 = { .min = 5, .max = 9 },
  327. .p = { .min = 10, .max = 20 },
  328. .p1 = { .min = 1, .max = 2},
  329. .p2 = { .dot_limit = 0,
  330. .p2_slow = 10, .p2_fast = 10 },
  331. .find_pll = intel_find_pll_ironlake_dp,
  332. };
  333. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  334. int refclk)
  335. {
  336. struct drm_device *dev = crtc->dev;
  337. struct drm_i915_private *dev_priv = dev->dev_private;
  338. const intel_limit_t *limit;
  339. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  340. if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
  341. LVDS_CLKB_POWER_UP) {
  342. /* LVDS dual channel */
  343. if (refclk == 100000)
  344. limit = &intel_limits_ironlake_dual_lvds_100m;
  345. else
  346. limit = &intel_limits_ironlake_dual_lvds;
  347. } else {
  348. if (refclk == 100000)
  349. limit = &intel_limits_ironlake_single_lvds_100m;
  350. else
  351. limit = &intel_limits_ironlake_single_lvds;
  352. }
  353. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  354. HAS_eDP)
  355. limit = &intel_limits_ironlake_display_port;
  356. else
  357. limit = &intel_limits_ironlake_dac;
  358. return limit;
  359. }
  360. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  361. {
  362. struct drm_device *dev = crtc->dev;
  363. struct drm_i915_private *dev_priv = dev->dev_private;
  364. const intel_limit_t *limit;
  365. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  366. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  367. LVDS_CLKB_POWER_UP)
  368. /* LVDS with dual channel */
  369. limit = &intel_limits_g4x_dual_channel_lvds;
  370. else
  371. /* LVDS with dual channel */
  372. limit = &intel_limits_g4x_single_channel_lvds;
  373. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  374. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  375. limit = &intel_limits_g4x_hdmi;
  376. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  377. limit = &intel_limits_g4x_sdvo;
  378. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  379. limit = &intel_limits_g4x_display_port;
  380. } else /* The option is for other outputs */
  381. limit = &intel_limits_i9xx_sdvo;
  382. return limit;
  383. }
  384. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  385. {
  386. struct drm_device *dev = crtc->dev;
  387. const intel_limit_t *limit;
  388. if (HAS_PCH_SPLIT(dev))
  389. limit = intel_ironlake_limit(crtc, refclk);
  390. else if (IS_G4X(dev)) {
  391. limit = intel_g4x_limit(crtc);
  392. } else if (IS_PINEVIEW(dev)) {
  393. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  394. limit = &intel_limits_pineview_lvds;
  395. else
  396. limit = &intel_limits_pineview_sdvo;
  397. } else if (!IS_GEN2(dev)) {
  398. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  399. limit = &intel_limits_i9xx_lvds;
  400. else
  401. limit = &intel_limits_i9xx_sdvo;
  402. } else {
  403. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  404. limit = &intel_limits_i8xx_lvds;
  405. else
  406. limit = &intel_limits_i8xx_dvo;
  407. }
  408. return limit;
  409. }
  410. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  411. static void pineview_clock(int refclk, intel_clock_t *clock)
  412. {
  413. clock->m = clock->m2 + 2;
  414. clock->p = clock->p1 * clock->p2;
  415. clock->vco = refclk * clock->m / clock->n;
  416. clock->dot = clock->vco / clock->p;
  417. }
  418. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  419. {
  420. if (IS_PINEVIEW(dev)) {
  421. pineview_clock(refclk, clock);
  422. return;
  423. }
  424. clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
  425. clock->p = clock->p1 * clock->p2;
  426. clock->vco = refclk * clock->m / (clock->n + 2);
  427. clock->dot = clock->vco / clock->p;
  428. }
  429. /**
  430. * Returns whether any output on the specified pipe is of the specified type
  431. */
  432. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  433. {
  434. struct drm_device *dev = crtc->dev;
  435. struct drm_mode_config *mode_config = &dev->mode_config;
  436. struct intel_encoder *encoder;
  437. list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
  438. if (encoder->base.crtc == crtc && encoder->type == type)
  439. return true;
  440. return false;
  441. }
  442. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  443. /**
  444. * Returns whether the given set of divisors are valid for a given refclk with
  445. * the given connectors.
  446. */
  447. static bool intel_PLL_is_valid(struct drm_device *dev,
  448. const intel_limit_t *limit,
  449. const intel_clock_t *clock)
  450. {
  451. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  452. INTELPllInvalid("p1 out of range\n");
  453. if (clock->p < limit->p.min || limit->p.max < clock->p)
  454. INTELPllInvalid("p out of range\n");
  455. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  456. INTELPllInvalid("m2 out of range\n");
  457. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  458. INTELPllInvalid("m1 out of range\n");
  459. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  460. INTELPllInvalid("m1 <= m2\n");
  461. if (clock->m < limit->m.min || limit->m.max < clock->m)
  462. INTELPllInvalid("m out of range\n");
  463. if (clock->n < limit->n.min || limit->n.max < clock->n)
  464. INTELPllInvalid("n out of range\n");
  465. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  466. INTELPllInvalid("vco out of range\n");
  467. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  468. * connector, etc., rather than just a single range.
  469. */
  470. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  471. INTELPllInvalid("dot out of range\n");
  472. return true;
  473. }
  474. static bool
  475. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  476. int target, int refclk, intel_clock_t *match_clock,
  477. intel_clock_t *best_clock)
  478. {
  479. struct drm_device *dev = crtc->dev;
  480. struct drm_i915_private *dev_priv = dev->dev_private;
  481. intel_clock_t clock;
  482. int err = target;
  483. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  484. (I915_READ(LVDS)) != 0) {
  485. /*
  486. * For LVDS, if the panel is on, just rely on its current
  487. * settings for dual-channel. We haven't figured out how to
  488. * reliably set up different single/dual channel state, if we
  489. * even can.
  490. */
  491. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  492. LVDS_CLKB_POWER_UP)
  493. clock.p2 = limit->p2.p2_fast;
  494. else
  495. clock.p2 = limit->p2.p2_slow;
  496. } else {
  497. if (target < limit->p2.dot_limit)
  498. clock.p2 = limit->p2.p2_slow;
  499. else
  500. clock.p2 = limit->p2.p2_fast;
  501. }
  502. memset(best_clock, 0, sizeof(*best_clock));
  503. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  504. clock.m1++) {
  505. for (clock.m2 = limit->m2.min;
  506. clock.m2 <= limit->m2.max; clock.m2++) {
  507. /* m1 is always 0 in Pineview */
  508. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  509. break;
  510. for (clock.n = limit->n.min;
  511. clock.n <= limit->n.max; clock.n++) {
  512. for (clock.p1 = limit->p1.min;
  513. clock.p1 <= limit->p1.max; clock.p1++) {
  514. int this_err;
  515. intel_clock(dev, refclk, &clock);
  516. if (!intel_PLL_is_valid(dev, limit,
  517. &clock))
  518. continue;
  519. if (match_clock &&
  520. clock.p != match_clock->p)
  521. continue;
  522. this_err = abs(clock.dot - target);
  523. if (this_err < err) {
  524. *best_clock = clock;
  525. err = this_err;
  526. }
  527. }
  528. }
  529. }
  530. }
  531. return (err != target);
  532. }
  533. static bool
  534. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  535. int target, int refclk, intel_clock_t *match_clock,
  536. intel_clock_t *best_clock)
  537. {
  538. struct drm_device *dev = crtc->dev;
  539. struct drm_i915_private *dev_priv = dev->dev_private;
  540. intel_clock_t clock;
  541. int max_n;
  542. bool found;
  543. /* approximately equals target * 0.00585 */
  544. int err_most = (target >> 8) + (target >> 9);
  545. found = false;
  546. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  547. int lvds_reg;
  548. if (HAS_PCH_SPLIT(dev))
  549. lvds_reg = PCH_LVDS;
  550. else
  551. lvds_reg = LVDS;
  552. if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
  553. LVDS_CLKB_POWER_UP)
  554. clock.p2 = limit->p2.p2_fast;
  555. else
  556. clock.p2 = limit->p2.p2_slow;
  557. } else {
  558. if (target < limit->p2.dot_limit)
  559. clock.p2 = limit->p2.p2_slow;
  560. else
  561. clock.p2 = limit->p2.p2_fast;
  562. }
  563. memset(best_clock, 0, sizeof(*best_clock));
  564. max_n = limit->n.max;
  565. /* based on hardware requirement, prefer smaller n to precision */
  566. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  567. /* based on hardware requirement, prefere larger m1,m2 */
  568. for (clock.m1 = limit->m1.max;
  569. clock.m1 >= limit->m1.min; clock.m1--) {
  570. for (clock.m2 = limit->m2.max;
  571. clock.m2 >= limit->m2.min; clock.m2--) {
  572. for (clock.p1 = limit->p1.max;
  573. clock.p1 >= limit->p1.min; clock.p1--) {
  574. int this_err;
  575. intel_clock(dev, refclk, &clock);
  576. if (!intel_PLL_is_valid(dev, limit,
  577. &clock))
  578. continue;
  579. if (match_clock &&
  580. clock.p != match_clock->p)
  581. continue;
  582. this_err = abs(clock.dot - target);
  583. if (this_err < err_most) {
  584. *best_clock = clock;
  585. err_most = this_err;
  586. max_n = clock.n;
  587. found = true;
  588. }
  589. }
  590. }
  591. }
  592. }
  593. return found;
  594. }
  595. static bool
  596. intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  597. int target, int refclk, intel_clock_t *match_clock,
  598. intel_clock_t *best_clock)
  599. {
  600. struct drm_device *dev = crtc->dev;
  601. intel_clock_t clock;
  602. if (target < 200000) {
  603. clock.n = 1;
  604. clock.p1 = 2;
  605. clock.p2 = 10;
  606. clock.m1 = 12;
  607. clock.m2 = 9;
  608. } else {
  609. clock.n = 2;
  610. clock.p1 = 1;
  611. clock.p2 = 10;
  612. clock.m1 = 14;
  613. clock.m2 = 8;
  614. }
  615. intel_clock(dev, refclk, &clock);
  616. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  617. return true;
  618. }
  619. /* DisplayPort has only two frequencies, 162MHz and 270MHz */
  620. static bool
  621. intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  622. int target, int refclk, intel_clock_t *match_clock,
  623. intel_clock_t *best_clock)
  624. {
  625. intel_clock_t clock;
  626. if (target < 200000) {
  627. clock.p1 = 2;
  628. clock.p2 = 10;
  629. clock.n = 2;
  630. clock.m1 = 23;
  631. clock.m2 = 8;
  632. } else {
  633. clock.p1 = 1;
  634. clock.p2 = 10;
  635. clock.n = 1;
  636. clock.m1 = 14;
  637. clock.m2 = 2;
  638. }
  639. clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
  640. clock.p = (clock.p1 * clock.p2);
  641. clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
  642. clock.vco = 0;
  643. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  644. return true;
  645. }
  646. /**
  647. * intel_wait_for_vblank - wait for vblank on a given pipe
  648. * @dev: drm device
  649. * @pipe: pipe to wait for
  650. *
  651. * Wait for vblank to occur on a given pipe. Needed for various bits of
  652. * mode setting code.
  653. */
  654. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  655. {
  656. struct drm_i915_private *dev_priv = dev->dev_private;
  657. int pipestat_reg = PIPESTAT(pipe);
  658. /* Clear existing vblank status. Note this will clear any other
  659. * sticky status fields as well.
  660. *
  661. * This races with i915_driver_irq_handler() with the result
  662. * that either function could miss a vblank event. Here it is not
  663. * fatal, as we will either wait upon the next vblank interrupt or
  664. * timeout. Generally speaking intel_wait_for_vblank() is only
  665. * called during modeset at which time the GPU should be idle and
  666. * should *not* be performing page flips and thus not waiting on
  667. * vblanks...
  668. * Currently, the result of us stealing a vblank from the irq
  669. * handler is that a single frame will be skipped during swapbuffers.
  670. */
  671. I915_WRITE(pipestat_reg,
  672. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  673. /* Wait for vblank interrupt bit to set */
  674. if (wait_for(I915_READ(pipestat_reg) &
  675. PIPE_VBLANK_INTERRUPT_STATUS,
  676. 50))
  677. DRM_DEBUG_KMS("vblank wait timed out\n");
  678. }
  679. /*
  680. * intel_wait_for_pipe_off - wait for pipe to turn off
  681. * @dev: drm device
  682. * @pipe: pipe to wait for
  683. *
  684. * After disabling a pipe, we can't wait for vblank in the usual way,
  685. * spinning on the vblank interrupt status bit, since we won't actually
  686. * see an interrupt when the pipe is disabled.
  687. *
  688. * On Gen4 and above:
  689. * wait for the pipe register state bit to turn off
  690. *
  691. * Otherwise:
  692. * wait for the display line value to settle (it usually
  693. * ends up stopping at the start of the next frame).
  694. *
  695. */
  696. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  697. {
  698. struct drm_i915_private *dev_priv = dev->dev_private;
  699. if (INTEL_INFO(dev)->gen >= 4) {
  700. int reg = PIPECONF(pipe);
  701. /* Wait for the Pipe State to go off */
  702. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  703. 100))
  704. DRM_DEBUG_KMS("pipe_off wait timed out\n");
  705. } else {
  706. u32 last_line;
  707. int reg = PIPEDSL(pipe);
  708. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  709. /* Wait for the display line to settle */
  710. do {
  711. last_line = I915_READ(reg) & DSL_LINEMASK;
  712. mdelay(5);
  713. } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
  714. time_after(timeout, jiffies));
  715. if (time_after(jiffies, timeout))
  716. DRM_DEBUG_KMS("pipe_off wait timed out\n");
  717. }
  718. }
  719. static const char *state_string(bool enabled)
  720. {
  721. return enabled ? "on" : "off";
  722. }
  723. /* Only for pre-ILK configs */
  724. static void assert_pll(struct drm_i915_private *dev_priv,
  725. enum pipe pipe, bool state)
  726. {
  727. int reg;
  728. u32 val;
  729. bool cur_state;
  730. reg = DPLL(pipe);
  731. val = I915_READ(reg);
  732. cur_state = !!(val & DPLL_VCO_ENABLE);
  733. WARN(cur_state != state,
  734. "PLL state assertion failure (expected %s, current %s)\n",
  735. state_string(state), state_string(cur_state));
  736. }
  737. #define assert_pll_enabled(d, p) assert_pll(d, p, true)
  738. #define assert_pll_disabled(d, p) assert_pll(d, p, false)
  739. /* For ILK+ */
  740. static void assert_pch_pll(struct drm_i915_private *dev_priv,
  741. enum pipe pipe, bool state)
  742. {
  743. int reg;
  744. u32 val;
  745. bool cur_state;
  746. if (HAS_PCH_CPT(dev_priv->dev)) {
  747. u32 pch_dpll;
  748. pch_dpll = I915_READ(PCH_DPLL_SEL);
  749. /* Make sure the selected PLL is enabled to the transcoder */
  750. WARN(!((pch_dpll >> (4 * pipe)) & 8),
  751. "transcoder %d PLL not enabled\n", pipe);
  752. /* Convert the transcoder pipe number to a pll pipe number */
  753. pipe = (pch_dpll >> (4 * pipe)) & 1;
  754. }
  755. reg = PCH_DPLL(pipe);
  756. val = I915_READ(reg);
  757. cur_state = !!(val & DPLL_VCO_ENABLE);
  758. WARN(cur_state != state,
  759. "PCH PLL state assertion failure (expected %s, current %s)\n",
  760. state_string(state), state_string(cur_state));
  761. }
  762. #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
  763. #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
  764. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  765. enum pipe pipe, bool state)
  766. {
  767. int reg;
  768. u32 val;
  769. bool cur_state;
  770. reg = FDI_TX_CTL(pipe);
  771. val = I915_READ(reg);
  772. cur_state = !!(val & FDI_TX_ENABLE);
  773. WARN(cur_state != state,
  774. "FDI TX state assertion failure (expected %s, current %s)\n",
  775. state_string(state), state_string(cur_state));
  776. }
  777. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  778. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  779. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  780. enum pipe pipe, bool state)
  781. {
  782. int reg;
  783. u32 val;
  784. bool cur_state;
  785. reg = FDI_RX_CTL(pipe);
  786. val = I915_READ(reg);
  787. cur_state = !!(val & FDI_RX_ENABLE);
  788. WARN(cur_state != state,
  789. "FDI RX state assertion failure (expected %s, current %s)\n",
  790. state_string(state), state_string(cur_state));
  791. }
  792. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  793. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  794. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  795. enum pipe pipe)
  796. {
  797. int reg;
  798. u32 val;
  799. /* ILK FDI PLL is always enabled */
  800. if (dev_priv->info->gen == 5)
  801. return;
  802. reg = FDI_TX_CTL(pipe);
  803. val = I915_READ(reg);
  804. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  805. }
  806. static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
  807. enum pipe pipe)
  808. {
  809. int reg;
  810. u32 val;
  811. reg = FDI_RX_CTL(pipe);
  812. val = I915_READ(reg);
  813. WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
  814. }
  815. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  816. enum pipe pipe)
  817. {
  818. int pp_reg, lvds_reg;
  819. u32 val;
  820. enum pipe panel_pipe = PIPE_A;
  821. bool locked = true;
  822. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  823. pp_reg = PCH_PP_CONTROL;
  824. lvds_reg = PCH_LVDS;
  825. } else {
  826. pp_reg = PP_CONTROL;
  827. lvds_reg = LVDS;
  828. }
  829. val = I915_READ(pp_reg);
  830. if (!(val & PANEL_POWER_ON) ||
  831. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  832. locked = false;
  833. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  834. panel_pipe = PIPE_B;
  835. WARN(panel_pipe == pipe && locked,
  836. "panel assertion failure, pipe %c regs locked\n",
  837. pipe_name(pipe));
  838. }
  839. void assert_pipe(struct drm_i915_private *dev_priv,
  840. enum pipe pipe, bool state)
  841. {
  842. int reg;
  843. u32 val;
  844. bool cur_state;
  845. /* if we need the pipe A quirk it must be always on */
  846. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  847. state = true;
  848. reg = PIPECONF(pipe);
  849. val = I915_READ(reg);
  850. cur_state = !!(val & PIPECONF_ENABLE);
  851. WARN(cur_state != state,
  852. "pipe %c assertion failure (expected %s, current %s)\n",
  853. pipe_name(pipe), state_string(state), state_string(cur_state));
  854. }
  855. static void assert_plane(struct drm_i915_private *dev_priv,
  856. enum plane plane, bool state)
  857. {
  858. int reg;
  859. u32 val;
  860. bool cur_state;
  861. reg = DSPCNTR(plane);
  862. val = I915_READ(reg);
  863. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  864. WARN(cur_state != state,
  865. "plane %c assertion failure (expected %s, current %s)\n",
  866. plane_name(plane), state_string(state), state_string(cur_state));
  867. }
  868. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  869. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  870. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  871. enum pipe pipe)
  872. {
  873. int reg, i;
  874. u32 val;
  875. int cur_pipe;
  876. /* Planes are fixed to pipes on ILK+ */
  877. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  878. reg = DSPCNTR(pipe);
  879. val = I915_READ(reg);
  880. WARN((val & DISPLAY_PLANE_ENABLE),
  881. "plane %c assertion failure, should be disabled but not\n",
  882. plane_name(pipe));
  883. return;
  884. }
  885. /* Need to check both planes against the pipe */
  886. for (i = 0; i < 2; i++) {
  887. reg = DSPCNTR(i);
  888. val = I915_READ(reg);
  889. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  890. DISPPLANE_SEL_PIPE_SHIFT;
  891. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  892. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  893. plane_name(i), pipe_name(pipe));
  894. }
  895. }
  896. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  897. {
  898. u32 val;
  899. bool enabled;
  900. val = I915_READ(PCH_DREF_CONTROL);
  901. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  902. DREF_SUPERSPREAD_SOURCE_MASK));
  903. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  904. }
  905. static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
  906. enum pipe pipe)
  907. {
  908. int reg;
  909. u32 val;
  910. bool enabled;
  911. reg = TRANSCONF(pipe);
  912. val = I915_READ(reg);
  913. enabled = !!(val & TRANS_ENABLE);
  914. WARN(enabled,
  915. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  916. pipe_name(pipe));
  917. }
  918. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  919. enum pipe pipe, u32 port_sel, u32 val)
  920. {
  921. if ((val & DP_PORT_EN) == 0)
  922. return false;
  923. if (HAS_PCH_CPT(dev_priv->dev)) {
  924. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  925. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  926. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  927. return false;
  928. } else {
  929. if ((val & DP_PIPE_MASK) != (pipe << 30))
  930. return false;
  931. }
  932. return true;
  933. }
  934. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  935. enum pipe pipe, u32 val)
  936. {
  937. if ((val & PORT_ENABLE) == 0)
  938. return false;
  939. if (HAS_PCH_CPT(dev_priv->dev)) {
  940. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  941. return false;
  942. } else {
  943. if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
  944. return false;
  945. }
  946. return true;
  947. }
  948. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  949. enum pipe pipe, u32 val)
  950. {
  951. if ((val & LVDS_PORT_EN) == 0)
  952. return false;
  953. if (HAS_PCH_CPT(dev_priv->dev)) {
  954. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  955. return false;
  956. } else {
  957. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  958. return false;
  959. }
  960. return true;
  961. }
  962. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  963. enum pipe pipe, u32 val)
  964. {
  965. if ((val & ADPA_DAC_ENABLE) == 0)
  966. return false;
  967. if (HAS_PCH_CPT(dev_priv->dev)) {
  968. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  969. return false;
  970. } else {
  971. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  972. return false;
  973. }
  974. return true;
  975. }
  976. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  977. enum pipe pipe, int reg, u32 port_sel)
  978. {
  979. u32 val = I915_READ(reg);
  980. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  981. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  982. reg, pipe_name(pipe));
  983. }
  984. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  985. enum pipe pipe, int reg)
  986. {
  987. u32 val = I915_READ(reg);
  988. WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
  989. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  990. reg, pipe_name(pipe));
  991. }
  992. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  993. enum pipe pipe)
  994. {
  995. int reg;
  996. u32 val;
  997. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  998. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  999. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1000. reg = PCH_ADPA;
  1001. val = I915_READ(reg);
  1002. WARN(adpa_pipe_enabled(dev_priv, val, pipe),
  1003. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1004. pipe_name(pipe));
  1005. reg = PCH_LVDS;
  1006. val = I915_READ(reg);
  1007. WARN(lvds_pipe_enabled(dev_priv, val, pipe),
  1008. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1009. pipe_name(pipe));
  1010. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
  1011. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
  1012. assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
  1013. }
  1014. /**
  1015. * intel_enable_pll - enable a PLL
  1016. * @dev_priv: i915 private structure
  1017. * @pipe: pipe PLL to enable
  1018. *
  1019. * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
  1020. * make sure the PLL reg is writable first though, since the panel write
  1021. * protect mechanism may be enabled.
  1022. *
  1023. * Note! This is for pre-ILK only.
  1024. */
  1025. static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1026. {
  1027. int reg;
  1028. u32 val;
  1029. /* No really, not for ILK+ */
  1030. BUG_ON(dev_priv->info->gen >= 5);
  1031. /* PLL is protected by panel, make sure we can write it */
  1032. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1033. assert_panel_unlocked(dev_priv, pipe);
  1034. reg = DPLL(pipe);
  1035. val = I915_READ(reg);
  1036. val |= DPLL_VCO_ENABLE;
  1037. /* We do this three times for luck */
  1038. I915_WRITE(reg, val);
  1039. POSTING_READ(reg);
  1040. udelay(150); /* wait for warmup */
  1041. I915_WRITE(reg, val);
  1042. POSTING_READ(reg);
  1043. udelay(150); /* wait for warmup */
  1044. I915_WRITE(reg, val);
  1045. POSTING_READ(reg);
  1046. udelay(150); /* wait for warmup */
  1047. }
  1048. /**
  1049. * intel_disable_pll - disable a PLL
  1050. * @dev_priv: i915 private structure
  1051. * @pipe: pipe PLL to disable
  1052. *
  1053. * Disable the PLL for @pipe, making sure the pipe is off first.
  1054. *
  1055. * Note! This is for pre-ILK only.
  1056. */
  1057. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1058. {
  1059. int reg;
  1060. u32 val;
  1061. /* Don't disable pipe A or pipe A PLLs if needed */
  1062. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1063. return;
  1064. /* Make sure the pipe isn't still relying on us */
  1065. assert_pipe_disabled(dev_priv, pipe);
  1066. reg = DPLL(pipe);
  1067. val = I915_READ(reg);
  1068. val &= ~DPLL_VCO_ENABLE;
  1069. I915_WRITE(reg, val);
  1070. POSTING_READ(reg);
  1071. }
  1072. /**
  1073. * intel_enable_pch_pll - enable PCH PLL
  1074. * @dev_priv: i915 private structure
  1075. * @pipe: pipe PLL to enable
  1076. *
  1077. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1078. * drives the transcoder clock.
  1079. */
  1080. static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
  1081. enum pipe pipe)
  1082. {
  1083. int reg;
  1084. u32 val;
  1085. if (pipe > 1)
  1086. return;
  1087. /* PCH only available on ILK+ */
  1088. BUG_ON(dev_priv->info->gen < 5);
  1089. /* PCH refclock must be enabled first */
  1090. assert_pch_refclk_enabled(dev_priv);
  1091. reg = PCH_DPLL(pipe);
  1092. val = I915_READ(reg);
  1093. val |= DPLL_VCO_ENABLE;
  1094. I915_WRITE(reg, val);
  1095. POSTING_READ(reg);
  1096. udelay(200);
  1097. }
  1098. static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
  1099. enum pipe pipe)
  1100. {
  1101. int reg;
  1102. u32 val, pll_mask = TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL,
  1103. pll_sel = TRANSC_DPLL_ENABLE;
  1104. if (pipe > 1)
  1105. return;
  1106. /* PCH only available on ILK+ */
  1107. BUG_ON(dev_priv->info->gen < 5);
  1108. /* Make sure transcoder isn't still depending on us */
  1109. assert_transcoder_disabled(dev_priv, pipe);
  1110. if (pipe == 0)
  1111. pll_sel |= TRANSC_DPLLA_SEL;
  1112. else if (pipe == 1)
  1113. pll_sel |= TRANSC_DPLLB_SEL;
  1114. if ((I915_READ(PCH_DPLL_SEL) & pll_mask) == pll_sel)
  1115. return;
  1116. reg = PCH_DPLL(pipe);
  1117. val = I915_READ(reg);
  1118. val &= ~DPLL_VCO_ENABLE;
  1119. I915_WRITE(reg, val);
  1120. POSTING_READ(reg);
  1121. udelay(200);
  1122. }
  1123. static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
  1124. enum pipe pipe)
  1125. {
  1126. int reg;
  1127. u32 val;
  1128. /* PCH only available on ILK+ */
  1129. BUG_ON(dev_priv->info->gen < 5);
  1130. /* Make sure PCH DPLL is enabled */
  1131. assert_pch_pll_enabled(dev_priv, pipe);
  1132. /* FDI must be feeding us bits for PCH ports */
  1133. assert_fdi_tx_enabled(dev_priv, pipe);
  1134. assert_fdi_rx_enabled(dev_priv, pipe);
  1135. reg = TRANSCONF(pipe);
  1136. val = I915_READ(reg);
  1137. if (HAS_PCH_IBX(dev_priv->dev)) {
  1138. /*
  1139. * make the BPC in transcoder be consistent with
  1140. * that in pipeconf reg.
  1141. */
  1142. val &= ~PIPE_BPC_MASK;
  1143. val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
  1144. }
  1145. I915_WRITE(reg, val | TRANS_ENABLE);
  1146. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1147. DRM_ERROR("failed to enable transcoder %d\n", pipe);
  1148. }
  1149. static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
  1150. enum pipe pipe)
  1151. {
  1152. int reg;
  1153. u32 val;
  1154. /* FDI relies on the transcoder */
  1155. assert_fdi_tx_disabled(dev_priv, pipe);
  1156. assert_fdi_rx_disabled(dev_priv, pipe);
  1157. /* Ports must be off as well */
  1158. assert_pch_ports_disabled(dev_priv, pipe);
  1159. reg = TRANSCONF(pipe);
  1160. val = I915_READ(reg);
  1161. val &= ~TRANS_ENABLE;
  1162. I915_WRITE(reg, val);
  1163. /* wait for PCH transcoder off, transcoder state */
  1164. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1165. DRM_ERROR("failed to disable transcoder %d\n", pipe);
  1166. }
  1167. /**
  1168. * intel_enable_pipe - enable a pipe, asserting requirements
  1169. * @dev_priv: i915 private structure
  1170. * @pipe: pipe to enable
  1171. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1172. *
  1173. * Enable @pipe, making sure that various hardware specific requirements
  1174. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1175. *
  1176. * @pipe should be %PIPE_A or %PIPE_B.
  1177. *
  1178. * Will wait until the pipe is actually running (i.e. first vblank) before
  1179. * returning.
  1180. */
  1181. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1182. bool pch_port)
  1183. {
  1184. int reg;
  1185. u32 val;
  1186. /*
  1187. * A pipe without a PLL won't actually be able to drive bits from
  1188. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1189. * need the check.
  1190. */
  1191. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1192. assert_pll_enabled(dev_priv, pipe);
  1193. else {
  1194. if (pch_port) {
  1195. /* if driving the PCH, we need FDI enabled */
  1196. assert_fdi_rx_pll_enabled(dev_priv, pipe);
  1197. assert_fdi_tx_pll_enabled(dev_priv, pipe);
  1198. }
  1199. /* FIXME: assert CPU port conditions for SNB+ */
  1200. }
  1201. reg = PIPECONF(pipe);
  1202. val = I915_READ(reg);
  1203. if (val & PIPECONF_ENABLE)
  1204. return;
  1205. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1206. intel_wait_for_vblank(dev_priv->dev, pipe);
  1207. }
  1208. /**
  1209. * intel_disable_pipe - disable a pipe, asserting requirements
  1210. * @dev_priv: i915 private structure
  1211. * @pipe: pipe to disable
  1212. *
  1213. * Disable @pipe, making sure that various hardware specific requirements
  1214. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1215. *
  1216. * @pipe should be %PIPE_A or %PIPE_B.
  1217. *
  1218. * Will wait until the pipe has shut down before returning.
  1219. */
  1220. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1221. enum pipe pipe)
  1222. {
  1223. int reg;
  1224. u32 val;
  1225. /*
  1226. * Make sure planes won't keep trying to pump pixels to us,
  1227. * or we might hang the display.
  1228. */
  1229. assert_planes_disabled(dev_priv, pipe);
  1230. /* Don't disable pipe A or pipe A PLLs if needed */
  1231. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1232. return;
  1233. reg = PIPECONF(pipe);
  1234. val = I915_READ(reg);
  1235. if ((val & PIPECONF_ENABLE) == 0)
  1236. return;
  1237. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1238. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1239. }
  1240. /*
  1241. * Plane regs are double buffered, going from enabled->disabled needs a
  1242. * trigger in order to latch. The display address reg provides this.
  1243. */
  1244. static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1245. enum plane plane)
  1246. {
  1247. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1248. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1249. }
  1250. /**
  1251. * intel_enable_plane - enable a display plane on a given pipe
  1252. * @dev_priv: i915 private structure
  1253. * @plane: plane to enable
  1254. * @pipe: pipe being fed
  1255. *
  1256. * Enable @plane on @pipe, making sure that @pipe is running first.
  1257. */
  1258. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1259. enum plane plane, enum pipe pipe)
  1260. {
  1261. int reg;
  1262. u32 val;
  1263. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1264. assert_pipe_enabled(dev_priv, pipe);
  1265. reg = DSPCNTR(plane);
  1266. val = I915_READ(reg);
  1267. if (val & DISPLAY_PLANE_ENABLE)
  1268. return;
  1269. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1270. intel_flush_display_plane(dev_priv, plane);
  1271. intel_wait_for_vblank(dev_priv->dev, pipe);
  1272. }
  1273. /**
  1274. * intel_disable_plane - disable a display plane
  1275. * @dev_priv: i915 private structure
  1276. * @plane: plane to disable
  1277. * @pipe: pipe consuming the data
  1278. *
  1279. * Disable @plane; should be an independent operation.
  1280. */
  1281. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1282. enum plane plane, enum pipe pipe)
  1283. {
  1284. int reg;
  1285. u32 val;
  1286. reg = DSPCNTR(plane);
  1287. val = I915_READ(reg);
  1288. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1289. return;
  1290. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1291. intel_flush_display_plane(dev_priv, plane);
  1292. intel_wait_for_vblank(dev_priv->dev, pipe);
  1293. }
  1294. static void disable_pch_dp(struct drm_i915_private *dev_priv,
  1295. enum pipe pipe, int reg, u32 port_sel)
  1296. {
  1297. u32 val = I915_READ(reg);
  1298. if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
  1299. DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
  1300. I915_WRITE(reg, val & ~DP_PORT_EN);
  1301. }
  1302. }
  1303. static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
  1304. enum pipe pipe, int reg)
  1305. {
  1306. u32 val = I915_READ(reg);
  1307. if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
  1308. DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
  1309. reg, pipe);
  1310. I915_WRITE(reg, val & ~PORT_ENABLE);
  1311. }
  1312. }
  1313. /* Disable any ports connected to this transcoder */
  1314. static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
  1315. enum pipe pipe)
  1316. {
  1317. u32 reg, val;
  1318. val = I915_READ(PCH_PP_CONTROL);
  1319. I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
  1320. disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1321. disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1322. disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1323. reg = PCH_ADPA;
  1324. val = I915_READ(reg);
  1325. if (adpa_pipe_enabled(dev_priv, val, pipe))
  1326. I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
  1327. reg = PCH_LVDS;
  1328. val = I915_READ(reg);
  1329. if (lvds_pipe_enabled(dev_priv, val, pipe)) {
  1330. DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
  1331. I915_WRITE(reg, val & ~LVDS_PORT_EN);
  1332. POSTING_READ(reg);
  1333. udelay(100);
  1334. }
  1335. disable_pch_hdmi(dev_priv, pipe, HDMIB);
  1336. disable_pch_hdmi(dev_priv, pipe, HDMIC);
  1337. disable_pch_hdmi(dev_priv, pipe, HDMID);
  1338. }
  1339. static void i8xx_disable_fbc(struct drm_device *dev)
  1340. {
  1341. struct drm_i915_private *dev_priv = dev->dev_private;
  1342. u32 fbc_ctl;
  1343. /* Disable compression */
  1344. fbc_ctl = I915_READ(FBC_CONTROL);
  1345. if ((fbc_ctl & FBC_CTL_EN) == 0)
  1346. return;
  1347. fbc_ctl &= ~FBC_CTL_EN;
  1348. I915_WRITE(FBC_CONTROL, fbc_ctl);
  1349. /* Wait for compressing bit to clear */
  1350. if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  1351. DRM_DEBUG_KMS("FBC idle timed out\n");
  1352. return;
  1353. }
  1354. DRM_DEBUG_KMS("disabled FBC\n");
  1355. }
  1356. static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1357. {
  1358. struct drm_device *dev = crtc->dev;
  1359. struct drm_i915_private *dev_priv = dev->dev_private;
  1360. struct drm_framebuffer *fb = crtc->fb;
  1361. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1362. struct drm_i915_gem_object *obj = intel_fb->obj;
  1363. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1364. int cfb_pitch;
  1365. int plane, i;
  1366. u32 fbc_ctl, fbc_ctl2;
  1367. cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
  1368. if (fb->pitches[0] < cfb_pitch)
  1369. cfb_pitch = fb->pitches[0];
  1370. /* FBC_CTL wants 64B units */
  1371. cfb_pitch = (cfb_pitch / 64) - 1;
  1372. plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
  1373. /* Clear old tags */
  1374. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  1375. I915_WRITE(FBC_TAG + (i * 4), 0);
  1376. /* Set it up... */
  1377. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
  1378. fbc_ctl2 |= plane;
  1379. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  1380. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  1381. /* enable it... */
  1382. fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
  1383. if (IS_I945GM(dev))
  1384. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  1385. fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  1386. fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
  1387. fbc_ctl |= obj->fence_reg;
  1388. I915_WRITE(FBC_CONTROL, fbc_ctl);
  1389. DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
  1390. cfb_pitch, crtc->y, intel_crtc->plane);
  1391. }
  1392. static bool i8xx_fbc_enabled(struct drm_device *dev)
  1393. {
  1394. struct drm_i915_private *dev_priv = dev->dev_private;
  1395. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  1396. }
  1397. static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1398. {
  1399. struct drm_device *dev = crtc->dev;
  1400. struct drm_i915_private *dev_priv = dev->dev_private;
  1401. struct drm_framebuffer *fb = crtc->fb;
  1402. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1403. struct drm_i915_gem_object *obj = intel_fb->obj;
  1404. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1405. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  1406. unsigned long stall_watermark = 200;
  1407. u32 dpfc_ctl;
  1408. dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
  1409. dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
  1410. I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
  1411. I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  1412. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  1413. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  1414. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  1415. /* enable it... */
  1416. I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
  1417. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  1418. }
  1419. static void g4x_disable_fbc(struct drm_device *dev)
  1420. {
  1421. struct drm_i915_private *dev_priv = dev->dev_private;
  1422. u32 dpfc_ctl;
  1423. /* Disable compression */
  1424. dpfc_ctl = I915_READ(DPFC_CONTROL);
  1425. if (dpfc_ctl & DPFC_CTL_EN) {
  1426. dpfc_ctl &= ~DPFC_CTL_EN;
  1427. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  1428. DRM_DEBUG_KMS("disabled FBC\n");
  1429. }
  1430. }
  1431. static bool g4x_fbc_enabled(struct drm_device *dev)
  1432. {
  1433. struct drm_i915_private *dev_priv = dev->dev_private;
  1434. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  1435. }
  1436. static void sandybridge_blit_fbc_update(struct drm_device *dev)
  1437. {
  1438. struct drm_i915_private *dev_priv = dev->dev_private;
  1439. u32 blt_ecoskpd;
  1440. /* Make sure blitter notifies FBC of writes */
  1441. gen6_gt_force_wake_get(dev_priv);
  1442. blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
  1443. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
  1444. GEN6_BLITTER_LOCK_SHIFT;
  1445. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  1446. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
  1447. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  1448. blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
  1449. GEN6_BLITTER_LOCK_SHIFT);
  1450. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  1451. POSTING_READ(GEN6_BLITTER_ECOSKPD);
  1452. gen6_gt_force_wake_put(dev_priv);
  1453. }
  1454. static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1455. {
  1456. struct drm_device *dev = crtc->dev;
  1457. struct drm_i915_private *dev_priv = dev->dev_private;
  1458. struct drm_framebuffer *fb = crtc->fb;
  1459. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1460. struct drm_i915_gem_object *obj = intel_fb->obj;
  1461. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1462. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  1463. unsigned long stall_watermark = 200;
  1464. u32 dpfc_ctl;
  1465. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  1466. dpfc_ctl &= DPFC_RESERVED;
  1467. dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
  1468. /* Set persistent mode for front-buffer rendering, ala X. */
  1469. dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
  1470. dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
  1471. I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
  1472. I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  1473. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  1474. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  1475. I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
  1476. I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
  1477. /* enable it... */
  1478. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  1479. if (IS_GEN6(dev)) {
  1480. I915_WRITE(SNB_DPFC_CTL_SA,
  1481. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  1482. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  1483. sandybridge_blit_fbc_update(dev);
  1484. }
  1485. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  1486. }
  1487. static void ironlake_disable_fbc(struct drm_device *dev)
  1488. {
  1489. struct drm_i915_private *dev_priv = dev->dev_private;
  1490. u32 dpfc_ctl;
  1491. /* Disable compression */
  1492. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  1493. if (dpfc_ctl & DPFC_CTL_EN) {
  1494. dpfc_ctl &= ~DPFC_CTL_EN;
  1495. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  1496. DRM_DEBUG_KMS("disabled FBC\n");
  1497. }
  1498. }
  1499. static bool ironlake_fbc_enabled(struct drm_device *dev)
  1500. {
  1501. struct drm_i915_private *dev_priv = dev->dev_private;
  1502. return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
  1503. }
  1504. bool intel_fbc_enabled(struct drm_device *dev)
  1505. {
  1506. struct drm_i915_private *dev_priv = dev->dev_private;
  1507. if (!dev_priv->display.fbc_enabled)
  1508. return false;
  1509. return dev_priv->display.fbc_enabled(dev);
  1510. }
  1511. static void intel_fbc_work_fn(struct work_struct *__work)
  1512. {
  1513. struct intel_fbc_work *work =
  1514. container_of(to_delayed_work(__work),
  1515. struct intel_fbc_work, work);
  1516. struct drm_device *dev = work->crtc->dev;
  1517. struct drm_i915_private *dev_priv = dev->dev_private;
  1518. mutex_lock(&dev->struct_mutex);
  1519. if (work == dev_priv->fbc_work) {
  1520. /* Double check that we haven't switched fb without cancelling
  1521. * the prior work.
  1522. */
  1523. if (work->crtc->fb == work->fb) {
  1524. dev_priv->display.enable_fbc(work->crtc,
  1525. work->interval);
  1526. dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
  1527. dev_priv->cfb_fb = work->crtc->fb->base.id;
  1528. dev_priv->cfb_y = work->crtc->y;
  1529. }
  1530. dev_priv->fbc_work = NULL;
  1531. }
  1532. mutex_unlock(&dev->struct_mutex);
  1533. kfree(work);
  1534. }
  1535. static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
  1536. {
  1537. if (dev_priv->fbc_work == NULL)
  1538. return;
  1539. DRM_DEBUG_KMS("cancelling pending FBC enable\n");
  1540. /* Synchronisation is provided by struct_mutex and checking of
  1541. * dev_priv->fbc_work, so we can perform the cancellation
  1542. * entirely asynchronously.
  1543. */
  1544. if (cancel_delayed_work(&dev_priv->fbc_work->work))
  1545. /* tasklet was killed before being run, clean up */
  1546. kfree(dev_priv->fbc_work);
  1547. /* Mark the work as no longer wanted so that if it does
  1548. * wake-up (because the work was already running and waiting
  1549. * for our mutex), it will discover that is no longer
  1550. * necessary to run.
  1551. */
  1552. dev_priv->fbc_work = NULL;
  1553. }
  1554. static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1555. {
  1556. struct intel_fbc_work *work;
  1557. struct drm_device *dev = crtc->dev;
  1558. struct drm_i915_private *dev_priv = dev->dev_private;
  1559. if (!dev_priv->display.enable_fbc)
  1560. return;
  1561. intel_cancel_fbc_work(dev_priv);
  1562. work = kzalloc(sizeof *work, GFP_KERNEL);
  1563. if (work == NULL) {
  1564. dev_priv->display.enable_fbc(crtc, interval);
  1565. return;
  1566. }
  1567. work->crtc = crtc;
  1568. work->fb = crtc->fb;
  1569. work->interval = interval;
  1570. INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
  1571. dev_priv->fbc_work = work;
  1572. DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
  1573. /* Delay the actual enabling to let pageflipping cease and the
  1574. * display to settle before starting the compression. Note that
  1575. * this delay also serves a second purpose: it allows for a
  1576. * vblank to pass after disabling the FBC before we attempt
  1577. * to modify the control registers.
  1578. *
  1579. * A more complicated solution would involve tracking vblanks
  1580. * following the termination of the page-flipping sequence
  1581. * and indeed performing the enable as a co-routine and not
  1582. * waiting synchronously upon the vblank.
  1583. */
  1584. schedule_delayed_work(&work->work, msecs_to_jiffies(50));
  1585. }
  1586. void intel_disable_fbc(struct drm_device *dev)
  1587. {
  1588. struct drm_i915_private *dev_priv = dev->dev_private;
  1589. intel_cancel_fbc_work(dev_priv);
  1590. if (!dev_priv->display.disable_fbc)
  1591. return;
  1592. dev_priv->display.disable_fbc(dev);
  1593. dev_priv->cfb_plane = -1;
  1594. }
  1595. /**
  1596. * intel_update_fbc - enable/disable FBC as needed
  1597. * @dev: the drm_device
  1598. *
  1599. * Set up the framebuffer compression hardware at mode set time. We
  1600. * enable it if possible:
  1601. * - plane A only (on pre-965)
  1602. * - no pixel mulitply/line duplication
  1603. * - no alpha buffer discard
  1604. * - no dual wide
  1605. * - framebuffer <= 2048 in width, 1536 in height
  1606. *
  1607. * We can't assume that any compression will take place (worst case),
  1608. * so the compressed buffer has to be the same size as the uncompressed
  1609. * one. It also must reside (along with the line length buffer) in
  1610. * stolen memory.
  1611. *
  1612. * We need to enable/disable FBC on a global basis.
  1613. */
  1614. static void intel_update_fbc(struct drm_device *dev)
  1615. {
  1616. struct drm_i915_private *dev_priv = dev->dev_private;
  1617. struct drm_crtc *crtc = NULL, *tmp_crtc;
  1618. struct intel_crtc *intel_crtc;
  1619. struct drm_framebuffer *fb;
  1620. struct intel_framebuffer *intel_fb;
  1621. struct drm_i915_gem_object *obj;
  1622. int enable_fbc;
  1623. DRM_DEBUG_KMS("\n");
  1624. if (!i915_powersave)
  1625. return;
  1626. if (!I915_HAS_FBC(dev))
  1627. return;
  1628. /*
  1629. * If FBC is already on, we just have to verify that we can
  1630. * keep it that way...
  1631. * Need to disable if:
  1632. * - more than one pipe is active
  1633. * - changing FBC params (stride, fence, mode)
  1634. * - new fb is too large to fit in compressed buffer
  1635. * - going to an unsupported config (interlace, pixel multiply, etc.)
  1636. */
  1637. list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
  1638. if (tmp_crtc->enabled && tmp_crtc->fb) {
  1639. if (crtc) {
  1640. DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
  1641. dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
  1642. goto out_disable;
  1643. }
  1644. crtc = tmp_crtc;
  1645. }
  1646. }
  1647. if (!crtc || crtc->fb == NULL) {
  1648. DRM_DEBUG_KMS("no output, disabling\n");
  1649. dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
  1650. goto out_disable;
  1651. }
  1652. intel_crtc = to_intel_crtc(crtc);
  1653. fb = crtc->fb;
  1654. intel_fb = to_intel_framebuffer(fb);
  1655. obj = intel_fb->obj;
  1656. enable_fbc = i915_enable_fbc;
  1657. if (enable_fbc < 0) {
  1658. DRM_DEBUG_KMS("fbc set to per-chip default\n");
  1659. enable_fbc = 1;
  1660. if (INTEL_INFO(dev)->gen <= 6)
  1661. enable_fbc = 0;
  1662. }
  1663. if (!enable_fbc) {
  1664. DRM_DEBUG_KMS("fbc disabled per module param\n");
  1665. dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
  1666. goto out_disable;
  1667. }
  1668. if (intel_fb->obj->base.size > dev_priv->cfb_size) {
  1669. DRM_DEBUG_KMS("framebuffer too large, disabling "
  1670. "compression\n");
  1671. dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
  1672. goto out_disable;
  1673. }
  1674. if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
  1675. (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
  1676. DRM_DEBUG_KMS("mode incompatible with compression, "
  1677. "disabling\n");
  1678. dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
  1679. goto out_disable;
  1680. }
  1681. if ((crtc->mode.hdisplay > 2048) ||
  1682. (crtc->mode.vdisplay > 1536)) {
  1683. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  1684. dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
  1685. goto out_disable;
  1686. }
  1687. if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
  1688. DRM_DEBUG_KMS("plane not 0, disabling compression\n");
  1689. dev_priv->no_fbc_reason = FBC_BAD_PLANE;
  1690. goto out_disable;
  1691. }
  1692. /* The use of a CPU fence is mandatory in order to detect writes
  1693. * by the CPU to the scanout and trigger updates to the FBC.
  1694. */
  1695. if (obj->tiling_mode != I915_TILING_X ||
  1696. obj->fence_reg == I915_FENCE_REG_NONE) {
  1697. DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
  1698. dev_priv->no_fbc_reason = FBC_NOT_TILED;
  1699. goto out_disable;
  1700. }
  1701. /* If the kernel debugger is active, always disable compression */
  1702. if (in_dbg_master())
  1703. goto out_disable;
  1704. /* If the scanout has not changed, don't modify the FBC settings.
  1705. * Note that we make the fundamental assumption that the fb->obj
  1706. * cannot be unpinned (and have its GTT offset and fence revoked)
  1707. * without first being decoupled from the scanout and FBC disabled.
  1708. */
  1709. if (dev_priv->cfb_plane == intel_crtc->plane &&
  1710. dev_priv->cfb_fb == fb->base.id &&
  1711. dev_priv->cfb_y == crtc->y)
  1712. return;
  1713. if (intel_fbc_enabled(dev)) {
  1714. /* We update FBC along two paths, after changing fb/crtc
  1715. * configuration (modeswitching) and after page-flipping
  1716. * finishes. For the latter, we know that not only did
  1717. * we disable the FBC at the start of the page-flip
  1718. * sequence, but also more than one vblank has passed.
  1719. *
  1720. * For the former case of modeswitching, it is possible
  1721. * to switch between two FBC valid configurations
  1722. * instantaneously so we do need to disable the FBC
  1723. * before we can modify its control registers. We also
  1724. * have to wait for the next vblank for that to take
  1725. * effect. However, since we delay enabling FBC we can
  1726. * assume that a vblank has passed since disabling and
  1727. * that we can safely alter the registers in the deferred
  1728. * callback.
  1729. *
  1730. * In the scenario that we go from a valid to invalid
  1731. * and then back to valid FBC configuration we have
  1732. * no strict enforcement that a vblank occurred since
  1733. * disabling the FBC. However, along all current pipe
  1734. * disabling paths we do need to wait for a vblank at
  1735. * some point. And we wait before enabling FBC anyway.
  1736. */
  1737. DRM_DEBUG_KMS("disabling active FBC for update\n");
  1738. intel_disable_fbc(dev);
  1739. }
  1740. intel_enable_fbc(crtc, 500);
  1741. return;
  1742. out_disable:
  1743. /* Multiple disables should be harmless */
  1744. if (intel_fbc_enabled(dev)) {
  1745. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  1746. intel_disable_fbc(dev);
  1747. }
  1748. }
  1749. int
  1750. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1751. struct drm_i915_gem_object *obj,
  1752. struct intel_ring_buffer *pipelined)
  1753. {
  1754. struct drm_i915_private *dev_priv = dev->dev_private;
  1755. u32 alignment;
  1756. int ret;
  1757. switch (obj->tiling_mode) {
  1758. case I915_TILING_NONE:
  1759. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1760. alignment = 128 * 1024;
  1761. else if (INTEL_INFO(dev)->gen >= 4)
  1762. alignment = 4 * 1024;
  1763. else
  1764. alignment = 64 * 1024;
  1765. break;
  1766. case I915_TILING_X:
  1767. /* pin() will align the object as required by fence */
  1768. alignment = 0;
  1769. break;
  1770. case I915_TILING_Y:
  1771. /* FIXME: Is this true? */
  1772. DRM_ERROR("Y tiled not allowed for scan out buffers\n");
  1773. return -EINVAL;
  1774. default:
  1775. BUG();
  1776. }
  1777. dev_priv->mm.interruptible = false;
  1778. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1779. if (ret)
  1780. goto err_interruptible;
  1781. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1782. * fence, whereas 965+ only requires a fence if using
  1783. * framebuffer compression. For simplicity, we always install
  1784. * a fence as the cost is not that onerous.
  1785. */
  1786. if (obj->tiling_mode != I915_TILING_NONE) {
  1787. ret = i915_gem_object_get_fence(obj, pipelined);
  1788. if (ret)
  1789. goto err_unpin;
  1790. i915_gem_object_pin_fence(obj);
  1791. }
  1792. dev_priv->mm.interruptible = true;
  1793. return 0;
  1794. err_unpin:
  1795. i915_gem_object_unpin(obj);
  1796. err_interruptible:
  1797. dev_priv->mm.interruptible = true;
  1798. return ret;
  1799. }
  1800. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1801. {
  1802. i915_gem_object_unpin_fence(obj);
  1803. i915_gem_object_unpin(obj);
  1804. }
  1805. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1806. int x, int y)
  1807. {
  1808. struct drm_device *dev = crtc->dev;
  1809. struct drm_i915_private *dev_priv = dev->dev_private;
  1810. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1811. struct intel_framebuffer *intel_fb;
  1812. struct drm_i915_gem_object *obj;
  1813. int plane = intel_crtc->plane;
  1814. unsigned long Start, Offset;
  1815. u32 dspcntr;
  1816. u32 reg;
  1817. switch (plane) {
  1818. case 0:
  1819. case 1:
  1820. break;
  1821. default:
  1822. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1823. return -EINVAL;
  1824. }
  1825. intel_fb = to_intel_framebuffer(fb);
  1826. obj = intel_fb->obj;
  1827. reg = DSPCNTR(plane);
  1828. dspcntr = I915_READ(reg);
  1829. /* Mask out pixel format bits in case we change it */
  1830. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1831. switch (fb->bits_per_pixel) {
  1832. case 8:
  1833. dspcntr |= DISPPLANE_8BPP;
  1834. break;
  1835. case 16:
  1836. if (fb->depth == 15)
  1837. dspcntr |= DISPPLANE_15_16BPP;
  1838. else
  1839. dspcntr |= DISPPLANE_16BPP;
  1840. break;
  1841. case 24:
  1842. case 32:
  1843. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  1844. break;
  1845. default:
  1846. DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
  1847. return -EINVAL;
  1848. }
  1849. if (INTEL_INFO(dev)->gen >= 4) {
  1850. if (obj->tiling_mode != I915_TILING_NONE)
  1851. dspcntr |= DISPPLANE_TILED;
  1852. else
  1853. dspcntr &= ~DISPPLANE_TILED;
  1854. }
  1855. I915_WRITE(reg, dspcntr);
  1856. Start = obj->gtt_offset;
  1857. Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1858. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1859. Start, Offset, x, y, fb->pitches[0]);
  1860. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1861. if (INTEL_INFO(dev)->gen >= 4) {
  1862. I915_WRITE(DSPSURF(plane), Start);
  1863. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1864. I915_WRITE(DSPADDR(plane), Offset);
  1865. } else
  1866. I915_WRITE(DSPADDR(plane), Start + Offset);
  1867. POSTING_READ(reg);
  1868. return 0;
  1869. }
  1870. static int ironlake_update_plane(struct drm_crtc *crtc,
  1871. struct drm_framebuffer *fb, int x, int y)
  1872. {
  1873. struct drm_device *dev = crtc->dev;
  1874. struct drm_i915_private *dev_priv = dev->dev_private;
  1875. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1876. struct intel_framebuffer *intel_fb;
  1877. struct drm_i915_gem_object *obj;
  1878. int plane = intel_crtc->plane;
  1879. unsigned long Start, Offset;
  1880. u32 dspcntr;
  1881. u32 reg;
  1882. switch (plane) {
  1883. case 0:
  1884. case 1:
  1885. case 2:
  1886. break;
  1887. default:
  1888. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1889. return -EINVAL;
  1890. }
  1891. intel_fb = to_intel_framebuffer(fb);
  1892. obj = intel_fb->obj;
  1893. reg = DSPCNTR(plane);
  1894. dspcntr = I915_READ(reg);
  1895. /* Mask out pixel format bits in case we change it */
  1896. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1897. switch (fb->bits_per_pixel) {
  1898. case 8:
  1899. dspcntr |= DISPPLANE_8BPP;
  1900. break;
  1901. case 16:
  1902. if (fb->depth != 16)
  1903. return -EINVAL;
  1904. dspcntr |= DISPPLANE_16BPP;
  1905. break;
  1906. case 24:
  1907. case 32:
  1908. if (fb->depth == 24)
  1909. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  1910. else if (fb->depth == 30)
  1911. dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
  1912. else
  1913. return -EINVAL;
  1914. break;
  1915. default:
  1916. DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
  1917. return -EINVAL;
  1918. }
  1919. if (obj->tiling_mode != I915_TILING_NONE)
  1920. dspcntr |= DISPPLANE_TILED;
  1921. else
  1922. dspcntr &= ~DISPPLANE_TILED;
  1923. /* must disable */
  1924. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1925. I915_WRITE(reg, dspcntr);
  1926. Start = obj->gtt_offset;
  1927. Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1928. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1929. Start, Offset, x, y, fb->pitches[0]);
  1930. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1931. I915_WRITE(DSPSURF(plane), Start);
  1932. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1933. I915_WRITE(DSPADDR(plane), Offset);
  1934. POSTING_READ(reg);
  1935. return 0;
  1936. }
  1937. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1938. static int
  1939. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1940. int x, int y, enum mode_set_atomic state)
  1941. {
  1942. struct drm_device *dev = crtc->dev;
  1943. struct drm_i915_private *dev_priv = dev->dev_private;
  1944. int ret;
  1945. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  1946. if (ret)
  1947. return ret;
  1948. intel_update_fbc(dev);
  1949. intel_increase_pllclock(crtc);
  1950. return 0;
  1951. }
  1952. static int
  1953. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1954. struct drm_framebuffer *old_fb)
  1955. {
  1956. struct drm_device *dev = crtc->dev;
  1957. struct drm_i915_master_private *master_priv;
  1958. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1959. int ret;
  1960. /* no fb bound */
  1961. if (!crtc->fb) {
  1962. DRM_ERROR("No FB bound\n");
  1963. return 0;
  1964. }
  1965. switch (intel_crtc->plane) {
  1966. case 0:
  1967. case 1:
  1968. break;
  1969. case 2:
  1970. if (IS_IVYBRIDGE(dev))
  1971. break;
  1972. /* fall through otherwise */
  1973. default:
  1974. DRM_ERROR("no plane for crtc\n");
  1975. return -EINVAL;
  1976. }
  1977. mutex_lock(&dev->struct_mutex);
  1978. ret = intel_pin_and_fence_fb_obj(dev,
  1979. to_intel_framebuffer(crtc->fb)->obj,
  1980. NULL);
  1981. if (ret != 0) {
  1982. mutex_unlock(&dev->struct_mutex);
  1983. DRM_ERROR("pin & fence failed\n");
  1984. return ret;
  1985. }
  1986. if (old_fb) {
  1987. struct drm_i915_private *dev_priv = dev->dev_private;
  1988. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1989. wait_event(dev_priv->pending_flip_queue,
  1990. atomic_read(&dev_priv->mm.wedged) ||
  1991. atomic_read(&obj->pending_flip) == 0);
  1992. /* Big Hammer, we also need to ensure that any pending
  1993. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1994. * current scanout is retired before unpinning the old
  1995. * framebuffer.
  1996. *
  1997. * This should only fail upon a hung GPU, in which case we
  1998. * can safely continue.
  1999. */
  2000. ret = i915_gem_object_finish_gpu(obj);
  2001. (void) ret;
  2002. }
  2003. ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
  2004. LEAVE_ATOMIC_MODE_SET);
  2005. if (ret) {
  2006. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  2007. mutex_unlock(&dev->struct_mutex);
  2008. DRM_ERROR("failed to update base address\n");
  2009. return ret;
  2010. }
  2011. if (old_fb) {
  2012. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2013. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  2014. }
  2015. mutex_unlock(&dev->struct_mutex);
  2016. if (!dev->primary->master)
  2017. return 0;
  2018. master_priv = dev->primary->master->driver_priv;
  2019. if (!master_priv->sarea_priv)
  2020. return 0;
  2021. if (intel_crtc->pipe) {
  2022. master_priv->sarea_priv->pipeB_x = x;
  2023. master_priv->sarea_priv->pipeB_y = y;
  2024. } else {
  2025. master_priv->sarea_priv->pipeA_x = x;
  2026. master_priv->sarea_priv->pipeA_y = y;
  2027. }
  2028. return 0;
  2029. }
  2030. static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
  2031. {
  2032. struct drm_device *dev = crtc->dev;
  2033. struct drm_i915_private *dev_priv = dev->dev_private;
  2034. u32 dpa_ctl;
  2035. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
  2036. dpa_ctl = I915_READ(DP_A);
  2037. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  2038. if (clock < 200000) {
  2039. u32 temp;
  2040. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  2041. /* workaround for 160Mhz:
  2042. 1) program 0x4600c bits 15:0 = 0x8124
  2043. 2) program 0x46010 bit 0 = 1
  2044. 3) program 0x46034 bit 24 = 1
  2045. 4) program 0x64000 bit 14 = 1
  2046. */
  2047. temp = I915_READ(0x4600c);
  2048. temp &= 0xffff0000;
  2049. I915_WRITE(0x4600c, temp | 0x8124);
  2050. temp = I915_READ(0x46010);
  2051. I915_WRITE(0x46010, temp | 1);
  2052. temp = I915_READ(0x46034);
  2053. I915_WRITE(0x46034, temp | (1 << 24));
  2054. } else {
  2055. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  2056. }
  2057. I915_WRITE(DP_A, dpa_ctl);
  2058. POSTING_READ(DP_A);
  2059. udelay(500);
  2060. }
  2061. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2062. {
  2063. struct drm_device *dev = crtc->dev;
  2064. struct drm_i915_private *dev_priv = dev->dev_private;
  2065. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2066. int pipe = intel_crtc->pipe;
  2067. u32 reg, temp;
  2068. /* enable normal train */
  2069. reg = FDI_TX_CTL(pipe);
  2070. temp = I915_READ(reg);
  2071. if (IS_IVYBRIDGE(dev)) {
  2072. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2073. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2074. } else {
  2075. temp &= ~FDI_LINK_TRAIN_NONE;
  2076. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2077. }
  2078. I915_WRITE(reg, temp);
  2079. reg = FDI_RX_CTL(pipe);
  2080. temp = I915_READ(reg);
  2081. if (HAS_PCH_CPT(dev)) {
  2082. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2083. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2084. } else {
  2085. temp &= ~FDI_LINK_TRAIN_NONE;
  2086. temp |= FDI_LINK_TRAIN_NONE;
  2087. }
  2088. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2089. /* wait one idle pattern time */
  2090. POSTING_READ(reg);
  2091. udelay(1000);
  2092. /* IVB wants error correction enabled */
  2093. if (IS_IVYBRIDGE(dev))
  2094. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2095. FDI_FE_ERRC_ENABLE);
  2096. }
  2097. static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
  2098. {
  2099. struct drm_i915_private *dev_priv = dev->dev_private;
  2100. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2101. flags |= FDI_PHASE_SYNC_OVR(pipe);
  2102. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
  2103. flags |= FDI_PHASE_SYNC_EN(pipe);
  2104. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
  2105. POSTING_READ(SOUTH_CHICKEN1);
  2106. }
  2107. /* The FDI link training functions for ILK/Ibexpeak. */
  2108. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2109. {
  2110. struct drm_device *dev = crtc->dev;
  2111. struct drm_i915_private *dev_priv = dev->dev_private;
  2112. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2113. int pipe = intel_crtc->pipe;
  2114. int plane = intel_crtc->plane;
  2115. u32 reg, temp, tries;
  2116. /* FDI needs bits from pipe & plane first */
  2117. assert_pipe_enabled(dev_priv, pipe);
  2118. assert_plane_enabled(dev_priv, plane);
  2119. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2120. for train result */
  2121. reg = FDI_RX_IMR(pipe);
  2122. temp = I915_READ(reg);
  2123. temp &= ~FDI_RX_SYMBOL_LOCK;
  2124. temp &= ~FDI_RX_BIT_LOCK;
  2125. I915_WRITE(reg, temp);
  2126. I915_READ(reg);
  2127. udelay(150);
  2128. /* enable CPU FDI TX and PCH FDI RX */
  2129. reg = FDI_TX_CTL(pipe);
  2130. temp = I915_READ(reg);
  2131. temp &= ~(7 << 19);
  2132. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2133. temp &= ~FDI_LINK_TRAIN_NONE;
  2134. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2135. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2136. reg = FDI_RX_CTL(pipe);
  2137. temp = I915_READ(reg);
  2138. temp &= ~FDI_LINK_TRAIN_NONE;
  2139. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2140. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2141. POSTING_READ(reg);
  2142. udelay(150);
  2143. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2144. if (HAS_PCH_IBX(dev)) {
  2145. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2146. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2147. FDI_RX_PHASE_SYNC_POINTER_EN);
  2148. }
  2149. reg = FDI_RX_IIR(pipe);
  2150. for (tries = 0; tries < 5; tries++) {
  2151. temp = I915_READ(reg);
  2152. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2153. if ((temp & FDI_RX_BIT_LOCK)) {
  2154. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2155. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2156. break;
  2157. }
  2158. }
  2159. if (tries == 5)
  2160. DRM_ERROR("FDI train 1 fail!\n");
  2161. /* Train 2 */
  2162. reg = FDI_TX_CTL(pipe);
  2163. temp = I915_READ(reg);
  2164. temp &= ~FDI_LINK_TRAIN_NONE;
  2165. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2166. I915_WRITE(reg, temp);
  2167. reg = FDI_RX_CTL(pipe);
  2168. temp = I915_READ(reg);
  2169. temp &= ~FDI_LINK_TRAIN_NONE;
  2170. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2171. I915_WRITE(reg, temp);
  2172. POSTING_READ(reg);
  2173. udelay(150);
  2174. reg = FDI_RX_IIR(pipe);
  2175. for (tries = 0; tries < 5; tries++) {
  2176. temp = I915_READ(reg);
  2177. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2178. if (temp & FDI_RX_SYMBOL_LOCK) {
  2179. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2180. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2181. break;
  2182. }
  2183. }
  2184. if (tries == 5)
  2185. DRM_ERROR("FDI train 2 fail!\n");
  2186. DRM_DEBUG_KMS("FDI train done\n");
  2187. }
  2188. static const int snb_b_fdi_train_param[] = {
  2189. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2190. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2191. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2192. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2193. };
  2194. /* The FDI link training functions for SNB/Cougarpoint. */
  2195. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2196. {
  2197. struct drm_device *dev = crtc->dev;
  2198. struct drm_i915_private *dev_priv = dev->dev_private;
  2199. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2200. int pipe = intel_crtc->pipe;
  2201. u32 reg, temp, i;
  2202. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2203. for train result */
  2204. reg = FDI_RX_IMR(pipe);
  2205. temp = I915_READ(reg);
  2206. temp &= ~FDI_RX_SYMBOL_LOCK;
  2207. temp &= ~FDI_RX_BIT_LOCK;
  2208. I915_WRITE(reg, temp);
  2209. POSTING_READ(reg);
  2210. udelay(150);
  2211. /* enable CPU FDI TX and PCH FDI RX */
  2212. reg = FDI_TX_CTL(pipe);
  2213. temp = I915_READ(reg);
  2214. temp &= ~(7 << 19);
  2215. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2216. temp &= ~FDI_LINK_TRAIN_NONE;
  2217. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2218. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2219. /* SNB-B */
  2220. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2221. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2222. reg = FDI_RX_CTL(pipe);
  2223. temp = I915_READ(reg);
  2224. if (HAS_PCH_CPT(dev)) {
  2225. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2226. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2227. } else {
  2228. temp &= ~FDI_LINK_TRAIN_NONE;
  2229. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2230. }
  2231. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2232. POSTING_READ(reg);
  2233. udelay(150);
  2234. if (HAS_PCH_CPT(dev))
  2235. cpt_phase_pointer_enable(dev, pipe);
  2236. for (i = 0; i < 4; i++) {
  2237. reg = FDI_TX_CTL(pipe);
  2238. temp = I915_READ(reg);
  2239. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2240. temp |= snb_b_fdi_train_param[i];
  2241. I915_WRITE(reg, temp);
  2242. POSTING_READ(reg);
  2243. udelay(500);
  2244. reg = FDI_RX_IIR(pipe);
  2245. temp = I915_READ(reg);
  2246. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2247. if (temp & FDI_RX_BIT_LOCK) {
  2248. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2249. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2250. break;
  2251. }
  2252. }
  2253. if (i == 4)
  2254. DRM_ERROR("FDI train 1 fail!\n");
  2255. /* Train 2 */
  2256. reg = FDI_TX_CTL(pipe);
  2257. temp = I915_READ(reg);
  2258. temp &= ~FDI_LINK_TRAIN_NONE;
  2259. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2260. if (IS_GEN6(dev)) {
  2261. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2262. /* SNB-B */
  2263. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2264. }
  2265. I915_WRITE(reg, temp);
  2266. reg = FDI_RX_CTL(pipe);
  2267. temp = I915_READ(reg);
  2268. if (HAS_PCH_CPT(dev)) {
  2269. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2270. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2271. } else {
  2272. temp &= ~FDI_LINK_TRAIN_NONE;
  2273. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2274. }
  2275. I915_WRITE(reg, temp);
  2276. POSTING_READ(reg);
  2277. udelay(150);
  2278. for (i = 0; i < 4; i++) {
  2279. reg = FDI_TX_CTL(pipe);
  2280. temp = I915_READ(reg);
  2281. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2282. temp |= snb_b_fdi_train_param[i];
  2283. I915_WRITE(reg, temp);
  2284. POSTING_READ(reg);
  2285. udelay(500);
  2286. reg = FDI_RX_IIR(pipe);
  2287. temp = I915_READ(reg);
  2288. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2289. if (temp & FDI_RX_SYMBOL_LOCK) {
  2290. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2291. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2292. break;
  2293. }
  2294. }
  2295. if (i == 4)
  2296. DRM_ERROR("FDI train 2 fail!\n");
  2297. DRM_DEBUG_KMS("FDI train done.\n");
  2298. }
  2299. /* Manual link training for Ivy Bridge A0 parts */
  2300. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2301. {
  2302. struct drm_device *dev = crtc->dev;
  2303. struct drm_i915_private *dev_priv = dev->dev_private;
  2304. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2305. int pipe = intel_crtc->pipe;
  2306. u32 reg, temp, i;
  2307. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2308. for train result */
  2309. reg = FDI_RX_IMR(pipe);
  2310. temp = I915_READ(reg);
  2311. temp &= ~FDI_RX_SYMBOL_LOCK;
  2312. temp &= ~FDI_RX_BIT_LOCK;
  2313. I915_WRITE(reg, temp);
  2314. POSTING_READ(reg);
  2315. udelay(150);
  2316. /* enable CPU FDI TX and PCH FDI RX */
  2317. reg = FDI_TX_CTL(pipe);
  2318. temp = I915_READ(reg);
  2319. temp &= ~(7 << 19);
  2320. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2321. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2322. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2323. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2324. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2325. temp |= FDI_COMPOSITE_SYNC;
  2326. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2327. reg = FDI_RX_CTL(pipe);
  2328. temp = I915_READ(reg);
  2329. temp &= ~FDI_LINK_TRAIN_AUTO;
  2330. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2331. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2332. temp |= FDI_COMPOSITE_SYNC;
  2333. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2334. POSTING_READ(reg);
  2335. udelay(150);
  2336. if (HAS_PCH_CPT(dev))
  2337. cpt_phase_pointer_enable(dev, pipe);
  2338. for (i = 0; i < 4; i++) {
  2339. reg = FDI_TX_CTL(pipe);
  2340. temp = I915_READ(reg);
  2341. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2342. temp |= snb_b_fdi_train_param[i];
  2343. I915_WRITE(reg, temp);
  2344. POSTING_READ(reg);
  2345. udelay(500);
  2346. reg = FDI_RX_IIR(pipe);
  2347. temp = I915_READ(reg);
  2348. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2349. if (temp & FDI_RX_BIT_LOCK ||
  2350. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2351. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2352. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2353. break;
  2354. }
  2355. }
  2356. if (i == 4)
  2357. DRM_ERROR("FDI train 1 fail!\n");
  2358. /* Train 2 */
  2359. reg = FDI_TX_CTL(pipe);
  2360. temp = I915_READ(reg);
  2361. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2362. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2363. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2364. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2365. I915_WRITE(reg, temp);
  2366. reg = FDI_RX_CTL(pipe);
  2367. temp = I915_READ(reg);
  2368. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2369. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2370. I915_WRITE(reg, temp);
  2371. POSTING_READ(reg);
  2372. udelay(150);
  2373. for (i = 0; i < 4; i++) {
  2374. reg = FDI_TX_CTL(pipe);
  2375. temp = I915_READ(reg);
  2376. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2377. temp |= snb_b_fdi_train_param[i];
  2378. I915_WRITE(reg, temp);
  2379. POSTING_READ(reg);
  2380. udelay(500);
  2381. reg = FDI_RX_IIR(pipe);
  2382. temp = I915_READ(reg);
  2383. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2384. if (temp & FDI_RX_SYMBOL_LOCK) {
  2385. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2386. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2387. break;
  2388. }
  2389. }
  2390. if (i == 4)
  2391. DRM_ERROR("FDI train 2 fail!\n");
  2392. DRM_DEBUG_KMS("FDI train done.\n");
  2393. }
  2394. static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
  2395. {
  2396. struct drm_device *dev = crtc->dev;
  2397. struct drm_i915_private *dev_priv = dev->dev_private;
  2398. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2399. int pipe = intel_crtc->pipe;
  2400. u32 reg, temp;
  2401. /* Write the TU size bits so error detection works */
  2402. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2403. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2404. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2405. reg = FDI_RX_CTL(pipe);
  2406. temp = I915_READ(reg);
  2407. temp &= ~((0x7 << 19) | (0x7 << 16));
  2408. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2409. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2410. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2411. POSTING_READ(reg);
  2412. udelay(200);
  2413. /* Switch from Rawclk to PCDclk */
  2414. temp = I915_READ(reg);
  2415. I915_WRITE(reg, temp | FDI_PCDCLK);
  2416. POSTING_READ(reg);
  2417. udelay(200);
  2418. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2419. reg = FDI_TX_CTL(pipe);
  2420. temp = I915_READ(reg);
  2421. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2422. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2423. POSTING_READ(reg);
  2424. udelay(100);
  2425. }
  2426. }
  2427. static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
  2428. {
  2429. struct drm_i915_private *dev_priv = dev->dev_private;
  2430. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2431. flags &= ~(FDI_PHASE_SYNC_EN(pipe));
  2432. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
  2433. flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
  2434. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
  2435. POSTING_READ(SOUTH_CHICKEN1);
  2436. }
  2437. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2438. {
  2439. struct drm_device *dev = crtc->dev;
  2440. struct drm_i915_private *dev_priv = dev->dev_private;
  2441. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2442. int pipe = intel_crtc->pipe;
  2443. u32 reg, temp;
  2444. /* disable CPU FDI tx and PCH FDI rx */
  2445. reg = FDI_TX_CTL(pipe);
  2446. temp = I915_READ(reg);
  2447. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2448. POSTING_READ(reg);
  2449. reg = FDI_RX_CTL(pipe);
  2450. temp = I915_READ(reg);
  2451. temp &= ~(0x7 << 16);
  2452. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2453. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2454. POSTING_READ(reg);
  2455. udelay(100);
  2456. /* Ironlake workaround, disable clock pointer after downing FDI */
  2457. if (HAS_PCH_IBX(dev)) {
  2458. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2459. I915_WRITE(FDI_RX_CHICKEN(pipe),
  2460. I915_READ(FDI_RX_CHICKEN(pipe) &
  2461. ~FDI_RX_PHASE_SYNC_POINTER_EN));
  2462. } else if (HAS_PCH_CPT(dev)) {
  2463. cpt_phase_pointer_disable(dev, pipe);
  2464. }
  2465. /* still set train pattern 1 */
  2466. reg = FDI_TX_CTL(pipe);
  2467. temp = I915_READ(reg);
  2468. temp &= ~FDI_LINK_TRAIN_NONE;
  2469. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2470. I915_WRITE(reg, temp);
  2471. reg = FDI_RX_CTL(pipe);
  2472. temp = I915_READ(reg);
  2473. if (HAS_PCH_CPT(dev)) {
  2474. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2475. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2476. } else {
  2477. temp &= ~FDI_LINK_TRAIN_NONE;
  2478. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2479. }
  2480. /* BPC in FDI rx is consistent with that in PIPECONF */
  2481. temp &= ~(0x07 << 16);
  2482. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2483. I915_WRITE(reg, temp);
  2484. POSTING_READ(reg);
  2485. udelay(100);
  2486. }
  2487. /*
  2488. * When we disable a pipe, we need to clear any pending scanline wait events
  2489. * to avoid hanging the ring, which we assume we are waiting on.
  2490. */
  2491. static void intel_clear_scanline_wait(struct drm_device *dev)
  2492. {
  2493. struct drm_i915_private *dev_priv = dev->dev_private;
  2494. struct intel_ring_buffer *ring;
  2495. u32 tmp;
  2496. if (IS_GEN2(dev))
  2497. /* Can't break the hang on i8xx */
  2498. return;
  2499. ring = LP_RING(dev_priv);
  2500. tmp = I915_READ_CTL(ring);
  2501. if (tmp & RING_WAIT)
  2502. I915_WRITE_CTL(ring, tmp);
  2503. }
  2504. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2505. {
  2506. struct drm_i915_gem_object *obj;
  2507. struct drm_i915_private *dev_priv;
  2508. if (crtc->fb == NULL)
  2509. return;
  2510. obj = to_intel_framebuffer(crtc->fb)->obj;
  2511. dev_priv = crtc->dev->dev_private;
  2512. wait_event(dev_priv->pending_flip_queue,
  2513. atomic_read(&obj->pending_flip) == 0);
  2514. }
  2515. static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
  2516. {
  2517. struct drm_device *dev = crtc->dev;
  2518. struct drm_mode_config *mode_config = &dev->mode_config;
  2519. struct intel_encoder *encoder;
  2520. /*
  2521. * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
  2522. * must be driven by its own crtc; no sharing is possible.
  2523. */
  2524. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  2525. if (encoder->base.crtc != crtc)
  2526. continue;
  2527. switch (encoder->type) {
  2528. case INTEL_OUTPUT_EDP:
  2529. if (!intel_encoder_is_pch_edp(&encoder->base))
  2530. return false;
  2531. continue;
  2532. }
  2533. }
  2534. return true;
  2535. }
  2536. /*
  2537. * Enable PCH resources required for PCH ports:
  2538. * - PCH PLLs
  2539. * - FDI training & RX/TX
  2540. * - update transcoder timings
  2541. * - DP transcoding bits
  2542. * - transcoder
  2543. */
  2544. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2545. {
  2546. struct drm_device *dev = crtc->dev;
  2547. struct drm_i915_private *dev_priv = dev->dev_private;
  2548. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2549. int pipe = intel_crtc->pipe;
  2550. u32 reg, temp, transc_sel;
  2551. /* For PCH output, training FDI link */
  2552. dev_priv->display.fdi_link_train(crtc);
  2553. intel_enable_pch_pll(dev_priv, pipe);
  2554. if (HAS_PCH_CPT(dev)) {
  2555. transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
  2556. TRANSC_DPLLB_SEL;
  2557. /* Be sure PCH DPLL SEL is set */
  2558. temp = I915_READ(PCH_DPLL_SEL);
  2559. if (pipe == 0) {
  2560. temp &= ~(TRANSA_DPLLB_SEL);
  2561. temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
  2562. } else if (pipe == 1) {
  2563. temp &= ~(TRANSB_DPLLB_SEL);
  2564. temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  2565. } else if (pipe == 2) {
  2566. temp &= ~(TRANSC_DPLLB_SEL);
  2567. temp |= (TRANSC_DPLL_ENABLE | transc_sel);
  2568. }
  2569. I915_WRITE(PCH_DPLL_SEL, temp);
  2570. }
  2571. /* set transcoder timing, panel must allow it */
  2572. assert_panel_unlocked(dev_priv, pipe);
  2573. I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
  2574. I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
  2575. I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
  2576. I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
  2577. I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
  2578. I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
  2579. I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
  2580. intel_fdi_normal_train(crtc);
  2581. /* For PCH DP, enable TRANS_DP_CTL */
  2582. if (HAS_PCH_CPT(dev) &&
  2583. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2584. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2585. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
  2586. reg = TRANS_DP_CTL(pipe);
  2587. temp = I915_READ(reg);
  2588. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2589. TRANS_DP_SYNC_MASK |
  2590. TRANS_DP_BPC_MASK);
  2591. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2592. TRANS_DP_ENH_FRAMING);
  2593. temp |= bpc << 9; /* same format but at 11:9 */
  2594. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2595. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2596. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2597. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2598. switch (intel_trans_dp_port_sel(crtc)) {
  2599. case PCH_DP_B:
  2600. temp |= TRANS_DP_PORT_SEL_B;
  2601. break;
  2602. case PCH_DP_C:
  2603. temp |= TRANS_DP_PORT_SEL_C;
  2604. break;
  2605. case PCH_DP_D:
  2606. temp |= TRANS_DP_PORT_SEL_D;
  2607. break;
  2608. default:
  2609. DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
  2610. temp |= TRANS_DP_PORT_SEL_B;
  2611. break;
  2612. }
  2613. I915_WRITE(reg, temp);
  2614. }
  2615. intel_enable_transcoder(dev_priv, pipe);
  2616. }
  2617. void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
  2618. {
  2619. struct drm_i915_private *dev_priv = dev->dev_private;
  2620. int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
  2621. u32 temp;
  2622. temp = I915_READ(dslreg);
  2623. udelay(500);
  2624. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2625. /* Without this, mode sets may fail silently on FDI */
  2626. I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
  2627. udelay(250);
  2628. I915_WRITE(tc2reg, 0);
  2629. if (wait_for(I915_READ(dslreg) != temp, 5))
  2630. DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
  2631. }
  2632. }
  2633. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2634. {
  2635. struct drm_device *dev = crtc->dev;
  2636. struct drm_i915_private *dev_priv = dev->dev_private;
  2637. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2638. int pipe = intel_crtc->pipe;
  2639. int plane = intel_crtc->plane;
  2640. u32 temp;
  2641. bool is_pch_port;
  2642. if (intel_crtc->active)
  2643. return;
  2644. intel_crtc->active = true;
  2645. intel_update_watermarks(dev);
  2646. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  2647. temp = I915_READ(PCH_LVDS);
  2648. if ((temp & LVDS_PORT_EN) == 0)
  2649. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  2650. }
  2651. is_pch_port = intel_crtc_driving_pch(crtc);
  2652. if (is_pch_port)
  2653. ironlake_fdi_pll_enable(crtc);
  2654. else
  2655. ironlake_fdi_disable(crtc);
  2656. /* Enable panel fitting for LVDS */
  2657. if (dev_priv->pch_pf_size &&
  2658. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
  2659. /* Force use of hard-coded filter coefficients
  2660. * as some pre-programmed values are broken,
  2661. * e.g. x201.
  2662. */
  2663. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2664. I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
  2665. I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
  2666. }
  2667. /*
  2668. * On ILK+ LUT must be loaded before the pipe is running but with
  2669. * clocks enabled
  2670. */
  2671. intel_crtc_load_lut(crtc);
  2672. intel_enable_pipe(dev_priv, pipe, is_pch_port);
  2673. intel_enable_plane(dev_priv, plane, pipe);
  2674. if (is_pch_port)
  2675. ironlake_pch_enable(crtc);
  2676. mutex_lock(&dev->struct_mutex);
  2677. intel_update_fbc(dev);
  2678. mutex_unlock(&dev->struct_mutex);
  2679. intel_crtc_update_cursor(crtc, true);
  2680. }
  2681. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2682. {
  2683. struct drm_device *dev = crtc->dev;
  2684. struct drm_i915_private *dev_priv = dev->dev_private;
  2685. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2686. int pipe = intel_crtc->pipe;
  2687. int plane = intel_crtc->plane;
  2688. u32 reg, temp;
  2689. if (!intel_crtc->active)
  2690. return;
  2691. intel_crtc_wait_for_pending_flips(crtc);
  2692. drm_vblank_off(dev, pipe);
  2693. intel_crtc_update_cursor(crtc, false);
  2694. intel_disable_plane(dev_priv, plane, pipe);
  2695. if (dev_priv->cfb_plane == plane)
  2696. intel_disable_fbc(dev);
  2697. intel_disable_pipe(dev_priv, pipe);
  2698. /* Disable PF */
  2699. I915_WRITE(PF_CTL(pipe), 0);
  2700. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2701. ironlake_fdi_disable(crtc);
  2702. /* This is a horrible layering violation; we should be doing this in
  2703. * the connector/encoder ->prepare instead, but we don't always have
  2704. * enough information there about the config to know whether it will
  2705. * actually be necessary or just cause undesired flicker.
  2706. */
  2707. intel_disable_pch_ports(dev_priv, pipe);
  2708. intel_disable_transcoder(dev_priv, pipe);
  2709. if (HAS_PCH_CPT(dev)) {
  2710. /* disable TRANS_DP_CTL */
  2711. reg = TRANS_DP_CTL(pipe);
  2712. temp = I915_READ(reg);
  2713. temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  2714. temp |= TRANS_DP_PORT_SEL_NONE;
  2715. I915_WRITE(reg, temp);
  2716. /* disable DPLL_SEL */
  2717. temp = I915_READ(PCH_DPLL_SEL);
  2718. switch (pipe) {
  2719. case 0:
  2720. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
  2721. break;
  2722. case 1:
  2723. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  2724. break;
  2725. case 2:
  2726. /* C shares PLL A or B */
  2727. temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
  2728. break;
  2729. default:
  2730. BUG(); /* wtf */
  2731. }
  2732. I915_WRITE(PCH_DPLL_SEL, temp);
  2733. }
  2734. /* disable PCH DPLL */
  2735. if (!intel_crtc->no_pll)
  2736. intel_disable_pch_pll(dev_priv, pipe);
  2737. /* Switch from PCDclk to Rawclk */
  2738. reg = FDI_RX_CTL(pipe);
  2739. temp = I915_READ(reg);
  2740. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2741. /* Disable CPU FDI TX PLL */
  2742. reg = FDI_TX_CTL(pipe);
  2743. temp = I915_READ(reg);
  2744. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2745. POSTING_READ(reg);
  2746. udelay(100);
  2747. reg = FDI_RX_CTL(pipe);
  2748. temp = I915_READ(reg);
  2749. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2750. /* Wait for the clocks to turn off. */
  2751. POSTING_READ(reg);
  2752. udelay(100);
  2753. intel_crtc->active = false;
  2754. intel_update_watermarks(dev);
  2755. mutex_lock(&dev->struct_mutex);
  2756. intel_update_fbc(dev);
  2757. intel_clear_scanline_wait(dev);
  2758. mutex_unlock(&dev->struct_mutex);
  2759. }
  2760. static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
  2761. {
  2762. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2763. int pipe = intel_crtc->pipe;
  2764. int plane = intel_crtc->plane;
  2765. /* XXX: When our outputs are all unaware of DPMS modes other than off
  2766. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  2767. */
  2768. switch (mode) {
  2769. case DRM_MODE_DPMS_ON:
  2770. case DRM_MODE_DPMS_STANDBY:
  2771. case DRM_MODE_DPMS_SUSPEND:
  2772. DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
  2773. ironlake_crtc_enable(crtc);
  2774. break;
  2775. case DRM_MODE_DPMS_OFF:
  2776. DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
  2777. ironlake_crtc_disable(crtc);
  2778. break;
  2779. }
  2780. }
  2781. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  2782. {
  2783. if (!enable && intel_crtc->overlay) {
  2784. struct drm_device *dev = intel_crtc->base.dev;
  2785. struct drm_i915_private *dev_priv = dev->dev_private;
  2786. mutex_lock(&dev->struct_mutex);
  2787. dev_priv->mm.interruptible = false;
  2788. (void) intel_overlay_switch_off(intel_crtc->overlay);
  2789. dev_priv->mm.interruptible = true;
  2790. mutex_unlock(&dev->struct_mutex);
  2791. }
  2792. /* Let userspace switch the overlay on again. In most cases userspace
  2793. * has to recompute where to put it anyway.
  2794. */
  2795. }
  2796. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  2797. {
  2798. struct drm_device *dev = crtc->dev;
  2799. struct drm_i915_private *dev_priv = dev->dev_private;
  2800. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2801. int pipe = intel_crtc->pipe;
  2802. int plane = intel_crtc->plane;
  2803. if (intel_crtc->active)
  2804. return;
  2805. intel_crtc->active = true;
  2806. intel_update_watermarks(dev);
  2807. intel_enable_pll(dev_priv, pipe);
  2808. intel_enable_pipe(dev_priv, pipe, false);
  2809. intel_enable_plane(dev_priv, plane, pipe);
  2810. intel_crtc_load_lut(crtc);
  2811. intel_update_fbc(dev);
  2812. /* Give the overlay scaler a chance to enable if it's on this pipe */
  2813. intel_crtc_dpms_overlay(intel_crtc, true);
  2814. intel_crtc_update_cursor(crtc, true);
  2815. }
  2816. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  2817. {
  2818. struct drm_device *dev = crtc->dev;
  2819. struct drm_i915_private *dev_priv = dev->dev_private;
  2820. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2821. int pipe = intel_crtc->pipe;
  2822. int plane = intel_crtc->plane;
  2823. if (!intel_crtc->active)
  2824. return;
  2825. /* Give the overlay scaler a chance to disable if it's on this pipe */
  2826. intel_crtc_wait_for_pending_flips(crtc);
  2827. drm_vblank_off(dev, pipe);
  2828. intel_crtc_dpms_overlay(intel_crtc, false);
  2829. intel_crtc_update_cursor(crtc, false);
  2830. if (dev_priv->cfb_plane == plane)
  2831. intel_disable_fbc(dev);
  2832. intel_disable_plane(dev_priv, plane, pipe);
  2833. intel_disable_pipe(dev_priv, pipe);
  2834. intel_disable_pll(dev_priv, pipe);
  2835. intel_crtc->active = false;
  2836. intel_update_fbc(dev);
  2837. intel_update_watermarks(dev);
  2838. intel_clear_scanline_wait(dev);
  2839. }
  2840. static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
  2841. {
  2842. /* XXX: When our outputs are all unaware of DPMS modes other than off
  2843. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  2844. */
  2845. switch (mode) {
  2846. case DRM_MODE_DPMS_ON:
  2847. case DRM_MODE_DPMS_STANDBY:
  2848. case DRM_MODE_DPMS_SUSPEND:
  2849. i9xx_crtc_enable(crtc);
  2850. break;
  2851. case DRM_MODE_DPMS_OFF:
  2852. i9xx_crtc_disable(crtc);
  2853. break;
  2854. }
  2855. }
  2856. /**
  2857. * Sets the power management mode of the pipe and plane.
  2858. */
  2859. static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
  2860. {
  2861. struct drm_device *dev = crtc->dev;
  2862. struct drm_i915_private *dev_priv = dev->dev_private;
  2863. struct drm_i915_master_private *master_priv;
  2864. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2865. int pipe = intel_crtc->pipe;
  2866. bool enabled;
  2867. if (intel_crtc->dpms_mode == mode)
  2868. return;
  2869. intel_crtc->dpms_mode = mode;
  2870. dev_priv->display.dpms(crtc, mode);
  2871. if (!dev->primary->master)
  2872. return;
  2873. master_priv = dev->primary->master->driver_priv;
  2874. if (!master_priv->sarea_priv)
  2875. return;
  2876. enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
  2877. switch (pipe) {
  2878. case 0:
  2879. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  2880. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  2881. break;
  2882. case 1:
  2883. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  2884. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  2885. break;
  2886. default:
  2887. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  2888. break;
  2889. }
  2890. }
  2891. static void intel_crtc_disable(struct drm_crtc *crtc)
  2892. {
  2893. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  2894. struct drm_device *dev = crtc->dev;
  2895. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
  2896. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  2897. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  2898. if (crtc->fb) {
  2899. mutex_lock(&dev->struct_mutex);
  2900. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  2901. mutex_unlock(&dev->struct_mutex);
  2902. }
  2903. }
  2904. /* Prepare for a mode set.
  2905. *
  2906. * Note we could be a lot smarter here. We need to figure out which outputs
  2907. * will be enabled, which disabled (in short, how the config will changes)
  2908. * and perform the minimum necessary steps to accomplish that, e.g. updating
  2909. * watermarks, FBC configuration, making sure PLLs are programmed correctly,
  2910. * panel fitting is in the proper state, etc.
  2911. */
  2912. static void i9xx_crtc_prepare(struct drm_crtc *crtc)
  2913. {
  2914. i9xx_crtc_disable(crtc);
  2915. }
  2916. static void i9xx_crtc_commit(struct drm_crtc *crtc)
  2917. {
  2918. i9xx_crtc_enable(crtc);
  2919. }
  2920. static void ironlake_crtc_prepare(struct drm_crtc *crtc)
  2921. {
  2922. ironlake_crtc_disable(crtc);
  2923. }
  2924. static void ironlake_crtc_commit(struct drm_crtc *crtc)
  2925. {
  2926. ironlake_crtc_enable(crtc);
  2927. }
  2928. void intel_encoder_prepare(struct drm_encoder *encoder)
  2929. {
  2930. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  2931. /* lvds has its own version of prepare see intel_lvds_prepare */
  2932. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
  2933. }
  2934. void intel_encoder_commit(struct drm_encoder *encoder)
  2935. {
  2936. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  2937. struct drm_device *dev = encoder->dev;
  2938. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  2939. struct intel_crtc *intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  2940. /* lvds has its own version of commit see intel_lvds_commit */
  2941. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  2942. if (HAS_PCH_CPT(dev))
  2943. intel_cpt_verify_modeset(dev, intel_crtc->pipe);
  2944. }
  2945. void intel_encoder_destroy(struct drm_encoder *encoder)
  2946. {
  2947. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  2948. drm_encoder_cleanup(encoder);
  2949. kfree(intel_encoder);
  2950. }
  2951. static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
  2952. struct drm_display_mode *mode,
  2953. struct drm_display_mode *adjusted_mode)
  2954. {
  2955. struct drm_device *dev = crtc->dev;
  2956. if (HAS_PCH_SPLIT(dev)) {
  2957. /* FDI link clock is fixed at 2.7G */
  2958. if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
  2959. return false;
  2960. }
  2961. /* All interlaced capable intel hw wants timings in frames. */
  2962. drm_mode_set_crtcinfo(adjusted_mode, 0);
  2963. return true;
  2964. }
  2965. static int i945_get_display_clock_speed(struct drm_device *dev)
  2966. {
  2967. return 400000;
  2968. }
  2969. static int i915_get_display_clock_speed(struct drm_device *dev)
  2970. {
  2971. return 333000;
  2972. }
  2973. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  2974. {
  2975. return 200000;
  2976. }
  2977. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  2978. {
  2979. u16 gcfgc = 0;
  2980. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  2981. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  2982. return 133000;
  2983. else {
  2984. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  2985. case GC_DISPLAY_CLOCK_333_MHZ:
  2986. return 333000;
  2987. default:
  2988. case GC_DISPLAY_CLOCK_190_200_MHZ:
  2989. return 190000;
  2990. }
  2991. }
  2992. }
  2993. static int i865_get_display_clock_speed(struct drm_device *dev)
  2994. {
  2995. return 266000;
  2996. }
  2997. static int i855_get_display_clock_speed(struct drm_device *dev)
  2998. {
  2999. u16 hpllcc = 0;
  3000. /* Assume that the hardware is in the high speed state. This
  3001. * should be the default.
  3002. */
  3003. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3004. case GC_CLOCK_133_200:
  3005. case GC_CLOCK_100_200:
  3006. return 200000;
  3007. case GC_CLOCK_166_250:
  3008. return 250000;
  3009. case GC_CLOCK_100_133:
  3010. return 133000;
  3011. }
  3012. /* Shouldn't happen */
  3013. return 0;
  3014. }
  3015. static int i830_get_display_clock_speed(struct drm_device *dev)
  3016. {
  3017. return 133000;
  3018. }
  3019. struct fdi_m_n {
  3020. u32 tu;
  3021. u32 gmch_m;
  3022. u32 gmch_n;
  3023. u32 link_m;
  3024. u32 link_n;
  3025. };
  3026. static void
  3027. fdi_reduce_ratio(u32 *num, u32 *den)
  3028. {
  3029. while (*num > 0xffffff || *den > 0xffffff) {
  3030. *num >>= 1;
  3031. *den >>= 1;
  3032. }
  3033. }
  3034. static void
  3035. ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
  3036. int link_clock, struct fdi_m_n *m_n)
  3037. {
  3038. m_n->tu = 64; /* default size */
  3039. /* BUG_ON(pixel_clock > INT_MAX / 36); */
  3040. m_n->gmch_m = bits_per_pixel * pixel_clock;
  3041. m_n->gmch_n = link_clock * nlanes * 8;
  3042. fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  3043. m_n->link_m = pixel_clock;
  3044. m_n->link_n = link_clock;
  3045. fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
  3046. }
  3047. struct intel_watermark_params {
  3048. unsigned long fifo_size;
  3049. unsigned long max_wm;
  3050. unsigned long default_wm;
  3051. unsigned long guard_size;
  3052. unsigned long cacheline_size;
  3053. };
  3054. /* Pineview has different values for various configs */
  3055. static const struct intel_watermark_params pineview_display_wm = {
  3056. PINEVIEW_DISPLAY_FIFO,
  3057. PINEVIEW_MAX_WM,
  3058. PINEVIEW_DFT_WM,
  3059. PINEVIEW_GUARD_WM,
  3060. PINEVIEW_FIFO_LINE_SIZE
  3061. };
  3062. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  3063. PINEVIEW_DISPLAY_FIFO,
  3064. PINEVIEW_MAX_WM,
  3065. PINEVIEW_DFT_HPLLOFF_WM,
  3066. PINEVIEW_GUARD_WM,
  3067. PINEVIEW_FIFO_LINE_SIZE
  3068. };
  3069. static const struct intel_watermark_params pineview_cursor_wm = {
  3070. PINEVIEW_CURSOR_FIFO,
  3071. PINEVIEW_CURSOR_MAX_WM,
  3072. PINEVIEW_CURSOR_DFT_WM,
  3073. PINEVIEW_CURSOR_GUARD_WM,
  3074. PINEVIEW_FIFO_LINE_SIZE,
  3075. };
  3076. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  3077. PINEVIEW_CURSOR_FIFO,
  3078. PINEVIEW_CURSOR_MAX_WM,
  3079. PINEVIEW_CURSOR_DFT_WM,
  3080. PINEVIEW_CURSOR_GUARD_WM,
  3081. PINEVIEW_FIFO_LINE_SIZE
  3082. };
  3083. static const struct intel_watermark_params g4x_wm_info = {
  3084. G4X_FIFO_SIZE,
  3085. G4X_MAX_WM,
  3086. G4X_MAX_WM,
  3087. 2,
  3088. G4X_FIFO_LINE_SIZE,
  3089. };
  3090. static const struct intel_watermark_params g4x_cursor_wm_info = {
  3091. I965_CURSOR_FIFO,
  3092. I965_CURSOR_MAX_WM,
  3093. I965_CURSOR_DFT_WM,
  3094. 2,
  3095. G4X_FIFO_LINE_SIZE,
  3096. };
  3097. static const struct intel_watermark_params i965_cursor_wm_info = {
  3098. I965_CURSOR_FIFO,
  3099. I965_CURSOR_MAX_WM,
  3100. I965_CURSOR_DFT_WM,
  3101. 2,
  3102. I915_FIFO_LINE_SIZE,
  3103. };
  3104. static const struct intel_watermark_params i945_wm_info = {
  3105. I945_FIFO_SIZE,
  3106. I915_MAX_WM,
  3107. 1,
  3108. 2,
  3109. I915_FIFO_LINE_SIZE
  3110. };
  3111. static const struct intel_watermark_params i915_wm_info = {
  3112. I915_FIFO_SIZE,
  3113. I915_MAX_WM,
  3114. 1,
  3115. 2,
  3116. I915_FIFO_LINE_SIZE
  3117. };
  3118. static const struct intel_watermark_params i855_wm_info = {
  3119. I855GM_FIFO_SIZE,
  3120. I915_MAX_WM,
  3121. 1,
  3122. 2,
  3123. I830_FIFO_LINE_SIZE
  3124. };
  3125. static const struct intel_watermark_params i830_wm_info = {
  3126. I830_FIFO_SIZE,
  3127. I915_MAX_WM,
  3128. 1,
  3129. 2,
  3130. I830_FIFO_LINE_SIZE
  3131. };
  3132. static const struct intel_watermark_params ironlake_display_wm_info = {
  3133. ILK_DISPLAY_FIFO,
  3134. ILK_DISPLAY_MAXWM,
  3135. ILK_DISPLAY_DFTWM,
  3136. 2,
  3137. ILK_FIFO_LINE_SIZE
  3138. };
  3139. static const struct intel_watermark_params ironlake_cursor_wm_info = {
  3140. ILK_CURSOR_FIFO,
  3141. ILK_CURSOR_MAXWM,
  3142. ILK_CURSOR_DFTWM,
  3143. 2,
  3144. ILK_FIFO_LINE_SIZE
  3145. };
  3146. static const struct intel_watermark_params ironlake_display_srwm_info = {
  3147. ILK_DISPLAY_SR_FIFO,
  3148. ILK_DISPLAY_MAX_SRWM,
  3149. ILK_DISPLAY_DFT_SRWM,
  3150. 2,
  3151. ILK_FIFO_LINE_SIZE
  3152. };
  3153. static const struct intel_watermark_params ironlake_cursor_srwm_info = {
  3154. ILK_CURSOR_SR_FIFO,
  3155. ILK_CURSOR_MAX_SRWM,
  3156. ILK_CURSOR_DFT_SRWM,
  3157. 2,
  3158. ILK_FIFO_LINE_SIZE
  3159. };
  3160. static const struct intel_watermark_params sandybridge_display_wm_info = {
  3161. SNB_DISPLAY_FIFO,
  3162. SNB_DISPLAY_MAXWM,
  3163. SNB_DISPLAY_DFTWM,
  3164. 2,
  3165. SNB_FIFO_LINE_SIZE
  3166. };
  3167. static const struct intel_watermark_params sandybridge_cursor_wm_info = {
  3168. SNB_CURSOR_FIFO,
  3169. SNB_CURSOR_MAXWM,
  3170. SNB_CURSOR_DFTWM,
  3171. 2,
  3172. SNB_FIFO_LINE_SIZE
  3173. };
  3174. static const struct intel_watermark_params sandybridge_display_srwm_info = {
  3175. SNB_DISPLAY_SR_FIFO,
  3176. SNB_DISPLAY_MAX_SRWM,
  3177. SNB_DISPLAY_DFT_SRWM,
  3178. 2,
  3179. SNB_FIFO_LINE_SIZE
  3180. };
  3181. static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
  3182. SNB_CURSOR_SR_FIFO,
  3183. SNB_CURSOR_MAX_SRWM,
  3184. SNB_CURSOR_DFT_SRWM,
  3185. 2,
  3186. SNB_FIFO_LINE_SIZE
  3187. };
  3188. /**
  3189. * intel_calculate_wm - calculate watermark level
  3190. * @clock_in_khz: pixel clock
  3191. * @wm: chip FIFO params
  3192. * @pixel_size: display pixel size
  3193. * @latency_ns: memory latency for the platform
  3194. *
  3195. * Calculate the watermark level (the level at which the display plane will
  3196. * start fetching from memory again). Each chip has a different display
  3197. * FIFO size and allocation, so the caller needs to figure that out and pass
  3198. * in the correct intel_watermark_params structure.
  3199. *
  3200. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  3201. * on the pixel size. When it reaches the watermark level, it'll start
  3202. * fetching FIFO line sized based chunks from memory until the FIFO fills
  3203. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  3204. * will occur, and a display engine hang could result.
  3205. */
  3206. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  3207. const struct intel_watermark_params *wm,
  3208. int fifo_size,
  3209. int pixel_size,
  3210. unsigned long latency_ns)
  3211. {
  3212. long entries_required, wm_size;
  3213. /*
  3214. * Note: we need to make sure we don't overflow for various clock &
  3215. * latency values.
  3216. * clocks go from a few thousand to several hundred thousand.
  3217. * latency is usually a few thousand
  3218. */
  3219. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  3220. 1000;
  3221. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  3222. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  3223. wm_size = fifo_size - (entries_required + wm->guard_size);
  3224. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  3225. /* Don't promote wm_size to unsigned... */
  3226. if (wm_size > (long)wm->max_wm)
  3227. wm_size = wm->max_wm;
  3228. if (wm_size <= 0)
  3229. wm_size = wm->default_wm;
  3230. return wm_size;
  3231. }
  3232. struct cxsr_latency {
  3233. int is_desktop;
  3234. int is_ddr3;
  3235. unsigned long fsb_freq;
  3236. unsigned long mem_freq;
  3237. unsigned long display_sr;
  3238. unsigned long display_hpll_disable;
  3239. unsigned long cursor_sr;
  3240. unsigned long cursor_hpll_disable;
  3241. };
  3242. static const struct cxsr_latency cxsr_latency_table[] = {
  3243. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  3244. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  3245. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  3246. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  3247. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  3248. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  3249. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  3250. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  3251. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  3252. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  3253. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  3254. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  3255. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  3256. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  3257. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  3258. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  3259. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  3260. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  3261. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  3262. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  3263. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  3264. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  3265. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  3266. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  3267. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  3268. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  3269. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  3270. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  3271. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  3272. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  3273. };
  3274. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  3275. int is_ddr3,
  3276. int fsb,
  3277. int mem)
  3278. {
  3279. const struct cxsr_latency *latency;
  3280. int i;
  3281. if (fsb == 0 || mem == 0)
  3282. return NULL;
  3283. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  3284. latency = &cxsr_latency_table[i];
  3285. if (is_desktop == latency->is_desktop &&
  3286. is_ddr3 == latency->is_ddr3 &&
  3287. fsb == latency->fsb_freq && mem == latency->mem_freq)
  3288. return latency;
  3289. }
  3290. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  3291. return NULL;
  3292. }
  3293. static void pineview_disable_cxsr(struct drm_device *dev)
  3294. {
  3295. struct drm_i915_private *dev_priv = dev->dev_private;
  3296. /* deactivate cxsr */
  3297. I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
  3298. }
  3299. /*
  3300. * Latency for FIFO fetches is dependent on several factors:
  3301. * - memory configuration (speed, channels)
  3302. * - chipset
  3303. * - current MCH state
  3304. * It can be fairly high in some situations, so here we assume a fairly
  3305. * pessimal value. It's a tradeoff between extra memory fetches (if we
  3306. * set this value too high, the FIFO will fetch frequently to stay full)
  3307. * and power consumption (set it too low to save power and we might see
  3308. * FIFO underruns and display "flicker").
  3309. *
  3310. * A value of 5us seems to be a good balance; safe for very low end
  3311. * platforms but not overly aggressive on lower latency configs.
  3312. */
  3313. static const int latency_ns = 5000;
  3314. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  3315. {
  3316. struct drm_i915_private *dev_priv = dev->dev_private;
  3317. uint32_t dsparb = I915_READ(DSPARB);
  3318. int size;
  3319. size = dsparb & 0x7f;
  3320. if (plane)
  3321. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  3322. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3323. plane ? "B" : "A", size);
  3324. return size;
  3325. }
  3326. static int i85x_get_fifo_size(struct drm_device *dev, int plane)
  3327. {
  3328. struct drm_i915_private *dev_priv = dev->dev_private;
  3329. uint32_t dsparb = I915_READ(DSPARB);
  3330. int size;
  3331. size = dsparb & 0x1ff;
  3332. if (plane)
  3333. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  3334. size >>= 1; /* Convert to cachelines */
  3335. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3336. plane ? "B" : "A", size);
  3337. return size;
  3338. }
  3339. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  3340. {
  3341. struct drm_i915_private *dev_priv = dev->dev_private;
  3342. uint32_t dsparb = I915_READ(DSPARB);
  3343. int size;
  3344. size = dsparb & 0x7f;
  3345. size >>= 2; /* Convert to cachelines */
  3346. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3347. plane ? "B" : "A",
  3348. size);
  3349. return size;
  3350. }
  3351. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  3352. {
  3353. struct drm_i915_private *dev_priv = dev->dev_private;
  3354. uint32_t dsparb = I915_READ(DSPARB);
  3355. int size;
  3356. size = dsparb & 0x7f;
  3357. size >>= 1; /* Convert to cachelines */
  3358. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3359. plane ? "B" : "A", size);
  3360. return size;
  3361. }
  3362. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  3363. {
  3364. struct drm_crtc *crtc, *enabled = NULL;
  3365. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3366. if (crtc->enabled && crtc->fb) {
  3367. if (enabled)
  3368. return NULL;
  3369. enabled = crtc;
  3370. }
  3371. }
  3372. return enabled;
  3373. }
  3374. static void pineview_update_wm(struct drm_device *dev)
  3375. {
  3376. struct drm_i915_private *dev_priv = dev->dev_private;
  3377. struct drm_crtc *crtc;
  3378. const struct cxsr_latency *latency;
  3379. u32 reg;
  3380. unsigned long wm;
  3381. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  3382. dev_priv->fsb_freq, dev_priv->mem_freq);
  3383. if (!latency) {
  3384. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  3385. pineview_disable_cxsr(dev);
  3386. return;
  3387. }
  3388. crtc = single_enabled_crtc(dev);
  3389. if (crtc) {
  3390. int clock = crtc->mode.clock;
  3391. int pixel_size = crtc->fb->bits_per_pixel / 8;
  3392. /* Display SR */
  3393. wm = intel_calculate_wm(clock, &pineview_display_wm,
  3394. pineview_display_wm.fifo_size,
  3395. pixel_size, latency->display_sr);
  3396. reg = I915_READ(DSPFW1);
  3397. reg &= ~DSPFW_SR_MASK;
  3398. reg |= wm << DSPFW_SR_SHIFT;
  3399. I915_WRITE(DSPFW1, reg);
  3400. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  3401. /* cursor SR */
  3402. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  3403. pineview_display_wm.fifo_size,
  3404. pixel_size, latency->cursor_sr);
  3405. reg = I915_READ(DSPFW3);
  3406. reg &= ~DSPFW_CURSOR_SR_MASK;
  3407. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  3408. I915_WRITE(DSPFW3, reg);
  3409. /* Display HPLL off SR */
  3410. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  3411. pineview_display_hplloff_wm.fifo_size,
  3412. pixel_size, latency->display_hpll_disable);
  3413. reg = I915_READ(DSPFW3);
  3414. reg &= ~DSPFW_HPLL_SR_MASK;
  3415. reg |= wm & DSPFW_HPLL_SR_MASK;
  3416. I915_WRITE(DSPFW3, reg);
  3417. /* cursor HPLL off SR */
  3418. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  3419. pineview_display_hplloff_wm.fifo_size,
  3420. pixel_size, latency->cursor_hpll_disable);
  3421. reg = I915_READ(DSPFW3);
  3422. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  3423. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  3424. I915_WRITE(DSPFW3, reg);
  3425. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  3426. /* activate cxsr */
  3427. I915_WRITE(DSPFW3,
  3428. I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
  3429. DRM_DEBUG_KMS("Self-refresh is enabled\n");
  3430. } else {
  3431. pineview_disable_cxsr(dev);
  3432. DRM_DEBUG_KMS("Self-refresh is disabled\n");
  3433. }
  3434. }
  3435. static bool g4x_compute_wm0(struct drm_device *dev,
  3436. int plane,
  3437. const struct intel_watermark_params *display,
  3438. int display_latency_ns,
  3439. const struct intel_watermark_params *cursor,
  3440. int cursor_latency_ns,
  3441. int *plane_wm,
  3442. int *cursor_wm)
  3443. {
  3444. struct drm_crtc *crtc;
  3445. int htotal, hdisplay, clock, pixel_size;
  3446. int line_time_us, line_count;
  3447. int entries, tlb_miss;
  3448. crtc = intel_get_crtc_for_plane(dev, plane);
  3449. if (crtc->fb == NULL || !crtc->enabled) {
  3450. *cursor_wm = cursor->guard_size;
  3451. *plane_wm = display->guard_size;
  3452. return false;
  3453. }
  3454. htotal = crtc->mode.htotal;
  3455. hdisplay = crtc->mode.hdisplay;
  3456. clock = crtc->mode.clock;
  3457. pixel_size = crtc->fb->bits_per_pixel / 8;
  3458. /* Use the small buffer method to calculate plane watermark */
  3459. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  3460. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  3461. if (tlb_miss > 0)
  3462. entries += tlb_miss;
  3463. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  3464. *plane_wm = entries + display->guard_size;
  3465. if (*plane_wm > (int)display->max_wm)
  3466. *plane_wm = display->max_wm;
  3467. /* Use the large buffer method to calculate cursor watermark */
  3468. line_time_us = ((htotal * 1000) / clock);
  3469. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  3470. entries = line_count * 64 * pixel_size;
  3471. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  3472. if (tlb_miss > 0)
  3473. entries += tlb_miss;
  3474. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  3475. *cursor_wm = entries + cursor->guard_size;
  3476. if (*cursor_wm > (int)cursor->max_wm)
  3477. *cursor_wm = (int)cursor->max_wm;
  3478. return true;
  3479. }
  3480. /*
  3481. * Check the wm result.
  3482. *
  3483. * If any calculated watermark values is larger than the maximum value that
  3484. * can be programmed into the associated watermark register, that watermark
  3485. * must be disabled.
  3486. */
  3487. static bool g4x_check_srwm(struct drm_device *dev,
  3488. int display_wm, int cursor_wm,
  3489. const struct intel_watermark_params *display,
  3490. const struct intel_watermark_params *cursor)
  3491. {
  3492. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  3493. display_wm, cursor_wm);
  3494. if (display_wm > display->max_wm) {
  3495. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  3496. display_wm, display->max_wm);
  3497. return false;
  3498. }
  3499. if (cursor_wm > cursor->max_wm) {
  3500. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  3501. cursor_wm, cursor->max_wm);
  3502. return false;
  3503. }
  3504. if (!(display_wm || cursor_wm)) {
  3505. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  3506. return false;
  3507. }
  3508. return true;
  3509. }
  3510. static bool g4x_compute_srwm(struct drm_device *dev,
  3511. int plane,
  3512. int latency_ns,
  3513. const struct intel_watermark_params *display,
  3514. const struct intel_watermark_params *cursor,
  3515. int *display_wm, int *cursor_wm)
  3516. {
  3517. struct drm_crtc *crtc;
  3518. int hdisplay, htotal, pixel_size, clock;
  3519. unsigned long line_time_us;
  3520. int line_count, line_size;
  3521. int small, large;
  3522. int entries;
  3523. if (!latency_ns) {
  3524. *display_wm = *cursor_wm = 0;
  3525. return false;
  3526. }
  3527. crtc = intel_get_crtc_for_plane(dev, plane);
  3528. hdisplay = crtc->mode.hdisplay;
  3529. htotal = crtc->mode.htotal;
  3530. clock = crtc->mode.clock;
  3531. pixel_size = crtc->fb->bits_per_pixel / 8;
  3532. line_time_us = (htotal * 1000) / clock;
  3533. line_count = (latency_ns / line_time_us + 1000) / 1000;
  3534. line_size = hdisplay * pixel_size;
  3535. /* Use the minimum of the small and large buffer method for primary */
  3536. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  3537. large = line_count * line_size;
  3538. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  3539. *display_wm = entries + display->guard_size;
  3540. /* calculate the self-refresh watermark for display cursor */
  3541. entries = line_count * pixel_size * 64;
  3542. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  3543. *cursor_wm = entries + cursor->guard_size;
  3544. return g4x_check_srwm(dev,
  3545. *display_wm, *cursor_wm,
  3546. display, cursor);
  3547. }
  3548. #define single_plane_enabled(mask) is_power_of_2(mask)
  3549. static void g4x_update_wm(struct drm_device *dev)
  3550. {
  3551. static const int sr_latency_ns = 12000;
  3552. struct drm_i915_private *dev_priv = dev->dev_private;
  3553. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  3554. int plane_sr, cursor_sr;
  3555. unsigned int enabled = 0;
  3556. if (g4x_compute_wm0(dev, 0,
  3557. &g4x_wm_info, latency_ns,
  3558. &g4x_cursor_wm_info, latency_ns,
  3559. &planea_wm, &cursora_wm))
  3560. enabled |= 1;
  3561. if (g4x_compute_wm0(dev, 1,
  3562. &g4x_wm_info, latency_ns,
  3563. &g4x_cursor_wm_info, latency_ns,
  3564. &planeb_wm, &cursorb_wm))
  3565. enabled |= 2;
  3566. plane_sr = cursor_sr = 0;
  3567. if (single_plane_enabled(enabled) &&
  3568. g4x_compute_srwm(dev, ffs(enabled) - 1,
  3569. sr_latency_ns,
  3570. &g4x_wm_info,
  3571. &g4x_cursor_wm_info,
  3572. &plane_sr, &cursor_sr))
  3573. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  3574. else
  3575. I915_WRITE(FW_BLC_SELF,
  3576. I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
  3577. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  3578. planea_wm, cursora_wm,
  3579. planeb_wm, cursorb_wm,
  3580. plane_sr, cursor_sr);
  3581. I915_WRITE(DSPFW1,
  3582. (plane_sr << DSPFW_SR_SHIFT) |
  3583. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  3584. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  3585. planea_wm);
  3586. I915_WRITE(DSPFW2,
  3587. (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
  3588. (cursora_wm << DSPFW_CURSORA_SHIFT));
  3589. /* HPLL off in SR has some issues on G4x... disable it */
  3590. I915_WRITE(DSPFW3,
  3591. (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
  3592. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  3593. }
  3594. static void i965_update_wm(struct drm_device *dev)
  3595. {
  3596. struct drm_i915_private *dev_priv = dev->dev_private;
  3597. struct drm_crtc *crtc;
  3598. int srwm = 1;
  3599. int cursor_sr = 16;
  3600. /* Calc sr entries for one plane configs */
  3601. crtc = single_enabled_crtc(dev);
  3602. if (crtc) {
  3603. /* self-refresh has much higher latency */
  3604. static const int sr_latency_ns = 12000;
  3605. int clock = crtc->mode.clock;
  3606. int htotal = crtc->mode.htotal;
  3607. int hdisplay = crtc->mode.hdisplay;
  3608. int pixel_size = crtc->fb->bits_per_pixel / 8;
  3609. unsigned long line_time_us;
  3610. int entries;
  3611. line_time_us = ((htotal * 1000) / clock);
  3612. /* Use ns/us then divide to preserve precision */
  3613. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  3614. pixel_size * hdisplay;
  3615. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  3616. srwm = I965_FIFO_SIZE - entries;
  3617. if (srwm < 0)
  3618. srwm = 1;
  3619. srwm &= 0x1ff;
  3620. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  3621. entries, srwm);
  3622. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  3623. pixel_size * 64;
  3624. entries = DIV_ROUND_UP(entries,
  3625. i965_cursor_wm_info.cacheline_size);
  3626. cursor_sr = i965_cursor_wm_info.fifo_size -
  3627. (entries + i965_cursor_wm_info.guard_size);
  3628. if (cursor_sr > i965_cursor_wm_info.max_wm)
  3629. cursor_sr = i965_cursor_wm_info.max_wm;
  3630. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  3631. "cursor %d\n", srwm, cursor_sr);
  3632. if (IS_CRESTLINE(dev))
  3633. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  3634. } else {
  3635. /* Turn off self refresh if both pipes are enabled */
  3636. if (IS_CRESTLINE(dev))
  3637. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  3638. & ~FW_BLC_SELF_EN);
  3639. }
  3640. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  3641. srwm);
  3642. /* 965 has limitations... */
  3643. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
  3644. (8 << 16) | (8 << 8) | (8 << 0));
  3645. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  3646. /* update cursor SR watermark */
  3647. I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  3648. }
  3649. static void i9xx_update_wm(struct drm_device *dev)
  3650. {
  3651. struct drm_i915_private *dev_priv = dev->dev_private;
  3652. const struct intel_watermark_params *wm_info;
  3653. uint32_t fwater_lo;
  3654. uint32_t fwater_hi;
  3655. int cwm, srwm = 1;
  3656. int fifo_size;
  3657. int planea_wm, planeb_wm;
  3658. struct drm_crtc *crtc, *enabled = NULL;
  3659. if (IS_I945GM(dev))
  3660. wm_info = &i945_wm_info;
  3661. else if (!IS_GEN2(dev))
  3662. wm_info = &i915_wm_info;
  3663. else
  3664. wm_info = &i855_wm_info;
  3665. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  3666. crtc = intel_get_crtc_for_plane(dev, 0);
  3667. if (crtc->enabled && crtc->fb) {
  3668. planea_wm = intel_calculate_wm(crtc->mode.clock,
  3669. wm_info, fifo_size,
  3670. crtc->fb->bits_per_pixel / 8,
  3671. latency_ns);
  3672. enabled = crtc;
  3673. } else
  3674. planea_wm = fifo_size - wm_info->guard_size;
  3675. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  3676. crtc = intel_get_crtc_for_plane(dev, 1);
  3677. if (crtc->enabled && crtc->fb) {
  3678. planeb_wm = intel_calculate_wm(crtc->mode.clock,
  3679. wm_info, fifo_size,
  3680. crtc->fb->bits_per_pixel / 8,
  3681. latency_ns);
  3682. if (enabled == NULL)
  3683. enabled = crtc;
  3684. else
  3685. enabled = NULL;
  3686. } else
  3687. planeb_wm = fifo_size - wm_info->guard_size;
  3688. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  3689. /*
  3690. * Overlay gets an aggressive default since video jitter is bad.
  3691. */
  3692. cwm = 2;
  3693. /* Play safe and disable self-refresh before adjusting watermarks. */
  3694. if (IS_I945G(dev) || IS_I945GM(dev))
  3695. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
  3696. else if (IS_I915GM(dev))
  3697. I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
  3698. /* Calc sr entries for one plane configs */
  3699. if (HAS_FW_BLC(dev) && enabled) {
  3700. /* self-refresh has much higher latency */
  3701. static const int sr_latency_ns = 6000;
  3702. int clock = enabled->mode.clock;
  3703. int htotal = enabled->mode.htotal;
  3704. int hdisplay = enabled->mode.hdisplay;
  3705. int pixel_size = enabled->fb->bits_per_pixel / 8;
  3706. unsigned long line_time_us;
  3707. int entries;
  3708. line_time_us = (htotal * 1000) / clock;
  3709. /* Use ns/us then divide to preserve precision */
  3710. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  3711. pixel_size * hdisplay;
  3712. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  3713. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  3714. srwm = wm_info->fifo_size - entries;
  3715. if (srwm < 0)
  3716. srwm = 1;
  3717. if (IS_I945G(dev) || IS_I945GM(dev))
  3718. I915_WRITE(FW_BLC_SELF,
  3719. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  3720. else if (IS_I915GM(dev))
  3721. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  3722. }
  3723. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  3724. planea_wm, planeb_wm, cwm, srwm);
  3725. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  3726. fwater_hi = (cwm & 0x1f);
  3727. /* Set request length to 8 cachelines per fetch */
  3728. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  3729. fwater_hi = fwater_hi | (1 << 8);
  3730. I915_WRITE(FW_BLC, fwater_lo);
  3731. I915_WRITE(FW_BLC2, fwater_hi);
  3732. if (HAS_FW_BLC(dev)) {
  3733. if (enabled) {
  3734. if (IS_I945G(dev) || IS_I945GM(dev))
  3735. I915_WRITE(FW_BLC_SELF,
  3736. FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
  3737. else if (IS_I915GM(dev))
  3738. I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
  3739. DRM_DEBUG_KMS("memory self refresh enabled\n");
  3740. } else
  3741. DRM_DEBUG_KMS("memory self refresh disabled\n");
  3742. }
  3743. }
  3744. static void i830_update_wm(struct drm_device *dev)
  3745. {
  3746. struct drm_i915_private *dev_priv = dev->dev_private;
  3747. struct drm_crtc *crtc;
  3748. uint32_t fwater_lo;
  3749. int planea_wm;
  3750. crtc = single_enabled_crtc(dev);
  3751. if (crtc == NULL)
  3752. return;
  3753. planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
  3754. dev_priv->display.get_fifo_size(dev, 0),
  3755. crtc->fb->bits_per_pixel / 8,
  3756. latency_ns);
  3757. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  3758. fwater_lo |= (3<<8) | planea_wm;
  3759. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  3760. I915_WRITE(FW_BLC, fwater_lo);
  3761. }
  3762. #define ILK_LP0_PLANE_LATENCY 700
  3763. #define ILK_LP0_CURSOR_LATENCY 1300
  3764. /*
  3765. * Check the wm result.
  3766. *
  3767. * If any calculated watermark values is larger than the maximum value that
  3768. * can be programmed into the associated watermark register, that watermark
  3769. * must be disabled.
  3770. */
  3771. static bool ironlake_check_srwm(struct drm_device *dev, int level,
  3772. int fbc_wm, int display_wm, int cursor_wm,
  3773. const struct intel_watermark_params *display,
  3774. const struct intel_watermark_params *cursor)
  3775. {
  3776. struct drm_i915_private *dev_priv = dev->dev_private;
  3777. DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
  3778. " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
  3779. if (fbc_wm > SNB_FBC_MAX_SRWM) {
  3780. DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
  3781. fbc_wm, SNB_FBC_MAX_SRWM, level);
  3782. /* fbc has it's own way to disable FBC WM */
  3783. I915_WRITE(DISP_ARB_CTL,
  3784. I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
  3785. return false;
  3786. }
  3787. if (display_wm > display->max_wm) {
  3788. DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
  3789. display_wm, SNB_DISPLAY_MAX_SRWM, level);
  3790. return false;
  3791. }
  3792. if (cursor_wm > cursor->max_wm) {
  3793. DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
  3794. cursor_wm, SNB_CURSOR_MAX_SRWM, level);
  3795. return false;
  3796. }
  3797. if (!(fbc_wm || display_wm || cursor_wm)) {
  3798. DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
  3799. return false;
  3800. }
  3801. return true;
  3802. }
  3803. /*
  3804. * Compute watermark values of WM[1-3],
  3805. */
  3806. static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
  3807. int latency_ns,
  3808. const struct intel_watermark_params *display,
  3809. const struct intel_watermark_params *cursor,
  3810. int *fbc_wm, int *display_wm, int *cursor_wm)
  3811. {
  3812. struct drm_crtc *crtc;
  3813. unsigned long line_time_us;
  3814. int hdisplay, htotal, pixel_size, clock;
  3815. int line_count, line_size;
  3816. int small, large;
  3817. int entries;
  3818. if (!latency_ns) {
  3819. *fbc_wm = *display_wm = *cursor_wm = 0;
  3820. return false;
  3821. }
  3822. crtc = intel_get_crtc_for_plane(dev, plane);
  3823. hdisplay = crtc->mode.hdisplay;
  3824. htotal = crtc->mode.htotal;
  3825. clock = crtc->mode.clock;
  3826. pixel_size = crtc->fb->bits_per_pixel / 8;
  3827. line_time_us = (htotal * 1000) / clock;
  3828. line_count = (latency_ns / line_time_us + 1000) / 1000;
  3829. line_size = hdisplay * pixel_size;
  3830. /* Use the minimum of the small and large buffer method for primary */
  3831. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  3832. large = line_count * line_size;
  3833. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  3834. *display_wm = entries + display->guard_size;
  3835. /*
  3836. * Spec says:
  3837. * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
  3838. */
  3839. *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
  3840. /* calculate the self-refresh watermark for display cursor */
  3841. entries = line_count * pixel_size * 64;
  3842. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  3843. *cursor_wm = entries + cursor->guard_size;
  3844. return ironlake_check_srwm(dev, level,
  3845. *fbc_wm, *display_wm, *cursor_wm,
  3846. display, cursor);
  3847. }
  3848. static void ironlake_update_wm(struct drm_device *dev)
  3849. {
  3850. struct drm_i915_private *dev_priv = dev->dev_private;
  3851. int fbc_wm, plane_wm, cursor_wm;
  3852. unsigned int enabled;
  3853. enabled = 0;
  3854. if (g4x_compute_wm0(dev, 0,
  3855. &ironlake_display_wm_info,
  3856. ILK_LP0_PLANE_LATENCY,
  3857. &ironlake_cursor_wm_info,
  3858. ILK_LP0_CURSOR_LATENCY,
  3859. &plane_wm, &cursor_wm)) {
  3860. I915_WRITE(WM0_PIPEA_ILK,
  3861. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  3862. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  3863. " plane %d, " "cursor: %d\n",
  3864. plane_wm, cursor_wm);
  3865. enabled |= 1;
  3866. }
  3867. if (g4x_compute_wm0(dev, 1,
  3868. &ironlake_display_wm_info,
  3869. ILK_LP0_PLANE_LATENCY,
  3870. &ironlake_cursor_wm_info,
  3871. ILK_LP0_CURSOR_LATENCY,
  3872. &plane_wm, &cursor_wm)) {
  3873. I915_WRITE(WM0_PIPEB_ILK,
  3874. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  3875. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  3876. " plane %d, cursor: %d\n",
  3877. plane_wm, cursor_wm);
  3878. enabled |= 2;
  3879. }
  3880. /*
  3881. * Calculate and update the self-refresh watermark only when one
  3882. * display plane is used.
  3883. */
  3884. I915_WRITE(WM3_LP_ILK, 0);
  3885. I915_WRITE(WM2_LP_ILK, 0);
  3886. I915_WRITE(WM1_LP_ILK, 0);
  3887. if (!single_plane_enabled(enabled))
  3888. return;
  3889. enabled = ffs(enabled) - 1;
  3890. /* WM1 */
  3891. if (!ironlake_compute_srwm(dev, 1, enabled,
  3892. ILK_READ_WM1_LATENCY() * 500,
  3893. &ironlake_display_srwm_info,
  3894. &ironlake_cursor_srwm_info,
  3895. &fbc_wm, &plane_wm, &cursor_wm))
  3896. return;
  3897. I915_WRITE(WM1_LP_ILK,
  3898. WM1_LP_SR_EN |
  3899. (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  3900. (fbc_wm << WM1_LP_FBC_SHIFT) |
  3901. (plane_wm << WM1_LP_SR_SHIFT) |
  3902. cursor_wm);
  3903. /* WM2 */
  3904. if (!ironlake_compute_srwm(dev, 2, enabled,
  3905. ILK_READ_WM2_LATENCY() * 500,
  3906. &ironlake_display_srwm_info,
  3907. &ironlake_cursor_srwm_info,
  3908. &fbc_wm, &plane_wm, &cursor_wm))
  3909. return;
  3910. I915_WRITE(WM2_LP_ILK,
  3911. WM2_LP_EN |
  3912. (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  3913. (fbc_wm << WM1_LP_FBC_SHIFT) |
  3914. (plane_wm << WM1_LP_SR_SHIFT) |
  3915. cursor_wm);
  3916. /*
  3917. * WM3 is unsupported on ILK, probably because we don't have latency
  3918. * data for that power state
  3919. */
  3920. }
  3921. void sandybridge_update_wm(struct drm_device *dev)
  3922. {
  3923. struct drm_i915_private *dev_priv = dev->dev_private;
  3924. int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
  3925. u32 val;
  3926. int fbc_wm, plane_wm, cursor_wm;
  3927. unsigned int enabled;
  3928. enabled = 0;
  3929. if (g4x_compute_wm0(dev, 0,
  3930. &sandybridge_display_wm_info, latency,
  3931. &sandybridge_cursor_wm_info, latency,
  3932. &plane_wm, &cursor_wm)) {
  3933. val = I915_READ(WM0_PIPEA_ILK);
  3934. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  3935. I915_WRITE(WM0_PIPEA_ILK, val |
  3936. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  3937. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  3938. " plane %d, " "cursor: %d\n",
  3939. plane_wm, cursor_wm);
  3940. enabled |= 1;
  3941. }
  3942. if (g4x_compute_wm0(dev, 1,
  3943. &sandybridge_display_wm_info, latency,
  3944. &sandybridge_cursor_wm_info, latency,
  3945. &plane_wm, &cursor_wm)) {
  3946. val = I915_READ(WM0_PIPEB_ILK);
  3947. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  3948. I915_WRITE(WM0_PIPEB_ILK, val |
  3949. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  3950. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  3951. " plane %d, cursor: %d\n",
  3952. plane_wm, cursor_wm);
  3953. enabled |= 2;
  3954. }
  3955. /* IVB has 3 pipes */
  3956. if (IS_IVYBRIDGE(dev) &&
  3957. g4x_compute_wm0(dev, 2,
  3958. &sandybridge_display_wm_info, latency,
  3959. &sandybridge_cursor_wm_info, latency,
  3960. &plane_wm, &cursor_wm)) {
  3961. val = I915_READ(WM0_PIPEC_IVB);
  3962. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  3963. I915_WRITE(WM0_PIPEC_IVB, val |
  3964. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  3965. DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
  3966. " plane %d, cursor: %d\n",
  3967. plane_wm, cursor_wm);
  3968. enabled |= 3;
  3969. }
  3970. /*
  3971. * Calculate and update the self-refresh watermark only when one
  3972. * display plane is used.
  3973. *
  3974. * SNB support 3 levels of watermark.
  3975. *
  3976. * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
  3977. * and disabled in the descending order
  3978. *
  3979. */
  3980. I915_WRITE(WM3_LP_ILK, 0);
  3981. I915_WRITE(WM2_LP_ILK, 0);
  3982. I915_WRITE(WM1_LP_ILK, 0);
  3983. if (!single_plane_enabled(enabled) ||
  3984. dev_priv->sprite_scaling_enabled)
  3985. return;
  3986. enabled = ffs(enabled) - 1;
  3987. /* WM1 */
  3988. if (!ironlake_compute_srwm(dev, 1, enabled,
  3989. SNB_READ_WM1_LATENCY() * 500,
  3990. &sandybridge_display_srwm_info,
  3991. &sandybridge_cursor_srwm_info,
  3992. &fbc_wm, &plane_wm, &cursor_wm))
  3993. return;
  3994. I915_WRITE(WM1_LP_ILK,
  3995. WM1_LP_SR_EN |
  3996. (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  3997. (fbc_wm << WM1_LP_FBC_SHIFT) |
  3998. (plane_wm << WM1_LP_SR_SHIFT) |
  3999. cursor_wm);
  4000. /* WM2 */
  4001. if (!ironlake_compute_srwm(dev, 2, enabled,
  4002. SNB_READ_WM2_LATENCY() * 500,
  4003. &sandybridge_display_srwm_info,
  4004. &sandybridge_cursor_srwm_info,
  4005. &fbc_wm, &plane_wm, &cursor_wm))
  4006. return;
  4007. I915_WRITE(WM2_LP_ILK,
  4008. WM2_LP_EN |
  4009. (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  4010. (fbc_wm << WM1_LP_FBC_SHIFT) |
  4011. (plane_wm << WM1_LP_SR_SHIFT) |
  4012. cursor_wm);
  4013. /* WM3 */
  4014. if (!ironlake_compute_srwm(dev, 3, enabled,
  4015. SNB_READ_WM3_LATENCY() * 500,
  4016. &sandybridge_display_srwm_info,
  4017. &sandybridge_cursor_srwm_info,
  4018. &fbc_wm, &plane_wm, &cursor_wm))
  4019. return;
  4020. I915_WRITE(WM3_LP_ILK,
  4021. WM3_LP_EN |
  4022. (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  4023. (fbc_wm << WM1_LP_FBC_SHIFT) |
  4024. (plane_wm << WM1_LP_SR_SHIFT) |
  4025. cursor_wm);
  4026. }
  4027. static bool
  4028. sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
  4029. uint32_t sprite_width, int pixel_size,
  4030. const struct intel_watermark_params *display,
  4031. int display_latency_ns, int *sprite_wm)
  4032. {
  4033. struct drm_crtc *crtc;
  4034. int clock;
  4035. int entries, tlb_miss;
  4036. crtc = intel_get_crtc_for_plane(dev, plane);
  4037. if (crtc->fb == NULL || !crtc->enabled) {
  4038. *sprite_wm = display->guard_size;
  4039. return false;
  4040. }
  4041. clock = crtc->mode.clock;
  4042. /* Use the small buffer method to calculate the sprite watermark */
  4043. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  4044. tlb_miss = display->fifo_size*display->cacheline_size -
  4045. sprite_width * 8;
  4046. if (tlb_miss > 0)
  4047. entries += tlb_miss;
  4048. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  4049. *sprite_wm = entries + display->guard_size;
  4050. if (*sprite_wm > (int)display->max_wm)
  4051. *sprite_wm = display->max_wm;
  4052. return true;
  4053. }
  4054. static bool
  4055. sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
  4056. uint32_t sprite_width, int pixel_size,
  4057. const struct intel_watermark_params *display,
  4058. int latency_ns, int *sprite_wm)
  4059. {
  4060. struct drm_crtc *crtc;
  4061. unsigned long line_time_us;
  4062. int clock;
  4063. int line_count, line_size;
  4064. int small, large;
  4065. int entries;
  4066. if (!latency_ns) {
  4067. *sprite_wm = 0;
  4068. return false;
  4069. }
  4070. crtc = intel_get_crtc_for_plane(dev, plane);
  4071. clock = crtc->mode.clock;
  4072. line_time_us = (sprite_width * 1000) / clock;
  4073. line_count = (latency_ns / line_time_us + 1000) / 1000;
  4074. line_size = sprite_width * pixel_size;
  4075. /* Use the minimum of the small and large buffer method for primary */
  4076. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  4077. large = line_count * line_size;
  4078. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  4079. *sprite_wm = entries + display->guard_size;
  4080. return *sprite_wm > 0x3ff ? false : true;
  4081. }
  4082. static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
  4083. uint32_t sprite_width, int pixel_size)
  4084. {
  4085. struct drm_i915_private *dev_priv = dev->dev_private;
  4086. int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
  4087. u32 val;
  4088. int sprite_wm, reg;
  4089. int ret;
  4090. switch (pipe) {
  4091. case 0:
  4092. reg = WM0_PIPEA_ILK;
  4093. break;
  4094. case 1:
  4095. reg = WM0_PIPEB_ILK;
  4096. break;
  4097. case 2:
  4098. reg = WM0_PIPEC_IVB;
  4099. break;
  4100. default:
  4101. return; /* bad pipe */
  4102. }
  4103. ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
  4104. &sandybridge_display_wm_info,
  4105. latency, &sprite_wm);
  4106. if (!ret) {
  4107. DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
  4108. pipe);
  4109. return;
  4110. }
  4111. val = I915_READ(reg);
  4112. val &= ~WM0_PIPE_SPRITE_MASK;
  4113. I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
  4114. DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
  4115. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  4116. pixel_size,
  4117. &sandybridge_display_srwm_info,
  4118. SNB_READ_WM1_LATENCY() * 500,
  4119. &sprite_wm);
  4120. if (!ret) {
  4121. DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
  4122. pipe);
  4123. return;
  4124. }
  4125. I915_WRITE(WM1S_LP_ILK, sprite_wm);
  4126. /* Only IVB has two more LP watermarks for sprite */
  4127. if (!IS_IVYBRIDGE(dev))
  4128. return;
  4129. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  4130. pixel_size,
  4131. &sandybridge_display_srwm_info,
  4132. SNB_READ_WM2_LATENCY() * 500,
  4133. &sprite_wm);
  4134. if (!ret) {
  4135. DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
  4136. pipe);
  4137. return;
  4138. }
  4139. I915_WRITE(WM2S_LP_IVB, sprite_wm);
  4140. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  4141. pixel_size,
  4142. &sandybridge_display_srwm_info,
  4143. SNB_READ_WM3_LATENCY() * 500,
  4144. &sprite_wm);
  4145. if (!ret) {
  4146. DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
  4147. pipe);
  4148. return;
  4149. }
  4150. I915_WRITE(WM3S_LP_IVB, sprite_wm);
  4151. }
  4152. /**
  4153. * intel_update_watermarks - update FIFO watermark values based on current modes
  4154. *
  4155. * Calculate watermark values for the various WM regs based on current mode
  4156. * and plane configuration.
  4157. *
  4158. * There are several cases to deal with here:
  4159. * - normal (i.e. non-self-refresh)
  4160. * - self-refresh (SR) mode
  4161. * - lines are large relative to FIFO size (buffer can hold up to 2)
  4162. * - lines are small relative to FIFO size (buffer can hold more than 2
  4163. * lines), so need to account for TLB latency
  4164. *
  4165. * The normal calculation is:
  4166. * watermark = dotclock * bytes per pixel * latency
  4167. * where latency is platform & configuration dependent (we assume pessimal
  4168. * values here).
  4169. *
  4170. * The SR calculation is:
  4171. * watermark = (trunc(latency/line time)+1) * surface width *
  4172. * bytes per pixel
  4173. * where
  4174. * line time = htotal / dotclock
  4175. * surface width = hdisplay for normal plane and 64 for cursor
  4176. * and latency is assumed to be high, as above.
  4177. *
  4178. * The final value programmed to the register should always be rounded up,
  4179. * and include an extra 2 entries to account for clock crossings.
  4180. *
  4181. * We don't use the sprite, so we can ignore that. And on Crestline we have
  4182. * to set the non-SR watermarks to 8.
  4183. */
  4184. static void intel_update_watermarks(struct drm_device *dev)
  4185. {
  4186. struct drm_i915_private *dev_priv = dev->dev_private;
  4187. if (dev_priv->display.update_wm)
  4188. dev_priv->display.update_wm(dev);
  4189. }
  4190. void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
  4191. uint32_t sprite_width, int pixel_size)
  4192. {
  4193. struct drm_i915_private *dev_priv = dev->dev_private;
  4194. if (dev_priv->display.update_sprite_wm)
  4195. dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
  4196. pixel_size);
  4197. }
  4198. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  4199. {
  4200. if (i915_panel_use_ssc >= 0)
  4201. return i915_panel_use_ssc != 0;
  4202. return dev_priv->lvds_use_ssc
  4203. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  4204. }
  4205. /**
  4206. * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
  4207. * @crtc: CRTC structure
  4208. * @mode: requested mode
  4209. *
  4210. * A pipe may be connected to one or more outputs. Based on the depth of the
  4211. * attached framebuffer, choose a good color depth to use on the pipe.
  4212. *
  4213. * If possible, match the pipe depth to the fb depth. In some cases, this
  4214. * isn't ideal, because the connected output supports a lesser or restricted
  4215. * set of depths. Resolve that here:
  4216. * LVDS typically supports only 6bpc, so clamp down in that case
  4217. * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
  4218. * Displays may support a restricted set as well, check EDID and clamp as
  4219. * appropriate.
  4220. * DP may want to dither down to 6bpc to fit larger modes
  4221. *
  4222. * RETURNS:
  4223. * Dithering requirement (i.e. false if display bpc and pipe bpc match,
  4224. * true if they don't match).
  4225. */
  4226. static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
  4227. unsigned int *pipe_bpp,
  4228. struct drm_display_mode *mode)
  4229. {
  4230. struct drm_device *dev = crtc->dev;
  4231. struct drm_i915_private *dev_priv = dev->dev_private;
  4232. struct drm_encoder *encoder;
  4233. struct drm_connector *connector;
  4234. unsigned int display_bpc = UINT_MAX, bpc;
  4235. /* Walk the encoders & connectors on this crtc, get min bpc */
  4236. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  4237. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  4238. if (encoder->crtc != crtc)
  4239. continue;
  4240. if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
  4241. unsigned int lvds_bpc;
  4242. if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
  4243. LVDS_A3_POWER_UP)
  4244. lvds_bpc = 8;
  4245. else
  4246. lvds_bpc = 6;
  4247. if (lvds_bpc < display_bpc) {
  4248. DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
  4249. display_bpc = lvds_bpc;
  4250. }
  4251. continue;
  4252. }
  4253. if (intel_encoder->type == INTEL_OUTPUT_EDP) {
  4254. /* Use VBT settings if we have an eDP panel */
  4255. unsigned int edp_bpc = dev_priv->edp.bpp / 3;
  4256. if (edp_bpc < display_bpc) {
  4257. DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
  4258. display_bpc = edp_bpc;
  4259. }
  4260. continue;
  4261. }
  4262. /* Not one of the known troublemakers, check the EDID */
  4263. list_for_each_entry(connector, &dev->mode_config.connector_list,
  4264. head) {
  4265. if (connector->encoder != encoder)
  4266. continue;
  4267. /* Don't use an invalid EDID bpc value */
  4268. if (connector->display_info.bpc &&
  4269. connector->display_info.bpc < display_bpc) {
  4270. DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
  4271. display_bpc = connector->display_info.bpc;
  4272. }
  4273. }
  4274. /*
  4275. * HDMI is either 12 or 8, so if the display lets 10bpc sneak
  4276. * through, clamp it down. (Note: >12bpc will be caught below.)
  4277. */
  4278. if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
  4279. if (display_bpc > 8 && display_bpc < 12) {
  4280. DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
  4281. display_bpc = 12;
  4282. } else {
  4283. DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
  4284. display_bpc = 8;
  4285. }
  4286. }
  4287. }
  4288. if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  4289. DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
  4290. display_bpc = 6;
  4291. }
  4292. /*
  4293. * We could just drive the pipe at the highest bpc all the time and
  4294. * enable dithering as needed, but that costs bandwidth. So choose
  4295. * the minimum value that expresses the full color range of the fb but
  4296. * also stays within the max display bpc discovered above.
  4297. */
  4298. switch (crtc->fb->depth) {
  4299. case 8:
  4300. bpc = 8; /* since we go through a colormap */
  4301. break;
  4302. case 15:
  4303. case 16:
  4304. bpc = 6; /* min is 18bpp */
  4305. break;
  4306. case 24:
  4307. bpc = 8;
  4308. break;
  4309. case 30:
  4310. bpc = 10;
  4311. break;
  4312. case 48:
  4313. bpc = 12;
  4314. break;
  4315. default:
  4316. DRM_DEBUG("unsupported depth, assuming 24 bits\n");
  4317. bpc = min((unsigned int)8, display_bpc);
  4318. break;
  4319. }
  4320. display_bpc = min(display_bpc, bpc);
  4321. DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
  4322. bpc, display_bpc);
  4323. *pipe_bpp = display_bpc * 3;
  4324. return display_bpc != bpc;
  4325. }
  4326. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  4327. {
  4328. struct drm_device *dev = crtc->dev;
  4329. struct drm_i915_private *dev_priv = dev->dev_private;
  4330. int refclk;
  4331. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  4332. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4333. refclk = dev_priv->lvds_ssc_freq * 1000;
  4334. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4335. refclk / 1000);
  4336. } else if (!IS_GEN2(dev)) {
  4337. refclk = 96000;
  4338. } else {
  4339. refclk = 48000;
  4340. }
  4341. return refclk;
  4342. }
  4343. static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
  4344. intel_clock_t *clock)
  4345. {
  4346. /* SDVO TV has fixed PLL values depend on its clock range,
  4347. this mirrors vbios setting. */
  4348. if (adjusted_mode->clock >= 100000
  4349. && adjusted_mode->clock < 140500) {
  4350. clock->p1 = 2;
  4351. clock->p2 = 10;
  4352. clock->n = 3;
  4353. clock->m1 = 16;
  4354. clock->m2 = 8;
  4355. } else if (adjusted_mode->clock >= 140500
  4356. && adjusted_mode->clock <= 200000) {
  4357. clock->p1 = 1;
  4358. clock->p2 = 10;
  4359. clock->n = 6;
  4360. clock->m1 = 12;
  4361. clock->m2 = 8;
  4362. }
  4363. }
  4364. static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
  4365. intel_clock_t *clock,
  4366. intel_clock_t *reduced_clock)
  4367. {
  4368. struct drm_device *dev = crtc->dev;
  4369. struct drm_i915_private *dev_priv = dev->dev_private;
  4370. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4371. int pipe = intel_crtc->pipe;
  4372. u32 fp, fp2 = 0;
  4373. if (IS_PINEVIEW(dev)) {
  4374. fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
  4375. if (reduced_clock)
  4376. fp2 = (1 << reduced_clock->n) << 16 |
  4377. reduced_clock->m1 << 8 | reduced_clock->m2;
  4378. } else {
  4379. fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
  4380. if (reduced_clock)
  4381. fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
  4382. reduced_clock->m2;
  4383. }
  4384. I915_WRITE(FP0(pipe), fp);
  4385. intel_crtc->lowfreq_avail = false;
  4386. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  4387. reduced_clock && i915_powersave) {
  4388. I915_WRITE(FP1(pipe), fp2);
  4389. intel_crtc->lowfreq_avail = true;
  4390. } else {
  4391. I915_WRITE(FP1(pipe), fp);
  4392. }
  4393. }
  4394. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4395. struct drm_display_mode *mode,
  4396. struct drm_display_mode *adjusted_mode,
  4397. int x, int y,
  4398. struct drm_framebuffer *old_fb)
  4399. {
  4400. struct drm_device *dev = crtc->dev;
  4401. struct drm_i915_private *dev_priv = dev->dev_private;
  4402. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4403. int pipe = intel_crtc->pipe;
  4404. int plane = intel_crtc->plane;
  4405. int refclk, num_connectors = 0;
  4406. intel_clock_t clock, reduced_clock;
  4407. u32 dpll, dspcntr, pipeconf, vsyncshift;
  4408. bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
  4409. bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
  4410. struct drm_mode_config *mode_config = &dev->mode_config;
  4411. struct intel_encoder *encoder;
  4412. const intel_limit_t *limit;
  4413. int ret;
  4414. u32 temp;
  4415. u32 lvds_sync = 0;
  4416. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4417. if (encoder->base.crtc != crtc)
  4418. continue;
  4419. switch (encoder->type) {
  4420. case INTEL_OUTPUT_LVDS:
  4421. is_lvds = true;
  4422. break;
  4423. case INTEL_OUTPUT_SDVO:
  4424. case INTEL_OUTPUT_HDMI:
  4425. is_sdvo = true;
  4426. if (encoder->needs_tv_clock)
  4427. is_tv = true;
  4428. break;
  4429. case INTEL_OUTPUT_DVO:
  4430. is_dvo = true;
  4431. break;
  4432. case INTEL_OUTPUT_TVOUT:
  4433. is_tv = true;
  4434. break;
  4435. case INTEL_OUTPUT_ANALOG:
  4436. is_crt = true;
  4437. break;
  4438. case INTEL_OUTPUT_DISPLAYPORT:
  4439. is_dp = true;
  4440. break;
  4441. }
  4442. num_connectors++;
  4443. }
  4444. refclk = i9xx_get_refclk(crtc, num_connectors);
  4445. /*
  4446. * Returns a set of divisors for the desired target clock with the given
  4447. * refclk, or FALSE. The returned values represent the clock equation:
  4448. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4449. */
  4450. limit = intel_limit(crtc, refclk);
  4451. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4452. &clock);
  4453. if (!ok) {
  4454. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4455. return -EINVAL;
  4456. }
  4457. /* Ensure that the cursor is valid for the new mode before changing... */
  4458. intel_crtc_update_cursor(crtc, true);
  4459. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4460. /*
  4461. * Ensure we match the reduced clock's P to the target clock.
  4462. * If the clocks don't match, we can't switch the display clock
  4463. * by using the FP0/FP1. In such case we will disable the LVDS
  4464. * downclock feature.
  4465. */
  4466. has_reduced_clock = limit->find_pll(limit, crtc,
  4467. dev_priv->lvds_downclock,
  4468. refclk,
  4469. &clock,
  4470. &reduced_clock);
  4471. }
  4472. if (is_sdvo && is_tv)
  4473. i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
  4474. i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
  4475. &reduced_clock : NULL);
  4476. dpll = DPLL_VGA_MODE_DIS;
  4477. if (!IS_GEN2(dev)) {
  4478. if (is_lvds)
  4479. dpll |= DPLLB_MODE_LVDS;
  4480. else
  4481. dpll |= DPLLB_MODE_DAC_SERIAL;
  4482. if (is_sdvo) {
  4483. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4484. if (pixel_multiplier > 1) {
  4485. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4486. dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
  4487. }
  4488. dpll |= DPLL_DVO_HIGH_SPEED;
  4489. }
  4490. if (is_dp)
  4491. dpll |= DPLL_DVO_HIGH_SPEED;
  4492. /* compute bitmask from p1 value */
  4493. if (IS_PINEVIEW(dev))
  4494. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  4495. else {
  4496. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4497. if (IS_G4X(dev) && has_reduced_clock)
  4498. dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4499. }
  4500. switch (clock.p2) {
  4501. case 5:
  4502. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4503. break;
  4504. case 7:
  4505. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4506. break;
  4507. case 10:
  4508. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4509. break;
  4510. case 14:
  4511. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4512. break;
  4513. }
  4514. if (INTEL_INFO(dev)->gen >= 4)
  4515. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  4516. } else {
  4517. if (is_lvds) {
  4518. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4519. } else {
  4520. if (clock.p1 == 2)
  4521. dpll |= PLL_P1_DIVIDE_BY_TWO;
  4522. else
  4523. dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4524. if (clock.p2 == 4)
  4525. dpll |= PLL_P2_DIVIDE_BY_4;
  4526. }
  4527. }
  4528. if (is_sdvo && is_tv)
  4529. dpll |= PLL_REF_INPUT_TVCLKINBC;
  4530. else if (is_tv)
  4531. /* XXX: just matching BIOS for now */
  4532. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  4533. dpll |= 3;
  4534. else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4535. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4536. else
  4537. dpll |= PLL_REF_INPUT_DREFCLK;
  4538. /* setup pipeconf */
  4539. pipeconf = I915_READ(PIPECONF(pipe));
  4540. /* Set up the display plane register */
  4541. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4542. if (pipe == 0)
  4543. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4544. else
  4545. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4546. if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4547. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4548. * core speed.
  4549. *
  4550. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4551. * pipe == 0 check?
  4552. */
  4553. if (mode->clock >
  4554. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4555. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4556. else
  4557. pipeconf &= ~PIPECONF_DOUBLE_WIDE;
  4558. }
  4559. /* default to 8bpc */
  4560. pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
  4561. if (is_dp) {
  4562. if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  4563. pipeconf |= PIPECONF_BPP_6 |
  4564. PIPECONF_DITHER_EN |
  4565. PIPECONF_DITHER_TYPE_SP;
  4566. }
  4567. }
  4568. dpll |= DPLL_VCO_ENABLE;
  4569. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
  4570. drm_mode_debug_printmodeline(mode);
  4571. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  4572. POSTING_READ(DPLL(pipe));
  4573. udelay(150);
  4574. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  4575. * This is an exception to the general rule that mode_set doesn't turn
  4576. * things on.
  4577. */
  4578. if (is_lvds) {
  4579. temp = I915_READ(LVDS);
  4580. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  4581. if (pipe == 1) {
  4582. temp |= LVDS_PIPEB_SELECT;
  4583. } else {
  4584. temp &= ~LVDS_PIPEB_SELECT;
  4585. }
  4586. /* set the corresponsding LVDS_BORDER bit */
  4587. temp |= dev_priv->lvds_border_bits;
  4588. /* Set the B0-B3 data pairs corresponding to whether we're going to
  4589. * set the DPLLs for dual-channel mode or not.
  4590. */
  4591. if (clock.p2 == 7)
  4592. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  4593. else
  4594. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  4595. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  4596. * appropriately here, but we need to look more thoroughly into how
  4597. * panels behave in the two modes.
  4598. */
  4599. /* set the dithering flag on LVDS as needed */
  4600. if (INTEL_INFO(dev)->gen >= 4) {
  4601. if (dev_priv->lvds_dither)
  4602. temp |= LVDS_ENABLE_DITHER;
  4603. else
  4604. temp &= ~LVDS_ENABLE_DITHER;
  4605. }
  4606. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  4607. lvds_sync |= LVDS_HSYNC_POLARITY;
  4608. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  4609. lvds_sync |= LVDS_VSYNC_POLARITY;
  4610. if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
  4611. != lvds_sync) {
  4612. char flags[2] = "-+";
  4613. DRM_INFO("Changing LVDS panel from "
  4614. "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
  4615. flags[!(temp & LVDS_HSYNC_POLARITY)],
  4616. flags[!(temp & LVDS_VSYNC_POLARITY)],
  4617. flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
  4618. flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
  4619. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  4620. temp |= lvds_sync;
  4621. }
  4622. I915_WRITE(LVDS, temp);
  4623. }
  4624. if (is_dp) {
  4625. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  4626. }
  4627. I915_WRITE(DPLL(pipe), dpll);
  4628. /* Wait for the clocks to stabilize. */
  4629. POSTING_READ(DPLL(pipe));
  4630. udelay(150);
  4631. if (INTEL_INFO(dev)->gen >= 4) {
  4632. temp = 0;
  4633. if (is_sdvo) {
  4634. temp = intel_mode_get_pixel_multiplier(adjusted_mode);
  4635. if (temp > 1)
  4636. temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  4637. else
  4638. temp = 0;
  4639. }
  4640. I915_WRITE(DPLL_MD(pipe), temp);
  4641. } else {
  4642. /* The pixel multiplier can only be updated once the
  4643. * DPLL is enabled and the clocks are stable.
  4644. *
  4645. * So write it again.
  4646. */
  4647. I915_WRITE(DPLL(pipe), dpll);
  4648. }
  4649. if (HAS_PIPE_CXSR(dev)) {
  4650. if (intel_crtc->lowfreq_avail) {
  4651. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4652. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4653. } else {
  4654. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4655. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  4656. }
  4657. }
  4658. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  4659. if (!IS_GEN2(dev) &&
  4660. adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  4661. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4662. /* the chip adds 2 halflines automatically */
  4663. adjusted_mode->crtc_vtotal -= 1;
  4664. adjusted_mode->crtc_vblank_end -= 1;
  4665. vsyncshift = adjusted_mode->crtc_hsync_start
  4666. - adjusted_mode->crtc_htotal/2;
  4667. } else {
  4668. pipeconf |= PIPECONF_PROGRESSIVE;
  4669. vsyncshift = 0;
  4670. }
  4671. if (!IS_GEN3(dev))
  4672. I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
  4673. I915_WRITE(HTOTAL(pipe),
  4674. (adjusted_mode->crtc_hdisplay - 1) |
  4675. ((adjusted_mode->crtc_htotal - 1) << 16));
  4676. I915_WRITE(HBLANK(pipe),
  4677. (adjusted_mode->crtc_hblank_start - 1) |
  4678. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  4679. I915_WRITE(HSYNC(pipe),
  4680. (adjusted_mode->crtc_hsync_start - 1) |
  4681. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  4682. I915_WRITE(VTOTAL(pipe),
  4683. (adjusted_mode->crtc_vdisplay - 1) |
  4684. ((adjusted_mode->crtc_vtotal - 1) << 16));
  4685. I915_WRITE(VBLANK(pipe),
  4686. (adjusted_mode->crtc_vblank_start - 1) |
  4687. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  4688. I915_WRITE(VSYNC(pipe),
  4689. (adjusted_mode->crtc_vsync_start - 1) |
  4690. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  4691. /* pipesrc and dspsize control the size that is scaled from,
  4692. * which should always be the user's requested size.
  4693. */
  4694. I915_WRITE(DSPSIZE(plane),
  4695. ((mode->vdisplay - 1) << 16) |
  4696. (mode->hdisplay - 1));
  4697. I915_WRITE(DSPPOS(plane), 0);
  4698. I915_WRITE(PIPESRC(pipe),
  4699. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  4700. I915_WRITE(PIPECONF(pipe), pipeconf);
  4701. POSTING_READ(PIPECONF(pipe));
  4702. intel_enable_pipe(dev_priv, pipe, false);
  4703. intel_wait_for_vblank(dev, pipe);
  4704. I915_WRITE(DSPCNTR(plane), dspcntr);
  4705. POSTING_READ(DSPCNTR(plane));
  4706. intel_enable_plane(dev_priv, plane, pipe);
  4707. ret = intel_pipe_set_base(crtc, x, y, old_fb);
  4708. intel_update_watermarks(dev);
  4709. return ret;
  4710. }
  4711. /*
  4712. * Initialize reference clocks when the driver loads
  4713. */
  4714. void ironlake_init_pch_refclk(struct drm_device *dev)
  4715. {
  4716. struct drm_i915_private *dev_priv = dev->dev_private;
  4717. struct drm_mode_config *mode_config = &dev->mode_config;
  4718. struct intel_encoder *encoder;
  4719. u32 temp;
  4720. bool has_lvds = false;
  4721. bool has_cpu_edp = false;
  4722. bool has_pch_edp = false;
  4723. bool has_panel = false;
  4724. bool has_ck505 = false;
  4725. bool can_ssc = false;
  4726. /* We need to take the global config into account */
  4727. list_for_each_entry(encoder, &mode_config->encoder_list,
  4728. base.head) {
  4729. switch (encoder->type) {
  4730. case INTEL_OUTPUT_LVDS:
  4731. has_panel = true;
  4732. has_lvds = true;
  4733. break;
  4734. case INTEL_OUTPUT_EDP:
  4735. has_panel = true;
  4736. if (intel_encoder_is_pch_edp(&encoder->base))
  4737. has_pch_edp = true;
  4738. else
  4739. has_cpu_edp = true;
  4740. break;
  4741. }
  4742. }
  4743. if (HAS_PCH_IBX(dev)) {
  4744. has_ck505 = dev_priv->display_clock_mode;
  4745. can_ssc = has_ck505;
  4746. } else {
  4747. has_ck505 = false;
  4748. can_ssc = true;
  4749. }
  4750. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
  4751. has_panel, has_lvds, has_pch_edp, has_cpu_edp,
  4752. has_ck505);
  4753. /* Ironlake: try to setup display ref clock before DPLL
  4754. * enabling. This is only under driver's control after
  4755. * PCH B stepping, previous chipset stepping should be
  4756. * ignoring this setting.
  4757. */
  4758. temp = I915_READ(PCH_DREF_CONTROL);
  4759. /* Always enable nonspread source */
  4760. temp &= ~DREF_NONSPREAD_SOURCE_MASK;
  4761. if (has_ck505)
  4762. temp |= DREF_NONSPREAD_CK505_ENABLE;
  4763. else
  4764. temp |= DREF_NONSPREAD_SOURCE_ENABLE;
  4765. if (has_panel) {
  4766. temp &= ~DREF_SSC_SOURCE_MASK;
  4767. temp |= DREF_SSC_SOURCE_ENABLE;
  4768. /* SSC must be turned on before enabling the CPU output */
  4769. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4770. DRM_DEBUG_KMS("Using SSC on panel\n");
  4771. temp |= DREF_SSC1_ENABLE;
  4772. }
  4773. /* Get SSC going before enabling the outputs */
  4774. I915_WRITE(PCH_DREF_CONTROL, temp);
  4775. POSTING_READ(PCH_DREF_CONTROL);
  4776. udelay(200);
  4777. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4778. /* Enable CPU source on CPU attached eDP */
  4779. if (has_cpu_edp) {
  4780. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4781. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4782. temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4783. }
  4784. else
  4785. temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4786. } else
  4787. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4788. I915_WRITE(PCH_DREF_CONTROL, temp);
  4789. POSTING_READ(PCH_DREF_CONTROL);
  4790. udelay(200);
  4791. } else {
  4792. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4793. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4794. /* Turn off CPU output */
  4795. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4796. I915_WRITE(PCH_DREF_CONTROL, temp);
  4797. POSTING_READ(PCH_DREF_CONTROL);
  4798. udelay(200);
  4799. /* Turn off the SSC source */
  4800. temp &= ~DREF_SSC_SOURCE_MASK;
  4801. temp |= DREF_SSC_SOURCE_DISABLE;
  4802. /* Turn off SSC1 */
  4803. temp &= ~ DREF_SSC1_ENABLE;
  4804. I915_WRITE(PCH_DREF_CONTROL, temp);
  4805. POSTING_READ(PCH_DREF_CONTROL);
  4806. udelay(200);
  4807. }
  4808. }
  4809. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4810. {
  4811. struct drm_device *dev = crtc->dev;
  4812. struct drm_i915_private *dev_priv = dev->dev_private;
  4813. struct intel_encoder *encoder;
  4814. struct drm_mode_config *mode_config = &dev->mode_config;
  4815. struct intel_encoder *edp_encoder = NULL;
  4816. int num_connectors = 0;
  4817. bool is_lvds = false;
  4818. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4819. if (encoder->base.crtc != crtc)
  4820. continue;
  4821. switch (encoder->type) {
  4822. case INTEL_OUTPUT_LVDS:
  4823. is_lvds = true;
  4824. break;
  4825. case INTEL_OUTPUT_EDP:
  4826. edp_encoder = encoder;
  4827. break;
  4828. }
  4829. num_connectors++;
  4830. }
  4831. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4832. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4833. dev_priv->lvds_ssc_freq);
  4834. return dev_priv->lvds_ssc_freq * 1000;
  4835. }
  4836. return 120000;
  4837. }
  4838. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4839. struct drm_display_mode *mode,
  4840. struct drm_display_mode *adjusted_mode,
  4841. int x, int y,
  4842. struct drm_framebuffer *old_fb)
  4843. {
  4844. struct drm_device *dev = crtc->dev;
  4845. struct drm_i915_private *dev_priv = dev->dev_private;
  4846. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4847. int pipe = intel_crtc->pipe;
  4848. int plane = intel_crtc->plane;
  4849. int refclk, num_connectors = 0;
  4850. intel_clock_t clock, reduced_clock;
  4851. u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
  4852. bool ok, has_reduced_clock = false, is_sdvo = false;
  4853. bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
  4854. struct intel_encoder *has_edp_encoder = NULL;
  4855. struct drm_mode_config *mode_config = &dev->mode_config;
  4856. struct intel_encoder *encoder;
  4857. const intel_limit_t *limit;
  4858. int ret;
  4859. struct fdi_m_n m_n = {0};
  4860. u32 temp;
  4861. u32 lvds_sync = 0;
  4862. int target_clock, pixel_multiplier, lane, link_bw, factor;
  4863. unsigned int pipe_bpp;
  4864. bool dither;
  4865. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4866. if (encoder->base.crtc != crtc)
  4867. continue;
  4868. switch (encoder->type) {
  4869. case INTEL_OUTPUT_LVDS:
  4870. is_lvds = true;
  4871. break;
  4872. case INTEL_OUTPUT_SDVO:
  4873. case INTEL_OUTPUT_HDMI:
  4874. is_sdvo = true;
  4875. if (encoder->needs_tv_clock)
  4876. is_tv = true;
  4877. break;
  4878. case INTEL_OUTPUT_TVOUT:
  4879. is_tv = true;
  4880. break;
  4881. case INTEL_OUTPUT_ANALOG:
  4882. is_crt = true;
  4883. break;
  4884. case INTEL_OUTPUT_DISPLAYPORT:
  4885. is_dp = true;
  4886. break;
  4887. case INTEL_OUTPUT_EDP:
  4888. has_edp_encoder = encoder;
  4889. break;
  4890. }
  4891. num_connectors++;
  4892. }
  4893. refclk = ironlake_get_refclk(crtc);
  4894. /*
  4895. * Returns a set of divisors for the desired target clock with the given
  4896. * refclk, or FALSE. The returned values represent the clock equation:
  4897. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4898. */
  4899. limit = intel_limit(crtc, refclk);
  4900. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4901. &clock);
  4902. if (!ok) {
  4903. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4904. return -EINVAL;
  4905. }
  4906. /* Ensure that the cursor is valid for the new mode before changing... */
  4907. intel_crtc_update_cursor(crtc, true);
  4908. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4909. /*
  4910. * Ensure we match the reduced clock's P to the target clock.
  4911. * If the clocks don't match, we can't switch the display clock
  4912. * by using the FP0/FP1. In such case we will disable the LVDS
  4913. * downclock feature.
  4914. */
  4915. has_reduced_clock = limit->find_pll(limit, crtc,
  4916. dev_priv->lvds_downclock,
  4917. refclk,
  4918. &clock,
  4919. &reduced_clock);
  4920. }
  4921. /* SDVO TV has fixed PLL values depend on its clock range,
  4922. this mirrors vbios setting. */
  4923. if (is_sdvo && is_tv) {
  4924. if (adjusted_mode->clock >= 100000
  4925. && adjusted_mode->clock < 140500) {
  4926. clock.p1 = 2;
  4927. clock.p2 = 10;
  4928. clock.n = 3;
  4929. clock.m1 = 16;
  4930. clock.m2 = 8;
  4931. } else if (adjusted_mode->clock >= 140500
  4932. && adjusted_mode->clock <= 200000) {
  4933. clock.p1 = 1;
  4934. clock.p2 = 10;
  4935. clock.n = 6;
  4936. clock.m1 = 12;
  4937. clock.m2 = 8;
  4938. }
  4939. }
  4940. /* FDI link */
  4941. pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4942. lane = 0;
  4943. /* CPU eDP doesn't require FDI link, so just set DP M/N
  4944. according to current link config */
  4945. if (has_edp_encoder &&
  4946. !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
  4947. target_clock = mode->clock;
  4948. intel_edp_link_config(has_edp_encoder,
  4949. &lane, &link_bw);
  4950. } else {
  4951. /* [e]DP over FDI requires target mode clock
  4952. instead of link clock */
  4953. if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
  4954. target_clock = mode->clock;
  4955. else
  4956. target_clock = adjusted_mode->clock;
  4957. /* FDI is a binary signal running at ~2.7GHz, encoding
  4958. * each output octet as 10 bits. The actual frequency
  4959. * is stored as a divider into a 100MHz clock, and the
  4960. * mode pixel clock is stored in units of 1KHz.
  4961. * Hence the bw of each lane in terms of the mode signal
  4962. * is:
  4963. */
  4964. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  4965. }
  4966. /* determine panel color depth */
  4967. temp = I915_READ(PIPECONF(pipe));
  4968. temp &= ~PIPE_BPC_MASK;
  4969. dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
  4970. switch (pipe_bpp) {
  4971. case 18:
  4972. temp |= PIPE_6BPC;
  4973. break;
  4974. case 24:
  4975. temp |= PIPE_8BPC;
  4976. break;
  4977. case 30:
  4978. temp |= PIPE_10BPC;
  4979. break;
  4980. case 36:
  4981. temp |= PIPE_12BPC;
  4982. break;
  4983. default:
  4984. WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
  4985. pipe_bpp);
  4986. temp |= PIPE_8BPC;
  4987. pipe_bpp = 24;
  4988. break;
  4989. }
  4990. intel_crtc->bpp = pipe_bpp;
  4991. I915_WRITE(PIPECONF(pipe), temp);
  4992. if (!lane) {
  4993. /*
  4994. * Account for spread spectrum to avoid
  4995. * oversubscribing the link. Max center spread
  4996. * is 2.5%; use 5% for safety's sake.
  4997. */
  4998. u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
  4999. lane = bps / (link_bw * 8) + 1;
  5000. }
  5001. intel_crtc->fdi_lanes = lane;
  5002. if (pixel_multiplier > 1)
  5003. link_bw *= pixel_multiplier;
  5004. ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
  5005. &m_n);
  5006. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  5007. if (has_reduced_clock)
  5008. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  5009. reduced_clock.m2;
  5010. /* Enable autotuning of the PLL clock (if permissible) */
  5011. factor = 21;
  5012. if (is_lvds) {
  5013. if ((intel_panel_use_ssc(dev_priv) &&
  5014. dev_priv->lvds_ssc_freq == 100) ||
  5015. (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
  5016. factor = 25;
  5017. } else if (is_sdvo && is_tv)
  5018. factor = 20;
  5019. if (clock.m < factor * clock.n)
  5020. fp |= FP_CB_TUNE;
  5021. dpll = 0;
  5022. if (is_lvds)
  5023. dpll |= DPLLB_MODE_LVDS;
  5024. else
  5025. dpll |= DPLLB_MODE_DAC_SERIAL;
  5026. if (is_sdvo) {
  5027. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  5028. if (pixel_multiplier > 1) {
  5029. dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  5030. }
  5031. dpll |= DPLL_DVO_HIGH_SPEED;
  5032. }
  5033. if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
  5034. dpll |= DPLL_DVO_HIGH_SPEED;
  5035. /* compute bitmask from p1 value */
  5036. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  5037. /* also FPA1 */
  5038. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  5039. switch (clock.p2) {
  5040. case 5:
  5041. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  5042. break;
  5043. case 7:
  5044. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  5045. break;
  5046. case 10:
  5047. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  5048. break;
  5049. case 14:
  5050. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  5051. break;
  5052. }
  5053. if (is_sdvo && is_tv)
  5054. dpll |= PLL_REF_INPUT_TVCLKINBC;
  5055. else if (is_tv)
  5056. /* XXX: just matching BIOS for now */
  5057. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  5058. dpll |= 3;
  5059. else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  5060. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  5061. else
  5062. dpll |= PLL_REF_INPUT_DREFCLK;
  5063. /* setup pipeconf */
  5064. pipeconf = I915_READ(PIPECONF(pipe));
  5065. /* Set up the display plane register */
  5066. dspcntr = DISPPLANE_GAMMA_ENABLE;
  5067. DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
  5068. drm_mode_debug_printmodeline(mode);
  5069. /* PCH eDP needs FDI, but CPU eDP does not */
  5070. if (!intel_crtc->no_pll) {
  5071. if (!has_edp_encoder ||
  5072. intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
  5073. I915_WRITE(PCH_FP0(pipe), fp);
  5074. I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  5075. POSTING_READ(PCH_DPLL(pipe));
  5076. udelay(150);
  5077. }
  5078. } else {
  5079. if (dpll == (I915_READ(PCH_DPLL(0)) & 0x7fffffff) &&
  5080. fp == I915_READ(PCH_FP0(0))) {
  5081. intel_crtc->use_pll_a = true;
  5082. DRM_DEBUG_KMS("using pipe a dpll\n");
  5083. } else if (dpll == (I915_READ(PCH_DPLL(1)) & 0x7fffffff) &&
  5084. fp == I915_READ(PCH_FP0(1))) {
  5085. intel_crtc->use_pll_a = false;
  5086. DRM_DEBUG_KMS("using pipe b dpll\n");
  5087. } else {
  5088. DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
  5089. return -EINVAL;
  5090. }
  5091. }
  5092. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  5093. * This is an exception to the general rule that mode_set doesn't turn
  5094. * things on.
  5095. */
  5096. if (is_lvds) {
  5097. temp = I915_READ(PCH_LVDS);
  5098. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  5099. if (HAS_PCH_CPT(dev)) {
  5100. temp &= ~PORT_TRANS_SEL_MASK;
  5101. temp |= PORT_TRANS_SEL_CPT(pipe);
  5102. } else {
  5103. if (pipe == 1)
  5104. temp |= LVDS_PIPEB_SELECT;
  5105. else
  5106. temp &= ~LVDS_PIPEB_SELECT;
  5107. }
  5108. /* set the corresponsding LVDS_BORDER bit */
  5109. temp |= dev_priv->lvds_border_bits;
  5110. /* Set the B0-B3 data pairs corresponding to whether we're going to
  5111. * set the DPLLs for dual-channel mode or not.
  5112. */
  5113. if (clock.p2 == 7)
  5114. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  5115. else
  5116. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  5117. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  5118. * appropriately here, but we need to look more thoroughly into how
  5119. * panels behave in the two modes.
  5120. */
  5121. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  5122. lvds_sync |= LVDS_HSYNC_POLARITY;
  5123. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  5124. lvds_sync |= LVDS_VSYNC_POLARITY;
  5125. if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
  5126. != lvds_sync) {
  5127. char flags[2] = "-+";
  5128. DRM_INFO("Changing LVDS panel from "
  5129. "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
  5130. flags[!(temp & LVDS_HSYNC_POLARITY)],
  5131. flags[!(temp & LVDS_VSYNC_POLARITY)],
  5132. flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
  5133. flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
  5134. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  5135. temp |= lvds_sync;
  5136. }
  5137. I915_WRITE(PCH_LVDS, temp);
  5138. }
  5139. pipeconf &= ~PIPECONF_DITHER_EN;
  5140. pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
  5141. if ((is_lvds && dev_priv->lvds_dither) || dither) {
  5142. pipeconf |= PIPECONF_DITHER_EN;
  5143. pipeconf |= PIPECONF_DITHER_TYPE_SP;
  5144. }
  5145. if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
  5146. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  5147. } else {
  5148. /* For non-DP output, clear any trans DP clock recovery setting.*/
  5149. I915_WRITE(TRANSDATA_M1(pipe), 0);
  5150. I915_WRITE(TRANSDATA_N1(pipe), 0);
  5151. I915_WRITE(TRANSDPLINK_M1(pipe), 0);
  5152. I915_WRITE(TRANSDPLINK_N1(pipe), 0);
  5153. }
  5154. if (!intel_crtc->no_pll &&
  5155. (!has_edp_encoder ||
  5156. intel_encoder_is_pch_edp(&has_edp_encoder->base))) {
  5157. I915_WRITE(PCH_DPLL(pipe), dpll);
  5158. /* Wait for the clocks to stabilize. */
  5159. POSTING_READ(PCH_DPLL(pipe));
  5160. udelay(150);
  5161. /* The pixel multiplier can only be updated once the
  5162. * DPLL is enabled and the clocks are stable.
  5163. *
  5164. * So write it again.
  5165. */
  5166. I915_WRITE(PCH_DPLL(pipe), dpll);
  5167. }
  5168. intel_crtc->lowfreq_avail = false;
  5169. if (!intel_crtc->no_pll) {
  5170. if (is_lvds && has_reduced_clock && i915_powersave) {
  5171. I915_WRITE(PCH_FP1(pipe), fp2);
  5172. intel_crtc->lowfreq_avail = true;
  5173. if (HAS_PIPE_CXSR(dev)) {
  5174. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  5175. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  5176. }
  5177. } else {
  5178. I915_WRITE(PCH_FP1(pipe), fp);
  5179. if (HAS_PIPE_CXSR(dev)) {
  5180. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  5181. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  5182. }
  5183. }
  5184. }
  5185. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  5186. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  5187. pipeconf |= PIPECONF_INTERLACED_ILK;
  5188. /* the chip adds 2 halflines automatically */
  5189. adjusted_mode->crtc_vtotal -= 1;
  5190. adjusted_mode->crtc_vblank_end -= 1;
  5191. I915_WRITE(VSYNCSHIFT(pipe),
  5192. adjusted_mode->crtc_hsync_start
  5193. - adjusted_mode->crtc_htotal/2);
  5194. } else {
  5195. pipeconf |= PIPECONF_PROGRESSIVE;
  5196. I915_WRITE(VSYNCSHIFT(pipe), 0);
  5197. }
  5198. I915_WRITE(HTOTAL(pipe),
  5199. (adjusted_mode->crtc_hdisplay - 1) |
  5200. ((adjusted_mode->crtc_htotal - 1) << 16));
  5201. I915_WRITE(HBLANK(pipe),
  5202. (adjusted_mode->crtc_hblank_start - 1) |
  5203. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  5204. I915_WRITE(HSYNC(pipe),
  5205. (adjusted_mode->crtc_hsync_start - 1) |
  5206. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  5207. I915_WRITE(VTOTAL(pipe),
  5208. (adjusted_mode->crtc_vdisplay - 1) |
  5209. ((adjusted_mode->crtc_vtotal - 1) << 16));
  5210. I915_WRITE(VBLANK(pipe),
  5211. (adjusted_mode->crtc_vblank_start - 1) |
  5212. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  5213. I915_WRITE(VSYNC(pipe),
  5214. (adjusted_mode->crtc_vsync_start - 1) |
  5215. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  5216. /* pipesrc controls the size that is scaled from, which should
  5217. * always be the user's requested size.
  5218. */
  5219. I915_WRITE(PIPESRC(pipe),
  5220. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  5221. I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
  5222. I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
  5223. I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
  5224. I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
  5225. if (has_edp_encoder &&
  5226. !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
  5227. ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  5228. }
  5229. I915_WRITE(PIPECONF(pipe), pipeconf);
  5230. POSTING_READ(PIPECONF(pipe));
  5231. intel_wait_for_vblank(dev, pipe);
  5232. I915_WRITE(DSPCNTR(plane), dspcntr);
  5233. POSTING_READ(DSPCNTR(plane));
  5234. ret = intel_pipe_set_base(crtc, x, y, old_fb);
  5235. intel_update_watermarks(dev);
  5236. return ret;
  5237. }
  5238. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5239. struct drm_display_mode *mode,
  5240. struct drm_display_mode *adjusted_mode,
  5241. int x, int y,
  5242. struct drm_framebuffer *old_fb)
  5243. {
  5244. struct drm_device *dev = crtc->dev;
  5245. struct drm_i915_private *dev_priv = dev->dev_private;
  5246. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5247. int pipe = intel_crtc->pipe;
  5248. int ret;
  5249. drm_vblank_pre_modeset(dev, pipe);
  5250. ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
  5251. x, y, old_fb);
  5252. drm_vblank_post_modeset(dev, pipe);
  5253. if (ret)
  5254. intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
  5255. else
  5256. intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
  5257. return ret;
  5258. }
  5259. static bool intel_eld_uptodate(struct drm_connector *connector,
  5260. int reg_eldv, uint32_t bits_eldv,
  5261. int reg_elda, uint32_t bits_elda,
  5262. int reg_edid)
  5263. {
  5264. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5265. uint8_t *eld = connector->eld;
  5266. uint32_t i;
  5267. i = I915_READ(reg_eldv);
  5268. i &= bits_eldv;
  5269. if (!eld[0])
  5270. return !i;
  5271. if (!i)
  5272. return false;
  5273. i = I915_READ(reg_elda);
  5274. i &= ~bits_elda;
  5275. I915_WRITE(reg_elda, i);
  5276. for (i = 0; i < eld[2]; i++)
  5277. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5278. return false;
  5279. return true;
  5280. }
  5281. static void g4x_write_eld(struct drm_connector *connector,
  5282. struct drm_crtc *crtc)
  5283. {
  5284. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5285. uint8_t *eld = connector->eld;
  5286. uint32_t eldv;
  5287. uint32_t len;
  5288. uint32_t i;
  5289. i = I915_READ(G4X_AUD_VID_DID);
  5290. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5291. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5292. else
  5293. eldv = G4X_ELDV_DEVCTG;
  5294. if (intel_eld_uptodate(connector,
  5295. G4X_AUD_CNTL_ST, eldv,
  5296. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5297. G4X_HDMIW_HDMIEDID))
  5298. return;
  5299. i = I915_READ(G4X_AUD_CNTL_ST);
  5300. i &= ~(eldv | G4X_ELD_ADDR);
  5301. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5302. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5303. if (!eld[0])
  5304. return;
  5305. len = min_t(uint8_t, eld[2], len);
  5306. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5307. for (i = 0; i < len; i++)
  5308. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5309. i = I915_READ(G4X_AUD_CNTL_ST);
  5310. i |= eldv;
  5311. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5312. }
  5313. static void ironlake_write_eld(struct drm_connector *connector,
  5314. struct drm_crtc *crtc)
  5315. {
  5316. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5317. uint8_t *eld = connector->eld;
  5318. uint32_t eldv;
  5319. uint32_t i;
  5320. int len;
  5321. int hdmiw_hdmiedid;
  5322. int aud_config;
  5323. int aud_cntl_st;
  5324. int aud_cntrl_st2;
  5325. if (HAS_PCH_IBX(connector->dev)) {
  5326. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
  5327. aud_config = IBX_AUD_CONFIG_A;
  5328. aud_cntl_st = IBX_AUD_CNTL_ST_A;
  5329. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5330. } else {
  5331. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
  5332. aud_config = CPT_AUD_CONFIG_A;
  5333. aud_cntl_st = CPT_AUD_CNTL_ST_A;
  5334. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5335. }
  5336. i = to_intel_crtc(crtc)->pipe;
  5337. hdmiw_hdmiedid += i * 0x100;
  5338. aud_cntl_st += i * 0x100;
  5339. aud_config += i * 0x100;
  5340. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
  5341. i = I915_READ(aud_cntl_st);
  5342. i = (i >> 29) & 0x3; /* DIP_Port_Select, 0x1 = PortB */
  5343. if (!i) {
  5344. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5345. /* operate blindly on all ports */
  5346. eldv = IBX_ELD_VALIDB;
  5347. eldv |= IBX_ELD_VALIDB << 4;
  5348. eldv |= IBX_ELD_VALIDB << 8;
  5349. } else {
  5350. DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
  5351. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5352. }
  5353. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5354. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5355. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5356. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5357. } else
  5358. I915_WRITE(aud_config, 0);
  5359. if (intel_eld_uptodate(connector,
  5360. aud_cntrl_st2, eldv,
  5361. aud_cntl_st, IBX_ELD_ADDRESS,
  5362. hdmiw_hdmiedid))
  5363. return;
  5364. i = I915_READ(aud_cntrl_st2);
  5365. i &= ~eldv;
  5366. I915_WRITE(aud_cntrl_st2, i);
  5367. if (!eld[0])
  5368. return;
  5369. i = I915_READ(aud_cntl_st);
  5370. i &= ~IBX_ELD_ADDRESS;
  5371. I915_WRITE(aud_cntl_st, i);
  5372. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5373. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5374. for (i = 0; i < len; i++)
  5375. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5376. i = I915_READ(aud_cntrl_st2);
  5377. i |= eldv;
  5378. I915_WRITE(aud_cntrl_st2, i);
  5379. }
  5380. void intel_write_eld(struct drm_encoder *encoder,
  5381. struct drm_display_mode *mode)
  5382. {
  5383. struct drm_crtc *crtc = encoder->crtc;
  5384. struct drm_connector *connector;
  5385. struct drm_device *dev = encoder->dev;
  5386. struct drm_i915_private *dev_priv = dev->dev_private;
  5387. connector = drm_select_eld(encoder, mode);
  5388. if (!connector)
  5389. return;
  5390. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5391. connector->base.id,
  5392. drm_get_connector_name(connector),
  5393. connector->encoder->base.id,
  5394. drm_get_encoder_name(connector->encoder));
  5395. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5396. if (dev_priv->display.write_eld)
  5397. dev_priv->display.write_eld(connector, crtc);
  5398. }
  5399. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5400. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5401. {
  5402. struct drm_device *dev = crtc->dev;
  5403. struct drm_i915_private *dev_priv = dev->dev_private;
  5404. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5405. int palreg = PALETTE(intel_crtc->pipe);
  5406. int i;
  5407. /* The clocks have to be on to load the palette. */
  5408. if (!crtc->enabled)
  5409. return;
  5410. /* use legacy palette for Ironlake */
  5411. if (HAS_PCH_SPLIT(dev))
  5412. palreg = LGC_PALETTE(intel_crtc->pipe);
  5413. for (i = 0; i < 256; i++) {
  5414. I915_WRITE(palreg + 4 * i,
  5415. (intel_crtc->lut_r[i] << 16) |
  5416. (intel_crtc->lut_g[i] << 8) |
  5417. intel_crtc->lut_b[i]);
  5418. }
  5419. }
  5420. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5421. {
  5422. struct drm_device *dev = crtc->dev;
  5423. struct drm_i915_private *dev_priv = dev->dev_private;
  5424. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5425. bool visible = base != 0;
  5426. u32 cntl;
  5427. if (intel_crtc->cursor_visible == visible)
  5428. return;
  5429. cntl = I915_READ(_CURACNTR);
  5430. if (visible) {
  5431. /* On these chipsets we can only modify the base whilst
  5432. * the cursor is disabled.
  5433. */
  5434. I915_WRITE(_CURABASE, base);
  5435. cntl &= ~(CURSOR_FORMAT_MASK);
  5436. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5437. cntl |= CURSOR_ENABLE |
  5438. CURSOR_GAMMA_ENABLE |
  5439. CURSOR_FORMAT_ARGB;
  5440. } else
  5441. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5442. I915_WRITE(_CURACNTR, cntl);
  5443. intel_crtc->cursor_visible = visible;
  5444. }
  5445. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5446. {
  5447. struct drm_device *dev = crtc->dev;
  5448. struct drm_i915_private *dev_priv = dev->dev_private;
  5449. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5450. int pipe = intel_crtc->pipe;
  5451. bool visible = base != 0;
  5452. if (intel_crtc->cursor_visible != visible) {
  5453. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5454. if (base) {
  5455. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5456. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5457. cntl |= pipe << 28; /* Connect to correct pipe */
  5458. } else {
  5459. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5460. cntl |= CURSOR_MODE_DISABLE;
  5461. }
  5462. I915_WRITE(CURCNTR(pipe), cntl);
  5463. intel_crtc->cursor_visible = visible;
  5464. }
  5465. /* and commit changes on next vblank */
  5466. I915_WRITE(CURBASE(pipe), base);
  5467. }
  5468. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5469. {
  5470. struct drm_device *dev = crtc->dev;
  5471. struct drm_i915_private *dev_priv = dev->dev_private;
  5472. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5473. int pipe = intel_crtc->pipe;
  5474. bool visible = base != 0;
  5475. if (intel_crtc->cursor_visible != visible) {
  5476. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5477. if (base) {
  5478. cntl &= ~CURSOR_MODE;
  5479. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5480. } else {
  5481. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5482. cntl |= CURSOR_MODE_DISABLE;
  5483. }
  5484. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5485. intel_crtc->cursor_visible = visible;
  5486. }
  5487. /* and commit changes on next vblank */
  5488. I915_WRITE(CURBASE_IVB(pipe), base);
  5489. }
  5490. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5491. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5492. bool on)
  5493. {
  5494. struct drm_device *dev = crtc->dev;
  5495. struct drm_i915_private *dev_priv = dev->dev_private;
  5496. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5497. int pipe = intel_crtc->pipe;
  5498. int x = intel_crtc->cursor_x;
  5499. int y = intel_crtc->cursor_y;
  5500. u32 base, pos;
  5501. bool visible;
  5502. pos = 0;
  5503. if (on && crtc->enabled && crtc->fb) {
  5504. base = intel_crtc->cursor_addr;
  5505. if (x > (int) crtc->fb->width)
  5506. base = 0;
  5507. if (y > (int) crtc->fb->height)
  5508. base = 0;
  5509. } else
  5510. base = 0;
  5511. if (x < 0) {
  5512. if (x + intel_crtc->cursor_width < 0)
  5513. base = 0;
  5514. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5515. x = -x;
  5516. }
  5517. pos |= x << CURSOR_X_SHIFT;
  5518. if (y < 0) {
  5519. if (y + intel_crtc->cursor_height < 0)
  5520. base = 0;
  5521. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5522. y = -y;
  5523. }
  5524. pos |= y << CURSOR_Y_SHIFT;
  5525. visible = base != 0;
  5526. if (!visible && !intel_crtc->cursor_visible)
  5527. return;
  5528. if (IS_IVYBRIDGE(dev)) {
  5529. I915_WRITE(CURPOS_IVB(pipe), pos);
  5530. ivb_update_cursor(crtc, base);
  5531. } else {
  5532. I915_WRITE(CURPOS(pipe), pos);
  5533. if (IS_845G(dev) || IS_I865G(dev))
  5534. i845_update_cursor(crtc, base);
  5535. else
  5536. i9xx_update_cursor(crtc, base);
  5537. }
  5538. if (visible)
  5539. intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
  5540. }
  5541. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5542. struct drm_file *file,
  5543. uint32_t handle,
  5544. uint32_t width, uint32_t height)
  5545. {
  5546. struct drm_device *dev = crtc->dev;
  5547. struct drm_i915_private *dev_priv = dev->dev_private;
  5548. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5549. struct drm_i915_gem_object *obj;
  5550. uint32_t addr;
  5551. int ret;
  5552. DRM_DEBUG_KMS("\n");
  5553. /* if we want to turn off the cursor ignore width and height */
  5554. if (!handle) {
  5555. DRM_DEBUG_KMS("cursor off\n");
  5556. addr = 0;
  5557. obj = NULL;
  5558. mutex_lock(&dev->struct_mutex);
  5559. goto finish;
  5560. }
  5561. /* Currently we only support 64x64 cursors */
  5562. if (width != 64 || height != 64) {
  5563. DRM_ERROR("we currently only support 64x64 cursors\n");
  5564. return -EINVAL;
  5565. }
  5566. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5567. if (&obj->base == NULL)
  5568. return -ENOENT;
  5569. if (obj->base.size < width * height * 4) {
  5570. DRM_ERROR("buffer is to small\n");
  5571. ret = -ENOMEM;
  5572. goto fail;
  5573. }
  5574. /* we only need to pin inside GTT if cursor is non-phy */
  5575. mutex_lock(&dev->struct_mutex);
  5576. if (!dev_priv->info->cursor_needs_physical) {
  5577. if (obj->tiling_mode) {
  5578. DRM_ERROR("cursor cannot be tiled\n");
  5579. ret = -EINVAL;
  5580. goto fail_locked;
  5581. }
  5582. ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
  5583. if (ret) {
  5584. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5585. goto fail_locked;
  5586. }
  5587. ret = i915_gem_object_put_fence(obj);
  5588. if (ret) {
  5589. DRM_ERROR("failed to release fence for cursor");
  5590. goto fail_unpin;
  5591. }
  5592. addr = obj->gtt_offset;
  5593. } else {
  5594. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5595. ret = i915_gem_attach_phys_object(dev, obj,
  5596. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5597. align);
  5598. if (ret) {
  5599. DRM_ERROR("failed to attach phys object\n");
  5600. goto fail_locked;
  5601. }
  5602. addr = obj->phys_obj->handle->busaddr;
  5603. }
  5604. if (IS_GEN2(dev))
  5605. I915_WRITE(CURSIZE, (height << 12) | width);
  5606. finish:
  5607. if (intel_crtc->cursor_bo) {
  5608. if (dev_priv->info->cursor_needs_physical) {
  5609. if (intel_crtc->cursor_bo != obj)
  5610. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5611. } else
  5612. i915_gem_object_unpin(intel_crtc->cursor_bo);
  5613. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5614. }
  5615. mutex_unlock(&dev->struct_mutex);
  5616. intel_crtc->cursor_addr = addr;
  5617. intel_crtc->cursor_bo = obj;
  5618. intel_crtc->cursor_width = width;
  5619. intel_crtc->cursor_height = height;
  5620. intel_crtc_update_cursor(crtc, true);
  5621. return 0;
  5622. fail_unpin:
  5623. i915_gem_object_unpin(obj);
  5624. fail_locked:
  5625. mutex_unlock(&dev->struct_mutex);
  5626. fail:
  5627. drm_gem_object_unreference_unlocked(&obj->base);
  5628. return ret;
  5629. }
  5630. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5631. {
  5632. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5633. intel_crtc->cursor_x = x;
  5634. intel_crtc->cursor_y = y;
  5635. intel_crtc_update_cursor(crtc, true);
  5636. return 0;
  5637. }
  5638. /** Sets the color ramps on behalf of RandR */
  5639. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5640. u16 blue, int regno)
  5641. {
  5642. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5643. intel_crtc->lut_r[regno] = red >> 8;
  5644. intel_crtc->lut_g[regno] = green >> 8;
  5645. intel_crtc->lut_b[regno] = blue >> 8;
  5646. }
  5647. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5648. u16 *blue, int regno)
  5649. {
  5650. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5651. *red = intel_crtc->lut_r[regno] << 8;
  5652. *green = intel_crtc->lut_g[regno] << 8;
  5653. *blue = intel_crtc->lut_b[regno] << 8;
  5654. }
  5655. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5656. u16 *blue, uint32_t start, uint32_t size)
  5657. {
  5658. int end = (start + size > 256) ? 256 : start + size, i;
  5659. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5660. for (i = start; i < end; i++) {
  5661. intel_crtc->lut_r[i] = red[i] >> 8;
  5662. intel_crtc->lut_g[i] = green[i] >> 8;
  5663. intel_crtc->lut_b[i] = blue[i] >> 8;
  5664. }
  5665. intel_crtc_load_lut(crtc);
  5666. }
  5667. /**
  5668. * Get a pipe with a simple mode set on it for doing load-based monitor
  5669. * detection.
  5670. *
  5671. * It will be up to the load-detect code to adjust the pipe as appropriate for
  5672. * its requirements. The pipe will be connected to no other encoders.
  5673. *
  5674. * Currently this code will only succeed if there is a pipe with no encoders
  5675. * configured for it. In the future, it could choose to temporarily disable
  5676. * some outputs to free up a pipe for its use.
  5677. *
  5678. * \return crtc, or NULL if no pipes are available.
  5679. */
  5680. /* VESA 640x480x72Hz mode to set on the pipe */
  5681. static struct drm_display_mode load_detect_mode = {
  5682. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5683. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5684. };
  5685. static struct drm_framebuffer *
  5686. intel_framebuffer_create(struct drm_device *dev,
  5687. struct drm_mode_fb_cmd2 *mode_cmd,
  5688. struct drm_i915_gem_object *obj)
  5689. {
  5690. struct intel_framebuffer *intel_fb;
  5691. int ret;
  5692. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5693. if (!intel_fb) {
  5694. drm_gem_object_unreference_unlocked(&obj->base);
  5695. return ERR_PTR(-ENOMEM);
  5696. }
  5697. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5698. if (ret) {
  5699. drm_gem_object_unreference_unlocked(&obj->base);
  5700. kfree(intel_fb);
  5701. return ERR_PTR(ret);
  5702. }
  5703. return &intel_fb->base;
  5704. }
  5705. static u32
  5706. intel_framebuffer_pitch_for_width(int width, int bpp)
  5707. {
  5708. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5709. return ALIGN(pitch, 64);
  5710. }
  5711. static u32
  5712. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5713. {
  5714. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5715. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5716. }
  5717. static struct drm_framebuffer *
  5718. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5719. struct drm_display_mode *mode,
  5720. int depth, int bpp)
  5721. {
  5722. struct drm_i915_gem_object *obj;
  5723. struct drm_mode_fb_cmd2 mode_cmd;
  5724. obj = i915_gem_alloc_object(dev,
  5725. intel_framebuffer_size_for_mode(mode, bpp));
  5726. if (obj == NULL)
  5727. return ERR_PTR(-ENOMEM);
  5728. mode_cmd.width = mode->hdisplay;
  5729. mode_cmd.height = mode->vdisplay;
  5730. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  5731. bpp);
  5732. mode_cmd.pixel_format = 0;
  5733. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5734. }
  5735. static struct drm_framebuffer *
  5736. mode_fits_in_fbdev(struct drm_device *dev,
  5737. struct drm_display_mode *mode)
  5738. {
  5739. struct drm_i915_private *dev_priv = dev->dev_private;
  5740. struct drm_i915_gem_object *obj;
  5741. struct drm_framebuffer *fb;
  5742. if (dev_priv->fbdev == NULL)
  5743. return NULL;
  5744. obj = dev_priv->fbdev->ifb.obj;
  5745. if (obj == NULL)
  5746. return NULL;
  5747. fb = &dev_priv->fbdev->ifb.base;
  5748. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5749. fb->bits_per_pixel))
  5750. return NULL;
  5751. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  5752. return NULL;
  5753. return fb;
  5754. }
  5755. bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
  5756. struct drm_connector *connector,
  5757. struct drm_display_mode *mode,
  5758. struct intel_load_detect_pipe *old)
  5759. {
  5760. struct intel_crtc *intel_crtc;
  5761. struct drm_crtc *possible_crtc;
  5762. struct drm_encoder *encoder = &intel_encoder->base;
  5763. struct drm_crtc *crtc = NULL;
  5764. struct drm_device *dev = encoder->dev;
  5765. struct drm_framebuffer *old_fb;
  5766. int i = -1;
  5767. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5768. connector->base.id, drm_get_connector_name(connector),
  5769. encoder->base.id, drm_get_encoder_name(encoder));
  5770. /*
  5771. * Algorithm gets a little messy:
  5772. *
  5773. * - if the connector already has an assigned crtc, use it (but make
  5774. * sure it's on first)
  5775. *
  5776. * - try to find the first unused crtc that can drive this connector,
  5777. * and use that if we find one
  5778. */
  5779. /* See if we already have a CRTC for this connector */
  5780. if (encoder->crtc) {
  5781. crtc = encoder->crtc;
  5782. intel_crtc = to_intel_crtc(crtc);
  5783. old->dpms_mode = intel_crtc->dpms_mode;
  5784. old->load_detect_temp = false;
  5785. /* Make sure the crtc and connector are running */
  5786. if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
  5787. struct drm_encoder_helper_funcs *encoder_funcs;
  5788. struct drm_crtc_helper_funcs *crtc_funcs;
  5789. crtc_funcs = crtc->helper_private;
  5790. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  5791. encoder_funcs = encoder->helper_private;
  5792. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  5793. }
  5794. return true;
  5795. }
  5796. /* Find an unused one (if possible) */
  5797. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  5798. i++;
  5799. if (!(encoder->possible_crtcs & (1 << i)))
  5800. continue;
  5801. if (!possible_crtc->enabled) {
  5802. crtc = possible_crtc;
  5803. break;
  5804. }
  5805. }
  5806. /*
  5807. * If we didn't find an unused CRTC, don't use any.
  5808. */
  5809. if (!crtc) {
  5810. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  5811. return false;
  5812. }
  5813. encoder->crtc = crtc;
  5814. connector->encoder = encoder;
  5815. intel_crtc = to_intel_crtc(crtc);
  5816. old->dpms_mode = intel_crtc->dpms_mode;
  5817. old->load_detect_temp = true;
  5818. old->release_fb = NULL;
  5819. if (!mode)
  5820. mode = &load_detect_mode;
  5821. old_fb = crtc->fb;
  5822. /* We need a framebuffer large enough to accommodate all accesses
  5823. * that the plane may generate whilst we perform load detection.
  5824. * We can not rely on the fbcon either being present (we get called
  5825. * during its initialisation to detect all boot displays, or it may
  5826. * not even exist) or that it is large enough to satisfy the
  5827. * requested mode.
  5828. */
  5829. crtc->fb = mode_fits_in_fbdev(dev, mode);
  5830. if (crtc->fb == NULL) {
  5831. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  5832. crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  5833. old->release_fb = crtc->fb;
  5834. } else
  5835. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  5836. if (IS_ERR(crtc->fb)) {
  5837. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  5838. crtc->fb = old_fb;
  5839. return false;
  5840. }
  5841. if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
  5842. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  5843. if (old->release_fb)
  5844. old->release_fb->funcs->destroy(old->release_fb);
  5845. crtc->fb = old_fb;
  5846. return false;
  5847. }
  5848. /* let the connector get through one full cycle before testing */
  5849. intel_wait_for_vblank(dev, intel_crtc->pipe);
  5850. return true;
  5851. }
  5852. void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
  5853. struct drm_connector *connector,
  5854. struct intel_load_detect_pipe *old)
  5855. {
  5856. struct drm_encoder *encoder = &intel_encoder->base;
  5857. struct drm_device *dev = encoder->dev;
  5858. struct drm_crtc *crtc = encoder->crtc;
  5859. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  5860. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  5861. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5862. connector->base.id, drm_get_connector_name(connector),
  5863. encoder->base.id, drm_get_encoder_name(encoder));
  5864. if (old->load_detect_temp) {
  5865. connector->encoder = NULL;
  5866. drm_helper_disable_unused_functions(dev);
  5867. if (old->release_fb)
  5868. old->release_fb->funcs->destroy(old->release_fb);
  5869. return;
  5870. }
  5871. /* Switch crtc and encoder back off if necessary */
  5872. if (old->dpms_mode != DRM_MODE_DPMS_ON) {
  5873. encoder_funcs->dpms(encoder, old->dpms_mode);
  5874. crtc_funcs->dpms(crtc, old->dpms_mode);
  5875. }
  5876. }
  5877. /* Returns the clock of the currently programmed mode of the given pipe. */
  5878. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  5879. {
  5880. struct drm_i915_private *dev_priv = dev->dev_private;
  5881. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5882. int pipe = intel_crtc->pipe;
  5883. u32 dpll = I915_READ(DPLL(pipe));
  5884. u32 fp;
  5885. intel_clock_t clock;
  5886. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  5887. fp = I915_READ(FP0(pipe));
  5888. else
  5889. fp = I915_READ(FP1(pipe));
  5890. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  5891. if (IS_PINEVIEW(dev)) {
  5892. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  5893. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5894. } else {
  5895. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  5896. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5897. }
  5898. if (!IS_GEN2(dev)) {
  5899. if (IS_PINEVIEW(dev))
  5900. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  5901. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  5902. else
  5903. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  5904. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5905. switch (dpll & DPLL_MODE_MASK) {
  5906. case DPLLB_MODE_DAC_SERIAL:
  5907. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  5908. 5 : 10;
  5909. break;
  5910. case DPLLB_MODE_LVDS:
  5911. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  5912. 7 : 14;
  5913. break;
  5914. default:
  5915. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  5916. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  5917. return 0;
  5918. }
  5919. /* XXX: Handle the 100Mhz refclk */
  5920. intel_clock(dev, 96000, &clock);
  5921. } else {
  5922. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  5923. if (is_lvds) {
  5924. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  5925. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5926. clock.p2 = 14;
  5927. if ((dpll & PLL_REF_INPUT_MASK) ==
  5928. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  5929. /* XXX: might not be 66MHz */
  5930. intel_clock(dev, 66000, &clock);
  5931. } else
  5932. intel_clock(dev, 48000, &clock);
  5933. } else {
  5934. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  5935. clock.p1 = 2;
  5936. else {
  5937. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  5938. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  5939. }
  5940. if (dpll & PLL_P2_DIVIDE_BY_4)
  5941. clock.p2 = 4;
  5942. else
  5943. clock.p2 = 2;
  5944. intel_clock(dev, 48000, &clock);
  5945. }
  5946. }
  5947. /* XXX: It would be nice to validate the clocks, but we can't reuse
  5948. * i830PllIsValid() because it relies on the xf86_config connector
  5949. * configuration being accurate, which it isn't necessarily.
  5950. */
  5951. return clock.dot;
  5952. }
  5953. /** Returns the currently programmed mode of the given pipe. */
  5954. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  5955. struct drm_crtc *crtc)
  5956. {
  5957. struct drm_i915_private *dev_priv = dev->dev_private;
  5958. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5959. int pipe = intel_crtc->pipe;
  5960. struct drm_display_mode *mode;
  5961. int htot = I915_READ(HTOTAL(pipe));
  5962. int hsync = I915_READ(HSYNC(pipe));
  5963. int vtot = I915_READ(VTOTAL(pipe));
  5964. int vsync = I915_READ(VSYNC(pipe));
  5965. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  5966. if (!mode)
  5967. return NULL;
  5968. mode->clock = intel_crtc_clock_get(dev, crtc);
  5969. mode->hdisplay = (htot & 0xffff) + 1;
  5970. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  5971. mode->hsync_start = (hsync & 0xffff) + 1;
  5972. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  5973. mode->vdisplay = (vtot & 0xffff) + 1;
  5974. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  5975. mode->vsync_start = (vsync & 0xffff) + 1;
  5976. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  5977. drm_mode_set_name(mode);
  5978. drm_mode_set_crtcinfo(mode, 0);
  5979. return mode;
  5980. }
  5981. #define GPU_IDLE_TIMEOUT 500 /* ms */
  5982. /* When this timer fires, we've been idle for awhile */
  5983. static void intel_gpu_idle_timer(unsigned long arg)
  5984. {
  5985. struct drm_device *dev = (struct drm_device *)arg;
  5986. drm_i915_private_t *dev_priv = dev->dev_private;
  5987. if (!list_empty(&dev_priv->mm.active_list)) {
  5988. /* Still processing requests, so just re-arm the timer. */
  5989. mod_timer(&dev_priv->idle_timer, jiffies +
  5990. msecs_to_jiffies(GPU_IDLE_TIMEOUT));
  5991. return;
  5992. }
  5993. dev_priv->busy = false;
  5994. queue_work(dev_priv->wq, &dev_priv->idle_work);
  5995. }
  5996. #define CRTC_IDLE_TIMEOUT 1000 /* ms */
  5997. static void intel_crtc_idle_timer(unsigned long arg)
  5998. {
  5999. struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
  6000. struct drm_crtc *crtc = &intel_crtc->base;
  6001. drm_i915_private_t *dev_priv = crtc->dev->dev_private;
  6002. struct intel_framebuffer *intel_fb;
  6003. intel_fb = to_intel_framebuffer(crtc->fb);
  6004. if (intel_fb && intel_fb->obj->active) {
  6005. /* The framebuffer is still being accessed by the GPU. */
  6006. mod_timer(&intel_crtc->idle_timer, jiffies +
  6007. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  6008. return;
  6009. }
  6010. intel_crtc->busy = false;
  6011. queue_work(dev_priv->wq, &dev_priv->idle_work);
  6012. }
  6013. static void intel_increase_pllclock(struct drm_crtc *crtc)
  6014. {
  6015. struct drm_device *dev = crtc->dev;
  6016. drm_i915_private_t *dev_priv = dev->dev_private;
  6017. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6018. int pipe = intel_crtc->pipe;
  6019. int dpll_reg = DPLL(pipe);
  6020. int dpll;
  6021. if (HAS_PCH_SPLIT(dev))
  6022. return;
  6023. if (!dev_priv->lvds_downclock_avail)
  6024. return;
  6025. dpll = I915_READ(dpll_reg);
  6026. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  6027. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  6028. /* Unlock panel regs */
  6029. I915_WRITE(PP_CONTROL,
  6030. I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
  6031. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  6032. I915_WRITE(dpll_reg, dpll);
  6033. intel_wait_for_vblank(dev, pipe);
  6034. dpll = I915_READ(dpll_reg);
  6035. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  6036. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  6037. /* ...and lock them again */
  6038. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
  6039. }
  6040. /* Schedule downclock */
  6041. mod_timer(&intel_crtc->idle_timer, jiffies +
  6042. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  6043. }
  6044. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  6045. {
  6046. struct drm_device *dev = crtc->dev;
  6047. drm_i915_private_t *dev_priv = dev->dev_private;
  6048. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6049. int pipe = intel_crtc->pipe;
  6050. int dpll_reg = DPLL(pipe);
  6051. int dpll = I915_READ(dpll_reg);
  6052. if (HAS_PCH_SPLIT(dev))
  6053. return;
  6054. if (!dev_priv->lvds_downclock_avail)
  6055. return;
  6056. /*
  6057. * Since this is called by a timer, we should never get here in
  6058. * the manual case.
  6059. */
  6060. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  6061. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  6062. /* Unlock panel regs */
  6063. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
  6064. PANEL_UNLOCK_REGS);
  6065. dpll |= DISPLAY_RATE_SELECT_FPA1;
  6066. I915_WRITE(dpll_reg, dpll);
  6067. intel_wait_for_vblank(dev, pipe);
  6068. dpll = I915_READ(dpll_reg);
  6069. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  6070. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  6071. /* ...and lock them again */
  6072. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
  6073. }
  6074. }
  6075. /**
  6076. * intel_idle_update - adjust clocks for idleness
  6077. * @work: work struct
  6078. *
  6079. * Either the GPU or display (or both) went idle. Check the busy status
  6080. * here and adjust the CRTC and GPU clocks as necessary.
  6081. */
  6082. static void intel_idle_update(struct work_struct *work)
  6083. {
  6084. drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
  6085. idle_work);
  6086. struct drm_device *dev = dev_priv->dev;
  6087. struct drm_crtc *crtc;
  6088. struct intel_crtc *intel_crtc;
  6089. if (!i915_powersave)
  6090. return;
  6091. mutex_lock(&dev->struct_mutex);
  6092. i915_update_gfx_val(dev_priv);
  6093. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6094. /* Skip inactive CRTCs */
  6095. if (!crtc->fb)
  6096. continue;
  6097. intel_crtc = to_intel_crtc(crtc);
  6098. if (!intel_crtc->busy)
  6099. intel_decrease_pllclock(crtc);
  6100. }
  6101. mutex_unlock(&dev->struct_mutex);
  6102. }
  6103. /**
  6104. * intel_mark_busy - mark the GPU and possibly the display busy
  6105. * @dev: drm device
  6106. * @obj: object we're operating on
  6107. *
  6108. * Callers can use this function to indicate that the GPU is busy processing
  6109. * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
  6110. * buffer), we'll also mark the display as busy, so we know to increase its
  6111. * clock frequency.
  6112. */
  6113. void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
  6114. {
  6115. drm_i915_private_t *dev_priv = dev->dev_private;
  6116. struct drm_crtc *crtc = NULL;
  6117. struct intel_framebuffer *intel_fb;
  6118. struct intel_crtc *intel_crtc;
  6119. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  6120. return;
  6121. if (!dev_priv->busy)
  6122. dev_priv->busy = true;
  6123. else
  6124. mod_timer(&dev_priv->idle_timer, jiffies +
  6125. msecs_to_jiffies(GPU_IDLE_TIMEOUT));
  6126. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6127. if (!crtc->fb)
  6128. continue;
  6129. intel_crtc = to_intel_crtc(crtc);
  6130. intel_fb = to_intel_framebuffer(crtc->fb);
  6131. if (intel_fb->obj == obj) {
  6132. if (!intel_crtc->busy) {
  6133. /* Non-busy -> busy, upclock */
  6134. intel_increase_pllclock(crtc);
  6135. intel_crtc->busy = true;
  6136. } else {
  6137. /* Busy -> busy, put off timer */
  6138. mod_timer(&intel_crtc->idle_timer, jiffies +
  6139. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  6140. }
  6141. }
  6142. }
  6143. }
  6144. static void intel_crtc_destroy(struct drm_crtc *crtc)
  6145. {
  6146. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6147. struct drm_device *dev = crtc->dev;
  6148. struct intel_unpin_work *work;
  6149. unsigned long flags;
  6150. spin_lock_irqsave(&dev->event_lock, flags);
  6151. work = intel_crtc->unpin_work;
  6152. intel_crtc->unpin_work = NULL;
  6153. spin_unlock_irqrestore(&dev->event_lock, flags);
  6154. if (work) {
  6155. cancel_work_sync(&work->work);
  6156. kfree(work);
  6157. }
  6158. drm_crtc_cleanup(crtc);
  6159. kfree(intel_crtc);
  6160. }
  6161. static void intel_unpin_work_fn(struct work_struct *__work)
  6162. {
  6163. struct intel_unpin_work *work =
  6164. container_of(__work, struct intel_unpin_work, work);
  6165. mutex_lock(&work->dev->struct_mutex);
  6166. intel_unpin_fb_obj(work->old_fb_obj);
  6167. drm_gem_object_unreference(&work->pending_flip_obj->base);
  6168. drm_gem_object_unreference(&work->old_fb_obj->base);
  6169. intel_update_fbc(work->dev);
  6170. mutex_unlock(&work->dev->struct_mutex);
  6171. kfree(work);
  6172. }
  6173. static void do_intel_finish_page_flip(struct drm_device *dev,
  6174. struct drm_crtc *crtc)
  6175. {
  6176. drm_i915_private_t *dev_priv = dev->dev_private;
  6177. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6178. struct intel_unpin_work *work;
  6179. struct drm_i915_gem_object *obj;
  6180. struct drm_pending_vblank_event *e;
  6181. struct timeval tnow, tvbl;
  6182. unsigned long flags;
  6183. /* Ignore early vblank irqs */
  6184. if (intel_crtc == NULL)
  6185. return;
  6186. do_gettimeofday(&tnow);
  6187. spin_lock_irqsave(&dev->event_lock, flags);
  6188. work = intel_crtc->unpin_work;
  6189. if (work == NULL || !work->pending) {
  6190. spin_unlock_irqrestore(&dev->event_lock, flags);
  6191. return;
  6192. }
  6193. intel_crtc->unpin_work = NULL;
  6194. if (work->event) {
  6195. e = work->event;
  6196. e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
  6197. /* Called before vblank count and timestamps have
  6198. * been updated for the vblank interval of flip
  6199. * completion? Need to increment vblank count and
  6200. * add one videorefresh duration to returned timestamp
  6201. * to account for this. We assume this happened if we
  6202. * get called over 0.9 frame durations after the last
  6203. * timestamped vblank.
  6204. *
  6205. * This calculation can not be used with vrefresh rates
  6206. * below 5Hz (10Hz to be on the safe side) without
  6207. * promoting to 64 integers.
  6208. */
  6209. if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
  6210. 9 * crtc->framedur_ns) {
  6211. e->event.sequence++;
  6212. tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
  6213. crtc->framedur_ns);
  6214. }
  6215. e->event.tv_sec = tvbl.tv_sec;
  6216. e->event.tv_usec = tvbl.tv_usec;
  6217. list_add_tail(&e->base.link,
  6218. &e->base.file_priv->event_list);
  6219. wake_up_interruptible(&e->base.file_priv->event_wait);
  6220. }
  6221. drm_vblank_put(dev, intel_crtc->pipe);
  6222. spin_unlock_irqrestore(&dev->event_lock, flags);
  6223. obj = work->old_fb_obj;
  6224. atomic_clear_mask(1 << intel_crtc->plane,
  6225. &obj->pending_flip.counter);
  6226. if (atomic_read(&obj->pending_flip) == 0)
  6227. wake_up(&dev_priv->pending_flip_queue);
  6228. schedule_work(&work->work);
  6229. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  6230. }
  6231. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  6232. {
  6233. drm_i915_private_t *dev_priv = dev->dev_private;
  6234. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  6235. do_intel_finish_page_flip(dev, crtc);
  6236. }
  6237. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  6238. {
  6239. drm_i915_private_t *dev_priv = dev->dev_private;
  6240. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  6241. do_intel_finish_page_flip(dev, crtc);
  6242. }
  6243. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  6244. {
  6245. drm_i915_private_t *dev_priv = dev->dev_private;
  6246. struct intel_crtc *intel_crtc =
  6247. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  6248. unsigned long flags;
  6249. spin_lock_irqsave(&dev->event_lock, flags);
  6250. if (intel_crtc->unpin_work) {
  6251. if ((++intel_crtc->unpin_work->pending) > 1)
  6252. DRM_ERROR("Prepared flip multiple times\n");
  6253. } else {
  6254. DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
  6255. }
  6256. spin_unlock_irqrestore(&dev->event_lock, flags);
  6257. }
  6258. static int intel_gen2_queue_flip(struct drm_device *dev,
  6259. struct drm_crtc *crtc,
  6260. struct drm_framebuffer *fb,
  6261. struct drm_i915_gem_object *obj)
  6262. {
  6263. struct drm_i915_private *dev_priv = dev->dev_private;
  6264. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6265. unsigned long offset;
  6266. u32 flip_mask;
  6267. int ret;
  6268. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  6269. if (ret)
  6270. goto out;
  6271. /* Offset into the new buffer for cases of shared fbs between CRTCs */
  6272. offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
  6273. ret = BEGIN_LP_RING(6);
  6274. if (ret)
  6275. goto out;
  6276. /* Can't queue multiple flips, so wait for the previous
  6277. * one to finish before executing the next.
  6278. */
  6279. if (intel_crtc->plane)
  6280. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6281. else
  6282. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6283. OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
  6284. OUT_RING(MI_NOOP);
  6285. OUT_RING(MI_DISPLAY_FLIP |
  6286. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6287. OUT_RING(fb->pitches[0]);
  6288. OUT_RING(obj->gtt_offset + offset);
  6289. OUT_RING(0); /* aux display base address, unused */
  6290. ADVANCE_LP_RING();
  6291. out:
  6292. return ret;
  6293. }
  6294. static int intel_gen3_queue_flip(struct drm_device *dev,
  6295. struct drm_crtc *crtc,
  6296. struct drm_framebuffer *fb,
  6297. struct drm_i915_gem_object *obj)
  6298. {
  6299. struct drm_i915_private *dev_priv = dev->dev_private;
  6300. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6301. unsigned long offset;
  6302. u32 flip_mask;
  6303. int ret;
  6304. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  6305. if (ret)
  6306. goto out;
  6307. /* Offset into the new buffer for cases of shared fbs between CRTCs */
  6308. offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
  6309. ret = BEGIN_LP_RING(6);
  6310. if (ret)
  6311. goto out;
  6312. if (intel_crtc->plane)
  6313. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6314. else
  6315. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6316. OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
  6317. OUT_RING(MI_NOOP);
  6318. OUT_RING(MI_DISPLAY_FLIP_I915 |
  6319. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6320. OUT_RING(fb->pitches[0]);
  6321. OUT_RING(obj->gtt_offset + offset);
  6322. OUT_RING(MI_NOOP);
  6323. ADVANCE_LP_RING();
  6324. out:
  6325. return ret;
  6326. }
  6327. static int intel_gen4_queue_flip(struct drm_device *dev,
  6328. struct drm_crtc *crtc,
  6329. struct drm_framebuffer *fb,
  6330. struct drm_i915_gem_object *obj)
  6331. {
  6332. struct drm_i915_private *dev_priv = dev->dev_private;
  6333. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6334. uint32_t pf, pipesrc;
  6335. int ret;
  6336. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  6337. if (ret)
  6338. goto out;
  6339. ret = BEGIN_LP_RING(4);
  6340. if (ret)
  6341. goto out;
  6342. /* i965+ uses the linear or tiled offsets from the
  6343. * Display Registers (which do not change across a page-flip)
  6344. * so we need only reprogram the base address.
  6345. */
  6346. OUT_RING(MI_DISPLAY_FLIP |
  6347. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6348. OUT_RING(fb->pitches[0]);
  6349. OUT_RING(obj->gtt_offset | obj->tiling_mode);
  6350. /* XXX Enabling the panel-fitter across page-flip is so far
  6351. * untested on non-native modes, so ignore it for now.
  6352. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6353. */
  6354. pf = 0;
  6355. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6356. OUT_RING(pf | pipesrc);
  6357. ADVANCE_LP_RING();
  6358. out:
  6359. return ret;
  6360. }
  6361. static int intel_gen6_queue_flip(struct drm_device *dev,
  6362. struct drm_crtc *crtc,
  6363. struct drm_framebuffer *fb,
  6364. struct drm_i915_gem_object *obj)
  6365. {
  6366. struct drm_i915_private *dev_priv = dev->dev_private;
  6367. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6368. uint32_t pf, pipesrc;
  6369. int ret;
  6370. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  6371. if (ret)
  6372. goto out;
  6373. ret = BEGIN_LP_RING(4);
  6374. if (ret)
  6375. goto out;
  6376. OUT_RING(MI_DISPLAY_FLIP |
  6377. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6378. OUT_RING(fb->pitches[0] | obj->tiling_mode);
  6379. OUT_RING(obj->gtt_offset);
  6380. pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6381. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6382. OUT_RING(pf | pipesrc);
  6383. ADVANCE_LP_RING();
  6384. out:
  6385. return ret;
  6386. }
  6387. /*
  6388. * On gen7 we currently use the blit ring because (in early silicon at least)
  6389. * the render ring doesn't give us interrpts for page flip completion, which
  6390. * means clients will hang after the first flip is queued. Fortunately the
  6391. * blit ring generates interrupts properly, so use it instead.
  6392. */
  6393. static int intel_gen7_queue_flip(struct drm_device *dev,
  6394. struct drm_crtc *crtc,
  6395. struct drm_framebuffer *fb,
  6396. struct drm_i915_gem_object *obj)
  6397. {
  6398. struct drm_i915_private *dev_priv = dev->dev_private;
  6399. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6400. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  6401. int ret;
  6402. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6403. if (ret)
  6404. goto out;
  6405. ret = intel_ring_begin(ring, 4);
  6406. if (ret)
  6407. goto out;
  6408. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
  6409. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6410. intel_ring_emit(ring, (obj->gtt_offset));
  6411. intel_ring_emit(ring, (MI_NOOP));
  6412. intel_ring_advance(ring);
  6413. out:
  6414. return ret;
  6415. }
  6416. static int intel_default_queue_flip(struct drm_device *dev,
  6417. struct drm_crtc *crtc,
  6418. struct drm_framebuffer *fb,
  6419. struct drm_i915_gem_object *obj)
  6420. {
  6421. return -ENODEV;
  6422. }
  6423. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6424. struct drm_framebuffer *fb,
  6425. struct drm_pending_vblank_event *event)
  6426. {
  6427. struct drm_device *dev = crtc->dev;
  6428. struct drm_i915_private *dev_priv = dev->dev_private;
  6429. struct intel_framebuffer *intel_fb;
  6430. struct drm_i915_gem_object *obj;
  6431. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6432. struct intel_unpin_work *work;
  6433. unsigned long flags;
  6434. int ret;
  6435. work = kzalloc(sizeof *work, GFP_KERNEL);
  6436. if (work == NULL)
  6437. return -ENOMEM;
  6438. work->event = event;
  6439. work->dev = crtc->dev;
  6440. intel_fb = to_intel_framebuffer(crtc->fb);
  6441. work->old_fb_obj = intel_fb->obj;
  6442. INIT_WORK(&work->work, intel_unpin_work_fn);
  6443. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6444. if (ret)
  6445. goto free_work;
  6446. /* We borrow the event spin lock for protecting unpin_work */
  6447. spin_lock_irqsave(&dev->event_lock, flags);
  6448. if (intel_crtc->unpin_work) {
  6449. spin_unlock_irqrestore(&dev->event_lock, flags);
  6450. kfree(work);
  6451. drm_vblank_put(dev, intel_crtc->pipe);
  6452. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6453. return -EBUSY;
  6454. }
  6455. intel_crtc->unpin_work = work;
  6456. spin_unlock_irqrestore(&dev->event_lock, flags);
  6457. intel_fb = to_intel_framebuffer(fb);
  6458. obj = intel_fb->obj;
  6459. mutex_lock(&dev->struct_mutex);
  6460. /* Reference the objects for the scheduled work. */
  6461. drm_gem_object_reference(&work->old_fb_obj->base);
  6462. drm_gem_object_reference(&obj->base);
  6463. crtc->fb = fb;
  6464. work->pending_flip_obj = obj;
  6465. work->enable_stall_check = true;
  6466. /* Block clients from rendering to the new back buffer until
  6467. * the flip occurs and the object is no longer visible.
  6468. */
  6469. atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  6470. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  6471. if (ret)
  6472. goto cleanup_pending;
  6473. intel_disable_fbc(dev);
  6474. mutex_unlock(&dev->struct_mutex);
  6475. trace_i915_flip_request(intel_crtc->plane, obj);
  6476. return 0;
  6477. cleanup_pending:
  6478. atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  6479. drm_gem_object_unreference(&work->old_fb_obj->base);
  6480. drm_gem_object_unreference(&obj->base);
  6481. mutex_unlock(&dev->struct_mutex);
  6482. spin_lock_irqsave(&dev->event_lock, flags);
  6483. intel_crtc->unpin_work = NULL;
  6484. spin_unlock_irqrestore(&dev->event_lock, flags);
  6485. drm_vblank_put(dev, intel_crtc->pipe);
  6486. free_work:
  6487. kfree(work);
  6488. return ret;
  6489. }
  6490. static void intel_sanitize_modesetting(struct drm_device *dev,
  6491. int pipe, int plane)
  6492. {
  6493. struct drm_i915_private *dev_priv = dev->dev_private;
  6494. u32 reg, val;
  6495. if (HAS_PCH_SPLIT(dev))
  6496. return;
  6497. /* Who knows what state these registers were left in by the BIOS or
  6498. * grub?
  6499. *
  6500. * If we leave the registers in a conflicting state (e.g. with the
  6501. * display plane reading from the other pipe than the one we intend
  6502. * to use) then when we attempt to teardown the active mode, we will
  6503. * not disable the pipes and planes in the correct order -- leaving
  6504. * a plane reading from a disabled pipe and possibly leading to
  6505. * undefined behaviour.
  6506. */
  6507. reg = DSPCNTR(plane);
  6508. val = I915_READ(reg);
  6509. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  6510. return;
  6511. if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
  6512. return;
  6513. /* This display plane is active and attached to the other CPU pipe. */
  6514. pipe = !pipe;
  6515. /* Disable the plane and wait for it to stop reading from the pipe. */
  6516. intel_disable_plane(dev_priv, plane, pipe);
  6517. intel_disable_pipe(dev_priv, pipe);
  6518. }
  6519. static void intel_crtc_reset(struct drm_crtc *crtc)
  6520. {
  6521. struct drm_device *dev = crtc->dev;
  6522. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6523. /* Reset flags back to the 'unknown' status so that they
  6524. * will be correctly set on the initial modeset.
  6525. */
  6526. intel_crtc->dpms_mode = -1;
  6527. /* We need to fix up any BIOS configuration that conflicts with
  6528. * our expectations.
  6529. */
  6530. intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
  6531. }
  6532. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6533. .dpms = intel_crtc_dpms,
  6534. .mode_fixup = intel_crtc_mode_fixup,
  6535. .mode_set = intel_crtc_mode_set,
  6536. .mode_set_base = intel_pipe_set_base,
  6537. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6538. .load_lut = intel_crtc_load_lut,
  6539. .disable = intel_crtc_disable,
  6540. };
  6541. static const struct drm_crtc_funcs intel_crtc_funcs = {
  6542. .reset = intel_crtc_reset,
  6543. .cursor_set = intel_crtc_cursor_set,
  6544. .cursor_move = intel_crtc_cursor_move,
  6545. .gamma_set = intel_crtc_gamma_set,
  6546. .set_config = drm_crtc_helper_set_config,
  6547. .destroy = intel_crtc_destroy,
  6548. .page_flip = intel_crtc_page_flip,
  6549. };
  6550. static void intel_crtc_init(struct drm_device *dev, int pipe)
  6551. {
  6552. drm_i915_private_t *dev_priv = dev->dev_private;
  6553. struct intel_crtc *intel_crtc;
  6554. int i;
  6555. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  6556. if (intel_crtc == NULL)
  6557. return;
  6558. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  6559. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  6560. for (i = 0; i < 256; i++) {
  6561. intel_crtc->lut_r[i] = i;
  6562. intel_crtc->lut_g[i] = i;
  6563. intel_crtc->lut_b[i] = i;
  6564. }
  6565. /* Swap pipes & planes for FBC on pre-965 */
  6566. intel_crtc->pipe = pipe;
  6567. intel_crtc->plane = pipe;
  6568. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  6569. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  6570. intel_crtc->plane = !pipe;
  6571. }
  6572. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  6573. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  6574. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  6575. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  6576. intel_crtc_reset(&intel_crtc->base);
  6577. intel_crtc->active = true; /* force the pipe off on setup_init_config */
  6578. intel_crtc->bpp = 24; /* default for pre-Ironlake */
  6579. if (HAS_PCH_SPLIT(dev)) {
  6580. if (pipe == 2 && IS_IVYBRIDGE(dev))
  6581. intel_crtc->no_pll = true;
  6582. intel_helper_funcs.prepare = ironlake_crtc_prepare;
  6583. intel_helper_funcs.commit = ironlake_crtc_commit;
  6584. } else {
  6585. intel_helper_funcs.prepare = i9xx_crtc_prepare;
  6586. intel_helper_funcs.commit = i9xx_crtc_commit;
  6587. }
  6588. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  6589. intel_crtc->busy = false;
  6590. setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
  6591. (unsigned long)intel_crtc);
  6592. }
  6593. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  6594. struct drm_file *file)
  6595. {
  6596. drm_i915_private_t *dev_priv = dev->dev_private;
  6597. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  6598. struct drm_mode_object *drmmode_obj;
  6599. struct intel_crtc *crtc;
  6600. if (!dev_priv) {
  6601. DRM_ERROR("called with no initialization\n");
  6602. return -EINVAL;
  6603. }
  6604. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  6605. DRM_MODE_OBJECT_CRTC);
  6606. if (!drmmode_obj) {
  6607. DRM_ERROR("no such CRTC id\n");
  6608. return -EINVAL;
  6609. }
  6610. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  6611. pipe_from_crtc_id->pipe = crtc->pipe;
  6612. return 0;
  6613. }
  6614. static int intel_encoder_clones(struct drm_device *dev, int type_mask)
  6615. {
  6616. struct intel_encoder *encoder;
  6617. int index_mask = 0;
  6618. int entry = 0;
  6619. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6620. if (type_mask & encoder->clone_mask)
  6621. index_mask |= (1 << entry);
  6622. entry++;
  6623. }
  6624. return index_mask;
  6625. }
  6626. static bool has_edp_a(struct drm_device *dev)
  6627. {
  6628. struct drm_i915_private *dev_priv = dev->dev_private;
  6629. if (!IS_MOBILE(dev))
  6630. return false;
  6631. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  6632. return false;
  6633. if (IS_GEN5(dev) &&
  6634. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  6635. return false;
  6636. return true;
  6637. }
  6638. static void intel_setup_outputs(struct drm_device *dev)
  6639. {
  6640. struct drm_i915_private *dev_priv = dev->dev_private;
  6641. struct intel_encoder *encoder;
  6642. bool dpd_is_edp = false;
  6643. bool has_lvds = false;
  6644. if (IS_MOBILE(dev) && !IS_I830(dev))
  6645. has_lvds = intel_lvds_init(dev);
  6646. if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
  6647. /* disable the panel fitter on everything but LVDS */
  6648. I915_WRITE(PFIT_CONTROL, 0);
  6649. }
  6650. if (HAS_PCH_SPLIT(dev)) {
  6651. dpd_is_edp = intel_dpd_is_edp(dev);
  6652. if (has_edp_a(dev))
  6653. intel_dp_init(dev, DP_A);
  6654. if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  6655. intel_dp_init(dev, PCH_DP_D);
  6656. }
  6657. intel_crt_init(dev);
  6658. if (HAS_PCH_SPLIT(dev)) {
  6659. int found;
  6660. if (I915_READ(HDMIB) & PORT_DETECTED) {
  6661. /* PCH SDVOB multiplex with HDMIB */
  6662. found = intel_sdvo_init(dev, PCH_SDVOB);
  6663. if (!found)
  6664. intel_hdmi_init(dev, HDMIB);
  6665. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  6666. intel_dp_init(dev, PCH_DP_B);
  6667. }
  6668. if (I915_READ(HDMIC) & PORT_DETECTED)
  6669. intel_hdmi_init(dev, HDMIC);
  6670. if (I915_READ(HDMID) & PORT_DETECTED)
  6671. intel_hdmi_init(dev, HDMID);
  6672. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  6673. intel_dp_init(dev, PCH_DP_C);
  6674. if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  6675. intel_dp_init(dev, PCH_DP_D);
  6676. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  6677. bool found = false;
  6678. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  6679. DRM_DEBUG_KMS("probing SDVOB\n");
  6680. found = intel_sdvo_init(dev, SDVOB);
  6681. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  6682. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  6683. intel_hdmi_init(dev, SDVOB);
  6684. }
  6685. if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
  6686. DRM_DEBUG_KMS("probing DP_B\n");
  6687. intel_dp_init(dev, DP_B);
  6688. }
  6689. }
  6690. /* Before G4X SDVOC doesn't have its own detect register */
  6691. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  6692. DRM_DEBUG_KMS("probing SDVOC\n");
  6693. found = intel_sdvo_init(dev, SDVOC);
  6694. }
  6695. if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
  6696. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  6697. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  6698. intel_hdmi_init(dev, SDVOC);
  6699. }
  6700. if (SUPPORTS_INTEGRATED_DP(dev)) {
  6701. DRM_DEBUG_KMS("probing DP_C\n");
  6702. intel_dp_init(dev, DP_C);
  6703. }
  6704. }
  6705. if (SUPPORTS_INTEGRATED_DP(dev) &&
  6706. (I915_READ(DP_D) & DP_DETECTED)) {
  6707. DRM_DEBUG_KMS("probing DP_D\n");
  6708. intel_dp_init(dev, DP_D);
  6709. }
  6710. } else if (IS_GEN2(dev))
  6711. intel_dvo_init(dev);
  6712. if (SUPPORTS_TV(dev))
  6713. intel_tv_init(dev);
  6714. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6715. encoder->base.possible_crtcs = encoder->crtc_mask;
  6716. encoder->base.possible_clones =
  6717. intel_encoder_clones(dev, encoder->clone_mask);
  6718. }
  6719. /* disable all the possible outputs/crtcs before entering KMS mode */
  6720. drm_helper_disable_unused_functions(dev);
  6721. if (HAS_PCH_SPLIT(dev))
  6722. ironlake_init_pch_refclk(dev);
  6723. }
  6724. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  6725. {
  6726. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  6727. drm_framebuffer_cleanup(fb);
  6728. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  6729. kfree(intel_fb);
  6730. }
  6731. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  6732. struct drm_file *file,
  6733. unsigned int *handle)
  6734. {
  6735. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  6736. struct drm_i915_gem_object *obj = intel_fb->obj;
  6737. return drm_gem_handle_create(file, &obj->base, handle);
  6738. }
  6739. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  6740. .destroy = intel_user_framebuffer_destroy,
  6741. .create_handle = intel_user_framebuffer_create_handle,
  6742. };
  6743. int intel_framebuffer_init(struct drm_device *dev,
  6744. struct intel_framebuffer *intel_fb,
  6745. struct drm_mode_fb_cmd2 *mode_cmd,
  6746. struct drm_i915_gem_object *obj)
  6747. {
  6748. int ret;
  6749. if (obj->tiling_mode == I915_TILING_Y)
  6750. return -EINVAL;
  6751. if (mode_cmd->pitches[0] & 63)
  6752. return -EINVAL;
  6753. switch (mode_cmd->pixel_format) {
  6754. case DRM_FORMAT_RGB332:
  6755. case DRM_FORMAT_RGB565:
  6756. case DRM_FORMAT_XRGB8888:
  6757. case DRM_FORMAT_ARGB8888:
  6758. case DRM_FORMAT_XRGB2101010:
  6759. case DRM_FORMAT_ARGB2101010:
  6760. /* RGB formats are common across chipsets */
  6761. break;
  6762. case DRM_FORMAT_YUYV:
  6763. case DRM_FORMAT_UYVY:
  6764. case DRM_FORMAT_YVYU:
  6765. case DRM_FORMAT_VYUY:
  6766. break;
  6767. default:
  6768. DRM_DEBUG_KMS("unsupported pixel format %u\n",
  6769. mode_cmd->pixel_format);
  6770. return -EINVAL;
  6771. }
  6772. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  6773. if (ret) {
  6774. DRM_ERROR("framebuffer init failed %d\n", ret);
  6775. return ret;
  6776. }
  6777. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  6778. intel_fb->obj = obj;
  6779. return 0;
  6780. }
  6781. static struct drm_framebuffer *
  6782. intel_user_framebuffer_create(struct drm_device *dev,
  6783. struct drm_file *filp,
  6784. struct drm_mode_fb_cmd2 *mode_cmd)
  6785. {
  6786. struct drm_i915_gem_object *obj;
  6787. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  6788. mode_cmd->handles[0]));
  6789. if (&obj->base == NULL)
  6790. return ERR_PTR(-ENOENT);
  6791. return intel_framebuffer_create(dev, mode_cmd, obj);
  6792. }
  6793. static const struct drm_mode_config_funcs intel_mode_funcs = {
  6794. .fb_create = intel_user_framebuffer_create,
  6795. .output_poll_changed = intel_fb_output_poll_changed,
  6796. };
  6797. static struct drm_i915_gem_object *
  6798. intel_alloc_context_page(struct drm_device *dev)
  6799. {
  6800. struct drm_i915_gem_object *ctx;
  6801. int ret;
  6802. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  6803. ctx = i915_gem_alloc_object(dev, 4096);
  6804. if (!ctx) {
  6805. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  6806. return NULL;
  6807. }
  6808. ret = i915_gem_object_pin(ctx, 4096, true);
  6809. if (ret) {
  6810. DRM_ERROR("failed to pin power context: %d\n", ret);
  6811. goto err_unref;
  6812. }
  6813. ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
  6814. if (ret) {
  6815. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  6816. goto err_unpin;
  6817. }
  6818. return ctx;
  6819. err_unpin:
  6820. i915_gem_object_unpin(ctx);
  6821. err_unref:
  6822. drm_gem_object_unreference(&ctx->base);
  6823. mutex_unlock(&dev->struct_mutex);
  6824. return NULL;
  6825. }
  6826. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  6827. {
  6828. struct drm_i915_private *dev_priv = dev->dev_private;
  6829. u16 rgvswctl;
  6830. rgvswctl = I915_READ16(MEMSWCTL);
  6831. if (rgvswctl & MEMCTL_CMD_STS) {
  6832. DRM_DEBUG("gpu busy, RCS change rejected\n");
  6833. return false; /* still busy with another command */
  6834. }
  6835. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  6836. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  6837. I915_WRITE16(MEMSWCTL, rgvswctl);
  6838. POSTING_READ16(MEMSWCTL);
  6839. rgvswctl |= MEMCTL_CMD_STS;
  6840. I915_WRITE16(MEMSWCTL, rgvswctl);
  6841. return true;
  6842. }
  6843. void ironlake_enable_drps(struct drm_device *dev)
  6844. {
  6845. struct drm_i915_private *dev_priv = dev->dev_private;
  6846. u32 rgvmodectl = I915_READ(MEMMODECTL);
  6847. u8 fmax, fmin, fstart, vstart;
  6848. /* Enable temp reporting */
  6849. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  6850. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  6851. /* 100ms RC evaluation intervals */
  6852. I915_WRITE(RCUPEI, 100000);
  6853. I915_WRITE(RCDNEI, 100000);
  6854. /* Set max/min thresholds to 90ms and 80ms respectively */
  6855. I915_WRITE(RCBMAXAVG, 90000);
  6856. I915_WRITE(RCBMINAVG, 80000);
  6857. I915_WRITE(MEMIHYST, 1);
  6858. /* Set up min, max, and cur for interrupt handling */
  6859. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  6860. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  6861. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  6862. MEMMODE_FSTART_SHIFT;
  6863. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  6864. PXVFREQ_PX_SHIFT;
  6865. dev_priv->fmax = fmax; /* IPS callback will increase this */
  6866. dev_priv->fstart = fstart;
  6867. dev_priv->max_delay = fstart;
  6868. dev_priv->min_delay = fmin;
  6869. dev_priv->cur_delay = fstart;
  6870. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  6871. fmax, fmin, fstart);
  6872. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  6873. /*
  6874. * Interrupts will be enabled in ironlake_irq_postinstall
  6875. */
  6876. I915_WRITE(VIDSTART, vstart);
  6877. POSTING_READ(VIDSTART);
  6878. rgvmodectl |= MEMMODE_SWMODE_EN;
  6879. I915_WRITE(MEMMODECTL, rgvmodectl);
  6880. if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  6881. DRM_ERROR("stuck trying to change perf mode\n");
  6882. msleep(1);
  6883. ironlake_set_drps(dev, fstart);
  6884. dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  6885. I915_READ(0x112e0);
  6886. dev_priv->last_time1 = jiffies_to_msecs(jiffies);
  6887. dev_priv->last_count2 = I915_READ(0x112f4);
  6888. getrawmonotonic(&dev_priv->last_time2);
  6889. }
  6890. void ironlake_disable_drps(struct drm_device *dev)
  6891. {
  6892. struct drm_i915_private *dev_priv = dev->dev_private;
  6893. u16 rgvswctl = I915_READ16(MEMSWCTL);
  6894. /* Ack interrupts, disable EFC interrupt */
  6895. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  6896. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  6897. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  6898. I915_WRITE(DEIIR, DE_PCU_EVENT);
  6899. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  6900. /* Go back to the starting frequency */
  6901. ironlake_set_drps(dev, dev_priv->fstart);
  6902. msleep(1);
  6903. rgvswctl |= MEMCTL_CMD_STS;
  6904. I915_WRITE(MEMSWCTL, rgvswctl);
  6905. msleep(1);
  6906. }
  6907. void gen6_set_rps(struct drm_device *dev, u8 val)
  6908. {
  6909. struct drm_i915_private *dev_priv = dev->dev_private;
  6910. u32 swreq;
  6911. swreq = (val & 0x3ff) << 25;
  6912. I915_WRITE(GEN6_RPNSWREQ, swreq);
  6913. }
  6914. void gen6_disable_rps(struct drm_device *dev)
  6915. {
  6916. struct drm_i915_private *dev_priv = dev->dev_private;
  6917. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  6918. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  6919. I915_WRITE(GEN6_PMIER, 0);
  6920. /* Complete PM interrupt masking here doesn't race with the rps work
  6921. * item again unmasking PM interrupts because that is using a different
  6922. * register (PMIMR) to mask PM interrupts. The only risk is in leaving
  6923. * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
  6924. spin_lock_irq(&dev_priv->rps_lock);
  6925. dev_priv->pm_iir = 0;
  6926. spin_unlock_irq(&dev_priv->rps_lock);
  6927. I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
  6928. }
  6929. static unsigned long intel_pxfreq(u32 vidfreq)
  6930. {
  6931. unsigned long freq;
  6932. int div = (vidfreq & 0x3f0000) >> 16;
  6933. int post = (vidfreq & 0x3000) >> 12;
  6934. int pre = (vidfreq & 0x7);
  6935. if (!pre)
  6936. return 0;
  6937. freq = ((div * 133333) / ((1<<post) * pre));
  6938. return freq;
  6939. }
  6940. void intel_init_emon(struct drm_device *dev)
  6941. {
  6942. struct drm_i915_private *dev_priv = dev->dev_private;
  6943. u32 lcfuse;
  6944. u8 pxw[16];
  6945. int i;
  6946. /* Disable to program */
  6947. I915_WRITE(ECR, 0);
  6948. POSTING_READ(ECR);
  6949. /* Program energy weights for various events */
  6950. I915_WRITE(SDEW, 0x15040d00);
  6951. I915_WRITE(CSIEW0, 0x007f0000);
  6952. I915_WRITE(CSIEW1, 0x1e220004);
  6953. I915_WRITE(CSIEW2, 0x04000004);
  6954. for (i = 0; i < 5; i++)
  6955. I915_WRITE(PEW + (i * 4), 0);
  6956. for (i = 0; i < 3; i++)
  6957. I915_WRITE(DEW + (i * 4), 0);
  6958. /* Program P-state weights to account for frequency power adjustment */
  6959. for (i = 0; i < 16; i++) {
  6960. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  6961. unsigned long freq = intel_pxfreq(pxvidfreq);
  6962. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  6963. PXVFREQ_PX_SHIFT;
  6964. unsigned long val;
  6965. val = vid * vid;
  6966. val *= (freq / 1000);
  6967. val *= 255;
  6968. val /= (127*127*900);
  6969. if (val > 0xff)
  6970. DRM_ERROR("bad pxval: %ld\n", val);
  6971. pxw[i] = val;
  6972. }
  6973. /* Render standby states get 0 weight */
  6974. pxw[14] = 0;
  6975. pxw[15] = 0;
  6976. for (i = 0; i < 4; i++) {
  6977. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  6978. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  6979. I915_WRITE(PXW + (i * 4), val);
  6980. }
  6981. /* Adjust magic regs to magic values (more experimental results) */
  6982. I915_WRITE(OGW0, 0);
  6983. I915_WRITE(OGW1, 0);
  6984. I915_WRITE(EG0, 0x00007f00);
  6985. I915_WRITE(EG1, 0x0000000e);
  6986. I915_WRITE(EG2, 0x000e0000);
  6987. I915_WRITE(EG3, 0x68000300);
  6988. I915_WRITE(EG4, 0x42000000);
  6989. I915_WRITE(EG5, 0x00140031);
  6990. I915_WRITE(EG6, 0);
  6991. I915_WRITE(EG7, 0);
  6992. for (i = 0; i < 8; i++)
  6993. I915_WRITE(PXWL + (i * 4), 0);
  6994. /* Enable PMON + select events */
  6995. I915_WRITE(ECR, 0x80000019);
  6996. lcfuse = I915_READ(LCFUSE02);
  6997. dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
  6998. }
  6999. static bool intel_enable_rc6(struct drm_device *dev)
  7000. {
  7001. /*
  7002. * Respect the kernel parameter if it is set
  7003. */
  7004. if (i915_enable_rc6 >= 0)
  7005. return i915_enable_rc6;
  7006. /*
  7007. * Disable RC6 on Ironlake
  7008. */
  7009. if (INTEL_INFO(dev)->gen == 5)
  7010. return 0;
  7011. /*
  7012. * Disable rc6 on Sandybridge
  7013. */
  7014. if (INTEL_INFO(dev)->gen == 6) {
  7015. DRM_DEBUG_DRIVER("Sandybridge: RC6 disabled\n");
  7016. return 0;
  7017. }
  7018. DRM_DEBUG_DRIVER("RC6 enabled\n");
  7019. return 1;
  7020. }
  7021. void gen6_enable_rps(struct drm_i915_private *dev_priv)
  7022. {
  7023. u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  7024. u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  7025. u32 pcu_mbox, rc6_mask = 0;
  7026. int cur_freq, min_freq, max_freq;
  7027. int i;
  7028. /* Here begins a magic sequence of register writes to enable
  7029. * auto-downclocking.
  7030. *
  7031. * Perhaps there might be some value in exposing these to
  7032. * userspace...
  7033. */
  7034. I915_WRITE(GEN6_RC_STATE, 0);
  7035. mutex_lock(&dev_priv->dev->struct_mutex);
  7036. gen6_gt_force_wake_get(dev_priv);
  7037. /* disable the counters and set deterministic thresholds */
  7038. I915_WRITE(GEN6_RC_CONTROL, 0);
  7039. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  7040. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  7041. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  7042. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  7043. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  7044. for (i = 0; i < I915_NUM_RINGS; i++)
  7045. I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
  7046. I915_WRITE(GEN6_RC_SLEEP, 0);
  7047. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  7048. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  7049. I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
  7050. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  7051. if (intel_enable_rc6(dev_priv->dev))
  7052. rc6_mask = GEN6_RC_CTL_RC6p_ENABLE |
  7053. GEN6_RC_CTL_RC6_ENABLE;
  7054. I915_WRITE(GEN6_RC_CONTROL,
  7055. rc6_mask |
  7056. GEN6_RC_CTL_EI_MODE(1) |
  7057. GEN6_RC_CTL_HW_ENABLE);
  7058. I915_WRITE(GEN6_RPNSWREQ,
  7059. GEN6_FREQUENCY(10) |
  7060. GEN6_OFFSET(0) |
  7061. GEN6_AGGRESSIVE_TURBO);
  7062. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  7063. GEN6_FREQUENCY(12));
  7064. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  7065. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  7066. 18 << 24 |
  7067. 6 << 16);
  7068. I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
  7069. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
  7070. I915_WRITE(GEN6_RP_UP_EI, 100000);
  7071. I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
  7072. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  7073. I915_WRITE(GEN6_RP_CONTROL,
  7074. GEN6_RP_MEDIA_TURBO |
  7075. GEN6_RP_MEDIA_HW_MODE |
  7076. GEN6_RP_MEDIA_IS_GFX |
  7077. GEN6_RP_ENABLE |
  7078. GEN6_RP_UP_BUSY_AVG |
  7079. GEN6_RP_DOWN_IDLE_CONT);
  7080. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  7081. 500))
  7082. DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
  7083. I915_WRITE(GEN6_PCODE_DATA, 0);
  7084. I915_WRITE(GEN6_PCODE_MAILBOX,
  7085. GEN6_PCODE_READY |
  7086. GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
  7087. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  7088. 500))
  7089. DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
  7090. min_freq = (rp_state_cap & 0xff0000) >> 16;
  7091. max_freq = rp_state_cap & 0xff;
  7092. cur_freq = (gt_perf_status & 0xff00) >> 8;
  7093. /* Check for overclock support */
  7094. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  7095. 500))
  7096. DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
  7097. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
  7098. pcu_mbox = I915_READ(GEN6_PCODE_DATA);
  7099. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  7100. 500))
  7101. DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
  7102. if (pcu_mbox & (1<<31)) { /* OC supported */
  7103. max_freq = pcu_mbox & 0xff;
  7104. DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
  7105. }
  7106. /* In units of 100MHz */
  7107. dev_priv->max_delay = max_freq;
  7108. dev_priv->min_delay = min_freq;
  7109. dev_priv->cur_delay = cur_freq;
  7110. /* requires MSI enabled */
  7111. I915_WRITE(GEN6_PMIER,
  7112. GEN6_PM_MBOX_EVENT |
  7113. GEN6_PM_THERMAL_EVENT |
  7114. GEN6_PM_RP_DOWN_TIMEOUT |
  7115. GEN6_PM_RP_UP_THRESHOLD |
  7116. GEN6_PM_RP_DOWN_THRESHOLD |
  7117. GEN6_PM_RP_UP_EI_EXPIRED |
  7118. GEN6_PM_RP_DOWN_EI_EXPIRED);
  7119. spin_lock_irq(&dev_priv->rps_lock);
  7120. WARN_ON(dev_priv->pm_iir != 0);
  7121. I915_WRITE(GEN6_PMIMR, 0);
  7122. spin_unlock_irq(&dev_priv->rps_lock);
  7123. /* enable all PM interrupts */
  7124. I915_WRITE(GEN6_PMINTRMSK, 0);
  7125. gen6_gt_force_wake_put(dev_priv);
  7126. mutex_unlock(&dev_priv->dev->struct_mutex);
  7127. }
  7128. void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
  7129. {
  7130. int min_freq = 15;
  7131. int gpu_freq, ia_freq, max_ia_freq;
  7132. int scaling_factor = 180;
  7133. max_ia_freq = cpufreq_quick_get_max(0);
  7134. /*
  7135. * Default to measured freq if none found, PCU will ensure we don't go
  7136. * over
  7137. */
  7138. if (!max_ia_freq)
  7139. max_ia_freq = tsc_khz;
  7140. /* Convert from kHz to MHz */
  7141. max_ia_freq /= 1000;
  7142. mutex_lock(&dev_priv->dev->struct_mutex);
  7143. /*
  7144. * For each potential GPU frequency, load a ring frequency we'd like
  7145. * to use for memory access. We do this by specifying the IA frequency
  7146. * the PCU should use as a reference to determine the ring frequency.
  7147. */
  7148. for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
  7149. gpu_freq--) {
  7150. int diff = dev_priv->max_delay - gpu_freq;
  7151. /*
  7152. * For GPU frequencies less than 750MHz, just use the lowest
  7153. * ring freq.
  7154. */
  7155. if (gpu_freq < min_freq)
  7156. ia_freq = 800;
  7157. else
  7158. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  7159. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  7160. I915_WRITE(GEN6_PCODE_DATA,
  7161. (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
  7162. gpu_freq);
  7163. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
  7164. GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
  7165. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
  7166. GEN6_PCODE_READY) == 0, 10)) {
  7167. DRM_ERROR("pcode write of freq table timed out\n");
  7168. continue;
  7169. }
  7170. }
  7171. mutex_unlock(&dev_priv->dev->struct_mutex);
  7172. }
  7173. static void ironlake_init_clock_gating(struct drm_device *dev)
  7174. {
  7175. struct drm_i915_private *dev_priv = dev->dev_private;
  7176. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  7177. /* Required for FBC */
  7178. dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
  7179. DPFCRUNIT_CLOCK_GATE_DISABLE |
  7180. DPFDUNIT_CLOCK_GATE_DISABLE;
  7181. /* Required for CxSR */
  7182. dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
  7183. I915_WRITE(PCH_3DCGDIS0,
  7184. MARIUNIT_CLOCK_GATE_DISABLE |
  7185. SVSMUNIT_CLOCK_GATE_DISABLE);
  7186. I915_WRITE(PCH_3DCGDIS1,
  7187. VFMUNIT_CLOCK_GATE_DISABLE);
  7188. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  7189. /*
  7190. * According to the spec the following bits should be set in
  7191. * order to enable memory self-refresh
  7192. * The bit 22/21 of 0x42004
  7193. * The bit 5 of 0x42020
  7194. * The bit 15 of 0x45000
  7195. */
  7196. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  7197. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  7198. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  7199. I915_WRITE(ILK_DSPCLK_GATE,
  7200. (I915_READ(ILK_DSPCLK_GATE) |
  7201. ILK_DPARB_CLK_GATE));
  7202. I915_WRITE(DISP_ARB_CTL,
  7203. (I915_READ(DISP_ARB_CTL) |
  7204. DISP_FBC_WM_DIS));
  7205. I915_WRITE(WM3_LP_ILK, 0);
  7206. I915_WRITE(WM2_LP_ILK, 0);
  7207. I915_WRITE(WM1_LP_ILK, 0);
  7208. /*
  7209. * Based on the document from hardware guys the following bits
  7210. * should be set unconditionally in order to enable FBC.
  7211. * The bit 22 of 0x42000
  7212. * The bit 22 of 0x42004
  7213. * The bit 7,8,9 of 0x42020.
  7214. */
  7215. if (IS_IRONLAKE_M(dev)) {
  7216. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  7217. I915_READ(ILK_DISPLAY_CHICKEN1) |
  7218. ILK_FBCQ_DIS);
  7219. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  7220. I915_READ(ILK_DISPLAY_CHICKEN2) |
  7221. ILK_DPARB_GATE);
  7222. I915_WRITE(ILK_DSPCLK_GATE,
  7223. I915_READ(ILK_DSPCLK_GATE) |
  7224. ILK_DPFC_DIS1 |
  7225. ILK_DPFC_DIS2 |
  7226. ILK_CLK_FBC);
  7227. }
  7228. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  7229. I915_READ(ILK_DISPLAY_CHICKEN2) |
  7230. ILK_ELPIN_409_SELECT);
  7231. I915_WRITE(_3D_CHICKEN2,
  7232. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  7233. _3D_CHICKEN2_WM_READ_PIPELINED);
  7234. }
  7235. static void gen6_init_clock_gating(struct drm_device *dev)
  7236. {
  7237. struct drm_i915_private *dev_priv = dev->dev_private;
  7238. int pipe;
  7239. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  7240. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  7241. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  7242. I915_READ(ILK_DISPLAY_CHICKEN2) |
  7243. ILK_ELPIN_409_SELECT);
  7244. I915_WRITE(WM3_LP_ILK, 0);
  7245. I915_WRITE(WM2_LP_ILK, 0);
  7246. I915_WRITE(WM1_LP_ILK, 0);
  7247. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  7248. * gating disable must be set. Failure to set it results in
  7249. * flickering pixels due to Z write ordering failures after
  7250. * some amount of runtime in the Mesa "fire" demo, and Unigine
  7251. * Sanctuary and Tropics, and apparently anything else with
  7252. * alpha test or pixel discard.
  7253. *
  7254. * According to the spec, bit 11 (RCCUNIT) must also be set,
  7255. * but we didn't debug actual testcases to find it out.
  7256. */
  7257. I915_WRITE(GEN6_UCGCTL2,
  7258. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  7259. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  7260. /*
  7261. * According to the spec the following bits should be
  7262. * set in order to enable memory self-refresh and fbc:
  7263. * The bit21 and bit22 of 0x42000
  7264. * The bit21 and bit22 of 0x42004
  7265. * The bit5 and bit7 of 0x42020
  7266. * The bit14 of 0x70180
  7267. * The bit14 of 0x71180
  7268. */
  7269. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  7270. I915_READ(ILK_DISPLAY_CHICKEN1) |
  7271. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  7272. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  7273. I915_READ(ILK_DISPLAY_CHICKEN2) |
  7274. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  7275. I915_WRITE(ILK_DSPCLK_GATE,
  7276. I915_READ(ILK_DSPCLK_GATE) |
  7277. ILK_DPARB_CLK_GATE |
  7278. ILK_DPFD_CLK_GATE);
  7279. for_each_pipe(pipe) {
  7280. I915_WRITE(DSPCNTR(pipe),
  7281. I915_READ(DSPCNTR(pipe)) |
  7282. DISPPLANE_TRICKLE_FEED_DISABLE);
  7283. intel_flush_display_plane(dev_priv, pipe);
  7284. }
  7285. }
  7286. static void ivybridge_init_clock_gating(struct drm_device *dev)
  7287. {
  7288. struct drm_i915_private *dev_priv = dev->dev_private;
  7289. int pipe;
  7290. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  7291. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  7292. I915_WRITE(WM3_LP_ILK, 0);
  7293. I915_WRITE(WM2_LP_ILK, 0);
  7294. I915_WRITE(WM1_LP_ILK, 0);
  7295. I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
  7296. I915_WRITE(IVB_CHICKEN3,
  7297. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  7298. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  7299. for_each_pipe(pipe) {
  7300. I915_WRITE(DSPCNTR(pipe),
  7301. I915_READ(DSPCNTR(pipe)) |
  7302. DISPPLANE_TRICKLE_FEED_DISABLE);
  7303. intel_flush_display_plane(dev_priv, pipe);
  7304. }
  7305. }
  7306. static void g4x_init_clock_gating(struct drm_device *dev)
  7307. {
  7308. struct drm_i915_private *dev_priv = dev->dev_private;
  7309. uint32_t dspclk_gate;
  7310. I915_WRITE(RENCLK_GATE_D1, 0);
  7311. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  7312. GS_UNIT_CLOCK_GATE_DISABLE |
  7313. CL_UNIT_CLOCK_GATE_DISABLE);
  7314. I915_WRITE(RAMCLK_GATE_D, 0);
  7315. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  7316. OVRUNIT_CLOCK_GATE_DISABLE |
  7317. OVCUNIT_CLOCK_GATE_DISABLE;
  7318. if (IS_GM45(dev))
  7319. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  7320. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  7321. }
  7322. static void crestline_init_clock_gating(struct drm_device *dev)
  7323. {
  7324. struct drm_i915_private *dev_priv = dev->dev_private;
  7325. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  7326. I915_WRITE(RENCLK_GATE_D2, 0);
  7327. I915_WRITE(DSPCLK_GATE_D, 0);
  7328. I915_WRITE(RAMCLK_GATE_D, 0);
  7329. I915_WRITE16(DEUC, 0);
  7330. }
  7331. static void broadwater_init_clock_gating(struct drm_device *dev)
  7332. {
  7333. struct drm_i915_private *dev_priv = dev->dev_private;
  7334. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  7335. I965_RCC_CLOCK_GATE_DISABLE |
  7336. I965_RCPB_CLOCK_GATE_DISABLE |
  7337. I965_ISC_CLOCK_GATE_DISABLE |
  7338. I965_FBC_CLOCK_GATE_DISABLE);
  7339. I915_WRITE(RENCLK_GATE_D2, 0);
  7340. }
  7341. static void gen3_init_clock_gating(struct drm_device *dev)
  7342. {
  7343. struct drm_i915_private *dev_priv = dev->dev_private;
  7344. u32 dstate = I915_READ(D_STATE);
  7345. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  7346. DSTATE_DOT_CLOCK_GATING;
  7347. I915_WRITE(D_STATE, dstate);
  7348. }
  7349. static void i85x_init_clock_gating(struct drm_device *dev)
  7350. {
  7351. struct drm_i915_private *dev_priv = dev->dev_private;
  7352. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  7353. }
  7354. static void i830_init_clock_gating(struct drm_device *dev)
  7355. {
  7356. struct drm_i915_private *dev_priv = dev->dev_private;
  7357. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  7358. }
  7359. static void ibx_init_clock_gating(struct drm_device *dev)
  7360. {
  7361. struct drm_i915_private *dev_priv = dev->dev_private;
  7362. /*
  7363. * On Ibex Peak and Cougar Point, we need to disable clock
  7364. * gating for the panel power sequencer or it will fail to
  7365. * start up when no ports are active.
  7366. */
  7367. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  7368. }
  7369. static void cpt_init_clock_gating(struct drm_device *dev)
  7370. {
  7371. struct drm_i915_private *dev_priv = dev->dev_private;
  7372. int pipe;
  7373. /*
  7374. * On Ibex Peak and Cougar Point, we need to disable clock
  7375. * gating for the panel power sequencer or it will fail to
  7376. * start up when no ports are active.
  7377. */
  7378. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  7379. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  7380. DPLS_EDP_PPS_FIX_DIS);
  7381. /* Without this, mode sets may fail silently on FDI */
  7382. for_each_pipe(pipe)
  7383. I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
  7384. }
  7385. static void ironlake_teardown_rc6(struct drm_device *dev)
  7386. {
  7387. struct drm_i915_private *dev_priv = dev->dev_private;
  7388. if (dev_priv->renderctx) {
  7389. i915_gem_object_unpin(dev_priv->renderctx);
  7390. drm_gem_object_unreference(&dev_priv->renderctx->base);
  7391. dev_priv->renderctx = NULL;
  7392. }
  7393. if (dev_priv->pwrctx) {
  7394. i915_gem_object_unpin(dev_priv->pwrctx);
  7395. drm_gem_object_unreference(&dev_priv->pwrctx->base);
  7396. dev_priv->pwrctx = NULL;
  7397. }
  7398. }
  7399. static void ironlake_disable_rc6(struct drm_device *dev)
  7400. {
  7401. struct drm_i915_private *dev_priv = dev->dev_private;
  7402. if (I915_READ(PWRCTXA)) {
  7403. /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
  7404. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
  7405. wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
  7406. 50);
  7407. I915_WRITE(PWRCTXA, 0);
  7408. POSTING_READ(PWRCTXA);
  7409. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  7410. POSTING_READ(RSTDBYCTL);
  7411. }
  7412. ironlake_teardown_rc6(dev);
  7413. }
  7414. static int ironlake_setup_rc6(struct drm_device *dev)
  7415. {
  7416. struct drm_i915_private *dev_priv = dev->dev_private;
  7417. if (dev_priv->renderctx == NULL)
  7418. dev_priv->renderctx = intel_alloc_context_page(dev);
  7419. if (!dev_priv->renderctx)
  7420. return -ENOMEM;
  7421. if (dev_priv->pwrctx == NULL)
  7422. dev_priv->pwrctx = intel_alloc_context_page(dev);
  7423. if (!dev_priv->pwrctx) {
  7424. ironlake_teardown_rc6(dev);
  7425. return -ENOMEM;
  7426. }
  7427. return 0;
  7428. }
  7429. void ironlake_enable_rc6(struct drm_device *dev)
  7430. {
  7431. struct drm_i915_private *dev_priv = dev->dev_private;
  7432. int ret;
  7433. /* rc6 disabled by default due to repeated reports of hanging during
  7434. * boot and resume.
  7435. */
  7436. if (!intel_enable_rc6(dev))
  7437. return;
  7438. mutex_lock(&dev->struct_mutex);
  7439. ret = ironlake_setup_rc6(dev);
  7440. if (ret) {
  7441. mutex_unlock(&dev->struct_mutex);
  7442. return;
  7443. }
  7444. /*
  7445. * GPU can automatically power down the render unit if given a page
  7446. * to save state.
  7447. */
  7448. ret = BEGIN_LP_RING(6);
  7449. if (ret) {
  7450. ironlake_teardown_rc6(dev);
  7451. mutex_unlock(&dev->struct_mutex);
  7452. return;
  7453. }
  7454. OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
  7455. OUT_RING(MI_SET_CONTEXT);
  7456. OUT_RING(dev_priv->renderctx->gtt_offset |
  7457. MI_MM_SPACE_GTT |
  7458. MI_SAVE_EXT_STATE_EN |
  7459. MI_RESTORE_EXT_STATE_EN |
  7460. MI_RESTORE_INHIBIT);
  7461. OUT_RING(MI_SUSPEND_FLUSH);
  7462. OUT_RING(MI_NOOP);
  7463. OUT_RING(MI_FLUSH);
  7464. ADVANCE_LP_RING();
  7465. /*
  7466. * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
  7467. * does an implicit flush, combined with MI_FLUSH above, it should be
  7468. * safe to assume that renderctx is valid
  7469. */
  7470. ret = intel_wait_ring_idle(LP_RING(dev_priv));
  7471. if (ret) {
  7472. DRM_ERROR("failed to enable ironlake power power savings\n");
  7473. ironlake_teardown_rc6(dev);
  7474. mutex_unlock(&dev->struct_mutex);
  7475. return;
  7476. }
  7477. I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
  7478. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  7479. mutex_unlock(&dev->struct_mutex);
  7480. }
  7481. void intel_init_clock_gating(struct drm_device *dev)
  7482. {
  7483. struct drm_i915_private *dev_priv = dev->dev_private;
  7484. dev_priv->display.init_clock_gating(dev);
  7485. if (dev_priv->display.init_pch_clock_gating)
  7486. dev_priv->display.init_pch_clock_gating(dev);
  7487. }
  7488. /* Set up chip specific display functions */
  7489. static void intel_init_display(struct drm_device *dev)
  7490. {
  7491. struct drm_i915_private *dev_priv = dev->dev_private;
  7492. /* We always want a DPMS function */
  7493. if (HAS_PCH_SPLIT(dev)) {
  7494. dev_priv->display.dpms = ironlake_crtc_dpms;
  7495. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  7496. dev_priv->display.update_plane = ironlake_update_plane;
  7497. } else {
  7498. dev_priv->display.dpms = i9xx_crtc_dpms;
  7499. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7500. dev_priv->display.update_plane = i9xx_update_plane;
  7501. }
  7502. if (I915_HAS_FBC(dev)) {
  7503. if (HAS_PCH_SPLIT(dev)) {
  7504. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  7505. dev_priv->display.enable_fbc = ironlake_enable_fbc;
  7506. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  7507. } else if (IS_GM45(dev)) {
  7508. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  7509. dev_priv->display.enable_fbc = g4x_enable_fbc;
  7510. dev_priv->display.disable_fbc = g4x_disable_fbc;
  7511. } else if (IS_CRESTLINE(dev)) {
  7512. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  7513. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  7514. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  7515. }
  7516. /* 855GM needs testing */
  7517. }
  7518. /* Returns the core display clock speed */
  7519. if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  7520. dev_priv->display.get_display_clock_speed =
  7521. i945_get_display_clock_speed;
  7522. else if (IS_I915G(dev))
  7523. dev_priv->display.get_display_clock_speed =
  7524. i915_get_display_clock_speed;
  7525. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  7526. dev_priv->display.get_display_clock_speed =
  7527. i9xx_misc_get_display_clock_speed;
  7528. else if (IS_I915GM(dev))
  7529. dev_priv->display.get_display_clock_speed =
  7530. i915gm_get_display_clock_speed;
  7531. else if (IS_I865G(dev))
  7532. dev_priv->display.get_display_clock_speed =
  7533. i865_get_display_clock_speed;
  7534. else if (IS_I85X(dev))
  7535. dev_priv->display.get_display_clock_speed =
  7536. i855_get_display_clock_speed;
  7537. else /* 852, 830 */
  7538. dev_priv->display.get_display_clock_speed =
  7539. i830_get_display_clock_speed;
  7540. /* For FIFO watermark updates */
  7541. if (HAS_PCH_SPLIT(dev)) {
  7542. dev_priv->display.force_wake_get = __gen6_gt_force_wake_get;
  7543. dev_priv->display.force_wake_put = __gen6_gt_force_wake_put;
  7544. /* IVB configs may use multi-threaded forcewake */
  7545. if (IS_IVYBRIDGE(dev)) {
  7546. u32 ecobus;
  7547. /* A small trick here - if the bios hasn't configured MT forcewake,
  7548. * and if the device is in RC6, then force_wake_mt_get will not wake
  7549. * the device and the ECOBUS read will return zero. Which will be
  7550. * (correctly) interpreted by the test below as MT forcewake being
  7551. * disabled.
  7552. */
  7553. mutex_lock(&dev->struct_mutex);
  7554. __gen6_gt_force_wake_mt_get(dev_priv);
  7555. ecobus = I915_READ_NOTRACE(ECOBUS);
  7556. __gen6_gt_force_wake_mt_put(dev_priv);
  7557. mutex_unlock(&dev->struct_mutex);
  7558. if (ecobus & FORCEWAKE_MT_ENABLE) {
  7559. DRM_DEBUG_KMS("Using MT version of forcewake\n");
  7560. dev_priv->display.force_wake_get =
  7561. __gen6_gt_force_wake_mt_get;
  7562. dev_priv->display.force_wake_put =
  7563. __gen6_gt_force_wake_mt_put;
  7564. }
  7565. }
  7566. if (HAS_PCH_IBX(dev))
  7567. dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
  7568. else if (HAS_PCH_CPT(dev))
  7569. dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
  7570. if (IS_GEN5(dev)) {
  7571. if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
  7572. dev_priv->display.update_wm = ironlake_update_wm;
  7573. else {
  7574. DRM_DEBUG_KMS("Failed to get proper latency. "
  7575. "Disable CxSR\n");
  7576. dev_priv->display.update_wm = NULL;
  7577. }
  7578. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  7579. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  7580. dev_priv->display.write_eld = ironlake_write_eld;
  7581. } else if (IS_GEN6(dev)) {
  7582. if (SNB_READ_WM0_LATENCY()) {
  7583. dev_priv->display.update_wm = sandybridge_update_wm;
  7584. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  7585. } else {
  7586. DRM_DEBUG_KMS("Failed to read display plane latency. "
  7587. "Disable CxSR\n");
  7588. dev_priv->display.update_wm = NULL;
  7589. }
  7590. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  7591. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  7592. dev_priv->display.write_eld = ironlake_write_eld;
  7593. } else if (IS_IVYBRIDGE(dev)) {
  7594. /* FIXME: detect B0+ stepping and use auto training */
  7595. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  7596. if (SNB_READ_WM0_LATENCY()) {
  7597. dev_priv->display.update_wm = sandybridge_update_wm;
  7598. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  7599. } else {
  7600. DRM_DEBUG_KMS("Failed to read display plane latency. "
  7601. "Disable CxSR\n");
  7602. dev_priv->display.update_wm = NULL;
  7603. }
  7604. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  7605. dev_priv->display.write_eld = ironlake_write_eld;
  7606. } else
  7607. dev_priv->display.update_wm = NULL;
  7608. } else if (IS_PINEVIEW(dev)) {
  7609. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  7610. dev_priv->is_ddr3,
  7611. dev_priv->fsb_freq,
  7612. dev_priv->mem_freq)) {
  7613. DRM_INFO("failed to find known CxSR latency "
  7614. "(found ddr%s fsb freq %d, mem freq %d), "
  7615. "disabling CxSR\n",
  7616. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  7617. dev_priv->fsb_freq, dev_priv->mem_freq);
  7618. /* Disable CxSR and never update its watermark again */
  7619. pineview_disable_cxsr(dev);
  7620. dev_priv->display.update_wm = NULL;
  7621. } else
  7622. dev_priv->display.update_wm = pineview_update_wm;
  7623. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  7624. } else if (IS_G4X(dev)) {
  7625. dev_priv->display.write_eld = g4x_write_eld;
  7626. dev_priv->display.update_wm = g4x_update_wm;
  7627. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  7628. } else if (IS_GEN4(dev)) {
  7629. dev_priv->display.update_wm = i965_update_wm;
  7630. if (IS_CRESTLINE(dev))
  7631. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  7632. else if (IS_BROADWATER(dev))
  7633. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  7634. } else if (IS_GEN3(dev)) {
  7635. dev_priv->display.update_wm = i9xx_update_wm;
  7636. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  7637. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  7638. } else if (IS_I865G(dev)) {
  7639. dev_priv->display.update_wm = i830_update_wm;
  7640. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  7641. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  7642. } else if (IS_I85X(dev)) {
  7643. dev_priv->display.update_wm = i9xx_update_wm;
  7644. dev_priv->display.get_fifo_size = i85x_get_fifo_size;
  7645. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  7646. } else {
  7647. dev_priv->display.update_wm = i830_update_wm;
  7648. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  7649. if (IS_845G(dev))
  7650. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  7651. else
  7652. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  7653. }
  7654. /* Default just returns -ENODEV to indicate unsupported */
  7655. dev_priv->display.queue_flip = intel_default_queue_flip;
  7656. switch (INTEL_INFO(dev)->gen) {
  7657. case 2:
  7658. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  7659. break;
  7660. case 3:
  7661. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  7662. break;
  7663. case 4:
  7664. case 5:
  7665. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  7666. break;
  7667. case 6:
  7668. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  7669. break;
  7670. case 7:
  7671. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  7672. break;
  7673. }
  7674. }
  7675. /*
  7676. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  7677. * resume, or other times. This quirk makes sure that's the case for
  7678. * affected systems.
  7679. */
  7680. static void quirk_pipea_force(struct drm_device *dev)
  7681. {
  7682. struct drm_i915_private *dev_priv = dev->dev_private;
  7683. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  7684. DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
  7685. }
  7686. /*
  7687. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  7688. */
  7689. static void quirk_ssc_force_disable(struct drm_device *dev)
  7690. {
  7691. struct drm_i915_private *dev_priv = dev->dev_private;
  7692. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  7693. }
  7694. struct intel_quirk {
  7695. int device;
  7696. int subsystem_vendor;
  7697. int subsystem_device;
  7698. void (*hook)(struct drm_device *dev);
  7699. };
  7700. struct intel_quirk intel_quirks[] = {
  7701. /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
  7702. { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
  7703. /* HP Mini needs pipe A force quirk (LP: #322104) */
  7704. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  7705. /* Thinkpad R31 needs pipe A force quirk */
  7706. { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
  7707. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  7708. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  7709. /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
  7710. { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
  7711. /* ThinkPad X40 needs pipe A force quirk */
  7712. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  7713. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  7714. /* 855 & before need to leave pipe A & dpll A up */
  7715. { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7716. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7717. /* Lenovo U160 cannot use SSC on LVDS */
  7718. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  7719. /* Sony Vaio Y cannot use SSC on LVDS */
  7720. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  7721. };
  7722. static void intel_init_quirks(struct drm_device *dev)
  7723. {
  7724. struct pci_dev *d = dev->pdev;
  7725. int i;
  7726. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  7727. struct intel_quirk *q = &intel_quirks[i];
  7728. if (d->device == q->device &&
  7729. (d->subsystem_vendor == q->subsystem_vendor ||
  7730. q->subsystem_vendor == PCI_ANY_ID) &&
  7731. (d->subsystem_device == q->subsystem_device ||
  7732. q->subsystem_device == PCI_ANY_ID))
  7733. q->hook(dev);
  7734. }
  7735. }
  7736. /* Disable the VGA plane that we never use */
  7737. static void i915_disable_vga(struct drm_device *dev)
  7738. {
  7739. struct drm_i915_private *dev_priv = dev->dev_private;
  7740. u8 sr1;
  7741. u32 vga_reg;
  7742. if (HAS_PCH_SPLIT(dev))
  7743. vga_reg = CPU_VGACNTRL;
  7744. else
  7745. vga_reg = VGACNTRL;
  7746. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  7747. outb(1, VGA_SR_INDEX);
  7748. sr1 = inb(VGA_SR_DATA);
  7749. outb(sr1 | 1<<5, VGA_SR_DATA);
  7750. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  7751. udelay(300);
  7752. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  7753. POSTING_READ(vga_reg);
  7754. }
  7755. void intel_modeset_init(struct drm_device *dev)
  7756. {
  7757. struct drm_i915_private *dev_priv = dev->dev_private;
  7758. int i, ret;
  7759. drm_mode_config_init(dev);
  7760. dev->mode_config.min_width = 0;
  7761. dev->mode_config.min_height = 0;
  7762. dev->mode_config.funcs = (void *)&intel_mode_funcs;
  7763. intel_init_quirks(dev);
  7764. intel_init_display(dev);
  7765. if (IS_GEN2(dev)) {
  7766. dev->mode_config.max_width = 2048;
  7767. dev->mode_config.max_height = 2048;
  7768. } else if (IS_GEN3(dev)) {
  7769. dev->mode_config.max_width = 4096;
  7770. dev->mode_config.max_height = 4096;
  7771. } else {
  7772. dev->mode_config.max_width = 8192;
  7773. dev->mode_config.max_height = 8192;
  7774. }
  7775. dev->mode_config.fb_base = dev->agp->base;
  7776. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  7777. dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
  7778. for (i = 0; i < dev_priv->num_pipe; i++) {
  7779. intel_crtc_init(dev, i);
  7780. ret = intel_plane_init(dev, i);
  7781. if (ret)
  7782. DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
  7783. }
  7784. /* Just disable it once at startup */
  7785. i915_disable_vga(dev);
  7786. intel_setup_outputs(dev);
  7787. intel_init_clock_gating(dev);
  7788. if (IS_IRONLAKE_M(dev)) {
  7789. ironlake_enable_drps(dev);
  7790. intel_init_emon(dev);
  7791. }
  7792. if (IS_GEN6(dev) || IS_GEN7(dev)) {
  7793. gen6_enable_rps(dev_priv);
  7794. gen6_update_ring_freq(dev_priv);
  7795. }
  7796. INIT_WORK(&dev_priv->idle_work, intel_idle_update);
  7797. setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
  7798. (unsigned long)dev);
  7799. }
  7800. void intel_modeset_gem_init(struct drm_device *dev)
  7801. {
  7802. if (IS_IRONLAKE_M(dev))
  7803. ironlake_enable_rc6(dev);
  7804. intel_setup_overlay(dev);
  7805. }
  7806. void intel_modeset_cleanup(struct drm_device *dev)
  7807. {
  7808. struct drm_i915_private *dev_priv = dev->dev_private;
  7809. struct drm_crtc *crtc;
  7810. struct intel_crtc *intel_crtc;
  7811. drm_kms_helper_poll_fini(dev);
  7812. mutex_lock(&dev->struct_mutex);
  7813. intel_unregister_dsm_handler();
  7814. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  7815. /* Skip inactive CRTCs */
  7816. if (!crtc->fb)
  7817. continue;
  7818. intel_crtc = to_intel_crtc(crtc);
  7819. intel_increase_pllclock(crtc);
  7820. }
  7821. intel_disable_fbc(dev);
  7822. if (IS_IRONLAKE_M(dev))
  7823. ironlake_disable_drps(dev);
  7824. if (IS_GEN6(dev) || IS_GEN7(dev))
  7825. gen6_disable_rps(dev);
  7826. if (IS_IRONLAKE_M(dev))
  7827. ironlake_disable_rc6(dev);
  7828. mutex_unlock(&dev->struct_mutex);
  7829. /* Disable the irq before mode object teardown, for the irq might
  7830. * enqueue unpin/hotplug work. */
  7831. drm_irq_uninstall(dev);
  7832. cancel_work_sync(&dev_priv->hotplug_work);
  7833. cancel_work_sync(&dev_priv->rps_work);
  7834. /* flush any delayed tasks or pending work */
  7835. flush_scheduled_work();
  7836. /* Shut off idle work before the crtcs get freed. */
  7837. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  7838. intel_crtc = to_intel_crtc(crtc);
  7839. del_timer_sync(&intel_crtc->idle_timer);
  7840. }
  7841. del_timer_sync(&dev_priv->idle_timer);
  7842. cancel_work_sync(&dev_priv->idle_work);
  7843. drm_mode_config_cleanup(dev);
  7844. }
  7845. /*
  7846. * Return which encoder is currently attached for connector.
  7847. */
  7848. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  7849. {
  7850. return &intel_attached_encoder(connector)->base;
  7851. }
  7852. void intel_connector_attach_encoder(struct intel_connector *connector,
  7853. struct intel_encoder *encoder)
  7854. {
  7855. connector->encoder = encoder;
  7856. drm_mode_connector_attach_encoder(&connector->base,
  7857. &encoder->base);
  7858. }
  7859. /*
  7860. * set vga decode state - true == enable VGA decode
  7861. */
  7862. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  7863. {
  7864. struct drm_i915_private *dev_priv = dev->dev_private;
  7865. u16 gmch_ctrl;
  7866. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  7867. if (state)
  7868. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  7869. else
  7870. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  7871. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  7872. return 0;
  7873. }
  7874. #ifdef CONFIG_DEBUG_FS
  7875. #include <linux/seq_file.h>
  7876. struct intel_display_error_state {
  7877. struct intel_cursor_error_state {
  7878. u32 control;
  7879. u32 position;
  7880. u32 base;
  7881. u32 size;
  7882. } cursor[2];
  7883. struct intel_pipe_error_state {
  7884. u32 conf;
  7885. u32 source;
  7886. u32 htotal;
  7887. u32 hblank;
  7888. u32 hsync;
  7889. u32 vtotal;
  7890. u32 vblank;
  7891. u32 vsync;
  7892. } pipe[2];
  7893. struct intel_plane_error_state {
  7894. u32 control;
  7895. u32 stride;
  7896. u32 size;
  7897. u32 pos;
  7898. u32 addr;
  7899. u32 surface;
  7900. u32 tile_offset;
  7901. } plane[2];
  7902. };
  7903. struct intel_display_error_state *
  7904. intel_display_capture_error_state(struct drm_device *dev)
  7905. {
  7906. drm_i915_private_t *dev_priv = dev->dev_private;
  7907. struct intel_display_error_state *error;
  7908. int i;
  7909. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  7910. if (error == NULL)
  7911. return NULL;
  7912. for (i = 0; i < 2; i++) {
  7913. error->cursor[i].control = I915_READ(CURCNTR(i));
  7914. error->cursor[i].position = I915_READ(CURPOS(i));
  7915. error->cursor[i].base = I915_READ(CURBASE(i));
  7916. error->plane[i].control = I915_READ(DSPCNTR(i));
  7917. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  7918. error->plane[i].size = I915_READ(DSPSIZE(i));
  7919. error->plane[i].pos = I915_READ(DSPPOS(i));
  7920. error->plane[i].addr = I915_READ(DSPADDR(i));
  7921. if (INTEL_INFO(dev)->gen >= 4) {
  7922. error->plane[i].surface = I915_READ(DSPSURF(i));
  7923. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  7924. }
  7925. error->pipe[i].conf = I915_READ(PIPECONF(i));
  7926. error->pipe[i].source = I915_READ(PIPESRC(i));
  7927. error->pipe[i].htotal = I915_READ(HTOTAL(i));
  7928. error->pipe[i].hblank = I915_READ(HBLANK(i));
  7929. error->pipe[i].hsync = I915_READ(HSYNC(i));
  7930. error->pipe[i].vtotal = I915_READ(VTOTAL(i));
  7931. error->pipe[i].vblank = I915_READ(VBLANK(i));
  7932. error->pipe[i].vsync = I915_READ(VSYNC(i));
  7933. }
  7934. return error;
  7935. }
  7936. void
  7937. intel_display_print_error_state(struct seq_file *m,
  7938. struct drm_device *dev,
  7939. struct intel_display_error_state *error)
  7940. {
  7941. int i;
  7942. for (i = 0; i < 2; i++) {
  7943. seq_printf(m, "Pipe [%d]:\n", i);
  7944. seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  7945. seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
  7946. seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  7947. seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  7948. seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  7949. seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  7950. seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  7951. seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  7952. seq_printf(m, "Plane [%d]:\n", i);
  7953. seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
  7954. seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  7955. seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
  7956. seq_printf(m, " POS: %08x\n", error->plane[i].pos);
  7957. seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  7958. if (INTEL_INFO(dev)->gen >= 4) {
  7959. seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
  7960. seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  7961. }
  7962. seq_printf(m, "Cursor [%d]:\n", i);
  7963. seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  7964. seq_printf(m, " POS: %08x\n", error->cursor[i].position);
  7965. seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
  7966. }
  7967. }
  7968. #endif