inode.c 24 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048
  1. /*
  2. * hugetlbpage-backed filesystem. Based on ramfs.
  3. *
  4. * William Irwin, 2002
  5. *
  6. * Copyright (C) 2002 Linus Torvalds.
  7. */
  8. #include <linux/module.h>
  9. #include <linux/thread_info.h>
  10. #include <asm/current.h>
  11. #include <linux/sched.h> /* remove ASAP */
  12. #include <linux/fs.h>
  13. #include <linux/mount.h>
  14. #include <linux/file.h>
  15. #include <linux/kernel.h>
  16. #include <linux/writeback.h>
  17. #include <linux/pagemap.h>
  18. #include <linux/highmem.h>
  19. #include <linux/init.h>
  20. #include <linux/string.h>
  21. #include <linux/capability.h>
  22. #include <linux/ctype.h>
  23. #include <linux/backing-dev.h>
  24. #include <linux/hugetlb.h>
  25. #include <linux/pagevec.h>
  26. #include <linux/parser.h>
  27. #include <linux/mman.h>
  28. #include <linux/slab.h>
  29. #include <linux/dnotify.h>
  30. #include <linux/statfs.h>
  31. #include <linux/security.h>
  32. #include <asm/uaccess.h>
  33. /* some random number */
  34. #define HUGETLBFS_MAGIC 0x958458f6
  35. static const struct super_operations hugetlbfs_ops;
  36. static const struct address_space_operations hugetlbfs_aops;
  37. const struct file_operations hugetlbfs_file_operations;
  38. static const struct inode_operations hugetlbfs_dir_inode_operations;
  39. static const struct inode_operations hugetlbfs_inode_operations;
  40. static struct backing_dev_info hugetlbfs_backing_dev_info = {
  41. .ra_pages = 0, /* No readahead */
  42. .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
  43. };
  44. int sysctl_hugetlb_shm_group;
  45. enum {
  46. Opt_size, Opt_nr_inodes,
  47. Opt_mode, Opt_uid, Opt_gid,
  48. Opt_pagesize,
  49. Opt_err,
  50. };
  51. static const match_table_t tokens = {
  52. {Opt_size, "size=%s"},
  53. {Opt_nr_inodes, "nr_inodes=%s"},
  54. {Opt_mode, "mode=%o"},
  55. {Opt_uid, "uid=%u"},
  56. {Opt_gid, "gid=%u"},
  57. {Opt_pagesize, "pagesize=%s"},
  58. {Opt_err, NULL},
  59. };
  60. static void huge_pagevec_release(struct pagevec *pvec)
  61. {
  62. int i;
  63. for (i = 0; i < pagevec_count(pvec); ++i)
  64. put_page(pvec->pages[i]);
  65. pagevec_reinit(pvec);
  66. }
  67. static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
  68. {
  69. struct inode *inode = file->f_path.dentry->d_inode;
  70. loff_t len, vma_len;
  71. int ret;
  72. struct hstate *h = hstate_file(file);
  73. /*
  74. * vma address alignment (but not the pgoff alignment) has
  75. * already been checked by prepare_hugepage_range. If you add
  76. * any error returns here, do so after setting VM_HUGETLB, so
  77. * is_vm_hugetlb_page tests below unmap_region go the right
  78. * way when do_mmap_pgoff unwinds (may be important on powerpc
  79. * and ia64).
  80. */
  81. vma->vm_flags |= VM_HUGETLB | VM_RESERVED;
  82. vma->vm_ops = &hugetlb_vm_ops;
  83. if (vma->vm_pgoff & ~(huge_page_mask(h) >> PAGE_SHIFT))
  84. return -EINVAL;
  85. vma_len = (loff_t)(vma->vm_end - vma->vm_start);
  86. mutex_lock(&inode->i_mutex);
  87. file_accessed(file);
  88. ret = -ENOMEM;
  89. len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
  90. if (hugetlb_reserve_pages(inode,
  91. vma->vm_pgoff >> huge_page_order(h),
  92. len >> huge_page_shift(h), vma,
  93. vma->vm_flags))
  94. goto out;
  95. ret = 0;
  96. hugetlb_prefault_arch_hook(vma->vm_mm);
  97. if (vma->vm_flags & VM_WRITE && inode->i_size < len)
  98. inode->i_size = len;
  99. out:
  100. mutex_unlock(&inode->i_mutex);
  101. return ret;
  102. }
  103. /*
  104. * Called under down_write(mmap_sem).
  105. */
  106. #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
  107. static unsigned long
  108. hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
  109. unsigned long len, unsigned long pgoff, unsigned long flags)
  110. {
  111. struct mm_struct *mm = current->mm;
  112. struct vm_area_struct *vma;
  113. unsigned long start_addr;
  114. struct hstate *h = hstate_file(file);
  115. if (len & ~huge_page_mask(h))
  116. return -EINVAL;
  117. if (len > TASK_SIZE)
  118. return -ENOMEM;
  119. if (flags & MAP_FIXED) {
  120. if (prepare_hugepage_range(file, addr, len))
  121. return -EINVAL;
  122. return addr;
  123. }
  124. if (addr) {
  125. addr = ALIGN(addr, huge_page_size(h));
  126. vma = find_vma(mm, addr);
  127. if (TASK_SIZE - len >= addr &&
  128. (!vma || addr + len <= vma->vm_start))
  129. return addr;
  130. }
  131. start_addr = mm->free_area_cache;
  132. if (len <= mm->cached_hole_size)
  133. start_addr = TASK_UNMAPPED_BASE;
  134. full_search:
  135. addr = ALIGN(start_addr, huge_page_size(h));
  136. for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
  137. /* At this point: (!vma || addr < vma->vm_end). */
  138. if (TASK_SIZE - len < addr) {
  139. /*
  140. * Start a new search - just in case we missed
  141. * some holes.
  142. */
  143. if (start_addr != TASK_UNMAPPED_BASE) {
  144. start_addr = TASK_UNMAPPED_BASE;
  145. goto full_search;
  146. }
  147. return -ENOMEM;
  148. }
  149. if (!vma || addr + len <= vma->vm_start)
  150. return addr;
  151. addr = ALIGN(vma->vm_end, huge_page_size(h));
  152. }
  153. }
  154. #endif
  155. static int
  156. hugetlbfs_read_actor(struct page *page, unsigned long offset,
  157. char __user *buf, unsigned long count,
  158. unsigned long size)
  159. {
  160. char *kaddr;
  161. unsigned long left, copied = 0;
  162. int i, chunksize;
  163. if (size > count)
  164. size = count;
  165. /* Find which 4k chunk and offset with in that chunk */
  166. i = offset >> PAGE_CACHE_SHIFT;
  167. offset = offset & ~PAGE_CACHE_MASK;
  168. while (size) {
  169. chunksize = PAGE_CACHE_SIZE;
  170. if (offset)
  171. chunksize -= offset;
  172. if (chunksize > size)
  173. chunksize = size;
  174. kaddr = kmap(&page[i]);
  175. left = __copy_to_user(buf, kaddr + offset, chunksize);
  176. kunmap(&page[i]);
  177. if (left) {
  178. copied += (chunksize - left);
  179. break;
  180. }
  181. offset = 0;
  182. size -= chunksize;
  183. buf += chunksize;
  184. copied += chunksize;
  185. i++;
  186. }
  187. return copied ? copied : -EFAULT;
  188. }
  189. /*
  190. * Support for read() - Find the page attached to f_mapping and copy out the
  191. * data. Its *very* similar to do_generic_mapping_read(), we can't use that
  192. * since it has PAGE_CACHE_SIZE assumptions.
  193. */
  194. static ssize_t hugetlbfs_read(struct file *filp, char __user *buf,
  195. size_t len, loff_t *ppos)
  196. {
  197. struct hstate *h = hstate_file(filp);
  198. struct address_space *mapping = filp->f_mapping;
  199. struct inode *inode = mapping->host;
  200. unsigned long index = *ppos >> huge_page_shift(h);
  201. unsigned long offset = *ppos & ~huge_page_mask(h);
  202. unsigned long end_index;
  203. loff_t isize;
  204. ssize_t retval = 0;
  205. mutex_lock(&inode->i_mutex);
  206. /* validate length */
  207. if (len == 0)
  208. goto out;
  209. isize = i_size_read(inode);
  210. if (!isize)
  211. goto out;
  212. end_index = (isize - 1) >> huge_page_shift(h);
  213. for (;;) {
  214. struct page *page;
  215. unsigned long nr, ret;
  216. int ra;
  217. /* nr is the maximum number of bytes to copy from this page */
  218. nr = huge_page_size(h);
  219. if (index >= end_index) {
  220. if (index > end_index)
  221. goto out;
  222. nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
  223. if (nr <= offset) {
  224. goto out;
  225. }
  226. }
  227. nr = nr - offset;
  228. /* Find the page */
  229. page = find_get_page(mapping, index);
  230. if (unlikely(page == NULL)) {
  231. /*
  232. * We have a HOLE, zero out the user-buffer for the
  233. * length of the hole or request.
  234. */
  235. ret = len < nr ? len : nr;
  236. if (clear_user(buf, ret))
  237. ra = -EFAULT;
  238. else
  239. ra = 0;
  240. } else {
  241. /*
  242. * We have the page, copy it to user space buffer.
  243. */
  244. ra = hugetlbfs_read_actor(page, offset, buf, len, nr);
  245. ret = ra;
  246. }
  247. if (ra < 0) {
  248. if (retval == 0)
  249. retval = ra;
  250. if (page)
  251. page_cache_release(page);
  252. goto out;
  253. }
  254. offset += ret;
  255. retval += ret;
  256. len -= ret;
  257. index += offset >> huge_page_shift(h);
  258. offset &= ~huge_page_mask(h);
  259. if (page)
  260. page_cache_release(page);
  261. /* short read or no more work */
  262. if ((ret != nr) || (len == 0))
  263. break;
  264. }
  265. out:
  266. *ppos = ((loff_t)index << huge_page_shift(h)) + offset;
  267. mutex_unlock(&inode->i_mutex);
  268. return retval;
  269. }
  270. static int hugetlbfs_write_begin(struct file *file,
  271. struct address_space *mapping,
  272. loff_t pos, unsigned len, unsigned flags,
  273. struct page **pagep, void **fsdata)
  274. {
  275. return -EINVAL;
  276. }
  277. static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
  278. loff_t pos, unsigned len, unsigned copied,
  279. struct page *page, void *fsdata)
  280. {
  281. BUG();
  282. return -EINVAL;
  283. }
  284. static void truncate_huge_page(struct page *page)
  285. {
  286. cancel_dirty_page(page, /* No IO accounting for huge pages? */0);
  287. ClearPageUptodate(page);
  288. remove_from_page_cache(page);
  289. put_page(page);
  290. }
  291. static void truncate_hugepages(struct inode *inode, loff_t lstart)
  292. {
  293. struct hstate *h = hstate_inode(inode);
  294. struct address_space *mapping = &inode->i_data;
  295. const pgoff_t start = lstart >> huge_page_shift(h);
  296. struct pagevec pvec;
  297. pgoff_t next;
  298. int i, freed = 0;
  299. pagevec_init(&pvec, 0);
  300. next = start;
  301. while (1) {
  302. if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
  303. if (next == start)
  304. break;
  305. next = start;
  306. continue;
  307. }
  308. for (i = 0; i < pagevec_count(&pvec); ++i) {
  309. struct page *page = pvec.pages[i];
  310. lock_page(page);
  311. if (page->index > next)
  312. next = page->index;
  313. ++next;
  314. truncate_huge_page(page);
  315. unlock_page(page);
  316. freed++;
  317. }
  318. huge_pagevec_release(&pvec);
  319. }
  320. BUG_ON(!lstart && mapping->nrpages);
  321. hugetlb_unreserve_pages(inode, start, freed);
  322. }
  323. static void hugetlbfs_delete_inode(struct inode *inode)
  324. {
  325. truncate_hugepages(inode, 0);
  326. clear_inode(inode);
  327. }
  328. static void hugetlbfs_forget_inode(struct inode *inode) __releases(inode_lock)
  329. {
  330. struct super_block *sb = inode->i_sb;
  331. if (!hlist_unhashed(&inode->i_hash)) {
  332. if (!(inode->i_state & (I_DIRTY|I_SYNC)))
  333. list_move(&inode->i_list, &inode_unused);
  334. inodes_stat.nr_unused++;
  335. if (!sb || (sb->s_flags & MS_ACTIVE)) {
  336. spin_unlock(&inode_lock);
  337. return;
  338. }
  339. inode->i_state |= I_WILL_FREE;
  340. spin_unlock(&inode_lock);
  341. /*
  342. * write_inode_now is a noop as we set BDI_CAP_NO_WRITEBACK
  343. * in our backing_dev_info.
  344. */
  345. write_inode_now(inode, 1);
  346. spin_lock(&inode_lock);
  347. inode->i_state &= ~I_WILL_FREE;
  348. inodes_stat.nr_unused--;
  349. hlist_del_init(&inode->i_hash);
  350. }
  351. list_del_init(&inode->i_list);
  352. list_del_init(&inode->i_sb_list);
  353. inode->i_state |= I_FREEING;
  354. inodes_stat.nr_inodes--;
  355. spin_unlock(&inode_lock);
  356. truncate_hugepages(inode, 0);
  357. clear_inode(inode);
  358. destroy_inode(inode);
  359. }
  360. static void hugetlbfs_drop_inode(struct inode *inode)
  361. {
  362. if (!inode->i_nlink)
  363. generic_delete_inode(inode);
  364. else
  365. hugetlbfs_forget_inode(inode);
  366. }
  367. static inline void
  368. hugetlb_vmtruncate_list(struct prio_tree_root *root, pgoff_t pgoff)
  369. {
  370. struct vm_area_struct *vma;
  371. struct prio_tree_iter iter;
  372. vma_prio_tree_foreach(vma, &iter, root, pgoff, ULONG_MAX) {
  373. unsigned long v_offset;
  374. /*
  375. * Can the expression below overflow on 32-bit arches?
  376. * No, because the prio_tree returns us only those vmas
  377. * which overlap the truncated area starting at pgoff,
  378. * and no vma on a 32-bit arch can span beyond the 4GB.
  379. */
  380. if (vma->vm_pgoff < pgoff)
  381. v_offset = (pgoff - vma->vm_pgoff) << PAGE_SHIFT;
  382. else
  383. v_offset = 0;
  384. __unmap_hugepage_range(vma,
  385. vma->vm_start + v_offset, vma->vm_end, NULL);
  386. }
  387. }
  388. static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
  389. {
  390. pgoff_t pgoff;
  391. struct address_space *mapping = inode->i_mapping;
  392. struct hstate *h = hstate_inode(inode);
  393. BUG_ON(offset & ~huge_page_mask(h));
  394. pgoff = offset >> PAGE_SHIFT;
  395. i_size_write(inode, offset);
  396. spin_lock(&mapping->i_mmap_lock);
  397. if (!prio_tree_empty(&mapping->i_mmap))
  398. hugetlb_vmtruncate_list(&mapping->i_mmap, pgoff);
  399. spin_unlock(&mapping->i_mmap_lock);
  400. truncate_hugepages(inode, offset);
  401. return 0;
  402. }
  403. static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
  404. {
  405. struct inode *inode = dentry->d_inode;
  406. struct hstate *h = hstate_inode(inode);
  407. int error;
  408. unsigned int ia_valid = attr->ia_valid;
  409. BUG_ON(!inode);
  410. error = inode_change_ok(inode, attr);
  411. if (error)
  412. goto out;
  413. if (ia_valid & ATTR_SIZE) {
  414. error = -EINVAL;
  415. if (!(attr->ia_size & ~huge_page_mask(h)))
  416. error = hugetlb_vmtruncate(inode, attr->ia_size);
  417. if (error)
  418. goto out;
  419. attr->ia_valid &= ~ATTR_SIZE;
  420. }
  421. error = inode_setattr(inode, attr);
  422. out:
  423. return error;
  424. }
  425. static struct inode *hugetlbfs_get_inode(struct super_block *sb, uid_t uid,
  426. gid_t gid, int mode, dev_t dev)
  427. {
  428. struct inode *inode;
  429. inode = new_inode(sb);
  430. if (inode) {
  431. struct hugetlbfs_inode_info *info;
  432. inode->i_mode = mode;
  433. inode->i_uid = uid;
  434. inode->i_gid = gid;
  435. inode->i_mapping->a_ops = &hugetlbfs_aops;
  436. inode->i_mapping->backing_dev_info =&hugetlbfs_backing_dev_info;
  437. inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  438. INIT_LIST_HEAD(&inode->i_mapping->private_list);
  439. info = HUGETLBFS_I(inode);
  440. mpol_shared_policy_init(&info->policy, NULL);
  441. switch (mode & S_IFMT) {
  442. default:
  443. init_special_inode(inode, mode, dev);
  444. break;
  445. case S_IFREG:
  446. inode->i_op = &hugetlbfs_inode_operations;
  447. inode->i_fop = &hugetlbfs_file_operations;
  448. break;
  449. case S_IFDIR:
  450. inode->i_op = &hugetlbfs_dir_inode_operations;
  451. inode->i_fop = &simple_dir_operations;
  452. /* directory inodes start off with i_nlink == 2 (for "." entry) */
  453. inc_nlink(inode);
  454. break;
  455. case S_IFLNK:
  456. inode->i_op = &page_symlink_inode_operations;
  457. break;
  458. }
  459. }
  460. return inode;
  461. }
  462. /*
  463. * File creation. Allocate an inode, and we're done..
  464. */
  465. static int hugetlbfs_mknod(struct inode *dir,
  466. struct dentry *dentry, int mode, dev_t dev)
  467. {
  468. struct inode *inode;
  469. int error = -ENOSPC;
  470. gid_t gid;
  471. if (dir->i_mode & S_ISGID) {
  472. gid = dir->i_gid;
  473. if (S_ISDIR(mode))
  474. mode |= S_ISGID;
  475. } else {
  476. gid = current_fsgid();
  477. }
  478. inode = hugetlbfs_get_inode(dir->i_sb, current_fsuid(), gid, mode, dev);
  479. if (inode) {
  480. dir->i_ctime = dir->i_mtime = CURRENT_TIME;
  481. d_instantiate(dentry, inode);
  482. dget(dentry); /* Extra count - pin the dentry in core */
  483. error = 0;
  484. }
  485. return error;
  486. }
  487. static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
  488. {
  489. int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
  490. if (!retval)
  491. inc_nlink(dir);
  492. return retval;
  493. }
  494. static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, int mode, struct nameidata *nd)
  495. {
  496. return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
  497. }
  498. static int hugetlbfs_symlink(struct inode *dir,
  499. struct dentry *dentry, const char *symname)
  500. {
  501. struct inode *inode;
  502. int error = -ENOSPC;
  503. gid_t gid;
  504. if (dir->i_mode & S_ISGID)
  505. gid = dir->i_gid;
  506. else
  507. gid = current_fsgid();
  508. inode = hugetlbfs_get_inode(dir->i_sb, current_fsuid(),
  509. gid, S_IFLNK|S_IRWXUGO, 0);
  510. if (inode) {
  511. int l = strlen(symname)+1;
  512. error = page_symlink(inode, symname, l);
  513. if (!error) {
  514. d_instantiate(dentry, inode);
  515. dget(dentry);
  516. } else
  517. iput(inode);
  518. }
  519. dir->i_ctime = dir->i_mtime = CURRENT_TIME;
  520. return error;
  521. }
  522. /*
  523. * mark the head page dirty
  524. */
  525. static int hugetlbfs_set_page_dirty(struct page *page)
  526. {
  527. struct page *head = compound_head(page);
  528. SetPageDirty(head);
  529. return 0;
  530. }
  531. static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
  532. {
  533. struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
  534. struct hstate *h = hstate_inode(dentry->d_inode);
  535. buf->f_type = HUGETLBFS_MAGIC;
  536. buf->f_bsize = huge_page_size(h);
  537. if (sbinfo) {
  538. spin_lock(&sbinfo->stat_lock);
  539. /* If no limits set, just report 0 for max/free/used
  540. * blocks, like simple_statfs() */
  541. if (sbinfo->max_blocks >= 0) {
  542. buf->f_blocks = sbinfo->max_blocks;
  543. buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
  544. buf->f_files = sbinfo->max_inodes;
  545. buf->f_ffree = sbinfo->free_inodes;
  546. }
  547. spin_unlock(&sbinfo->stat_lock);
  548. }
  549. buf->f_namelen = NAME_MAX;
  550. return 0;
  551. }
  552. static void hugetlbfs_put_super(struct super_block *sb)
  553. {
  554. struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
  555. if (sbi) {
  556. sb->s_fs_info = NULL;
  557. kfree(sbi);
  558. }
  559. }
  560. static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
  561. {
  562. if (sbinfo->free_inodes >= 0) {
  563. spin_lock(&sbinfo->stat_lock);
  564. if (unlikely(!sbinfo->free_inodes)) {
  565. spin_unlock(&sbinfo->stat_lock);
  566. return 0;
  567. }
  568. sbinfo->free_inodes--;
  569. spin_unlock(&sbinfo->stat_lock);
  570. }
  571. return 1;
  572. }
  573. static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
  574. {
  575. if (sbinfo->free_inodes >= 0) {
  576. spin_lock(&sbinfo->stat_lock);
  577. sbinfo->free_inodes++;
  578. spin_unlock(&sbinfo->stat_lock);
  579. }
  580. }
  581. static struct kmem_cache *hugetlbfs_inode_cachep;
  582. static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
  583. {
  584. struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
  585. struct hugetlbfs_inode_info *p;
  586. if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
  587. return NULL;
  588. p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
  589. if (unlikely(!p)) {
  590. hugetlbfs_inc_free_inodes(sbinfo);
  591. return NULL;
  592. }
  593. return &p->vfs_inode;
  594. }
  595. static void hugetlbfs_destroy_inode(struct inode *inode)
  596. {
  597. hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
  598. mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
  599. kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
  600. }
  601. static const struct address_space_operations hugetlbfs_aops = {
  602. .write_begin = hugetlbfs_write_begin,
  603. .write_end = hugetlbfs_write_end,
  604. .set_page_dirty = hugetlbfs_set_page_dirty,
  605. };
  606. static void init_once(void *foo)
  607. {
  608. struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
  609. inode_init_once(&ei->vfs_inode);
  610. }
  611. const struct file_operations hugetlbfs_file_operations = {
  612. .read = hugetlbfs_read,
  613. .mmap = hugetlbfs_file_mmap,
  614. .fsync = simple_sync_file,
  615. .get_unmapped_area = hugetlb_get_unmapped_area,
  616. };
  617. static const struct inode_operations hugetlbfs_dir_inode_operations = {
  618. .create = hugetlbfs_create,
  619. .lookup = simple_lookup,
  620. .link = simple_link,
  621. .unlink = simple_unlink,
  622. .symlink = hugetlbfs_symlink,
  623. .mkdir = hugetlbfs_mkdir,
  624. .rmdir = simple_rmdir,
  625. .mknod = hugetlbfs_mknod,
  626. .rename = simple_rename,
  627. .setattr = hugetlbfs_setattr,
  628. };
  629. static const struct inode_operations hugetlbfs_inode_operations = {
  630. .setattr = hugetlbfs_setattr,
  631. };
  632. static const struct super_operations hugetlbfs_ops = {
  633. .alloc_inode = hugetlbfs_alloc_inode,
  634. .destroy_inode = hugetlbfs_destroy_inode,
  635. .statfs = hugetlbfs_statfs,
  636. .delete_inode = hugetlbfs_delete_inode,
  637. .drop_inode = hugetlbfs_drop_inode,
  638. .put_super = hugetlbfs_put_super,
  639. .show_options = generic_show_options,
  640. };
  641. static int
  642. hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig)
  643. {
  644. char *p, *rest;
  645. substring_t args[MAX_OPT_ARGS];
  646. int option;
  647. unsigned long long size = 0;
  648. enum { NO_SIZE, SIZE_STD, SIZE_PERCENT } setsize = NO_SIZE;
  649. if (!options)
  650. return 0;
  651. while ((p = strsep(&options, ",")) != NULL) {
  652. int token;
  653. if (!*p)
  654. continue;
  655. token = match_token(p, tokens, args);
  656. switch (token) {
  657. case Opt_uid:
  658. if (match_int(&args[0], &option))
  659. goto bad_val;
  660. pconfig->uid = option;
  661. break;
  662. case Opt_gid:
  663. if (match_int(&args[0], &option))
  664. goto bad_val;
  665. pconfig->gid = option;
  666. break;
  667. case Opt_mode:
  668. if (match_octal(&args[0], &option))
  669. goto bad_val;
  670. pconfig->mode = option & 01777U;
  671. break;
  672. case Opt_size: {
  673. /* memparse() will accept a K/M/G without a digit */
  674. if (!isdigit(*args[0].from))
  675. goto bad_val;
  676. size = memparse(args[0].from, &rest);
  677. setsize = SIZE_STD;
  678. if (*rest == '%')
  679. setsize = SIZE_PERCENT;
  680. break;
  681. }
  682. case Opt_nr_inodes:
  683. /* memparse() will accept a K/M/G without a digit */
  684. if (!isdigit(*args[0].from))
  685. goto bad_val;
  686. pconfig->nr_inodes = memparse(args[0].from, &rest);
  687. break;
  688. case Opt_pagesize: {
  689. unsigned long ps;
  690. ps = memparse(args[0].from, &rest);
  691. pconfig->hstate = size_to_hstate(ps);
  692. if (!pconfig->hstate) {
  693. printk(KERN_ERR
  694. "hugetlbfs: Unsupported page size %lu MB\n",
  695. ps >> 20);
  696. return -EINVAL;
  697. }
  698. break;
  699. }
  700. default:
  701. printk(KERN_ERR "hugetlbfs: Bad mount option: \"%s\"\n",
  702. p);
  703. return -EINVAL;
  704. break;
  705. }
  706. }
  707. /* Do size after hstate is set up */
  708. if (setsize > NO_SIZE) {
  709. struct hstate *h = pconfig->hstate;
  710. if (setsize == SIZE_PERCENT) {
  711. size <<= huge_page_shift(h);
  712. size *= h->max_huge_pages;
  713. do_div(size, 100);
  714. }
  715. pconfig->nr_blocks = (size >> huge_page_shift(h));
  716. }
  717. return 0;
  718. bad_val:
  719. printk(KERN_ERR "hugetlbfs: Bad value '%s' for mount option '%s'\n",
  720. args[0].from, p);
  721. return -EINVAL;
  722. }
  723. static int
  724. hugetlbfs_fill_super(struct super_block *sb, void *data, int silent)
  725. {
  726. struct inode * inode;
  727. struct dentry * root;
  728. int ret;
  729. struct hugetlbfs_config config;
  730. struct hugetlbfs_sb_info *sbinfo;
  731. save_mount_options(sb, data);
  732. config.nr_blocks = -1; /* No limit on size by default */
  733. config.nr_inodes = -1; /* No limit on number of inodes by default */
  734. config.uid = current_fsuid();
  735. config.gid = current_fsgid();
  736. config.mode = 0755;
  737. config.hstate = &default_hstate;
  738. ret = hugetlbfs_parse_options(data, &config);
  739. if (ret)
  740. return ret;
  741. sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
  742. if (!sbinfo)
  743. return -ENOMEM;
  744. sb->s_fs_info = sbinfo;
  745. sbinfo->hstate = config.hstate;
  746. spin_lock_init(&sbinfo->stat_lock);
  747. sbinfo->max_blocks = config.nr_blocks;
  748. sbinfo->free_blocks = config.nr_blocks;
  749. sbinfo->max_inodes = config.nr_inodes;
  750. sbinfo->free_inodes = config.nr_inodes;
  751. sb->s_maxbytes = MAX_LFS_FILESIZE;
  752. sb->s_blocksize = huge_page_size(config.hstate);
  753. sb->s_blocksize_bits = huge_page_shift(config.hstate);
  754. sb->s_magic = HUGETLBFS_MAGIC;
  755. sb->s_op = &hugetlbfs_ops;
  756. sb->s_time_gran = 1;
  757. inode = hugetlbfs_get_inode(sb, config.uid, config.gid,
  758. S_IFDIR | config.mode, 0);
  759. if (!inode)
  760. goto out_free;
  761. root = d_alloc_root(inode);
  762. if (!root) {
  763. iput(inode);
  764. goto out_free;
  765. }
  766. sb->s_root = root;
  767. return 0;
  768. out_free:
  769. kfree(sbinfo);
  770. return -ENOMEM;
  771. }
  772. int hugetlb_get_quota(struct address_space *mapping, long delta)
  773. {
  774. int ret = 0;
  775. struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(mapping->host->i_sb);
  776. if (sbinfo->free_blocks > -1) {
  777. spin_lock(&sbinfo->stat_lock);
  778. if (sbinfo->free_blocks - delta >= 0)
  779. sbinfo->free_blocks -= delta;
  780. else
  781. ret = -ENOMEM;
  782. spin_unlock(&sbinfo->stat_lock);
  783. }
  784. return ret;
  785. }
  786. void hugetlb_put_quota(struct address_space *mapping, long delta)
  787. {
  788. struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(mapping->host->i_sb);
  789. if (sbinfo->free_blocks > -1) {
  790. spin_lock(&sbinfo->stat_lock);
  791. sbinfo->free_blocks += delta;
  792. spin_unlock(&sbinfo->stat_lock);
  793. }
  794. }
  795. static int hugetlbfs_get_sb(struct file_system_type *fs_type,
  796. int flags, const char *dev_name, void *data, struct vfsmount *mnt)
  797. {
  798. return get_sb_nodev(fs_type, flags, data, hugetlbfs_fill_super, mnt);
  799. }
  800. static struct file_system_type hugetlbfs_fs_type = {
  801. .name = "hugetlbfs",
  802. .get_sb = hugetlbfs_get_sb,
  803. .kill_sb = kill_litter_super,
  804. };
  805. static struct vfsmount *hugetlbfs_vfsmount;
  806. static int can_do_hugetlb_shm(void)
  807. {
  808. return capable(CAP_IPC_LOCK) || in_group_p(sysctl_hugetlb_shm_group);
  809. }
  810. struct file *hugetlb_file_setup(const char *name, size_t size, int acctflag)
  811. {
  812. int error = -ENOMEM;
  813. int unlock_shm = 0;
  814. struct file *file;
  815. struct inode *inode;
  816. struct dentry *dentry, *root;
  817. struct qstr quick_string;
  818. struct user_struct *user = current_user();
  819. if (!hugetlbfs_vfsmount)
  820. return ERR_PTR(-ENOENT);
  821. if (!can_do_hugetlb_shm()) {
  822. if (user_shm_lock(size, user)) {
  823. unlock_shm = 1;
  824. WARN_ONCE(1,
  825. "Using mlock ulimits for SHM_HUGETLB deprecated\n");
  826. } else
  827. return ERR_PTR(-EPERM);
  828. }
  829. root = hugetlbfs_vfsmount->mnt_root;
  830. quick_string.name = name;
  831. quick_string.len = strlen(quick_string.name);
  832. quick_string.hash = 0;
  833. dentry = d_alloc(root, &quick_string);
  834. if (!dentry)
  835. goto out_shm_unlock;
  836. error = -ENOSPC;
  837. inode = hugetlbfs_get_inode(root->d_sb, current_fsuid(),
  838. current_fsgid(), S_IFREG | S_IRWXUGO, 0);
  839. if (!inode)
  840. goto out_dentry;
  841. error = -ENOMEM;
  842. if (hugetlb_reserve_pages(inode, 0,
  843. size >> huge_page_shift(hstate_inode(inode)), NULL,
  844. acctflag))
  845. goto out_inode;
  846. d_instantiate(dentry, inode);
  847. inode->i_size = size;
  848. inode->i_nlink = 0;
  849. error = -ENFILE;
  850. file = alloc_file(hugetlbfs_vfsmount, dentry,
  851. FMODE_WRITE | FMODE_READ,
  852. &hugetlbfs_file_operations);
  853. if (!file)
  854. goto out_dentry; /* inode is already attached */
  855. return file;
  856. out_inode:
  857. iput(inode);
  858. out_dentry:
  859. dput(dentry);
  860. out_shm_unlock:
  861. if (unlock_shm)
  862. user_shm_unlock(size, user);
  863. return ERR_PTR(error);
  864. }
  865. static int __init init_hugetlbfs_fs(void)
  866. {
  867. int error;
  868. struct vfsmount *vfsmount;
  869. error = bdi_init(&hugetlbfs_backing_dev_info);
  870. if (error)
  871. return error;
  872. hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
  873. sizeof(struct hugetlbfs_inode_info),
  874. 0, 0, init_once);
  875. if (hugetlbfs_inode_cachep == NULL)
  876. goto out2;
  877. error = register_filesystem(&hugetlbfs_fs_type);
  878. if (error)
  879. goto out;
  880. vfsmount = kern_mount(&hugetlbfs_fs_type);
  881. if (!IS_ERR(vfsmount)) {
  882. hugetlbfs_vfsmount = vfsmount;
  883. return 0;
  884. }
  885. error = PTR_ERR(vfsmount);
  886. out:
  887. if (error)
  888. kmem_cache_destroy(hugetlbfs_inode_cachep);
  889. out2:
  890. bdi_destroy(&hugetlbfs_backing_dev_info);
  891. return error;
  892. }
  893. static void __exit exit_hugetlbfs_fs(void)
  894. {
  895. kmem_cache_destroy(hugetlbfs_inode_cachep);
  896. unregister_filesystem(&hugetlbfs_fs_type);
  897. bdi_destroy(&hugetlbfs_backing_dev_info);
  898. }
  899. module_init(init_hugetlbfs_fs)
  900. module_exit(exit_hugetlbfs_fs)
  901. MODULE_LICENSE("GPL");