md.c 214 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/kthread.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/fs.h>
  31. #include <linux/poll.h>
  32. #include <linux/ctype.h>
  33. #include <linux/string.h>
  34. #include <linux/hdreg.h>
  35. #include <linux/proc_fs.h>
  36. #include <linux/random.h>
  37. #include <linux/module.h>
  38. #include <linux/reboot.h>
  39. #include <linux/file.h>
  40. #include <linux/compat.h>
  41. #include <linux/delay.h>
  42. #include <linux/raid/md_p.h>
  43. #include <linux/raid/md_u.h>
  44. #include <linux/slab.h>
  45. #include "md.h"
  46. #include "bitmap.h"
  47. #ifndef MODULE
  48. static void autostart_arrays(int part);
  49. #endif
  50. /* pers_list is a list of registered personalities protected
  51. * by pers_lock.
  52. * pers_lock does extra service to protect accesses to
  53. * mddev->thread when the mutex cannot be held.
  54. */
  55. static LIST_HEAD(pers_list);
  56. static DEFINE_SPINLOCK(pers_lock);
  57. static void md_print_devices(void);
  58. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  59. static struct workqueue_struct *md_wq;
  60. static struct workqueue_struct *md_misc_wq;
  61. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  62. /*
  63. * Default number of read corrections we'll attempt on an rdev
  64. * before ejecting it from the array. We divide the read error
  65. * count by 2 for every hour elapsed between read errors.
  66. */
  67. #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
  68. /*
  69. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  70. * is 1000 KB/sec, so the extra system load does not show up that much.
  71. * Increase it if you want to have more _guaranteed_ speed. Note that
  72. * the RAID driver will use the maximum available bandwidth if the IO
  73. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  74. * speed limit - in case reconstruction slows down your system despite
  75. * idle IO detection.
  76. *
  77. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  78. * or /sys/block/mdX/md/sync_speed_{min,max}
  79. */
  80. static int sysctl_speed_limit_min = 1000;
  81. static int sysctl_speed_limit_max = 200000;
  82. static inline int speed_min(struct mddev *mddev)
  83. {
  84. return mddev->sync_speed_min ?
  85. mddev->sync_speed_min : sysctl_speed_limit_min;
  86. }
  87. static inline int speed_max(struct mddev *mddev)
  88. {
  89. return mddev->sync_speed_max ?
  90. mddev->sync_speed_max : sysctl_speed_limit_max;
  91. }
  92. static struct ctl_table_header *raid_table_header;
  93. static ctl_table raid_table[] = {
  94. {
  95. .procname = "speed_limit_min",
  96. .data = &sysctl_speed_limit_min,
  97. .maxlen = sizeof(int),
  98. .mode = S_IRUGO|S_IWUSR,
  99. .proc_handler = proc_dointvec,
  100. },
  101. {
  102. .procname = "speed_limit_max",
  103. .data = &sysctl_speed_limit_max,
  104. .maxlen = sizeof(int),
  105. .mode = S_IRUGO|S_IWUSR,
  106. .proc_handler = proc_dointvec,
  107. },
  108. { }
  109. };
  110. static ctl_table raid_dir_table[] = {
  111. {
  112. .procname = "raid",
  113. .maxlen = 0,
  114. .mode = S_IRUGO|S_IXUGO,
  115. .child = raid_table,
  116. },
  117. { }
  118. };
  119. static ctl_table raid_root_table[] = {
  120. {
  121. .procname = "dev",
  122. .maxlen = 0,
  123. .mode = 0555,
  124. .child = raid_dir_table,
  125. },
  126. { }
  127. };
  128. static const struct block_device_operations md_fops;
  129. static int start_readonly;
  130. /* bio_clone_mddev
  131. * like bio_clone, but with a local bio set
  132. */
  133. static void mddev_bio_destructor(struct bio *bio)
  134. {
  135. struct mddev *mddev, **mddevp;
  136. mddevp = (void*)bio;
  137. mddev = mddevp[-1];
  138. bio_free(bio, mddev->bio_set);
  139. }
  140. struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
  141. struct mddev *mddev)
  142. {
  143. struct bio *b;
  144. struct mddev **mddevp;
  145. if (!mddev || !mddev->bio_set)
  146. return bio_alloc(gfp_mask, nr_iovecs);
  147. b = bio_alloc_bioset(gfp_mask, nr_iovecs,
  148. mddev->bio_set);
  149. if (!b)
  150. return NULL;
  151. mddevp = (void*)b;
  152. mddevp[-1] = mddev;
  153. b->bi_destructor = mddev_bio_destructor;
  154. return b;
  155. }
  156. EXPORT_SYMBOL_GPL(bio_alloc_mddev);
  157. struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
  158. struct mddev *mddev)
  159. {
  160. struct bio *b;
  161. struct mddev **mddevp;
  162. if (!mddev || !mddev->bio_set)
  163. return bio_clone(bio, gfp_mask);
  164. b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
  165. mddev->bio_set);
  166. if (!b)
  167. return NULL;
  168. mddevp = (void*)b;
  169. mddevp[-1] = mddev;
  170. b->bi_destructor = mddev_bio_destructor;
  171. __bio_clone(b, bio);
  172. if (bio_integrity(bio)) {
  173. int ret;
  174. ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
  175. if (ret < 0) {
  176. bio_put(b);
  177. return NULL;
  178. }
  179. }
  180. return b;
  181. }
  182. EXPORT_SYMBOL_GPL(bio_clone_mddev);
  183. void md_trim_bio(struct bio *bio, int offset, int size)
  184. {
  185. /* 'bio' is a cloned bio which we need to trim to match
  186. * the given offset and size.
  187. * This requires adjusting bi_sector, bi_size, and bi_io_vec
  188. */
  189. int i;
  190. struct bio_vec *bvec;
  191. int sofar = 0;
  192. size <<= 9;
  193. if (offset == 0 && size == bio->bi_size)
  194. return;
  195. bio->bi_sector += offset;
  196. bio->bi_size = size;
  197. offset <<= 9;
  198. clear_bit(BIO_SEG_VALID, &bio->bi_flags);
  199. while (bio->bi_idx < bio->bi_vcnt &&
  200. bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
  201. /* remove this whole bio_vec */
  202. offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
  203. bio->bi_idx++;
  204. }
  205. if (bio->bi_idx < bio->bi_vcnt) {
  206. bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
  207. bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
  208. }
  209. /* avoid any complications with bi_idx being non-zero*/
  210. if (bio->bi_idx) {
  211. memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
  212. (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
  213. bio->bi_vcnt -= bio->bi_idx;
  214. bio->bi_idx = 0;
  215. }
  216. /* Make sure vcnt and last bv are not too big */
  217. bio_for_each_segment(bvec, bio, i) {
  218. if (sofar + bvec->bv_len > size)
  219. bvec->bv_len = size - sofar;
  220. if (bvec->bv_len == 0) {
  221. bio->bi_vcnt = i;
  222. break;
  223. }
  224. sofar += bvec->bv_len;
  225. }
  226. }
  227. EXPORT_SYMBOL_GPL(md_trim_bio);
  228. /*
  229. * We have a system wide 'event count' that is incremented
  230. * on any 'interesting' event, and readers of /proc/mdstat
  231. * can use 'poll' or 'select' to find out when the event
  232. * count increases.
  233. *
  234. * Events are:
  235. * start array, stop array, error, add device, remove device,
  236. * start build, activate spare
  237. */
  238. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  239. static atomic_t md_event_count;
  240. void md_new_event(struct mddev *mddev)
  241. {
  242. atomic_inc(&md_event_count);
  243. wake_up(&md_event_waiters);
  244. }
  245. EXPORT_SYMBOL_GPL(md_new_event);
  246. /* Alternate version that can be called from interrupts
  247. * when calling sysfs_notify isn't needed.
  248. */
  249. static void md_new_event_inintr(struct mddev *mddev)
  250. {
  251. atomic_inc(&md_event_count);
  252. wake_up(&md_event_waiters);
  253. }
  254. /*
  255. * Enables to iterate over all existing md arrays
  256. * all_mddevs_lock protects this list.
  257. */
  258. static LIST_HEAD(all_mddevs);
  259. static DEFINE_SPINLOCK(all_mddevs_lock);
  260. /*
  261. * iterates through all used mddevs in the system.
  262. * We take care to grab the all_mddevs_lock whenever navigating
  263. * the list, and to always hold a refcount when unlocked.
  264. * Any code which breaks out of this loop while own
  265. * a reference to the current mddev and must mddev_put it.
  266. */
  267. #define for_each_mddev(_mddev,_tmp) \
  268. \
  269. for (({ spin_lock(&all_mddevs_lock); \
  270. _tmp = all_mddevs.next; \
  271. _mddev = NULL;}); \
  272. ({ if (_tmp != &all_mddevs) \
  273. mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
  274. spin_unlock(&all_mddevs_lock); \
  275. if (_mddev) mddev_put(_mddev); \
  276. _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
  277. _tmp != &all_mddevs;}); \
  278. ({ spin_lock(&all_mddevs_lock); \
  279. _tmp = _tmp->next;}) \
  280. )
  281. /* Rather than calling directly into the personality make_request function,
  282. * IO requests come here first so that we can check if the device is
  283. * being suspended pending a reconfiguration.
  284. * We hold a refcount over the call to ->make_request. By the time that
  285. * call has finished, the bio has been linked into some internal structure
  286. * and so is visible to ->quiesce(), so we don't need the refcount any more.
  287. */
  288. static void md_make_request(struct request_queue *q, struct bio *bio)
  289. {
  290. const int rw = bio_data_dir(bio);
  291. struct mddev *mddev = q->queuedata;
  292. int cpu;
  293. unsigned int sectors;
  294. if (mddev == NULL || mddev->pers == NULL
  295. || !mddev->ready) {
  296. bio_io_error(bio);
  297. return;
  298. }
  299. smp_rmb(); /* Ensure implications of 'active' are visible */
  300. rcu_read_lock();
  301. if (mddev->suspended) {
  302. DEFINE_WAIT(__wait);
  303. for (;;) {
  304. prepare_to_wait(&mddev->sb_wait, &__wait,
  305. TASK_UNINTERRUPTIBLE);
  306. if (!mddev->suspended)
  307. break;
  308. rcu_read_unlock();
  309. schedule();
  310. rcu_read_lock();
  311. }
  312. finish_wait(&mddev->sb_wait, &__wait);
  313. }
  314. atomic_inc(&mddev->active_io);
  315. rcu_read_unlock();
  316. /*
  317. * save the sectors now since our bio can
  318. * go away inside make_request
  319. */
  320. sectors = bio_sectors(bio);
  321. mddev->pers->make_request(mddev, bio);
  322. cpu = part_stat_lock();
  323. part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
  324. part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
  325. part_stat_unlock();
  326. if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
  327. wake_up(&mddev->sb_wait);
  328. }
  329. /* mddev_suspend makes sure no new requests are submitted
  330. * to the device, and that any requests that have been submitted
  331. * are completely handled.
  332. * Once ->stop is called and completes, the module will be completely
  333. * unused.
  334. */
  335. void mddev_suspend(struct mddev *mddev)
  336. {
  337. BUG_ON(mddev->suspended);
  338. mddev->suspended = 1;
  339. synchronize_rcu();
  340. wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
  341. mddev->pers->quiesce(mddev, 1);
  342. }
  343. EXPORT_SYMBOL_GPL(mddev_suspend);
  344. void mddev_resume(struct mddev *mddev)
  345. {
  346. mddev->suspended = 0;
  347. wake_up(&mddev->sb_wait);
  348. mddev->pers->quiesce(mddev, 0);
  349. md_wakeup_thread(mddev->thread);
  350. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  351. }
  352. EXPORT_SYMBOL_GPL(mddev_resume);
  353. int mddev_congested(struct mddev *mddev, int bits)
  354. {
  355. return mddev->suspended;
  356. }
  357. EXPORT_SYMBOL(mddev_congested);
  358. /*
  359. * Generic flush handling for md
  360. */
  361. static void md_end_flush(struct bio *bio, int err)
  362. {
  363. struct md_rdev *rdev = bio->bi_private;
  364. struct mddev *mddev = rdev->mddev;
  365. rdev_dec_pending(rdev, mddev);
  366. if (atomic_dec_and_test(&mddev->flush_pending)) {
  367. /* The pre-request flush has finished */
  368. queue_work(md_wq, &mddev->flush_work);
  369. }
  370. bio_put(bio);
  371. }
  372. static void md_submit_flush_data(struct work_struct *ws);
  373. static void submit_flushes(struct work_struct *ws)
  374. {
  375. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  376. struct md_rdev *rdev;
  377. INIT_WORK(&mddev->flush_work, md_submit_flush_data);
  378. atomic_set(&mddev->flush_pending, 1);
  379. rcu_read_lock();
  380. rdev_for_each_rcu(rdev, mddev)
  381. if (rdev->raid_disk >= 0 &&
  382. !test_bit(Faulty, &rdev->flags)) {
  383. /* Take two references, one is dropped
  384. * when request finishes, one after
  385. * we reclaim rcu_read_lock
  386. */
  387. struct bio *bi;
  388. atomic_inc(&rdev->nr_pending);
  389. atomic_inc(&rdev->nr_pending);
  390. rcu_read_unlock();
  391. bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
  392. bi->bi_end_io = md_end_flush;
  393. bi->bi_private = rdev;
  394. bi->bi_bdev = rdev->bdev;
  395. atomic_inc(&mddev->flush_pending);
  396. submit_bio(WRITE_FLUSH, bi);
  397. rcu_read_lock();
  398. rdev_dec_pending(rdev, mddev);
  399. }
  400. rcu_read_unlock();
  401. if (atomic_dec_and_test(&mddev->flush_pending))
  402. queue_work(md_wq, &mddev->flush_work);
  403. }
  404. static void md_submit_flush_data(struct work_struct *ws)
  405. {
  406. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  407. struct bio *bio = mddev->flush_bio;
  408. if (bio->bi_size == 0)
  409. /* an empty barrier - all done */
  410. bio_endio(bio, 0);
  411. else {
  412. bio->bi_rw &= ~REQ_FLUSH;
  413. mddev->pers->make_request(mddev, bio);
  414. }
  415. mddev->flush_bio = NULL;
  416. wake_up(&mddev->sb_wait);
  417. }
  418. void md_flush_request(struct mddev *mddev, struct bio *bio)
  419. {
  420. spin_lock_irq(&mddev->write_lock);
  421. wait_event_lock_irq(mddev->sb_wait,
  422. !mddev->flush_bio,
  423. mddev->write_lock, /*nothing*/);
  424. mddev->flush_bio = bio;
  425. spin_unlock_irq(&mddev->write_lock);
  426. INIT_WORK(&mddev->flush_work, submit_flushes);
  427. queue_work(md_wq, &mddev->flush_work);
  428. }
  429. EXPORT_SYMBOL(md_flush_request);
  430. /* Support for plugging.
  431. * This mirrors the plugging support in request_queue, but does not
  432. * require having a whole queue or request structures.
  433. * We allocate an md_plug_cb for each md device and each thread it gets
  434. * plugged on. This links tot the private plug_handle structure in the
  435. * personality data where we keep a count of the number of outstanding
  436. * plugs so other code can see if a plug is active.
  437. */
  438. struct md_plug_cb {
  439. struct blk_plug_cb cb;
  440. struct mddev *mddev;
  441. };
  442. static void plugger_unplug(struct blk_plug_cb *cb)
  443. {
  444. struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
  445. if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
  446. md_wakeup_thread(mdcb->mddev->thread);
  447. kfree(mdcb);
  448. }
  449. /* Check that an unplug wakeup will come shortly.
  450. * If not, wakeup the md thread immediately
  451. */
  452. int mddev_check_plugged(struct mddev *mddev)
  453. {
  454. struct blk_plug *plug = current->plug;
  455. struct md_plug_cb *mdcb;
  456. if (!plug)
  457. return 0;
  458. list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
  459. if (mdcb->cb.callback == plugger_unplug &&
  460. mdcb->mddev == mddev) {
  461. /* Already on the list, move to top */
  462. if (mdcb != list_first_entry(&plug->cb_list,
  463. struct md_plug_cb,
  464. cb.list))
  465. list_move(&mdcb->cb.list, &plug->cb_list);
  466. return 1;
  467. }
  468. }
  469. /* Not currently on the callback list */
  470. mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
  471. if (!mdcb)
  472. return 0;
  473. mdcb->mddev = mddev;
  474. mdcb->cb.callback = plugger_unplug;
  475. atomic_inc(&mddev->plug_cnt);
  476. list_add(&mdcb->cb.list, &plug->cb_list);
  477. return 1;
  478. }
  479. EXPORT_SYMBOL_GPL(mddev_check_plugged);
  480. static inline struct mddev *mddev_get(struct mddev *mddev)
  481. {
  482. atomic_inc(&mddev->active);
  483. return mddev;
  484. }
  485. static void mddev_delayed_delete(struct work_struct *ws);
  486. static void mddev_put(struct mddev *mddev)
  487. {
  488. struct bio_set *bs = NULL;
  489. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  490. return;
  491. if (!mddev->raid_disks && list_empty(&mddev->disks) &&
  492. mddev->ctime == 0 && !mddev->hold_active) {
  493. /* Array is not configured at all, and not held active,
  494. * so destroy it */
  495. list_del_init(&mddev->all_mddevs);
  496. bs = mddev->bio_set;
  497. mddev->bio_set = NULL;
  498. if (mddev->gendisk) {
  499. /* We did a probe so need to clean up. Call
  500. * queue_work inside the spinlock so that
  501. * flush_workqueue() after mddev_find will
  502. * succeed in waiting for the work to be done.
  503. */
  504. INIT_WORK(&mddev->del_work, mddev_delayed_delete);
  505. queue_work(md_misc_wq, &mddev->del_work);
  506. } else
  507. kfree(mddev);
  508. }
  509. spin_unlock(&all_mddevs_lock);
  510. if (bs)
  511. bioset_free(bs);
  512. }
  513. void mddev_init(struct mddev *mddev)
  514. {
  515. mutex_init(&mddev->open_mutex);
  516. mutex_init(&mddev->reconfig_mutex);
  517. mutex_init(&mddev->bitmap_info.mutex);
  518. INIT_LIST_HEAD(&mddev->disks);
  519. INIT_LIST_HEAD(&mddev->all_mddevs);
  520. init_timer(&mddev->safemode_timer);
  521. atomic_set(&mddev->active, 1);
  522. atomic_set(&mddev->openers, 0);
  523. atomic_set(&mddev->active_io, 0);
  524. atomic_set(&mddev->plug_cnt, 0);
  525. spin_lock_init(&mddev->write_lock);
  526. atomic_set(&mddev->flush_pending, 0);
  527. init_waitqueue_head(&mddev->sb_wait);
  528. init_waitqueue_head(&mddev->recovery_wait);
  529. mddev->reshape_position = MaxSector;
  530. mddev->resync_min = 0;
  531. mddev->resync_max = MaxSector;
  532. mddev->level = LEVEL_NONE;
  533. }
  534. EXPORT_SYMBOL_GPL(mddev_init);
  535. static struct mddev * mddev_find(dev_t unit)
  536. {
  537. struct mddev *mddev, *new = NULL;
  538. if (unit && MAJOR(unit) != MD_MAJOR)
  539. unit &= ~((1<<MdpMinorShift)-1);
  540. retry:
  541. spin_lock(&all_mddevs_lock);
  542. if (unit) {
  543. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  544. if (mddev->unit == unit) {
  545. mddev_get(mddev);
  546. spin_unlock(&all_mddevs_lock);
  547. kfree(new);
  548. return mddev;
  549. }
  550. if (new) {
  551. list_add(&new->all_mddevs, &all_mddevs);
  552. spin_unlock(&all_mddevs_lock);
  553. new->hold_active = UNTIL_IOCTL;
  554. return new;
  555. }
  556. } else if (new) {
  557. /* find an unused unit number */
  558. static int next_minor = 512;
  559. int start = next_minor;
  560. int is_free = 0;
  561. int dev = 0;
  562. while (!is_free) {
  563. dev = MKDEV(MD_MAJOR, next_minor);
  564. next_minor++;
  565. if (next_minor > MINORMASK)
  566. next_minor = 0;
  567. if (next_minor == start) {
  568. /* Oh dear, all in use. */
  569. spin_unlock(&all_mddevs_lock);
  570. kfree(new);
  571. return NULL;
  572. }
  573. is_free = 1;
  574. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  575. if (mddev->unit == dev) {
  576. is_free = 0;
  577. break;
  578. }
  579. }
  580. new->unit = dev;
  581. new->md_minor = MINOR(dev);
  582. new->hold_active = UNTIL_STOP;
  583. list_add(&new->all_mddevs, &all_mddevs);
  584. spin_unlock(&all_mddevs_lock);
  585. return new;
  586. }
  587. spin_unlock(&all_mddevs_lock);
  588. new = kzalloc(sizeof(*new), GFP_KERNEL);
  589. if (!new)
  590. return NULL;
  591. new->unit = unit;
  592. if (MAJOR(unit) == MD_MAJOR)
  593. new->md_minor = MINOR(unit);
  594. else
  595. new->md_minor = MINOR(unit) >> MdpMinorShift;
  596. mddev_init(new);
  597. goto retry;
  598. }
  599. static inline int mddev_lock(struct mddev * mddev)
  600. {
  601. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  602. }
  603. static inline int mddev_is_locked(struct mddev *mddev)
  604. {
  605. return mutex_is_locked(&mddev->reconfig_mutex);
  606. }
  607. static inline int mddev_trylock(struct mddev * mddev)
  608. {
  609. return mutex_trylock(&mddev->reconfig_mutex);
  610. }
  611. static struct attribute_group md_redundancy_group;
  612. static void mddev_unlock(struct mddev * mddev)
  613. {
  614. if (mddev->to_remove) {
  615. /* These cannot be removed under reconfig_mutex as
  616. * an access to the files will try to take reconfig_mutex
  617. * while holding the file unremovable, which leads to
  618. * a deadlock.
  619. * So hold set sysfs_active while the remove in happeing,
  620. * and anything else which might set ->to_remove or my
  621. * otherwise change the sysfs namespace will fail with
  622. * -EBUSY if sysfs_active is still set.
  623. * We set sysfs_active under reconfig_mutex and elsewhere
  624. * test it under the same mutex to ensure its correct value
  625. * is seen.
  626. */
  627. struct attribute_group *to_remove = mddev->to_remove;
  628. mddev->to_remove = NULL;
  629. mddev->sysfs_active = 1;
  630. mutex_unlock(&mddev->reconfig_mutex);
  631. if (mddev->kobj.sd) {
  632. if (to_remove != &md_redundancy_group)
  633. sysfs_remove_group(&mddev->kobj, to_remove);
  634. if (mddev->pers == NULL ||
  635. mddev->pers->sync_request == NULL) {
  636. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  637. if (mddev->sysfs_action)
  638. sysfs_put(mddev->sysfs_action);
  639. mddev->sysfs_action = NULL;
  640. }
  641. }
  642. mddev->sysfs_active = 0;
  643. } else
  644. mutex_unlock(&mddev->reconfig_mutex);
  645. /* As we've dropped the mutex we need a spinlock to
  646. * make sure the thread doesn't disappear
  647. */
  648. spin_lock(&pers_lock);
  649. md_wakeup_thread(mddev->thread);
  650. spin_unlock(&pers_lock);
  651. }
  652. static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
  653. {
  654. struct md_rdev *rdev;
  655. rdev_for_each(rdev, mddev)
  656. if (rdev->desc_nr == nr)
  657. return rdev;
  658. return NULL;
  659. }
  660. static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
  661. {
  662. struct md_rdev *rdev;
  663. rdev_for_each(rdev, mddev)
  664. if (rdev->bdev->bd_dev == dev)
  665. return rdev;
  666. return NULL;
  667. }
  668. static struct md_personality *find_pers(int level, char *clevel)
  669. {
  670. struct md_personality *pers;
  671. list_for_each_entry(pers, &pers_list, list) {
  672. if (level != LEVEL_NONE && pers->level == level)
  673. return pers;
  674. if (strcmp(pers->name, clevel)==0)
  675. return pers;
  676. }
  677. return NULL;
  678. }
  679. /* return the offset of the super block in 512byte sectors */
  680. static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
  681. {
  682. sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
  683. return MD_NEW_SIZE_SECTORS(num_sectors);
  684. }
  685. static int alloc_disk_sb(struct md_rdev * rdev)
  686. {
  687. if (rdev->sb_page)
  688. MD_BUG();
  689. rdev->sb_page = alloc_page(GFP_KERNEL);
  690. if (!rdev->sb_page) {
  691. printk(KERN_ALERT "md: out of memory.\n");
  692. return -ENOMEM;
  693. }
  694. return 0;
  695. }
  696. static void free_disk_sb(struct md_rdev * rdev)
  697. {
  698. if (rdev->sb_page) {
  699. put_page(rdev->sb_page);
  700. rdev->sb_loaded = 0;
  701. rdev->sb_page = NULL;
  702. rdev->sb_start = 0;
  703. rdev->sectors = 0;
  704. }
  705. if (rdev->bb_page) {
  706. put_page(rdev->bb_page);
  707. rdev->bb_page = NULL;
  708. }
  709. }
  710. static void super_written(struct bio *bio, int error)
  711. {
  712. struct md_rdev *rdev = bio->bi_private;
  713. struct mddev *mddev = rdev->mddev;
  714. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  715. printk("md: super_written gets error=%d, uptodate=%d\n",
  716. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  717. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  718. md_error(mddev, rdev);
  719. }
  720. if (atomic_dec_and_test(&mddev->pending_writes))
  721. wake_up(&mddev->sb_wait);
  722. bio_put(bio);
  723. }
  724. void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
  725. sector_t sector, int size, struct page *page)
  726. {
  727. /* write first size bytes of page to sector of rdev
  728. * Increment mddev->pending_writes before returning
  729. * and decrement it on completion, waking up sb_wait
  730. * if zero is reached.
  731. * If an error occurred, call md_error
  732. */
  733. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
  734. bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
  735. bio->bi_sector = sector;
  736. bio_add_page(bio, page, size, 0);
  737. bio->bi_private = rdev;
  738. bio->bi_end_io = super_written;
  739. atomic_inc(&mddev->pending_writes);
  740. submit_bio(WRITE_FLUSH_FUA, bio);
  741. }
  742. void md_super_wait(struct mddev *mddev)
  743. {
  744. /* wait for all superblock writes that were scheduled to complete */
  745. DEFINE_WAIT(wq);
  746. for(;;) {
  747. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  748. if (atomic_read(&mddev->pending_writes)==0)
  749. break;
  750. schedule();
  751. }
  752. finish_wait(&mddev->sb_wait, &wq);
  753. }
  754. static void bi_complete(struct bio *bio, int error)
  755. {
  756. complete((struct completion*)bio->bi_private);
  757. }
  758. int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
  759. struct page *page, int rw, bool metadata_op)
  760. {
  761. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
  762. struct completion event;
  763. int ret;
  764. rw |= REQ_SYNC;
  765. bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
  766. rdev->meta_bdev : rdev->bdev;
  767. if (metadata_op)
  768. bio->bi_sector = sector + rdev->sb_start;
  769. else
  770. bio->bi_sector = sector + rdev->data_offset;
  771. bio_add_page(bio, page, size, 0);
  772. init_completion(&event);
  773. bio->bi_private = &event;
  774. bio->bi_end_io = bi_complete;
  775. submit_bio(rw, bio);
  776. wait_for_completion(&event);
  777. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  778. bio_put(bio);
  779. return ret;
  780. }
  781. EXPORT_SYMBOL_GPL(sync_page_io);
  782. static int read_disk_sb(struct md_rdev * rdev, int size)
  783. {
  784. char b[BDEVNAME_SIZE];
  785. if (!rdev->sb_page) {
  786. MD_BUG();
  787. return -EINVAL;
  788. }
  789. if (rdev->sb_loaded)
  790. return 0;
  791. if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
  792. goto fail;
  793. rdev->sb_loaded = 1;
  794. return 0;
  795. fail:
  796. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  797. bdevname(rdev->bdev,b));
  798. return -EINVAL;
  799. }
  800. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  801. {
  802. return sb1->set_uuid0 == sb2->set_uuid0 &&
  803. sb1->set_uuid1 == sb2->set_uuid1 &&
  804. sb1->set_uuid2 == sb2->set_uuid2 &&
  805. sb1->set_uuid3 == sb2->set_uuid3;
  806. }
  807. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  808. {
  809. int ret;
  810. mdp_super_t *tmp1, *tmp2;
  811. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  812. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  813. if (!tmp1 || !tmp2) {
  814. ret = 0;
  815. printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
  816. goto abort;
  817. }
  818. *tmp1 = *sb1;
  819. *tmp2 = *sb2;
  820. /*
  821. * nr_disks is not constant
  822. */
  823. tmp1->nr_disks = 0;
  824. tmp2->nr_disks = 0;
  825. ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
  826. abort:
  827. kfree(tmp1);
  828. kfree(tmp2);
  829. return ret;
  830. }
  831. static u32 md_csum_fold(u32 csum)
  832. {
  833. csum = (csum & 0xffff) + (csum >> 16);
  834. return (csum & 0xffff) + (csum >> 16);
  835. }
  836. static unsigned int calc_sb_csum(mdp_super_t * sb)
  837. {
  838. u64 newcsum = 0;
  839. u32 *sb32 = (u32*)sb;
  840. int i;
  841. unsigned int disk_csum, csum;
  842. disk_csum = sb->sb_csum;
  843. sb->sb_csum = 0;
  844. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  845. newcsum += sb32[i];
  846. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  847. #ifdef CONFIG_ALPHA
  848. /* This used to use csum_partial, which was wrong for several
  849. * reasons including that different results are returned on
  850. * different architectures. It isn't critical that we get exactly
  851. * the same return value as before (we always csum_fold before
  852. * testing, and that removes any differences). However as we
  853. * know that csum_partial always returned a 16bit value on
  854. * alphas, do a fold to maximise conformity to previous behaviour.
  855. */
  856. sb->sb_csum = md_csum_fold(disk_csum);
  857. #else
  858. sb->sb_csum = disk_csum;
  859. #endif
  860. return csum;
  861. }
  862. /*
  863. * Handle superblock details.
  864. * We want to be able to handle multiple superblock formats
  865. * so we have a common interface to them all, and an array of
  866. * different handlers.
  867. * We rely on user-space to write the initial superblock, and support
  868. * reading and updating of superblocks.
  869. * Interface methods are:
  870. * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
  871. * loads and validates a superblock on dev.
  872. * if refdev != NULL, compare superblocks on both devices
  873. * Return:
  874. * 0 - dev has a superblock that is compatible with refdev
  875. * 1 - dev has a superblock that is compatible and newer than refdev
  876. * so dev should be used as the refdev in future
  877. * -EINVAL superblock incompatible or invalid
  878. * -othererror e.g. -EIO
  879. *
  880. * int validate_super(struct mddev *mddev, struct md_rdev *dev)
  881. * Verify that dev is acceptable into mddev.
  882. * The first time, mddev->raid_disks will be 0, and data from
  883. * dev should be merged in. Subsequent calls check that dev
  884. * is new enough. Return 0 or -EINVAL
  885. *
  886. * void sync_super(struct mddev *mddev, struct md_rdev *dev)
  887. * Update the superblock for rdev with data in mddev
  888. * This does not write to disc.
  889. *
  890. */
  891. struct super_type {
  892. char *name;
  893. struct module *owner;
  894. int (*load_super)(struct md_rdev *rdev, struct md_rdev *refdev,
  895. int minor_version);
  896. int (*validate_super)(struct mddev *mddev, struct md_rdev *rdev);
  897. void (*sync_super)(struct mddev *mddev, struct md_rdev *rdev);
  898. unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
  899. sector_t num_sectors);
  900. };
  901. /*
  902. * Check that the given mddev has no bitmap.
  903. *
  904. * This function is called from the run method of all personalities that do not
  905. * support bitmaps. It prints an error message and returns non-zero if mddev
  906. * has a bitmap. Otherwise, it returns 0.
  907. *
  908. */
  909. int md_check_no_bitmap(struct mddev *mddev)
  910. {
  911. if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
  912. return 0;
  913. printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
  914. mdname(mddev), mddev->pers->name);
  915. return 1;
  916. }
  917. EXPORT_SYMBOL(md_check_no_bitmap);
  918. /*
  919. * load_super for 0.90.0
  920. */
  921. static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  922. {
  923. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  924. mdp_super_t *sb;
  925. int ret;
  926. /*
  927. * Calculate the position of the superblock (512byte sectors),
  928. * it's at the end of the disk.
  929. *
  930. * It also happens to be a multiple of 4Kb.
  931. */
  932. rdev->sb_start = calc_dev_sboffset(rdev);
  933. ret = read_disk_sb(rdev, MD_SB_BYTES);
  934. if (ret) return ret;
  935. ret = -EINVAL;
  936. bdevname(rdev->bdev, b);
  937. sb = page_address(rdev->sb_page);
  938. if (sb->md_magic != MD_SB_MAGIC) {
  939. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  940. b);
  941. goto abort;
  942. }
  943. if (sb->major_version != 0 ||
  944. sb->minor_version < 90 ||
  945. sb->minor_version > 91) {
  946. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  947. sb->major_version, sb->minor_version,
  948. b);
  949. goto abort;
  950. }
  951. if (sb->raid_disks <= 0)
  952. goto abort;
  953. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  954. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  955. b);
  956. goto abort;
  957. }
  958. rdev->preferred_minor = sb->md_minor;
  959. rdev->data_offset = 0;
  960. rdev->sb_size = MD_SB_BYTES;
  961. rdev->badblocks.shift = -1;
  962. if (sb->level == LEVEL_MULTIPATH)
  963. rdev->desc_nr = -1;
  964. else
  965. rdev->desc_nr = sb->this_disk.number;
  966. if (!refdev) {
  967. ret = 1;
  968. } else {
  969. __u64 ev1, ev2;
  970. mdp_super_t *refsb = page_address(refdev->sb_page);
  971. if (!uuid_equal(refsb, sb)) {
  972. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  973. b, bdevname(refdev->bdev,b2));
  974. goto abort;
  975. }
  976. if (!sb_equal(refsb, sb)) {
  977. printk(KERN_WARNING "md: %s has same UUID"
  978. " but different superblock to %s\n",
  979. b, bdevname(refdev->bdev, b2));
  980. goto abort;
  981. }
  982. ev1 = md_event(sb);
  983. ev2 = md_event(refsb);
  984. if (ev1 > ev2)
  985. ret = 1;
  986. else
  987. ret = 0;
  988. }
  989. rdev->sectors = rdev->sb_start;
  990. /* Limit to 4TB as metadata cannot record more than that */
  991. if (rdev->sectors >= (2ULL << 32))
  992. rdev->sectors = (2ULL << 32) - 2;
  993. if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
  994. /* "this cannot possibly happen" ... */
  995. ret = -EINVAL;
  996. abort:
  997. return ret;
  998. }
  999. /*
  1000. * validate_super for 0.90.0
  1001. */
  1002. static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
  1003. {
  1004. mdp_disk_t *desc;
  1005. mdp_super_t *sb = page_address(rdev->sb_page);
  1006. __u64 ev1 = md_event(sb);
  1007. rdev->raid_disk = -1;
  1008. clear_bit(Faulty, &rdev->flags);
  1009. clear_bit(In_sync, &rdev->flags);
  1010. clear_bit(WriteMostly, &rdev->flags);
  1011. if (mddev->raid_disks == 0) {
  1012. mddev->major_version = 0;
  1013. mddev->minor_version = sb->minor_version;
  1014. mddev->patch_version = sb->patch_version;
  1015. mddev->external = 0;
  1016. mddev->chunk_sectors = sb->chunk_size >> 9;
  1017. mddev->ctime = sb->ctime;
  1018. mddev->utime = sb->utime;
  1019. mddev->level = sb->level;
  1020. mddev->clevel[0] = 0;
  1021. mddev->layout = sb->layout;
  1022. mddev->raid_disks = sb->raid_disks;
  1023. mddev->dev_sectors = ((sector_t)sb->size) * 2;
  1024. mddev->events = ev1;
  1025. mddev->bitmap_info.offset = 0;
  1026. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  1027. if (mddev->minor_version >= 91) {
  1028. mddev->reshape_position = sb->reshape_position;
  1029. mddev->delta_disks = sb->delta_disks;
  1030. mddev->new_level = sb->new_level;
  1031. mddev->new_layout = sb->new_layout;
  1032. mddev->new_chunk_sectors = sb->new_chunk >> 9;
  1033. } else {
  1034. mddev->reshape_position = MaxSector;
  1035. mddev->delta_disks = 0;
  1036. mddev->new_level = mddev->level;
  1037. mddev->new_layout = mddev->layout;
  1038. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1039. }
  1040. if (sb->state & (1<<MD_SB_CLEAN))
  1041. mddev->recovery_cp = MaxSector;
  1042. else {
  1043. if (sb->events_hi == sb->cp_events_hi &&
  1044. sb->events_lo == sb->cp_events_lo) {
  1045. mddev->recovery_cp = sb->recovery_cp;
  1046. } else
  1047. mddev->recovery_cp = 0;
  1048. }
  1049. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  1050. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  1051. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  1052. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  1053. mddev->max_disks = MD_SB_DISKS;
  1054. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  1055. mddev->bitmap_info.file == NULL)
  1056. mddev->bitmap_info.offset =
  1057. mddev->bitmap_info.default_offset;
  1058. } else if (mddev->pers == NULL) {
  1059. /* Insist on good event counter while assembling, except
  1060. * for spares (which don't need an event count) */
  1061. ++ev1;
  1062. if (sb->disks[rdev->desc_nr].state & (
  1063. (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
  1064. if (ev1 < mddev->events)
  1065. return -EINVAL;
  1066. } else if (mddev->bitmap) {
  1067. /* if adding to array with a bitmap, then we can accept an
  1068. * older device ... but not too old.
  1069. */
  1070. if (ev1 < mddev->bitmap->events_cleared)
  1071. return 0;
  1072. } else {
  1073. if (ev1 < mddev->events)
  1074. /* just a hot-add of a new device, leave raid_disk at -1 */
  1075. return 0;
  1076. }
  1077. if (mddev->level != LEVEL_MULTIPATH) {
  1078. desc = sb->disks + rdev->desc_nr;
  1079. if (desc->state & (1<<MD_DISK_FAULTY))
  1080. set_bit(Faulty, &rdev->flags);
  1081. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  1082. desc->raid_disk < mddev->raid_disks */) {
  1083. set_bit(In_sync, &rdev->flags);
  1084. rdev->raid_disk = desc->raid_disk;
  1085. } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
  1086. /* active but not in sync implies recovery up to
  1087. * reshape position. We don't know exactly where
  1088. * that is, so set to zero for now */
  1089. if (mddev->minor_version >= 91) {
  1090. rdev->recovery_offset = 0;
  1091. rdev->raid_disk = desc->raid_disk;
  1092. }
  1093. }
  1094. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  1095. set_bit(WriteMostly, &rdev->flags);
  1096. } else /* MULTIPATH are always insync */
  1097. set_bit(In_sync, &rdev->flags);
  1098. return 0;
  1099. }
  1100. /*
  1101. * sync_super for 0.90.0
  1102. */
  1103. static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
  1104. {
  1105. mdp_super_t *sb;
  1106. struct md_rdev *rdev2;
  1107. int next_spare = mddev->raid_disks;
  1108. /* make rdev->sb match mddev data..
  1109. *
  1110. * 1/ zero out disks
  1111. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  1112. * 3/ any empty disks < next_spare become removed
  1113. *
  1114. * disks[0] gets initialised to REMOVED because
  1115. * we cannot be sure from other fields if it has
  1116. * been initialised or not.
  1117. */
  1118. int i;
  1119. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  1120. rdev->sb_size = MD_SB_BYTES;
  1121. sb = page_address(rdev->sb_page);
  1122. memset(sb, 0, sizeof(*sb));
  1123. sb->md_magic = MD_SB_MAGIC;
  1124. sb->major_version = mddev->major_version;
  1125. sb->patch_version = mddev->patch_version;
  1126. sb->gvalid_words = 0; /* ignored */
  1127. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  1128. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  1129. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  1130. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  1131. sb->ctime = mddev->ctime;
  1132. sb->level = mddev->level;
  1133. sb->size = mddev->dev_sectors / 2;
  1134. sb->raid_disks = mddev->raid_disks;
  1135. sb->md_minor = mddev->md_minor;
  1136. sb->not_persistent = 0;
  1137. sb->utime = mddev->utime;
  1138. sb->state = 0;
  1139. sb->events_hi = (mddev->events>>32);
  1140. sb->events_lo = (u32)mddev->events;
  1141. if (mddev->reshape_position == MaxSector)
  1142. sb->minor_version = 90;
  1143. else {
  1144. sb->minor_version = 91;
  1145. sb->reshape_position = mddev->reshape_position;
  1146. sb->new_level = mddev->new_level;
  1147. sb->delta_disks = mddev->delta_disks;
  1148. sb->new_layout = mddev->new_layout;
  1149. sb->new_chunk = mddev->new_chunk_sectors << 9;
  1150. }
  1151. mddev->minor_version = sb->minor_version;
  1152. if (mddev->in_sync)
  1153. {
  1154. sb->recovery_cp = mddev->recovery_cp;
  1155. sb->cp_events_hi = (mddev->events>>32);
  1156. sb->cp_events_lo = (u32)mddev->events;
  1157. if (mddev->recovery_cp == MaxSector)
  1158. sb->state = (1<< MD_SB_CLEAN);
  1159. } else
  1160. sb->recovery_cp = 0;
  1161. sb->layout = mddev->layout;
  1162. sb->chunk_size = mddev->chunk_sectors << 9;
  1163. if (mddev->bitmap && mddev->bitmap_info.file == NULL)
  1164. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  1165. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  1166. rdev_for_each(rdev2, mddev) {
  1167. mdp_disk_t *d;
  1168. int desc_nr;
  1169. int is_active = test_bit(In_sync, &rdev2->flags);
  1170. if (rdev2->raid_disk >= 0 &&
  1171. sb->minor_version >= 91)
  1172. /* we have nowhere to store the recovery_offset,
  1173. * but if it is not below the reshape_position,
  1174. * we can piggy-back on that.
  1175. */
  1176. is_active = 1;
  1177. if (rdev2->raid_disk < 0 ||
  1178. test_bit(Faulty, &rdev2->flags))
  1179. is_active = 0;
  1180. if (is_active)
  1181. desc_nr = rdev2->raid_disk;
  1182. else
  1183. desc_nr = next_spare++;
  1184. rdev2->desc_nr = desc_nr;
  1185. d = &sb->disks[rdev2->desc_nr];
  1186. nr_disks++;
  1187. d->number = rdev2->desc_nr;
  1188. d->major = MAJOR(rdev2->bdev->bd_dev);
  1189. d->minor = MINOR(rdev2->bdev->bd_dev);
  1190. if (is_active)
  1191. d->raid_disk = rdev2->raid_disk;
  1192. else
  1193. d->raid_disk = rdev2->desc_nr; /* compatibility */
  1194. if (test_bit(Faulty, &rdev2->flags))
  1195. d->state = (1<<MD_DISK_FAULTY);
  1196. else if (is_active) {
  1197. d->state = (1<<MD_DISK_ACTIVE);
  1198. if (test_bit(In_sync, &rdev2->flags))
  1199. d->state |= (1<<MD_DISK_SYNC);
  1200. active++;
  1201. working++;
  1202. } else {
  1203. d->state = 0;
  1204. spare++;
  1205. working++;
  1206. }
  1207. if (test_bit(WriteMostly, &rdev2->flags))
  1208. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  1209. }
  1210. /* now set the "removed" and "faulty" bits on any missing devices */
  1211. for (i=0 ; i < mddev->raid_disks ; i++) {
  1212. mdp_disk_t *d = &sb->disks[i];
  1213. if (d->state == 0 && d->number == 0) {
  1214. d->number = i;
  1215. d->raid_disk = i;
  1216. d->state = (1<<MD_DISK_REMOVED);
  1217. d->state |= (1<<MD_DISK_FAULTY);
  1218. failed++;
  1219. }
  1220. }
  1221. sb->nr_disks = nr_disks;
  1222. sb->active_disks = active;
  1223. sb->working_disks = working;
  1224. sb->failed_disks = failed;
  1225. sb->spare_disks = spare;
  1226. sb->this_disk = sb->disks[rdev->desc_nr];
  1227. sb->sb_csum = calc_sb_csum(sb);
  1228. }
  1229. /*
  1230. * rdev_size_change for 0.90.0
  1231. */
  1232. static unsigned long long
  1233. super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1234. {
  1235. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1236. return 0; /* component must fit device */
  1237. if (rdev->mddev->bitmap_info.offset)
  1238. return 0; /* can't move bitmap */
  1239. rdev->sb_start = calc_dev_sboffset(rdev);
  1240. if (!num_sectors || num_sectors > rdev->sb_start)
  1241. num_sectors = rdev->sb_start;
  1242. /* Limit to 4TB as metadata cannot record more than that.
  1243. * 4TB == 2^32 KB, or 2*2^32 sectors.
  1244. */
  1245. if (num_sectors >= (2ULL << 32))
  1246. num_sectors = (2ULL << 32) - 2;
  1247. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1248. rdev->sb_page);
  1249. md_super_wait(rdev->mddev);
  1250. return num_sectors;
  1251. }
  1252. /*
  1253. * version 1 superblock
  1254. */
  1255. static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
  1256. {
  1257. __le32 disk_csum;
  1258. u32 csum;
  1259. unsigned long long newcsum;
  1260. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  1261. __le32 *isuper = (__le32*)sb;
  1262. int i;
  1263. disk_csum = sb->sb_csum;
  1264. sb->sb_csum = 0;
  1265. newcsum = 0;
  1266. for (i=0; size>=4; size -= 4 )
  1267. newcsum += le32_to_cpu(*isuper++);
  1268. if (size == 2)
  1269. newcsum += le16_to_cpu(*(__le16*) isuper);
  1270. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  1271. sb->sb_csum = disk_csum;
  1272. return cpu_to_le32(csum);
  1273. }
  1274. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  1275. int acknowledged);
  1276. static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  1277. {
  1278. struct mdp_superblock_1 *sb;
  1279. int ret;
  1280. sector_t sb_start;
  1281. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1282. int bmask;
  1283. /*
  1284. * Calculate the position of the superblock in 512byte sectors.
  1285. * It is always aligned to a 4K boundary and
  1286. * depeding on minor_version, it can be:
  1287. * 0: At least 8K, but less than 12K, from end of device
  1288. * 1: At start of device
  1289. * 2: 4K from start of device.
  1290. */
  1291. switch(minor_version) {
  1292. case 0:
  1293. sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
  1294. sb_start -= 8*2;
  1295. sb_start &= ~(sector_t)(4*2-1);
  1296. break;
  1297. case 1:
  1298. sb_start = 0;
  1299. break;
  1300. case 2:
  1301. sb_start = 8;
  1302. break;
  1303. default:
  1304. return -EINVAL;
  1305. }
  1306. rdev->sb_start = sb_start;
  1307. /* superblock is rarely larger than 1K, but it can be larger,
  1308. * and it is safe to read 4k, so we do that
  1309. */
  1310. ret = read_disk_sb(rdev, 4096);
  1311. if (ret) return ret;
  1312. sb = page_address(rdev->sb_page);
  1313. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  1314. sb->major_version != cpu_to_le32(1) ||
  1315. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  1316. le64_to_cpu(sb->super_offset) != rdev->sb_start ||
  1317. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  1318. return -EINVAL;
  1319. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  1320. printk("md: invalid superblock checksum on %s\n",
  1321. bdevname(rdev->bdev,b));
  1322. return -EINVAL;
  1323. }
  1324. if (le64_to_cpu(sb->data_size) < 10) {
  1325. printk("md: data_size too small on %s\n",
  1326. bdevname(rdev->bdev,b));
  1327. return -EINVAL;
  1328. }
  1329. rdev->preferred_minor = 0xffff;
  1330. rdev->data_offset = le64_to_cpu(sb->data_offset);
  1331. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  1332. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  1333. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1334. if (rdev->sb_size & bmask)
  1335. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1336. if (minor_version
  1337. && rdev->data_offset < sb_start + (rdev->sb_size/512))
  1338. return -EINVAL;
  1339. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  1340. rdev->desc_nr = -1;
  1341. else
  1342. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  1343. if (!rdev->bb_page) {
  1344. rdev->bb_page = alloc_page(GFP_KERNEL);
  1345. if (!rdev->bb_page)
  1346. return -ENOMEM;
  1347. }
  1348. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
  1349. rdev->badblocks.count == 0) {
  1350. /* need to load the bad block list.
  1351. * Currently we limit it to one page.
  1352. */
  1353. s32 offset;
  1354. sector_t bb_sector;
  1355. u64 *bbp;
  1356. int i;
  1357. int sectors = le16_to_cpu(sb->bblog_size);
  1358. if (sectors > (PAGE_SIZE / 512))
  1359. return -EINVAL;
  1360. offset = le32_to_cpu(sb->bblog_offset);
  1361. if (offset == 0)
  1362. return -EINVAL;
  1363. bb_sector = (long long)offset;
  1364. if (!sync_page_io(rdev, bb_sector, sectors << 9,
  1365. rdev->bb_page, READ, true))
  1366. return -EIO;
  1367. bbp = (u64 *)page_address(rdev->bb_page);
  1368. rdev->badblocks.shift = sb->bblog_shift;
  1369. for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
  1370. u64 bb = le64_to_cpu(*bbp);
  1371. int count = bb & (0x3ff);
  1372. u64 sector = bb >> 10;
  1373. sector <<= sb->bblog_shift;
  1374. count <<= sb->bblog_shift;
  1375. if (bb + 1 == 0)
  1376. break;
  1377. if (md_set_badblocks(&rdev->badblocks,
  1378. sector, count, 1) == 0)
  1379. return -EINVAL;
  1380. }
  1381. } else if (sb->bblog_offset == 0)
  1382. rdev->badblocks.shift = -1;
  1383. if (!refdev) {
  1384. ret = 1;
  1385. } else {
  1386. __u64 ev1, ev2;
  1387. struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
  1388. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  1389. sb->level != refsb->level ||
  1390. sb->layout != refsb->layout ||
  1391. sb->chunksize != refsb->chunksize) {
  1392. printk(KERN_WARNING "md: %s has strangely different"
  1393. " superblock to %s\n",
  1394. bdevname(rdev->bdev,b),
  1395. bdevname(refdev->bdev,b2));
  1396. return -EINVAL;
  1397. }
  1398. ev1 = le64_to_cpu(sb->events);
  1399. ev2 = le64_to_cpu(refsb->events);
  1400. if (ev1 > ev2)
  1401. ret = 1;
  1402. else
  1403. ret = 0;
  1404. }
  1405. if (minor_version)
  1406. rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  1407. le64_to_cpu(sb->data_offset);
  1408. else
  1409. rdev->sectors = rdev->sb_start;
  1410. if (rdev->sectors < le64_to_cpu(sb->data_size))
  1411. return -EINVAL;
  1412. rdev->sectors = le64_to_cpu(sb->data_size);
  1413. if (le64_to_cpu(sb->size) > rdev->sectors)
  1414. return -EINVAL;
  1415. return ret;
  1416. }
  1417. static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
  1418. {
  1419. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  1420. __u64 ev1 = le64_to_cpu(sb->events);
  1421. rdev->raid_disk = -1;
  1422. clear_bit(Faulty, &rdev->flags);
  1423. clear_bit(In_sync, &rdev->flags);
  1424. clear_bit(WriteMostly, &rdev->flags);
  1425. if (mddev->raid_disks == 0) {
  1426. mddev->major_version = 1;
  1427. mddev->patch_version = 0;
  1428. mddev->external = 0;
  1429. mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
  1430. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1431. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1432. mddev->level = le32_to_cpu(sb->level);
  1433. mddev->clevel[0] = 0;
  1434. mddev->layout = le32_to_cpu(sb->layout);
  1435. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1436. mddev->dev_sectors = le64_to_cpu(sb->size);
  1437. mddev->events = ev1;
  1438. mddev->bitmap_info.offset = 0;
  1439. mddev->bitmap_info.default_offset = 1024 >> 9;
  1440. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1441. memcpy(mddev->uuid, sb->set_uuid, 16);
  1442. mddev->max_disks = (4096-256)/2;
  1443. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1444. mddev->bitmap_info.file == NULL )
  1445. mddev->bitmap_info.offset =
  1446. (__s32)le32_to_cpu(sb->bitmap_offset);
  1447. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1448. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1449. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1450. mddev->new_level = le32_to_cpu(sb->new_level);
  1451. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1452. mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
  1453. } else {
  1454. mddev->reshape_position = MaxSector;
  1455. mddev->delta_disks = 0;
  1456. mddev->new_level = mddev->level;
  1457. mddev->new_layout = mddev->layout;
  1458. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1459. }
  1460. } else if (mddev->pers == NULL) {
  1461. /* Insist of good event counter while assembling, except for
  1462. * spares (which don't need an event count) */
  1463. ++ev1;
  1464. if (rdev->desc_nr >= 0 &&
  1465. rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
  1466. le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
  1467. if (ev1 < mddev->events)
  1468. return -EINVAL;
  1469. } else if (mddev->bitmap) {
  1470. /* If adding to array with a bitmap, then we can accept an
  1471. * older device, but not too old.
  1472. */
  1473. if (ev1 < mddev->bitmap->events_cleared)
  1474. return 0;
  1475. } else {
  1476. if (ev1 < mddev->events)
  1477. /* just a hot-add of a new device, leave raid_disk at -1 */
  1478. return 0;
  1479. }
  1480. if (mddev->level != LEVEL_MULTIPATH) {
  1481. int role;
  1482. if (rdev->desc_nr < 0 ||
  1483. rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
  1484. role = 0xffff;
  1485. rdev->desc_nr = -1;
  1486. } else
  1487. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1488. switch(role) {
  1489. case 0xffff: /* spare */
  1490. break;
  1491. case 0xfffe: /* faulty */
  1492. set_bit(Faulty, &rdev->flags);
  1493. break;
  1494. default:
  1495. if ((le32_to_cpu(sb->feature_map) &
  1496. MD_FEATURE_RECOVERY_OFFSET))
  1497. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1498. else
  1499. set_bit(In_sync, &rdev->flags);
  1500. rdev->raid_disk = role;
  1501. break;
  1502. }
  1503. if (sb->devflags & WriteMostly1)
  1504. set_bit(WriteMostly, &rdev->flags);
  1505. if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
  1506. set_bit(Replacement, &rdev->flags);
  1507. } else /* MULTIPATH are always insync */
  1508. set_bit(In_sync, &rdev->flags);
  1509. return 0;
  1510. }
  1511. static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
  1512. {
  1513. struct mdp_superblock_1 *sb;
  1514. struct md_rdev *rdev2;
  1515. int max_dev, i;
  1516. /* make rdev->sb match mddev and rdev data. */
  1517. sb = page_address(rdev->sb_page);
  1518. sb->feature_map = 0;
  1519. sb->pad0 = 0;
  1520. sb->recovery_offset = cpu_to_le64(0);
  1521. memset(sb->pad1, 0, sizeof(sb->pad1));
  1522. memset(sb->pad3, 0, sizeof(sb->pad3));
  1523. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1524. sb->events = cpu_to_le64(mddev->events);
  1525. if (mddev->in_sync)
  1526. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1527. else
  1528. sb->resync_offset = cpu_to_le64(0);
  1529. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1530. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1531. sb->size = cpu_to_le64(mddev->dev_sectors);
  1532. sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
  1533. sb->level = cpu_to_le32(mddev->level);
  1534. sb->layout = cpu_to_le32(mddev->layout);
  1535. if (test_bit(WriteMostly, &rdev->flags))
  1536. sb->devflags |= WriteMostly1;
  1537. else
  1538. sb->devflags &= ~WriteMostly1;
  1539. if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
  1540. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
  1541. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1542. }
  1543. if (rdev->raid_disk >= 0 &&
  1544. !test_bit(In_sync, &rdev->flags)) {
  1545. sb->feature_map |=
  1546. cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1547. sb->recovery_offset =
  1548. cpu_to_le64(rdev->recovery_offset);
  1549. }
  1550. if (test_bit(Replacement, &rdev->flags))
  1551. sb->feature_map |=
  1552. cpu_to_le32(MD_FEATURE_REPLACEMENT);
  1553. if (mddev->reshape_position != MaxSector) {
  1554. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1555. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1556. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1557. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1558. sb->new_level = cpu_to_le32(mddev->new_level);
  1559. sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
  1560. }
  1561. if (rdev->badblocks.count == 0)
  1562. /* Nothing to do for bad blocks*/ ;
  1563. else if (sb->bblog_offset == 0)
  1564. /* Cannot record bad blocks on this device */
  1565. md_error(mddev, rdev);
  1566. else {
  1567. struct badblocks *bb = &rdev->badblocks;
  1568. u64 *bbp = (u64 *)page_address(rdev->bb_page);
  1569. u64 *p = bb->page;
  1570. sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
  1571. if (bb->changed) {
  1572. unsigned seq;
  1573. retry:
  1574. seq = read_seqbegin(&bb->lock);
  1575. memset(bbp, 0xff, PAGE_SIZE);
  1576. for (i = 0 ; i < bb->count ; i++) {
  1577. u64 internal_bb = *p++;
  1578. u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
  1579. | BB_LEN(internal_bb));
  1580. *bbp++ = cpu_to_le64(store_bb);
  1581. }
  1582. if (read_seqretry(&bb->lock, seq))
  1583. goto retry;
  1584. bb->sector = (rdev->sb_start +
  1585. (int)le32_to_cpu(sb->bblog_offset));
  1586. bb->size = le16_to_cpu(sb->bblog_size);
  1587. bb->changed = 0;
  1588. }
  1589. }
  1590. max_dev = 0;
  1591. rdev_for_each(rdev2, mddev)
  1592. if (rdev2->desc_nr+1 > max_dev)
  1593. max_dev = rdev2->desc_nr+1;
  1594. if (max_dev > le32_to_cpu(sb->max_dev)) {
  1595. int bmask;
  1596. sb->max_dev = cpu_to_le32(max_dev);
  1597. rdev->sb_size = max_dev * 2 + 256;
  1598. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1599. if (rdev->sb_size & bmask)
  1600. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1601. } else
  1602. max_dev = le32_to_cpu(sb->max_dev);
  1603. for (i=0; i<max_dev;i++)
  1604. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1605. rdev_for_each(rdev2, mddev) {
  1606. i = rdev2->desc_nr;
  1607. if (test_bit(Faulty, &rdev2->flags))
  1608. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1609. else if (test_bit(In_sync, &rdev2->flags))
  1610. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1611. else if (rdev2->raid_disk >= 0)
  1612. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1613. else
  1614. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1615. }
  1616. sb->sb_csum = calc_sb_1_csum(sb);
  1617. }
  1618. static unsigned long long
  1619. super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1620. {
  1621. struct mdp_superblock_1 *sb;
  1622. sector_t max_sectors;
  1623. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1624. return 0; /* component must fit device */
  1625. if (rdev->sb_start < rdev->data_offset) {
  1626. /* minor versions 1 and 2; superblock before data */
  1627. max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
  1628. max_sectors -= rdev->data_offset;
  1629. if (!num_sectors || num_sectors > max_sectors)
  1630. num_sectors = max_sectors;
  1631. } else if (rdev->mddev->bitmap_info.offset) {
  1632. /* minor version 0 with bitmap we can't move */
  1633. return 0;
  1634. } else {
  1635. /* minor version 0; superblock after data */
  1636. sector_t sb_start;
  1637. sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
  1638. sb_start &= ~(sector_t)(4*2 - 1);
  1639. max_sectors = rdev->sectors + sb_start - rdev->sb_start;
  1640. if (!num_sectors || num_sectors > max_sectors)
  1641. num_sectors = max_sectors;
  1642. rdev->sb_start = sb_start;
  1643. }
  1644. sb = page_address(rdev->sb_page);
  1645. sb->data_size = cpu_to_le64(num_sectors);
  1646. sb->super_offset = rdev->sb_start;
  1647. sb->sb_csum = calc_sb_1_csum(sb);
  1648. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1649. rdev->sb_page);
  1650. md_super_wait(rdev->mddev);
  1651. return num_sectors;
  1652. }
  1653. static struct super_type super_types[] = {
  1654. [0] = {
  1655. .name = "0.90.0",
  1656. .owner = THIS_MODULE,
  1657. .load_super = super_90_load,
  1658. .validate_super = super_90_validate,
  1659. .sync_super = super_90_sync,
  1660. .rdev_size_change = super_90_rdev_size_change,
  1661. },
  1662. [1] = {
  1663. .name = "md-1",
  1664. .owner = THIS_MODULE,
  1665. .load_super = super_1_load,
  1666. .validate_super = super_1_validate,
  1667. .sync_super = super_1_sync,
  1668. .rdev_size_change = super_1_rdev_size_change,
  1669. },
  1670. };
  1671. static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
  1672. {
  1673. if (mddev->sync_super) {
  1674. mddev->sync_super(mddev, rdev);
  1675. return;
  1676. }
  1677. BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
  1678. super_types[mddev->major_version].sync_super(mddev, rdev);
  1679. }
  1680. static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
  1681. {
  1682. struct md_rdev *rdev, *rdev2;
  1683. rcu_read_lock();
  1684. rdev_for_each_rcu(rdev, mddev1)
  1685. rdev_for_each_rcu(rdev2, mddev2)
  1686. if (rdev->bdev->bd_contains ==
  1687. rdev2->bdev->bd_contains) {
  1688. rcu_read_unlock();
  1689. return 1;
  1690. }
  1691. rcu_read_unlock();
  1692. return 0;
  1693. }
  1694. static LIST_HEAD(pending_raid_disks);
  1695. /*
  1696. * Try to register data integrity profile for an mddev
  1697. *
  1698. * This is called when an array is started and after a disk has been kicked
  1699. * from the array. It only succeeds if all working and active component devices
  1700. * are integrity capable with matching profiles.
  1701. */
  1702. int md_integrity_register(struct mddev *mddev)
  1703. {
  1704. struct md_rdev *rdev, *reference = NULL;
  1705. if (list_empty(&mddev->disks))
  1706. return 0; /* nothing to do */
  1707. if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
  1708. return 0; /* shouldn't register, or already is */
  1709. rdev_for_each(rdev, mddev) {
  1710. /* skip spares and non-functional disks */
  1711. if (test_bit(Faulty, &rdev->flags))
  1712. continue;
  1713. if (rdev->raid_disk < 0)
  1714. continue;
  1715. if (!reference) {
  1716. /* Use the first rdev as the reference */
  1717. reference = rdev;
  1718. continue;
  1719. }
  1720. /* does this rdev's profile match the reference profile? */
  1721. if (blk_integrity_compare(reference->bdev->bd_disk,
  1722. rdev->bdev->bd_disk) < 0)
  1723. return -EINVAL;
  1724. }
  1725. if (!reference || !bdev_get_integrity(reference->bdev))
  1726. return 0;
  1727. /*
  1728. * All component devices are integrity capable and have matching
  1729. * profiles, register the common profile for the md device.
  1730. */
  1731. if (blk_integrity_register(mddev->gendisk,
  1732. bdev_get_integrity(reference->bdev)) != 0) {
  1733. printk(KERN_ERR "md: failed to register integrity for %s\n",
  1734. mdname(mddev));
  1735. return -EINVAL;
  1736. }
  1737. printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
  1738. if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
  1739. printk(KERN_ERR "md: failed to create integrity pool for %s\n",
  1740. mdname(mddev));
  1741. return -EINVAL;
  1742. }
  1743. return 0;
  1744. }
  1745. EXPORT_SYMBOL(md_integrity_register);
  1746. /* Disable data integrity if non-capable/non-matching disk is being added */
  1747. void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
  1748. {
  1749. struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
  1750. struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
  1751. if (!bi_mddev) /* nothing to do */
  1752. return;
  1753. if (rdev->raid_disk < 0) /* skip spares */
  1754. return;
  1755. if (bi_rdev && blk_integrity_compare(mddev->gendisk,
  1756. rdev->bdev->bd_disk) >= 0)
  1757. return;
  1758. printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
  1759. blk_integrity_unregister(mddev->gendisk);
  1760. }
  1761. EXPORT_SYMBOL(md_integrity_add_rdev);
  1762. static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
  1763. {
  1764. char b[BDEVNAME_SIZE];
  1765. struct kobject *ko;
  1766. char *s;
  1767. int err;
  1768. if (rdev->mddev) {
  1769. MD_BUG();
  1770. return -EINVAL;
  1771. }
  1772. /* prevent duplicates */
  1773. if (find_rdev(mddev, rdev->bdev->bd_dev))
  1774. return -EEXIST;
  1775. /* make sure rdev->sectors exceeds mddev->dev_sectors */
  1776. if (rdev->sectors && (mddev->dev_sectors == 0 ||
  1777. rdev->sectors < mddev->dev_sectors)) {
  1778. if (mddev->pers) {
  1779. /* Cannot change size, so fail
  1780. * If mddev->level <= 0, then we don't care
  1781. * about aligning sizes (e.g. linear)
  1782. */
  1783. if (mddev->level > 0)
  1784. return -ENOSPC;
  1785. } else
  1786. mddev->dev_sectors = rdev->sectors;
  1787. }
  1788. /* Verify rdev->desc_nr is unique.
  1789. * If it is -1, assign a free number, else
  1790. * check number is not in use
  1791. */
  1792. if (rdev->desc_nr < 0) {
  1793. int choice = 0;
  1794. if (mddev->pers) choice = mddev->raid_disks;
  1795. while (find_rdev_nr(mddev, choice))
  1796. choice++;
  1797. rdev->desc_nr = choice;
  1798. } else {
  1799. if (find_rdev_nr(mddev, rdev->desc_nr))
  1800. return -EBUSY;
  1801. }
  1802. if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
  1803. printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
  1804. mdname(mddev), mddev->max_disks);
  1805. return -EBUSY;
  1806. }
  1807. bdevname(rdev->bdev,b);
  1808. while ( (s=strchr(b, '/')) != NULL)
  1809. *s = '!';
  1810. rdev->mddev = mddev;
  1811. printk(KERN_INFO "md: bind<%s>\n", b);
  1812. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1813. goto fail;
  1814. ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
  1815. if (sysfs_create_link(&rdev->kobj, ko, "block"))
  1816. /* failure here is OK */;
  1817. rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
  1818. list_add_rcu(&rdev->same_set, &mddev->disks);
  1819. bd_link_disk_holder(rdev->bdev, mddev->gendisk);
  1820. /* May as well allow recovery to be retried once */
  1821. mddev->recovery_disabled++;
  1822. return 0;
  1823. fail:
  1824. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1825. b, mdname(mddev));
  1826. return err;
  1827. }
  1828. static void md_delayed_delete(struct work_struct *ws)
  1829. {
  1830. struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
  1831. kobject_del(&rdev->kobj);
  1832. kobject_put(&rdev->kobj);
  1833. }
  1834. static void unbind_rdev_from_array(struct md_rdev * rdev)
  1835. {
  1836. char b[BDEVNAME_SIZE];
  1837. if (!rdev->mddev) {
  1838. MD_BUG();
  1839. return;
  1840. }
  1841. bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
  1842. list_del_rcu(&rdev->same_set);
  1843. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1844. rdev->mddev = NULL;
  1845. sysfs_remove_link(&rdev->kobj, "block");
  1846. sysfs_put(rdev->sysfs_state);
  1847. rdev->sysfs_state = NULL;
  1848. kfree(rdev->badblocks.page);
  1849. rdev->badblocks.count = 0;
  1850. rdev->badblocks.page = NULL;
  1851. /* We need to delay this, otherwise we can deadlock when
  1852. * writing to 'remove' to "dev/state". We also need
  1853. * to delay it due to rcu usage.
  1854. */
  1855. synchronize_rcu();
  1856. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1857. kobject_get(&rdev->kobj);
  1858. queue_work(md_misc_wq, &rdev->del_work);
  1859. }
  1860. /*
  1861. * prevent the device from being mounted, repartitioned or
  1862. * otherwise reused by a RAID array (or any other kernel
  1863. * subsystem), by bd_claiming the device.
  1864. */
  1865. static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
  1866. {
  1867. int err = 0;
  1868. struct block_device *bdev;
  1869. char b[BDEVNAME_SIZE];
  1870. bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
  1871. shared ? (struct md_rdev *)lock_rdev : rdev);
  1872. if (IS_ERR(bdev)) {
  1873. printk(KERN_ERR "md: could not open %s.\n",
  1874. __bdevname(dev, b));
  1875. return PTR_ERR(bdev);
  1876. }
  1877. rdev->bdev = bdev;
  1878. return err;
  1879. }
  1880. static void unlock_rdev(struct md_rdev *rdev)
  1881. {
  1882. struct block_device *bdev = rdev->bdev;
  1883. rdev->bdev = NULL;
  1884. if (!bdev)
  1885. MD_BUG();
  1886. blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1887. }
  1888. void md_autodetect_dev(dev_t dev);
  1889. static void export_rdev(struct md_rdev * rdev)
  1890. {
  1891. char b[BDEVNAME_SIZE];
  1892. printk(KERN_INFO "md: export_rdev(%s)\n",
  1893. bdevname(rdev->bdev,b));
  1894. if (rdev->mddev)
  1895. MD_BUG();
  1896. free_disk_sb(rdev);
  1897. #ifndef MODULE
  1898. if (test_bit(AutoDetected, &rdev->flags))
  1899. md_autodetect_dev(rdev->bdev->bd_dev);
  1900. #endif
  1901. unlock_rdev(rdev);
  1902. kobject_put(&rdev->kobj);
  1903. }
  1904. static void kick_rdev_from_array(struct md_rdev * rdev)
  1905. {
  1906. unbind_rdev_from_array(rdev);
  1907. export_rdev(rdev);
  1908. }
  1909. static void export_array(struct mddev *mddev)
  1910. {
  1911. struct md_rdev *rdev, *tmp;
  1912. rdev_for_each_safe(rdev, tmp, mddev) {
  1913. if (!rdev->mddev) {
  1914. MD_BUG();
  1915. continue;
  1916. }
  1917. kick_rdev_from_array(rdev);
  1918. }
  1919. if (!list_empty(&mddev->disks))
  1920. MD_BUG();
  1921. mddev->raid_disks = 0;
  1922. mddev->major_version = 0;
  1923. }
  1924. static void print_desc(mdp_disk_t *desc)
  1925. {
  1926. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1927. desc->major,desc->minor,desc->raid_disk,desc->state);
  1928. }
  1929. static void print_sb_90(mdp_super_t *sb)
  1930. {
  1931. int i;
  1932. printk(KERN_INFO
  1933. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1934. sb->major_version, sb->minor_version, sb->patch_version,
  1935. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1936. sb->ctime);
  1937. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1938. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1939. sb->md_minor, sb->layout, sb->chunk_size);
  1940. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1941. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1942. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1943. sb->failed_disks, sb->spare_disks,
  1944. sb->sb_csum, (unsigned long)sb->events_lo);
  1945. printk(KERN_INFO);
  1946. for (i = 0; i < MD_SB_DISKS; i++) {
  1947. mdp_disk_t *desc;
  1948. desc = sb->disks + i;
  1949. if (desc->number || desc->major || desc->minor ||
  1950. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1951. printk(" D %2d: ", i);
  1952. print_desc(desc);
  1953. }
  1954. }
  1955. printk(KERN_INFO "md: THIS: ");
  1956. print_desc(&sb->this_disk);
  1957. }
  1958. static void print_sb_1(struct mdp_superblock_1 *sb)
  1959. {
  1960. __u8 *uuid;
  1961. uuid = sb->set_uuid;
  1962. printk(KERN_INFO
  1963. "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
  1964. "md: Name: \"%s\" CT:%llu\n",
  1965. le32_to_cpu(sb->major_version),
  1966. le32_to_cpu(sb->feature_map),
  1967. uuid,
  1968. sb->set_name,
  1969. (unsigned long long)le64_to_cpu(sb->ctime)
  1970. & MD_SUPERBLOCK_1_TIME_SEC_MASK);
  1971. uuid = sb->device_uuid;
  1972. printk(KERN_INFO
  1973. "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
  1974. " RO:%llu\n"
  1975. "md: Dev:%08x UUID: %pU\n"
  1976. "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
  1977. "md: (MaxDev:%u) \n",
  1978. le32_to_cpu(sb->level),
  1979. (unsigned long long)le64_to_cpu(sb->size),
  1980. le32_to_cpu(sb->raid_disks),
  1981. le32_to_cpu(sb->layout),
  1982. le32_to_cpu(sb->chunksize),
  1983. (unsigned long long)le64_to_cpu(sb->data_offset),
  1984. (unsigned long long)le64_to_cpu(sb->data_size),
  1985. (unsigned long long)le64_to_cpu(sb->super_offset),
  1986. (unsigned long long)le64_to_cpu(sb->recovery_offset),
  1987. le32_to_cpu(sb->dev_number),
  1988. uuid,
  1989. sb->devflags,
  1990. (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
  1991. (unsigned long long)le64_to_cpu(sb->events),
  1992. (unsigned long long)le64_to_cpu(sb->resync_offset),
  1993. le32_to_cpu(sb->sb_csum),
  1994. le32_to_cpu(sb->max_dev)
  1995. );
  1996. }
  1997. static void print_rdev(struct md_rdev *rdev, int major_version)
  1998. {
  1999. char b[BDEVNAME_SIZE];
  2000. printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
  2001. bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
  2002. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  2003. rdev->desc_nr);
  2004. if (rdev->sb_loaded) {
  2005. printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
  2006. switch (major_version) {
  2007. case 0:
  2008. print_sb_90(page_address(rdev->sb_page));
  2009. break;
  2010. case 1:
  2011. print_sb_1(page_address(rdev->sb_page));
  2012. break;
  2013. }
  2014. } else
  2015. printk(KERN_INFO "md: no rdev superblock!\n");
  2016. }
  2017. static void md_print_devices(void)
  2018. {
  2019. struct list_head *tmp;
  2020. struct md_rdev *rdev;
  2021. struct mddev *mddev;
  2022. char b[BDEVNAME_SIZE];
  2023. printk("\n");
  2024. printk("md: **********************************\n");
  2025. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  2026. printk("md: **********************************\n");
  2027. for_each_mddev(mddev, tmp) {
  2028. if (mddev->bitmap)
  2029. bitmap_print_sb(mddev->bitmap);
  2030. else
  2031. printk("%s: ", mdname(mddev));
  2032. rdev_for_each(rdev, mddev)
  2033. printk("<%s>", bdevname(rdev->bdev,b));
  2034. printk("\n");
  2035. rdev_for_each(rdev, mddev)
  2036. print_rdev(rdev, mddev->major_version);
  2037. }
  2038. printk("md: **********************************\n");
  2039. printk("\n");
  2040. }
  2041. static void sync_sbs(struct mddev * mddev, int nospares)
  2042. {
  2043. /* Update each superblock (in-memory image), but
  2044. * if we are allowed to, skip spares which already
  2045. * have the right event counter, or have one earlier
  2046. * (which would mean they aren't being marked as dirty
  2047. * with the rest of the array)
  2048. */
  2049. struct md_rdev *rdev;
  2050. rdev_for_each(rdev, mddev) {
  2051. if (rdev->sb_events == mddev->events ||
  2052. (nospares &&
  2053. rdev->raid_disk < 0 &&
  2054. rdev->sb_events+1 == mddev->events)) {
  2055. /* Don't update this superblock */
  2056. rdev->sb_loaded = 2;
  2057. } else {
  2058. sync_super(mddev, rdev);
  2059. rdev->sb_loaded = 1;
  2060. }
  2061. }
  2062. }
  2063. static void md_update_sb(struct mddev * mddev, int force_change)
  2064. {
  2065. struct md_rdev *rdev;
  2066. int sync_req;
  2067. int nospares = 0;
  2068. int any_badblocks_changed = 0;
  2069. repeat:
  2070. /* First make sure individual recovery_offsets are correct */
  2071. rdev_for_each(rdev, mddev) {
  2072. if (rdev->raid_disk >= 0 &&
  2073. mddev->delta_disks >= 0 &&
  2074. !test_bit(In_sync, &rdev->flags) &&
  2075. mddev->curr_resync_completed > rdev->recovery_offset)
  2076. rdev->recovery_offset = mddev->curr_resync_completed;
  2077. }
  2078. if (!mddev->persistent) {
  2079. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2080. clear_bit(MD_CHANGE_DEVS, &mddev->flags);
  2081. if (!mddev->external) {
  2082. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2083. rdev_for_each(rdev, mddev) {
  2084. if (rdev->badblocks.changed) {
  2085. md_ack_all_badblocks(&rdev->badblocks);
  2086. md_error(mddev, rdev);
  2087. }
  2088. clear_bit(Blocked, &rdev->flags);
  2089. clear_bit(BlockedBadBlocks, &rdev->flags);
  2090. wake_up(&rdev->blocked_wait);
  2091. }
  2092. }
  2093. wake_up(&mddev->sb_wait);
  2094. return;
  2095. }
  2096. spin_lock_irq(&mddev->write_lock);
  2097. mddev->utime = get_seconds();
  2098. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  2099. force_change = 1;
  2100. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  2101. /* just a clean<-> dirty transition, possibly leave spares alone,
  2102. * though if events isn't the right even/odd, we will have to do
  2103. * spares after all
  2104. */
  2105. nospares = 1;
  2106. if (force_change)
  2107. nospares = 0;
  2108. if (mddev->degraded)
  2109. /* If the array is degraded, then skipping spares is both
  2110. * dangerous and fairly pointless.
  2111. * Dangerous because a device that was removed from the array
  2112. * might have a event_count that still looks up-to-date,
  2113. * so it can be re-added without a resync.
  2114. * Pointless because if there are any spares to skip,
  2115. * then a recovery will happen and soon that array won't
  2116. * be degraded any more and the spare can go back to sleep then.
  2117. */
  2118. nospares = 0;
  2119. sync_req = mddev->in_sync;
  2120. /* If this is just a dirty<->clean transition, and the array is clean
  2121. * and 'events' is odd, we can roll back to the previous clean state */
  2122. if (nospares
  2123. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  2124. && mddev->can_decrease_events
  2125. && mddev->events != 1) {
  2126. mddev->events--;
  2127. mddev->can_decrease_events = 0;
  2128. } else {
  2129. /* otherwise we have to go forward and ... */
  2130. mddev->events ++;
  2131. mddev->can_decrease_events = nospares;
  2132. }
  2133. if (!mddev->events) {
  2134. /*
  2135. * oops, this 64-bit counter should never wrap.
  2136. * Either we are in around ~1 trillion A.C., assuming
  2137. * 1 reboot per second, or we have a bug:
  2138. */
  2139. MD_BUG();
  2140. mddev->events --;
  2141. }
  2142. rdev_for_each(rdev, mddev) {
  2143. if (rdev->badblocks.changed)
  2144. any_badblocks_changed++;
  2145. if (test_bit(Faulty, &rdev->flags))
  2146. set_bit(FaultRecorded, &rdev->flags);
  2147. }
  2148. sync_sbs(mddev, nospares);
  2149. spin_unlock_irq(&mddev->write_lock);
  2150. pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
  2151. mdname(mddev), mddev->in_sync);
  2152. bitmap_update_sb(mddev->bitmap);
  2153. rdev_for_each(rdev, mddev) {
  2154. char b[BDEVNAME_SIZE];
  2155. if (rdev->sb_loaded != 1)
  2156. continue; /* no noise on spare devices */
  2157. if (!test_bit(Faulty, &rdev->flags) &&
  2158. rdev->saved_raid_disk == -1) {
  2159. md_super_write(mddev,rdev,
  2160. rdev->sb_start, rdev->sb_size,
  2161. rdev->sb_page);
  2162. pr_debug("md: (write) %s's sb offset: %llu\n",
  2163. bdevname(rdev->bdev, b),
  2164. (unsigned long long)rdev->sb_start);
  2165. rdev->sb_events = mddev->events;
  2166. if (rdev->badblocks.size) {
  2167. md_super_write(mddev, rdev,
  2168. rdev->badblocks.sector,
  2169. rdev->badblocks.size << 9,
  2170. rdev->bb_page);
  2171. rdev->badblocks.size = 0;
  2172. }
  2173. } else if (test_bit(Faulty, &rdev->flags))
  2174. pr_debug("md: %s (skipping faulty)\n",
  2175. bdevname(rdev->bdev, b));
  2176. else
  2177. pr_debug("(skipping incremental s/r ");
  2178. if (mddev->level == LEVEL_MULTIPATH)
  2179. /* only need to write one superblock... */
  2180. break;
  2181. }
  2182. md_super_wait(mddev);
  2183. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  2184. spin_lock_irq(&mddev->write_lock);
  2185. if (mddev->in_sync != sync_req ||
  2186. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  2187. /* have to write it out again */
  2188. spin_unlock_irq(&mddev->write_lock);
  2189. goto repeat;
  2190. }
  2191. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2192. spin_unlock_irq(&mddev->write_lock);
  2193. wake_up(&mddev->sb_wait);
  2194. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  2195. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  2196. rdev_for_each(rdev, mddev) {
  2197. if (test_and_clear_bit(FaultRecorded, &rdev->flags))
  2198. clear_bit(Blocked, &rdev->flags);
  2199. if (any_badblocks_changed)
  2200. md_ack_all_badblocks(&rdev->badblocks);
  2201. clear_bit(BlockedBadBlocks, &rdev->flags);
  2202. wake_up(&rdev->blocked_wait);
  2203. }
  2204. }
  2205. /* words written to sysfs files may, or may not, be \n terminated.
  2206. * We want to accept with case. For this we use cmd_match.
  2207. */
  2208. static int cmd_match(const char *cmd, const char *str)
  2209. {
  2210. /* See if cmd, written into a sysfs file, matches
  2211. * str. They must either be the same, or cmd can
  2212. * have a trailing newline
  2213. */
  2214. while (*cmd && *str && *cmd == *str) {
  2215. cmd++;
  2216. str++;
  2217. }
  2218. if (*cmd == '\n')
  2219. cmd++;
  2220. if (*str || *cmd)
  2221. return 0;
  2222. return 1;
  2223. }
  2224. struct rdev_sysfs_entry {
  2225. struct attribute attr;
  2226. ssize_t (*show)(struct md_rdev *, char *);
  2227. ssize_t (*store)(struct md_rdev *, const char *, size_t);
  2228. };
  2229. static ssize_t
  2230. state_show(struct md_rdev *rdev, char *page)
  2231. {
  2232. char *sep = "";
  2233. size_t len = 0;
  2234. if (test_bit(Faulty, &rdev->flags) ||
  2235. rdev->badblocks.unacked_exist) {
  2236. len+= sprintf(page+len, "%sfaulty",sep);
  2237. sep = ",";
  2238. }
  2239. if (test_bit(In_sync, &rdev->flags)) {
  2240. len += sprintf(page+len, "%sin_sync",sep);
  2241. sep = ",";
  2242. }
  2243. if (test_bit(WriteMostly, &rdev->flags)) {
  2244. len += sprintf(page+len, "%swrite_mostly",sep);
  2245. sep = ",";
  2246. }
  2247. if (test_bit(Blocked, &rdev->flags) ||
  2248. (rdev->badblocks.unacked_exist
  2249. && !test_bit(Faulty, &rdev->flags))) {
  2250. len += sprintf(page+len, "%sblocked", sep);
  2251. sep = ",";
  2252. }
  2253. if (!test_bit(Faulty, &rdev->flags) &&
  2254. !test_bit(In_sync, &rdev->flags)) {
  2255. len += sprintf(page+len, "%sspare", sep);
  2256. sep = ",";
  2257. }
  2258. if (test_bit(WriteErrorSeen, &rdev->flags)) {
  2259. len += sprintf(page+len, "%swrite_error", sep);
  2260. sep = ",";
  2261. }
  2262. if (test_bit(WantReplacement, &rdev->flags)) {
  2263. len += sprintf(page+len, "%swant_replacement", sep);
  2264. sep = ",";
  2265. }
  2266. if (test_bit(Replacement, &rdev->flags)) {
  2267. len += sprintf(page+len, "%sreplacement", sep);
  2268. sep = ",";
  2269. }
  2270. return len+sprintf(page+len, "\n");
  2271. }
  2272. static ssize_t
  2273. state_store(struct md_rdev *rdev, const char *buf, size_t len)
  2274. {
  2275. /* can write
  2276. * faulty - simulates an error
  2277. * remove - disconnects the device
  2278. * writemostly - sets write_mostly
  2279. * -writemostly - clears write_mostly
  2280. * blocked - sets the Blocked flags
  2281. * -blocked - clears the Blocked and possibly simulates an error
  2282. * insync - sets Insync providing device isn't active
  2283. * write_error - sets WriteErrorSeen
  2284. * -write_error - clears WriteErrorSeen
  2285. */
  2286. int err = -EINVAL;
  2287. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  2288. md_error(rdev->mddev, rdev);
  2289. if (test_bit(Faulty, &rdev->flags))
  2290. err = 0;
  2291. else
  2292. err = -EBUSY;
  2293. } else if (cmd_match(buf, "remove")) {
  2294. if (rdev->raid_disk >= 0)
  2295. err = -EBUSY;
  2296. else {
  2297. struct mddev *mddev = rdev->mddev;
  2298. kick_rdev_from_array(rdev);
  2299. if (mddev->pers)
  2300. md_update_sb(mddev, 1);
  2301. md_new_event(mddev);
  2302. err = 0;
  2303. }
  2304. } else if (cmd_match(buf, "writemostly")) {
  2305. set_bit(WriteMostly, &rdev->flags);
  2306. err = 0;
  2307. } else if (cmd_match(buf, "-writemostly")) {
  2308. clear_bit(WriteMostly, &rdev->flags);
  2309. err = 0;
  2310. } else if (cmd_match(buf, "blocked")) {
  2311. set_bit(Blocked, &rdev->flags);
  2312. err = 0;
  2313. } else if (cmd_match(buf, "-blocked")) {
  2314. if (!test_bit(Faulty, &rdev->flags) &&
  2315. rdev->badblocks.unacked_exist) {
  2316. /* metadata handler doesn't understand badblocks,
  2317. * so we need to fail the device
  2318. */
  2319. md_error(rdev->mddev, rdev);
  2320. }
  2321. clear_bit(Blocked, &rdev->flags);
  2322. clear_bit(BlockedBadBlocks, &rdev->flags);
  2323. wake_up(&rdev->blocked_wait);
  2324. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2325. md_wakeup_thread(rdev->mddev->thread);
  2326. err = 0;
  2327. } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
  2328. set_bit(In_sync, &rdev->flags);
  2329. err = 0;
  2330. } else if (cmd_match(buf, "write_error")) {
  2331. set_bit(WriteErrorSeen, &rdev->flags);
  2332. err = 0;
  2333. } else if (cmd_match(buf, "-write_error")) {
  2334. clear_bit(WriteErrorSeen, &rdev->flags);
  2335. err = 0;
  2336. } else if (cmd_match(buf, "want_replacement")) {
  2337. /* Any non-spare device that is not a replacement can
  2338. * become want_replacement at any time, but we then need to
  2339. * check if recovery is needed.
  2340. */
  2341. if (rdev->raid_disk >= 0 &&
  2342. !test_bit(Replacement, &rdev->flags))
  2343. set_bit(WantReplacement, &rdev->flags);
  2344. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2345. md_wakeup_thread(rdev->mddev->thread);
  2346. err = 0;
  2347. } else if (cmd_match(buf, "-want_replacement")) {
  2348. /* Clearing 'want_replacement' is always allowed.
  2349. * Once replacements starts it is too late though.
  2350. */
  2351. err = 0;
  2352. clear_bit(WantReplacement, &rdev->flags);
  2353. } else if (cmd_match(buf, "replacement")) {
  2354. /* Can only set a device as a replacement when array has not
  2355. * yet been started. Once running, replacement is automatic
  2356. * from spares, or by assigning 'slot'.
  2357. */
  2358. if (rdev->mddev->pers)
  2359. err = -EBUSY;
  2360. else {
  2361. set_bit(Replacement, &rdev->flags);
  2362. err = 0;
  2363. }
  2364. } else if (cmd_match(buf, "-replacement")) {
  2365. /* Similarly, can only clear Replacement before start */
  2366. if (rdev->mddev->pers)
  2367. err = -EBUSY;
  2368. else {
  2369. clear_bit(Replacement, &rdev->flags);
  2370. err = 0;
  2371. }
  2372. }
  2373. if (!err)
  2374. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2375. return err ? err : len;
  2376. }
  2377. static struct rdev_sysfs_entry rdev_state =
  2378. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  2379. static ssize_t
  2380. errors_show(struct md_rdev *rdev, char *page)
  2381. {
  2382. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  2383. }
  2384. static ssize_t
  2385. errors_store(struct md_rdev *rdev, const char *buf, size_t len)
  2386. {
  2387. char *e;
  2388. unsigned long n = simple_strtoul(buf, &e, 10);
  2389. if (*buf && (*e == 0 || *e == '\n')) {
  2390. atomic_set(&rdev->corrected_errors, n);
  2391. return len;
  2392. }
  2393. return -EINVAL;
  2394. }
  2395. static struct rdev_sysfs_entry rdev_errors =
  2396. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  2397. static ssize_t
  2398. slot_show(struct md_rdev *rdev, char *page)
  2399. {
  2400. if (rdev->raid_disk < 0)
  2401. return sprintf(page, "none\n");
  2402. else
  2403. return sprintf(page, "%d\n", rdev->raid_disk);
  2404. }
  2405. static ssize_t
  2406. slot_store(struct md_rdev *rdev, const char *buf, size_t len)
  2407. {
  2408. char *e;
  2409. int err;
  2410. int slot = simple_strtoul(buf, &e, 10);
  2411. if (strncmp(buf, "none", 4)==0)
  2412. slot = -1;
  2413. else if (e==buf || (*e && *e!= '\n'))
  2414. return -EINVAL;
  2415. if (rdev->mddev->pers && slot == -1) {
  2416. /* Setting 'slot' on an active array requires also
  2417. * updating the 'rd%d' link, and communicating
  2418. * with the personality with ->hot_*_disk.
  2419. * For now we only support removing
  2420. * failed/spare devices. This normally happens automatically,
  2421. * but not when the metadata is externally managed.
  2422. */
  2423. if (rdev->raid_disk == -1)
  2424. return -EEXIST;
  2425. /* personality does all needed checks */
  2426. if (rdev->mddev->pers->hot_remove_disk == NULL)
  2427. return -EINVAL;
  2428. err = rdev->mddev->pers->
  2429. hot_remove_disk(rdev->mddev, rdev);
  2430. if (err)
  2431. return err;
  2432. sysfs_unlink_rdev(rdev->mddev, rdev);
  2433. rdev->raid_disk = -1;
  2434. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2435. md_wakeup_thread(rdev->mddev->thread);
  2436. } else if (rdev->mddev->pers) {
  2437. /* Activating a spare .. or possibly reactivating
  2438. * if we ever get bitmaps working here.
  2439. */
  2440. if (rdev->raid_disk != -1)
  2441. return -EBUSY;
  2442. if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
  2443. return -EBUSY;
  2444. if (rdev->mddev->pers->hot_add_disk == NULL)
  2445. return -EINVAL;
  2446. if (slot >= rdev->mddev->raid_disks &&
  2447. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2448. return -ENOSPC;
  2449. rdev->raid_disk = slot;
  2450. if (test_bit(In_sync, &rdev->flags))
  2451. rdev->saved_raid_disk = slot;
  2452. else
  2453. rdev->saved_raid_disk = -1;
  2454. clear_bit(In_sync, &rdev->flags);
  2455. err = rdev->mddev->pers->
  2456. hot_add_disk(rdev->mddev, rdev);
  2457. if (err) {
  2458. rdev->raid_disk = -1;
  2459. return err;
  2460. } else
  2461. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2462. if (sysfs_link_rdev(rdev->mddev, rdev))
  2463. /* failure here is OK */;
  2464. /* don't wakeup anyone, leave that to userspace. */
  2465. } else {
  2466. if (slot >= rdev->mddev->raid_disks &&
  2467. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2468. return -ENOSPC;
  2469. rdev->raid_disk = slot;
  2470. /* assume it is working */
  2471. clear_bit(Faulty, &rdev->flags);
  2472. clear_bit(WriteMostly, &rdev->flags);
  2473. set_bit(In_sync, &rdev->flags);
  2474. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2475. }
  2476. return len;
  2477. }
  2478. static struct rdev_sysfs_entry rdev_slot =
  2479. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  2480. static ssize_t
  2481. offset_show(struct md_rdev *rdev, char *page)
  2482. {
  2483. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  2484. }
  2485. static ssize_t
  2486. offset_store(struct md_rdev *rdev, const char *buf, size_t len)
  2487. {
  2488. char *e;
  2489. unsigned long long offset = simple_strtoull(buf, &e, 10);
  2490. if (e==buf || (*e && *e != '\n'))
  2491. return -EINVAL;
  2492. if (rdev->mddev->pers && rdev->raid_disk >= 0)
  2493. return -EBUSY;
  2494. if (rdev->sectors && rdev->mddev->external)
  2495. /* Must set offset before size, so overlap checks
  2496. * can be sane */
  2497. return -EBUSY;
  2498. rdev->data_offset = offset;
  2499. return len;
  2500. }
  2501. static struct rdev_sysfs_entry rdev_offset =
  2502. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  2503. static ssize_t
  2504. rdev_size_show(struct md_rdev *rdev, char *page)
  2505. {
  2506. return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
  2507. }
  2508. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  2509. {
  2510. /* check if two start/length pairs overlap */
  2511. if (s1+l1 <= s2)
  2512. return 0;
  2513. if (s2+l2 <= s1)
  2514. return 0;
  2515. return 1;
  2516. }
  2517. static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
  2518. {
  2519. unsigned long long blocks;
  2520. sector_t new;
  2521. if (strict_strtoull(buf, 10, &blocks) < 0)
  2522. return -EINVAL;
  2523. if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
  2524. return -EINVAL; /* sector conversion overflow */
  2525. new = blocks * 2;
  2526. if (new != blocks * 2)
  2527. return -EINVAL; /* unsigned long long to sector_t overflow */
  2528. *sectors = new;
  2529. return 0;
  2530. }
  2531. static ssize_t
  2532. rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
  2533. {
  2534. struct mddev *my_mddev = rdev->mddev;
  2535. sector_t oldsectors = rdev->sectors;
  2536. sector_t sectors;
  2537. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  2538. return -EINVAL;
  2539. if (my_mddev->pers && rdev->raid_disk >= 0) {
  2540. if (my_mddev->persistent) {
  2541. sectors = super_types[my_mddev->major_version].
  2542. rdev_size_change(rdev, sectors);
  2543. if (!sectors)
  2544. return -EBUSY;
  2545. } else if (!sectors)
  2546. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  2547. rdev->data_offset;
  2548. }
  2549. if (sectors < my_mddev->dev_sectors)
  2550. return -EINVAL; /* component must fit device */
  2551. rdev->sectors = sectors;
  2552. if (sectors > oldsectors && my_mddev->external) {
  2553. /* need to check that all other rdevs with the same ->bdev
  2554. * do not overlap. We need to unlock the mddev to avoid
  2555. * a deadlock. We have already changed rdev->sectors, and if
  2556. * we have to change it back, we will have the lock again.
  2557. */
  2558. struct mddev *mddev;
  2559. int overlap = 0;
  2560. struct list_head *tmp;
  2561. mddev_unlock(my_mddev);
  2562. for_each_mddev(mddev, tmp) {
  2563. struct md_rdev *rdev2;
  2564. mddev_lock(mddev);
  2565. rdev_for_each(rdev2, mddev)
  2566. if (rdev->bdev == rdev2->bdev &&
  2567. rdev != rdev2 &&
  2568. overlaps(rdev->data_offset, rdev->sectors,
  2569. rdev2->data_offset,
  2570. rdev2->sectors)) {
  2571. overlap = 1;
  2572. break;
  2573. }
  2574. mddev_unlock(mddev);
  2575. if (overlap) {
  2576. mddev_put(mddev);
  2577. break;
  2578. }
  2579. }
  2580. mddev_lock(my_mddev);
  2581. if (overlap) {
  2582. /* Someone else could have slipped in a size
  2583. * change here, but doing so is just silly.
  2584. * We put oldsectors back because we *know* it is
  2585. * safe, and trust userspace not to race with
  2586. * itself
  2587. */
  2588. rdev->sectors = oldsectors;
  2589. return -EBUSY;
  2590. }
  2591. }
  2592. return len;
  2593. }
  2594. static struct rdev_sysfs_entry rdev_size =
  2595. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  2596. static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
  2597. {
  2598. unsigned long long recovery_start = rdev->recovery_offset;
  2599. if (test_bit(In_sync, &rdev->flags) ||
  2600. recovery_start == MaxSector)
  2601. return sprintf(page, "none\n");
  2602. return sprintf(page, "%llu\n", recovery_start);
  2603. }
  2604. static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
  2605. {
  2606. unsigned long long recovery_start;
  2607. if (cmd_match(buf, "none"))
  2608. recovery_start = MaxSector;
  2609. else if (strict_strtoull(buf, 10, &recovery_start))
  2610. return -EINVAL;
  2611. if (rdev->mddev->pers &&
  2612. rdev->raid_disk >= 0)
  2613. return -EBUSY;
  2614. rdev->recovery_offset = recovery_start;
  2615. if (recovery_start == MaxSector)
  2616. set_bit(In_sync, &rdev->flags);
  2617. else
  2618. clear_bit(In_sync, &rdev->flags);
  2619. return len;
  2620. }
  2621. static struct rdev_sysfs_entry rdev_recovery_start =
  2622. __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
  2623. static ssize_t
  2624. badblocks_show(struct badblocks *bb, char *page, int unack);
  2625. static ssize_t
  2626. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
  2627. static ssize_t bb_show(struct md_rdev *rdev, char *page)
  2628. {
  2629. return badblocks_show(&rdev->badblocks, page, 0);
  2630. }
  2631. static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
  2632. {
  2633. int rv = badblocks_store(&rdev->badblocks, page, len, 0);
  2634. /* Maybe that ack was all we needed */
  2635. if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
  2636. wake_up(&rdev->blocked_wait);
  2637. return rv;
  2638. }
  2639. static struct rdev_sysfs_entry rdev_bad_blocks =
  2640. __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
  2641. static ssize_t ubb_show(struct md_rdev *rdev, char *page)
  2642. {
  2643. return badblocks_show(&rdev->badblocks, page, 1);
  2644. }
  2645. static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
  2646. {
  2647. return badblocks_store(&rdev->badblocks, page, len, 1);
  2648. }
  2649. static struct rdev_sysfs_entry rdev_unack_bad_blocks =
  2650. __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
  2651. static struct attribute *rdev_default_attrs[] = {
  2652. &rdev_state.attr,
  2653. &rdev_errors.attr,
  2654. &rdev_slot.attr,
  2655. &rdev_offset.attr,
  2656. &rdev_size.attr,
  2657. &rdev_recovery_start.attr,
  2658. &rdev_bad_blocks.attr,
  2659. &rdev_unack_bad_blocks.attr,
  2660. NULL,
  2661. };
  2662. static ssize_t
  2663. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2664. {
  2665. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2666. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2667. struct mddev *mddev = rdev->mddev;
  2668. ssize_t rv;
  2669. if (!entry->show)
  2670. return -EIO;
  2671. rv = mddev ? mddev_lock(mddev) : -EBUSY;
  2672. if (!rv) {
  2673. if (rdev->mddev == NULL)
  2674. rv = -EBUSY;
  2675. else
  2676. rv = entry->show(rdev, page);
  2677. mddev_unlock(mddev);
  2678. }
  2679. return rv;
  2680. }
  2681. static ssize_t
  2682. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  2683. const char *page, size_t length)
  2684. {
  2685. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2686. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2687. ssize_t rv;
  2688. struct mddev *mddev = rdev->mddev;
  2689. if (!entry->store)
  2690. return -EIO;
  2691. if (!capable(CAP_SYS_ADMIN))
  2692. return -EACCES;
  2693. rv = mddev ? mddev_lock(mddev): -EBUSY;
  2694. if (!rv) {
  2695. if (rdev->mddev == NULL)
  2696. rv = -EBUSY;
  2697. else
  2698. rv = entry->store(rdev, page, length);
  2699. mddev_unlock(mddev);
  2700. }
  2701. return rv;
  2702. }
  2703. static void rdev_free(struct kobject *ko)
  2704. {
  2705. struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
  2706. kfree(rdev);
  2707. }
  2708. static const struct sysfs_ops rdev_sysfs_ops = {
  2709. .show = rdev_attr_show,
  2710. .store = rdev_attr_store,
  2711. };
  2712. static struct kobj_type rdev_ktype = {
  2713. .release = rdev_free,
  2714. .sysfs_ops = &rdev_sysfs_ops,
  2715. .default_attrs = rdev_default_attrs,
  2716. };
  2717. int md_rdev_init(struct md_rdev *rdev)
  2718. {
  2719. rdev->desc_nr = -1;
  2720. rdev->saved_raid_disk = -1;
  2721. rdev->raid_disk = -1;
  2722. rdev->flags = 0;
  2723. rdev->data_offset = 0;
  2724. rdev->sb_events = 0;
  2725. rdev->last_read_error.tv_sec = 0;
  2726. rdev->last_read_error.tv_nsec = 0;
  2727. rdev->sb_loaded = 0;
  2728. rdev->bb_page = NULL;
  2729. atomic_set(&rdev->nr_pending, 0);
  2730. atomic_set(&rdev->read_errors, 0);
  2731. atomic_set(&rdev->corrected_errors, 0);
  2732. INIT_LIST_HEAD(&rdev->same_set);
  2733. init_waitqueue_head(&rdev->blocked_wait);
  2734. /* Add space to store bad block list.
  2735. * This reserves the space even on arrays where it cannot
  2736. * be used - I wonder if that matters
  2737. */
  2738. rdev->badblocks.count = 0;
  2739. rdev->badblocks.shift = 0;
  2740. rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2741. seqlock_init(&rdev->badblocks.lock);
  2742. if (rdev->badblocks.page == NULL)
  2743. return -ENOMEM;
  2744. return 0;
  2745. }
  2746. EXPORT_SYMBOL_GPL(md_rdev_init);
  2747. /*
  2748. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  2749. *
  2750. * mark the device faulty if:
  2751. *
  2752. * - the device is nonexistent (zero size)
  2753. * - the device has no valid superblock
  2754. *
  2755. * a faulty rdev _never_ has rdev->sb set.
  2756. */
  2757. static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
  2758. {
  2759. char b[BDEVNAME_SIZE];
  2760. int err;
  2761. struct md_rdev *rdev;
  2762. sector_t size;
  2763. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  2764. if (!rdev) {
  2765. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  2766. return ERR_PTR(-ENOMEM);
  2767. }
  2768. err = md_rdev_init(rdev);
  2769. if (err)
  2770. goto abort_free;
  2771. err = alloc_disk_sb(rdev);
  2772. if (err)
  2773. goto abort_free;
  2774. err = lock_rdev(rdev, newdev, super_format == -2);
  2775. if (err)
  2776. goto abort_free;
  2777. kobject_init(&rdev->kobj, &rdev_ktype);
  2778. size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
  2779. if (!size) {
  2780. printk(KERN_WARNING
  2781. "md: %s has zero or unknown size, marking faulty!\n",
  2782. bdevname(rdev->bdev,b));
  2783. err = -EINVAL;
  2784. goto abort_free;
  2785. }
  2786. if (super_format >= 0) {
  2787. err = super_types[super_format].
  2788. load_super(rdev, NULL, super_minor);
  2789. if (err == -EINVAL) {
  2790. printk(KERN_WARNING
  2791. "md: %s does not have a valid v%d.%d "
  2792. "superblock, not importing!\n",
  2793. bdevname(rdev->bdev,b),
  2794. super_format, super_minor);
  2795. goto abort_free;
  2796. }
  2797. if (err < 0) {
  2798. printk(KERN_WARNING
  2799. "md: could not read %s's sb, not importing!\n",
  2800. bdevname(rdev->bdev,b));
  2801. goto abort_free;
  2802. }
  2803. }
  2804. if (super_format == -1)
  2805. /* hot-add for 0.90, or non-persistent: so no badblocks */
  2806. rdev->badblocks.shift = -1;
  2807. return rdev;
  2808. abort_free:
  2809. if (rdev->bdev)
  2810. unlock_rdev(rdev);
  2811. free_disk_sb(rdev);
  2812. kfree(rdev->badblocks.page);
  2813. kfree(rdev);
  2814. return ERR_PTR(err);
  2815. }
  2816. /*
  2817. * Check a full RAID array for plausibility
  2818. */
  2819. static void analyze_sbs(struct mddev * mddev)
  2820. {
  2821. int i;
  2822. struct md_rdev *rdev, *freshest, *tmp;
  2823. char b[BDEVNAME_SIZE];
  2824. freshest = NULL;
  2825. rdev_for_each_safe(rdev, tmp, mddev)
  2826. switch (super_types[mddev->major_version].
  2827. load_super(rdev, freshest, mddev->minor_version)) {
  2828. case 1:
  2829. freshest = rdev;
  2830. break;
  2831. case 0:
  2832. break;
  2833. default:
  2834. printk( KERN_ERR \
  2835. "md: fatal superblock inconsistency in %s"
  2836. " -- removing from array\n",
  2837. bdevname(rdev->bdev,b));
  2838. kick_rdev_from_array(rdev);
  2839. }
  2840. super_types[mddev->major_version].
  2841. validate_super(mddev, freshest);
  2842. i = 0;
  2843. rdev_for_each_safe(rdev, tmp, mddev) {
  2844. if (mddev->max_disks &&
  2845. (rdev->desc_nr >= mddev->max_disks ||
  2846. i > mddev->max_disks)) {
  2847. printk(KERN_WARNING
  2848. "md: %s: %s: only %d devices permitted\n",
  2849. mdname(mddev), bdevname(rdev->bdev, b),
  2850. mddev->max_disks);
  2851. kick_rdev_from_array(rdev);
  2852. continue;
  2853. }
  2854. if (rdev != freshest)
  2855. if (super_types[mddev->major_version].
  2856. validate_super(mddev, rdev)) {
  2857. printk(KERN_WARNING "md: kicking non-fresh %s"
  2858. " from array!\n",
  2859. bdevname(rdev->bdev,b));
  2860. kick_rdev_from_array(rdev);
  2861. continue;
  2862. }
  2863. if (mddev->level == LEVEL_MULTIPATH) {
  2864. rdev->desc_nr = i++;
  2865. rdev->raid_disk = rdev->desc_nr;
  2866. set_bit(In_sync, &rdev->flags);
  2867. } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
  2868. rdev->raid_disk = -1;
  2869. clear_bit(In_sync, &rdev->flags);
  2870. }
  2871. }
  2872. }
  2873. /* Read a fixed-point number.
  2874. * Numbers in sysfs attributes should be in "standard" units where
  2875. * possible, so time should be in seconds.
  2876. * However we internally use a a much smaller unit such as
  2877. * milliseconds or jiffies.
  2878. * This function takes a decimal number with a possible fractional
  2879. * component, and produces an integer which is the result of
  2880. * multiplying that number by 10^'scale'.
  2881. * all without any floating-point arithmetic.
  2882. */
  2883. int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
  2884. {
  2885. unsigned long result = 0;
  2886. long decimals = -1;
  2887. while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
  2888. if (*cp == '.')
  2889. decimals = 0;
  2890. else if (decimals < scale) {
  2891. unsigned int value;
  2892. value = *cp - '0';
  2893. result = result * 10 + value;
  2894. if (decimals >= 0)
  2895. decimals++;
  2896. }
  2897. cp++;
  2898. }
  2899. if (*cp == '\n')
  2900. cp++;
  2901. if (*cp)
  2902. return -EINVAL;
  2903. if (decimals < 0)
  2904. decimals = 0;
  2905. while (decimals < scale) {
  2906. result *= 10;
  2907. decimals ++;
  2908. }
  2909. *res = result;
  2910. return 0;
  2911. }
  2912. static void md_safemode_timeout(unsigned long data);
  2913. static ssize_t
  2914. safe_delay_show(struct mddev *mddev, char *page)
  2915. {
  2916. int msec = (mddev->safemode_delay*1000)/HZ;
  2917. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  2918. }
  2919. static ssize_t
  2920. safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
  2921. {
  2922. unsigned long msec;
  2923. if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
  2924. return -EINVAL;
  2925. if (msec == 0)
  2926. mddev->safemode_delay = 0;
  2927. else {
  2928. unsigned long old_delay = mddev->safemode_delay;
  2929. mddev->safemode_delay = (msec*HZ)/1000;
  2930. if (mddev->safemode_delay == 0)
  2931. mddev->safemode_delay = 1;
  2932. if (mddev->safemode_delay < old_delay)
  2933. md_safemode_timeout((unsigned long)mddev);
  2934. }
  2935. return len;
  2936. }
  2937. static struct md_sysfs_entry md_safe_delay =
  2938. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  2939. static ssize_t
  2940. level_show(struct mddev *mddev, char *page)
  2941. {
  2942. struct md_personality *p = mddev->pers;
  2943. if (p)
  2944. return sprintf(page, "%s\n", p->name);
  2945. else if (mddev->clevel[0])
  2946. return sprintf(page, "%s\n", mddev->clevel);
  2947. else if (mddev->level != LEVEL_NONE)
  2948. return sprintf(page, "%d\n", mddev->level);
  2949. else
  2950. return 0;
  2951. }
  2952. static ssize_t
  2953. level_store(struct mddev *mddev, const char *buf, size_t len)
  2954. {
  2955. char clevel[16];
  2956. ssize_t rv = len;
  2957. struct md_personality *pers;
  2958. long level;
  2959. void *priv;
  2960. struct md_rdev *rdev;
  2961. if (mddev->pers == NULL) {
  2962. if (len == 0)
  2963. return 0;
  2964. if (len >= sizeof(mddev->clevel))
  2965. return -ENOSPC;
  2966. strncpy(mddev->clevel, buf, len);
  2967. if (mddev->clevel[len-1] == '\n')
  2968. len--;
  2969. mddev->clevel[len] = 0;
  2970. mddev->level = LEVEL_NONE;
  2971. return rv;
  2972. }
  2973. /* request to change the personality. Need to ensure:
  2974. * - array is not engaged in resync/recovery/reshape
  2975. * - old personality can be suspended
  2976. * - new personality will access other array.
  2977. */
  2978. if (mddev->sync_thread ||
  2979. mddev->reshape_position != MaxSector ||
  2980. mddev->sysfs_active)
  2981. return -EBUSY;
  2982. if (!mddev->pers->quiesce) {
  2983. printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
  2984. mdname(mddev), mddev->pers->name);
  2985. return -EINVAL;
  2986. }
  2987. /* Now find the new personality */
  2988. if (len == 0 || len >= sizeof(clevel))
  2989. return -EINVAL;
  2990. strncpy(clevel, buf, len);
  2991. if (clevel[len-1] == '\n')
  2992. len--;
  2993. clevel[len] = 0;
  2994. if (strict_strtol(clevel, 10, &level))
  2995. level = LEVEL_NONE;
  2996. if (request_module("md-%s", clevel) != 0)
  2997. request_module("md-level-%s", clevel);
  2998. spin_lock(&pers_lock);
  2999. pers = find_pers(level, clevel);
  3000. if (!pers || !try_module_get(pers->owner)) {
  3001. spin_unlock(&pers_lock);
  3002. printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
  3003. return -EINVAL;
  3004. }
  3005. spin_unlock(&pers_lock);
  3006. if (pers == mddev->pers) {
  3007. /* Nothing to do! */
  3008. module_put(pers->owner);
  3009. return rv;
  3010. }
  3011. if (!pers->takeover) {
  3012. module_put(pers->owner);
  3013. printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
  3014. mdname(mddev), clevel);
  3015. return -EINVAL;
  3016. }
  3017. rdev_for_each(rdev, mddev)
  3018. rdev->new_raid_disk = rdev->raid_disk;
  3019. /* ->takeover must set new_* and/or delta_disks
  3020. * if it succeeds, and may set them when it fails.
  3021. */
  3022. priv = pers->takeover(mddev);
  3023. if (IS_ERR(priv)) {
  3024. mddev->new_level = mddev->level;
  3025. mddev->new_layout = mddev->layout;
  3026. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3027. mddev->raid_disks -= mddev->delta_disks;
  3028. mddev->delta_disks = 0;
  3029. module_put(pers->owner);
  3030. printk(KERN_WARNING "md: %s: %s would not accept array\n",
  3031. mdname(mddev), clevel);
  3032. return PTR_ERR(priv);
  3033. }
  3034. /* Looks like we have a winner */
  3035. mddev_suspend(mddev);
  3036. mddev->pers->stop(mddev);
  3037. if (mddev->pers->sync_request == NULL &&
  3038. pers->sync_request != NULL) {
  3039. /* need to add the md_redundancy_group */
  3040. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  3041. printk(KERN_WARNING
  3042. "md: cannot register extra attributes for %s\n",
  3043. mdname(mddev));
  3044. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
  3045. }
  3046. if (mddev->pers->sync_request != NULL &&
  3047. pers->sync_request == NULL) {
  3048. /* need to remove the md_redundancy_group */
  3049. if (mddev->to_remove == NULL)
  3050. mddev->to_remove = &md_redundancy_group;
  3051. }
  3052. if (mddev->pers->sync_request == NULL &&
  3053. mddev->external) {
  3054. /* We are converting from a no-redundancy array
  3055. * to a redundancy array and metadata is managed
  3056. * externally so we need to be sure that writes
  3057. * won't block due to a need to transition
  3058. * clean->dirty
  3059. * until external management is started.
  3060. */
  3061. mddev->in_sync = 0;
  3062. mddev->safemode_delay = 0;
  3063. mddev->safemode = 0;
  3064. }
  3065. rdev_for_each(rdev, mddev) {
  3066. if (rdev->raid_disk < 0)
  3067. continue;
  3068. if (rdev->new_raid_disk >= mddev->raid_disks)
  3069. rdev->new_raid_disk = -1;
  3070. if (rdev->new_raid_disk == rdev->raid_disk)
  3071. continue;
  3072. sysfs_unlink_rdev(mddev, rdev);
  3073. }
  3074. rdev_for_each(rdev, mddev) {
  3075. if (rdev->raid_disk < 0)
  3076. continue;
  3077. if (rdev->new_raid_disk == rdev->raid_disk)
  3078. continue;
  3079. rdev->raid_disk = rdev->new_raid_disk;
  3080. if (rdev->raid_disk < 0)
  3081. clear_bit(In_sync, &rdev->flags);
  3082. else {
  3083. if (sysfs_link_rdev(mddev, rdev))
  3084. printk(KERN_WARNING "md: cannot register rd%d"
  3085. " for %s after level change\n",
  3086. rdev->raid_disk, mdname(mddev));
  3087. }
  3088. }
  3089. module_put(mddev->pers->owner);
  3090. mddev->pers = pers;
  3091. mddev->private = priv;
  3092. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  3093. mddev->level = mddev->new_level;
  3094. mddev->layout = mddev->new_layout;
  3095. mddev->chunk_sectors = mddev->new_chunk_sectors;
  3096. mddev->delta_disks = 0;
  3097. mddev->degraded = 0;
  3098. if (mddev->pers->sync_request == NULL) {
  3099. /* this is now an array without redundancy, so
  3100. * it must always be in_sync
  3101. */
  3102. mddev->in_sync = 1;
  3103. del_timer_sync(&mddev->safemode_timer);
  3104. }
  3105. pers->run(mddev);
  3106. mddev_resume(mddev);
  3107. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3108. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3109. md_wakeup_thread(mddev->thread);
  3110. sysfs_notify(&mddev->kobj, NULL, "level");
  3111. md_new_event(mddev);
  3112. return rv;
  3113. }
  3114. static struct md_sysfs_entry md_level =
  3115. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  3116. static ssize_t
  3117. layout_show(struct mddev *mddev, char *page)
  3118. {
  3119. /* just a number, not meaningful for all levels */
  3120. if (mddev->reshape_position != MaxSector &&
  3121. mddev->layout != mddev->new_layout)
  3122. return sprintf(page, "%d (%d)\n",
  3123. mddev->new_layout, mddev->layout);
  3124. return sprintf(page, "%d\n", mddev->layout);
  3125. }
  3126. static ssize_t
  3127. layout_store(struct mddev *mddev, const char *buf, size_t len)
  3128. {
  3129. char *e;
  3130. unsigned long n = simple_strtoul(buf, &e, 10);
  3131. if (!*buf || (*e && *e != '\n'))
  3132. return -EINVAL;
  3133. if (mddev->pers) {
  3134. int err;
  3135. if (mddev->pers->check_reshape == NULL)
  3136. return -EBUSY;
  3137. mddev->new_layout = n;
  3138. err = mddev->pers->check_reshape(mddev);
  3139. if (err) {
  3140. mddev->new_layout = mddev->layout;
  3141. return err;
  3142. }
  3143. } else {
  3144. mddev->new_layout = n;
  3145. if (mddev->reshape_position == MaxSector)
  3146. mddev->layout = n;
  3147. }
  3148. return len;
  3149. }
  3150. static struct md_sysfs_entry md_layout =
  3151. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  3152. static ssize_t
  3153. raid_disks_show(struct mddev *mddev, char *page)
  3154. {
  3155. if (mddev->raid_disks == 0)
  3156. return 0;
  3157. if (mddev->reshape_position != MaxSector &&
  3158. mddev->delta_disks != 0)
  3159. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  3160. mddev->raid_disks - mddev->delta_disks);
  3161. return sprintf(page, "%d\n", mddev->raid_disks);
  3162. }
  3163. static int update_raid_disks(struct mddev *mddev, int raid_disks);
  3164. static ssize_t
  3165. raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
  3166. {
  3167. char *e;
  3168. int rv = 0;
  3169. unsigned long n = simple_strtoul(buf, &e, 10);
  3170. if (!*buf || (*e && *e != '\n'))
  3171. return -EINVAL;
  3172. if (mddev->pers)
  3173. rv = update_raid_disks(mddev, n);
  3174. else if (mddev->reshape_position != MaxSector) {
  3175. int olddisks = mddev->raid_disks - mddev->delta_disks;
  3176. mddev->delta_disks = n - olddisks;
  3177. mddev->raid_disks = n;
  3178. } else
  3179. mddev->raid_disks = n;
  3180. return rv ? rv : len;
  3181. }
  3182. static struct md_sysfs_entry md_raid_disks =
  3183. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  3184. static ssize_t
  3185. chunk_size_show(struct mddev *mddev, char *page)
  3186. {
  3187. if (mddev->reshape_position != MaxSector &&
  3188. mddev->chunk_sectors != mddev->new_chunk_sectors)
  3189. return sprintf(page, "%d (%d)\n",
  3190. mddev->new_chunk_sectors << 9,
  3191. mddev->chunk_sectors << 9);
  3192. return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
  3193. }
  3194. static ssize_t
  3195. chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
  3196. {
  3197. char *e;
  3198. unsigned long n = simple_strtoul(buf, &e, 10);
  3199. if (!*buf || (*e && *e != '\n'))
  3200. return -EINVAL;
  3201. if (mddev->pers) {
  3202. int err;
  3203. if (mddev->pers->check_reshape == NULL)
  3204. return -EBUSY;
  3205. mddev->new_chunk_sectors = n >> 9;
  3206. err = mddev->pers->check_reshape(mddev);
  3207. if (err) {
  3208. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3209. return err;
  3210. }
  3211. } else {
  3212. mddev->new_chunk_sectors = n >> 9;
  3213. if (mddev->reshape_position == MaxSector)
  3214. mddev->chunk_sectors = n >> 9;
  3215. }
  3216. return len;
  3217. }
  3218. static struct md_sysfs_entry md_chunk_size =
  3219. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  3220. static ssize_t
  3221. resync_start_show(struct mddev *mddev, char *page)
  3222. {
  3223. if (mddev->recovery_cp == MaxSector)
  3224. return sprintf(page, "none\n");
  3225. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  3226. }
  3227. static ssize_t
  3228. resync_start_store(struct mddev *mddev, const char *buf, size_t len)
  3229. {
  3230. char *e;
  3231. unsigned long long n = simple_strtoull(buf, &e, 10);
  3232. if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3233. return -EBUSY;
  3234. if (cmd_match(buf, "none"))
  3235. n = MaxSector;
  3236. else if (!*buf || (*e && *e != '\n'))
  3237. return -EINVAL;
  3238. mddev->recovery_cp = n;
  3239. return len;
  3240. }
  3241. static struct md_sysfs_entry md_resync_start =
  3242. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  3243. /*
  3244. * The array state can be:
  3245. *
  3246. * clear
  3247. * No devices, no size, no level
  3248. * Equivalent to STOP_ARRAY ioctl
  3249. * inactive
  3250. * May have some settings, but array is not active
  3251. * all IO results in error
  3252. * When written, doesn't tear down array, but just stops it
  3253. * suspended (not supported yet)
  3254. * All IO requests will block. The array can be reconfigured.
  3255. * Writing this, if accepted, will block until array is quiescent
  3256. * readonly
  3257. * no resync can happen. no superblocks get written.
  3258. * write requests fail
  3259. * read-auto
  3260. * like readonly, but behaves like 'clean' on a write request.
  3261. *
  3262. * clean - no pending writes, but otherwise active.
  3263. * When written to inactive array, starts without resync
  3264. * If a write request arrives then
  3265. * if metadata is known, mark 'dirty' and switch to 'active'.
  3266. * if not known, block and switch to write-pending
  3267. * If written to an active array that has pending writes, then fails.
  3268. * active
  3269. * fully active: IO and resync can be happening.
  3270. * When written to inactive array, starts with resync
  3271. *
  3272. * write-pending
  3273. * clean, but writes are blocked waiting for 'active' to be written.
  3274. *
  3275. * active-idle
  3276. * like active, but no writes have been seen for a while (100msec).
  3277. *
  3278. */
  3279. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  3280. write_pending, active_idle, bad_word};
  3281. static char *array_states[] = {
  3282. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  3283. "write-pending", "active-idle", NULL };
  3284. static int match_word(const char *word, char **list)
  3285. {
  3286. int n;
  3287. for (n=0; list[n]; n++)
  3288. if (cmd_match(word, list[n]))
  3289. break;
  3290. return n;
  3291. }
  3292. static ssize_t
  3293. array_state_show(struct mddev *mddev, char *page)
  3294. {
  3295. enum array_state st = inactive;
  3296. if (mddev->pers)
  3297. switch(mddev->ro) {
  3298. case 1:
  3299. st = readonly;
  3300. break;
  3301. case 2:
  3302. st = read_auto;
  3303. break;
  3304. case 0:
  3305. if (mddev->in_sync)
  3306. st = clean;
  3307. else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  3308. st = write_pending;
  3309. else if (mddev->safemode)
  3310. st = active_idle;
  3311. else
  3312. st = active;
  3313. }
  3314. else {
  3315. if (list_empty(&mddev->disks) &&
  3316. mddev->raid_disks == 0 &&
  3317. mddev->dev_sectors == 0)
  3318. st = clear;
  3319. else
  3320. st = inactive;
  3321. }
  3322. return sprintf(page, "%s\n", array_states[st]);
  3323. }
  3324. static int do_md_stop(struct mddev * mddev, int ro, int is_open);
  3325. static int md_set_readonly(struct mddev * mddev, int is_open);
  3326. static int do_md_run(struct mddev * mddev);
  3327. static int restart_array(struct mddev *mddev);
  3328. static ssize_t
  3329. array_state_store(struct mddev *mddev, const char *buf, size_t len)
  3330. {
  3331. int err = -EINVAL;
  3332. enum array_state st = match_word(buf, array_states);
  3333. switch(st) {
  3334. case bad_word:
  3335. break;
  3336. case clear:
  3337. /* stopping an active array */
  3338. if (atomic_read(&mddev->openers) > 0)
  3339. return -EBUSY;
  3340. err = do_md_stop(mddev, 0, 0);
  3341. break;
  3342. case inactive:
  3343. /* stopping an active array */
  3344. if (mddev->pers) {
  3345. if (atomic_read(&mddev->openers) > 0)
  3346. return -EBUSY;
  3347. err = do_md_stop(mddev, 2, 0);
  3348. } else
  3349. err = 0; /* already inactive */
  3350. break;
  3351. case suspended:
  3352. break; /* not supported yet */
  3353. case readonly:
  3354. if (mddev->pers)
  3355. err = md_set_readonly(mddev, 0);
  3356. else {
  3357. mddev->ro = 1;
  3358. set_disk_ro(mddev->gendisk, 1);
  3359. err = do_md_run(mddev);
  3360. }
  3361. break;
  3362. case read_auto:
  3363. if (mddev->pers) {
  3364. if (mddev->ro == 0)
  3365. err = md_set_readonly(mddev, 0);
  3366. else if (mddev->ro == 1)
  3367. err = restart_array(mddev);
  3368. if (err == 0) {
  3369. mddev->ro = 2;
  3370. set_disk_ro(mddev->gendisk, 0);
  3371. }
  3372. } else {
  3373. mddev->ro = 2;
  3374. err = do_md_run(mddev);
  3375. }
  3376. break;
  3377. case clean:
  3378. if (mddev->pers) {
  3379. restart_array(mddev);
  3380. spin_lock_irq(&mddev->write_lock);
  3381. if (atomic_read(&mddev->writes_pending) == 0) {
  3382. if (mddev->in_sync == 0) {
  3383. mddev->in_sync = 1;
  3384. if (mddev->safemode == 1)
  3385. mddev->safemode = 0;
  3386. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3387. }
  3388. err = 0;
  3389. } else
  3390. err = -EBUSY;
  3391. spin_unlock_irq(&mddev->write_lock);
  3392. } else
  3393. err = -EINVAL;
  3394. break;
  3395. case active:
  3396. if (mddev->pers) {
  3397. restart_array(mddev);
  3398. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3399. wake_up(&mddev->sb_wait);
  3400. err = 0;
  3401. } else {
  3402. mddev->ro = 0;
  3403. set_disk_ro(mddev->gendisk, 0);
  3404. err = do_md_run(mddev);
  3405. }
  3406. break;
  3407. case write_pending:
  3408. case active_idle:
  3409. /* these cannot be set */
  3410. break;
  3411. }
  3412. if (err)
  3413. return err;
  3414. else {
  3415. if (mddev->hold_active == UNTIL_IOCTL)
  3416. mddev->hold_active = 0;
  3417. sysfs_notify_dirent_safe(mddev->sysfs_state);
  3418. return len;
  3419. }
  3420. }
  3421. static struct md_sysfs_entry md_array_state =
  3422. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  3423. static ssize_t
  3424. max_corrected_read_errors_show(struct mddev *mddev, char *page) {
  3425. return sprintf(page, "%d\n",
  3426. atomic_read(&mddev->max_corr_read_errors));
  3427. }
  3428. static ssize_t
  3429. max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
  3430. {
  3431. char *e;
  3432. unsigned long n = simple_strtoul(buf, &e, 10);
  3433. if (*buf && (*e == 0 || *e == '\n')) {
  3434. atomic_set(&mddev->max_corr_read_errors, n);
  3435. return len;
  3436. }
  3437. return -EINVAL;
  3438. }
  3439. static struct md_sysfs_entry max_corr_read_errors =
  3440. __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
  3441. max_corrected_read_errors_store);
  3442. static ssize_t
  3443. null_show(struct mddev *mddev, char *page)
  3444. {
  3445. return -EINVAL;
  3446. }
  3447. static ssize_t
  3448. new_dev_store(struct mddev *mddev, const char *buf, size_t len)
  3449. {
  3450. /* buf must be %d:%d\n? giving major and minor numbers */
  3451. /* The new device is added to the array.
  3452. * If the array has a persistent superblock, we read the
  3453. * superblock to initialise info and check validity.
  3454. * Otherwise, only checking done is that in bind_rdev_to_array,
  3455. * which mainly checks size.
  3456. */
  3457. char *e;
  3458. int major = simple_strtoul(buf, &e, 10);
  3459. int minor;
  3460. dev_t dev;
  3461. struct md_rdev *rdev;
  3462. int err;
  3463. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  3464. return -EINVAL;
  3465. minor = simple_strtoul(e+1, &e, 10);
  3466. if (*e && *e != '\n')
  3467. return -EINVAL;
  3468. dev = MKDEV(major, minor);
  3469. if (major != MAJOR(dev) ||
  3470. minor != MINOR(dev))
  3471. return -EOVERFLOW;
  3472. if (mddev->persistent) {
  3473. rdev = md_import_device(dev, mddev->major_version,
  3474. mddev->minor_version);
  3475. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  3476. struct md_rdev *rdev0
  3477. = list_entry(mddev->disks.next,
  3478. struct md_rdev, same_set);
  3479. err = super_types[mddev->major_version]
  3480. .load_super(rdev, rdev0, mddev->minor_version);
  3481. if (err < 0)
  3482. goto out;
  3483. }
  3484. } else if (mddev->external)
  3485. rdev = md_import_device(dev, -2, -1);
  3486. else
  3487. rdev = md_import_device(dev, -1, -1);
  3488. if (IS_ERR(rdev))
  3489. return PTR_ERR(rdev);
  3490. err = bind_rdev_to_array(rdev, mddev);
  3491. out:
  3492. if (err)
  3493. export_rdev(rdev);
  3494. return err ? err : len;
  3495. }
  3496. static struct md_sysfs_entry md_new_device =
  3497. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  3498. static ssize_t
  3499. bitmap_store(struct mddev *mddev, const char *buf, size_t len)
  3500. {
  3501. char *end;
  3502. unsigned long chunk, end_chunk;
  3503. if (!mddev->bitmap)
  3504. goto out;
  3505. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  3506. while (*buf) {
  3507. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  3508. if (buf == end) break;
  3509. if (*end == '-') { /* range */
  3510. buf = end + 1;
  3511. end_chunk = simple_strtoul(buf, &end, 0);
  3512. if (buf == end) break;
  3513. }
  3514. if (*end && !isspace(*end)) break;
  3515. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  3516. buf = skip_spaces(end);
  3517. }
  3518. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  3519. out:
  3520. return len;
  3521. }
  3522. static struct md_sysfs_entry md_bitmap =
  3523. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  3524. static ssize_t
  3525. size_show(struct mddev *mddev, char *page)
  3526. {
  3527. return sprintf(page, "%llu\n",
  3528. (unsigned long long)mddev->dev_sectors / 2);
  3529. }
  3530. static int update_size(struct mddev *mddev, sector_t num_sectors);
  3531. static ssize_t
  3532. size_store(struct mddev *mddev, const char *buf, size_t len)
  3533. {
  3534. /* If array is inactive, we can reduce the component size, but
  3535. * not increase it (except from 0).
  3536. * If array is active, we can try an on-line resize
  3537. */
  3538. sector_t sectors;
  3539. int err = strict_blocks_to_sectors(buf, &sectors);
  3540. if (err < 0)
  3541. return err;
  3542. if (mddev->pers) {
  3543. err = update_size(mddev, sectors);
  3544. md_update_sb(mddev, 1);
  3545. } else {
  3546. if (mddev->dev_sectors == 0 ||
  3547. mddev->dev_sectors > sectors)
  3548. mddev->dev_sectors = sectors;
  3549. else
  3550. err = -ENOSPC;
  3551. }
  3552. return err ? err : len;
  3553. }
  3554. static struct md_sysfs_entry md_size =
  3555. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  3556. /* Metdata version.
  3557. * This is one of
  3558. * 'none' for arrays with no metadata (good luck...)
  3559. * 'external' for arrays with externally managed metadata,
  3560. * or N.M for internally known formats
  3561. */
  3562. static ssize_t
  3563. metadata_show(struct mddev *mddev, char *page)
  3564. {
  3565. if (mddev->persistent)
  3566. return sprintf(page, "%d.%d\n",
  3567. mddev->major_version, mddev->minor_version);
  3568. else if (mddev->external)
  3569. return sprintf(page, "external:%s\n", mddev->metadata_type);
  3570. else
  3571. return sprintf(page, "none\n");
  3572. }
  3573. static ssize_t
  3574. metadata_store(struct mddev *mddev, const char *buf, size_t len)
  3575. {
  3576. int major, minor;
  3577. char *e;
  3578. /* Changing the details of 'external' metadata is
  3579. * always permitted. Otherwise there must be
  3580. * no devices attached to the array.
  3581. */
  3582. if (mddev->external && strncmp(buf, "external:", 9) == 0)
  3583. ;
  3584. else if (!list_empty(&mddev->disks))
  3585. return -EBUSY;
  3586. if (cmd_match(buf, "none")) {
  3587. mddev->persistent = 0;
  3588. mddev->external = 0;
  3589. mddev->major_version = 0;
  3590. mddev->minor_version = 90;
  3591. return len;
  3592. }
  3593. if (strncmp(buf, "external:", 9) == 0) {
  3594. size_t namelen = len-9;
  3595. if (namelen >= sizeof(mddev->metadata_type))
  3596. namelen = sizeof(mddev->metadata_type)-1;
  3597. strncpy(mddev->metadata_type, buf+9, namelen);
  3598. mddev->metadata_type[namelen] = 0;
  3599. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  3600. mddev->metadata_type[--namelen] = 0;
  3601. mddev->persistent = 0;
  3602. mddev->external = 1;
  3603. mddev->major_version = 0;
  3604. mddev->minor_version = 90;
  3605. return len;
  3606. }
  3607. major = simple_strtoul(buf, &e, 10);
  3608. if (e==buf || *e != '.')
  3609. return -EINVAL;
  3610. buf = e+1;
  3611. minor = simple_strtoul(buf, &e, 10);
  3612. if (e==buf || (*e && *e != '\n') )
  3613. return -EINVAL;
  3614. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  3615. return -ENOENT;
  3616. mddev->major_version = major;
  3617. mddev->minor_version = minor;
  3618. mddev->persistent = 1;
  3619. mddev->external = 0;
  3620. return len;
  3621. }
  3622. static struct md_sysfs_entry md_metadata =
  3623. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  3624. static ssize_t
  3625. action_show(struct mddev *mddev, char *page)
  3626. {
  3627. char *type = "idle";
  3628. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3629. type = "frozen";
  3630. else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3631. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
  3632. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3633. type = "reshape";
  3634. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  3635. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  3636. type = "resync";
  3637. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  3638. type = "check";
  3639. else
  3640. type = "repair";
  3641. } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
  3642. type = "recover";
  3643. }
  3644. return sprintf(page, "%s\n", type);
  3645. }
  3646. static void reap_sync_thread(struct mddev *mddev);
  3647. static ssize_t
  3648. action_store(struct mddev *mddev, const char *page, size_t len)
  3649. {
  3650. if (!mddev->pers || !mddev->pers->sync_request)
  3651. return -EINVAL;
  3652. if (cmd_match(page, "frozen"))
  3653. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3654. else
  3655. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3656. if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
  3657. if (mddev->sync_thread) {
  3658. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3659. reap_sync_thread(mddev);
  3660. }
  3661. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3662. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  3663. return -EBUSY;
  3664. else if (cmd_match(page, "resync"))
  3665. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3666. else if (cmd_match(page, "recover")) {
  3667. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  3668. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3669. } else if (cmd_match(page, "reshape")) {
  3670. int err;
  3671. if (mddev->pers->start_reshape == NULL)
  3672. return -EINVAL;
  3673. err = mddev->pers->start_reshape(mddev);
  3674. if (err)
  3675. return err;
  3676. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3677. } else {
  3678. if (cmd_match(page, "check"))
  3679. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3680. else if (!cmd_match(page, "repair"))
  3681. return -EINVAL;
  3682. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  3683. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3684. }
  3685. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3686. md_wakeup_thread(mddev->thread);
  3687. sysfs_notify_dirent_safe(mddev->sysfs_action);
  3688. return len;
  3689. }
  3690. static ssize_t
  3691. mismatch_cnt_show(struct mddev *mddev, char *page)
  3692. {
  3693. return sprintf(page, "%llu\n",
  3694. (unsigned long long) mddev->resync_mismatches);
  3695. }
  3696. static struct md_sysfs_entry md_scan_mode =
  3697. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  3698. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  3699. static ssize_t
  3700. sync_min_show(struct mddev *mddev, char *page)
  3701. {
  3702. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  3703. mddev->sync_speed_min ? "local": "system");
  3704. }
  3705. static ssize_t
  3706. sync_min_store(struct mddev *mddev, const char *buf, size_t len)
  3707. {
  3708. int min;
  3709. char *e;
  3710. if (strncmp(buf, "system", 6)==0) {
  3711. mddev->sync_speed_min = 0;
  3712. return len;
  3713. }
  3714. min = simple_strtoul(buf, &e, 10);
  3715. if (buf == e || (*e && *e != '\n') || min <= 0)
  3716. return -EINVAL;
  3717. mddev->sync_speed_min = min;
  3718. return len;
  3719. }
  3720. static struct md_sysfs_entry md_sync_min =
  3721. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  3722. static ssize_t
  3723. sync_max_show(struct mddev *mddev, char *page)
  3724. {
  3725. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  3726. mddev->sync_speed_max ? "local": "system");
  3727. }
  3728. static ssize_t
  3729. sync_max_store(struct mddev *mddev, const char *buf, size_t len)
  3730. {
  3731. int max;
  3732. char *e;
  3733. if (strncmp(buf, "system", 6)==0) {
  3734. mddev->sync_speed_max = 0;
  3735. return len;
  3736. }
  3737. max = simple_strtoul(buf, &e, 10);
  3738. if (buf == e || (*e && *e != '\n') || max <= 0)
  3739. return -EINVAL;
  3740. mddev->sync_speed_max = max;
  3741. return len;
  3742. }
  3743. static struct md_sysfs_entry md_sync_max =
  3744. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  3745. static ssize_t
  3746. degraded_show(struct mddev *mddev, char *page)
  3747. {
  3748. return sprintf(page, "%d\n", mddev->degraded);
  3749. }
  3750. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  3751. static ssize_t
  3752. sync_force_parallel_show(struct mddev *mddev, char *page)
  3753. {
  3754. return sprintf(page, "%d\n", mddev->parallel_resync);
  3755. }
  3756. static ssize_t
  3757. sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
  3758. {
  3759. long n;
  3760. if (strict_strtol(buf, 10, &n))
  3761. return -EINVAL;
  3762. if (n != 0 && n != 1)
  3763. return -EINVAL;
  3764. mddev->parallel_resync = n;
  3765. if (mddev->sync_thread)
  3766. wake_up(&resync_wait);
  3767. return len;
  3768. }
  3769. /* force parallel resync, even with shared block devices */
  3770. static struct md_sysfs_entry md_sync_force_parallel =
  3771. __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
  3772. sync_force_parallel_show, sync_force_parallel_store);
  3773. static ssize_t
  3774. sync_speed_show(struct mddev *mddev, char *page)
  3775. {
  3776. unsigned long resync, dt, db;
  3777. if (mddev->curr_resync == 0)
  3778. return sprintf(page, "none\n");
  3779. resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
  3780. dt = (jiffies - mddev->resync_mark) / HZ;
  3781. if (!dt) dt++;
  3782. db = resync - mddev->resync_mark_cnt;
  3783. return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
  3784. }
  3785. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  3786. static ssize_t
  3787. sync_completed_show(struct mddev *mddev, char *page)
  3788. {
  3789. unsigned long long max_sectors, resync;
  3790. if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3791. return sprintf(page, "none\n");
  3792. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  3793. max_sectors = mddev->resync_max_sectors;
  3794. else
  3795. max_sectors = mddev->dev_sectors;
  3796. resync = mddev->curr_resync_completed;
  3797. return sprintf(page, "%llu / %llu\n", resync, max_sectors);
  3798. }
  3799. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  3800. static ssize_t
  3801. min_sync_show(struct mddev *mddev, char *page)
  3802. {
  3803. return sprintf(page, "%llu\n",
  3804. (unsigned long long)mddev->resync_min);
  3805. }
  3806. static ssize_t
  3807. min_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3808. {
  3809. unsigned long long min;
  3810. if (strict_strtoull(buf, 10, &min))
  3811. return -EINVAL;
  3812. if (min > mddev->resync_max)
  3813. return -EINVAL;
  3814. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3815. return -EBUSY;
  3816. /* Must be a multiple of chunk_size */
  3817. if (mddev->chunk_sectors) {
  3818. sector_t temp = min;
  3819. if (sector_div(temp, mddev->chunk_sectors))
  3820. return -EINVAL;
  3821. }
  3822. mddev->resync_min = min;
  3823. return len;
  3824. }
  3825. static struct md_sysfs_entry md_min_sync =
  3826. __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
  3827. static ssize_t
  3828. max_sync_show(struct mddev *mddev, char *page)
  3829. {
  3830. if (mddev->resync_max == MaxSector)
  3831. return sprintf(page, "max\n");
  3832. else
  3833. return sprintf(page, "%llu\n",
  3834. (unsigned long long)mddev->resync_max);
  3835. }
  3836. static ssize_t
  3837. max_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3838. {
  3839. if (strncmp(buf, "max", 3) == 0)
  3840. mddev->resync_max = MaxSector;
  3841. else {
  3842. unsigned long long max;
  3843. if (strict_strtoull(buf, 10, &max))
  3844. return -EINVAL;
  3845. if (max < mddev->resync_min)
  3846. return -EINVAL;
  3847. if (max < mddev->resync_max &&
  3848. mddev->ro == 0 &&
  3849. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3850. return -EBUSY;
  3851. /* Must be a multiple of chunk_size */
  3852. if (mddev->chunk_sectors) {
  3853. sector_t temp = max;
  3854. if (sector_div(temp, mddev->chunk_sectors))
  3855. return -EINVAL;
  3856. }
  3857. mddev->resync_max = max;
  3858. }
  3859. wake_up(&mddev->recovery_wait);
  3860. return len;
  3861. }
  3862. static struct md_sysfs_entry md_max_sync =
  3863. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  3864. static ssize_t
  3865. suspend_lo_show(struct mddev *mddev, char *page)
  3866. {
  3867. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  3868. }
  3869. static ssize_t
  3870. suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
  3871. {
  3872. char *e;
  3873. unsigned long long new = simple_strtoull(buf, &e, 10);
  3874. unsigned long long old = mddev->suspend_lo;
  3875. if (mddev->pers == NULL ||
  3876. mddev->pers->quiesce == NULL)
  3877. return -EINVAL;
  3878. if (buf == e || (*e && *e != '\n'))
  3879. return -EINVAL;
  3880. mddev->suspend_lo = new;
  3881. if (new >= old)
  3882. /* Shrinking suspended region */
  3883. mddev->pers->quiesce(mddev, 2);
  3884. else {
  3885. /* Expanding suspended region - need to wait */
  3886. mddev->pers->quiesce(mddev, 1);
  3887. mddev->pers->quiesce(mddev, 0);
  3888. }
  3889. return len;
  3890. }
  3891. static struct md_sysfs_entry md_suspend_lo =
  3892. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  3893. static ssize_t
  3894. suspend_hi_show(struct mddev *mddev, char *page)
  3895. {
  3896. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  3897. }
  3898. static ssize_t
  3899. suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
  3900. {
  3901. char *e;
  3902. unsigned long long new = simple_strtoull(buf, &e, 10);
  3903. unsigned long long old = mddev->suspend_hi;
  3904. if (mddev->pers == NULL ||
  3905. mddev->pers->quiesce == NULL)
  3906. return -EINVAL;
  3907. if (buf == e || (*e && *e != '\n'))
  3908. return -EINVAL;
  3909. mddev->suspend_hi = new;
  3910. if (new <= old)
  3911. /* Shrinking suspended region */
  3912. mddev->pers->quiesce(mddev, 2);
  3913. else {
  3914. /* Expanding suspended region - need to wait */
  3915. mddev->pers->quiesce(mddev, 1);
  3916. mddev->pers->quiesce(mddev, 0);
  3917. }
  3918. return len;
  3919. }
  3920. static struct md_sysfs_entry md_suspend_hi =
  3921. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  3922. static ssize_t
  3923. reshape_position_show(struct mddev *mddev, char *page)
  3924. {
  3925. if (mddev->reshape_position != MaxSector)
  3926. return sprintf(page, "%llu\n",
  3927. (unsigned long long)mddev->reshape_position);
  3928. strcpy(page, "none\n");
  3929. return 5;
  3930. }
  3931. static ssize_t
  3932. reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
  3933. {
  3934. char *e;
  3935. unsigned long long new = simple_strtoull(buf, &e, 10);
  3936. if (mddev->pers)
  3937. return -EBUSY;
  3938. if (buf == e || (*e && *e != '\n'))
  3939. return -EINVAL;
  3940. mddev->reshape_position = new;
  3941. mddev->delta_disks = 0;
  3942. mddev->new_level = mddev->level;
  3943. mddev->new_layout = mddev->layout;
  3944. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3945. return len;
  3946. }
  3947. static struct md_sysfs_entry md_reshape_position =
  3948. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  3949. reshape_position_store);
  3950. static ssize_t
  3951. array_size_show(struct mddev *mddev, char *page)
  3952. {
  3953. if (mddev->external_size)
  3954. return sprintf(page, "%llu\n",
  3955. (unsigned long long)mddev->array_sectors/2);
  3956. else
  3957. return sprintf(page, "default\n");
  3958. }
  3959. static ssize_t
  3960. array_size_store(struct mddev *mddev, const char *buf, size_t len)
  3961. {
  3962. sector_t sectors;
  3963. if (strncmp(buf, "default", 7) == 0) {
  3964. if (mddev->pers)
  3965. sectors = mddev->pers->size(mddev, 0, 0);
  3966. else
  3967. sectors = mddev->array_sectors;
  3968. mddev->external_size = 0;
  3969. } else {
  3970. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  3971. return -EINVAL;
  3972. if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
  3973. return -E2BIG;
  3974. mddev->external_size = 1;
  3975. }
  3976. mddev->array_sectors = sectors;
  3977. if (mddev->pers) {
  3978. set_capacity(mddev->gendisk, mddev->array_sectors);
  3979. revalidate_disk(mddev->gendisk);
  3980. }
  3981. return len;
  3982. }
  3983. static struct md_sysfs_entry md_array_size =
  3984. __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
  3985. array_size_store);
  3986. static struct attribute *md_default_attrs[] = {
  3987. &md_level.attr,
  3988. &md_layout.attr,
  3989. &md_raid_disks.attr,
  3990. &md_chunk_size.attr,
  3991. &md_size.attr,
  3992. &md_resync_start.attr,
  3993. &md_metadata.attr,
  3994. &md_new_device.attr,
  3995. &md_safe_delay.attr,
  3996. &md_array_state.attr,
  3997. &md_reshape_position.attr,
  3998. &md_array_size.attr,
  3999. &max_corr_read_errors.attr,
  4000. NULL,
  4001. };
  4002. static struct attribute *md_redundancy_attrs[] = {
  4003. &md_scan_mode.attr,
  4004. &md_mismatches.attr,
  4005. &md_sync_min.attr,
  4006. &md_sync_max.attr,
  4007. &md_sync_speed.attr,
  4008. &md_sync_force_parallel.attr,
  4009. &md_sync_completed.attr,
  4010. &md_min_sync.attr,
  4011. &md_max_sync.attr,
  4012. &md_suspend_lo.attr,
  4013. &md_suspend_hi.attr,
  4014. &md_bitmap.attr,
  4015. &md_degraded.attr,
  4016. NULL,
  4017. };
  4018. static struct attribute_group md_redundancy_group = {
  4019. .name = NULL,
  4020. .attrs = md_redundancy_attrs,
  4021. };
  4022. static ssize_t
  4023. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  4024. {
  4025. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4026. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4027. ssize_t rv;
  4028. if (!entry->show)
  4029. return -EIO;
  4030. spin_lock(&all_mddevs_lock);
  4031. if (list_empty(&mddev->all_mddevs)) {
  4032. spin_unlock(&all_mddevs_lock);
  4033. return -EBUSY;
  4034. }
  4035. mddev_get(mddev);
  4036. spin_unlock(&all_mddevs_lock);
  4037. rv = mddev_lock(mddev);
  4038. if (!rv) {
  4039. rv = entry->show(mddev, page);
  4040. mddev_unlock(mddev);
  4041. }
  4042. mddev_put(mddev);
  4043. return rv;
  4044. }
  4045. static ssize_t
  4046. md_attr_store(struct kobject *kobj, struct attribute *attr,
  4047. const char *page, size_t length)
  4048. {
  4049. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4050. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4051. ssize_t rv;
  4052. if (!entry->store)
  4053. return -EIO;
  4054. if (!capable(CAP_SYS_ADMIN))
  4055. return -EACCES;
  4056. spin_lock(&all_mddevs_lock);
  4057. if (list_empty(&mddev->all_mddevs)) {
  4058. spin_unlock(&all_mddevs_lock);
  4059. return -EBUSY;
  4060. }
  4061. mddev_get(mddev);
  4062. spin_unlock(&all_mddevs_lock);
  4063. rv = mddev_lock(mddev);
  4064. if (!rv) {
  4065. rv = entry->store(mddev, page, length);
  4066. mddev_unlock(mddev);
  4067. }
  4068. mddev_put(mddev);
  4069. return rv;
  4070. }
  4071. static void md_free(struct kobject *ko)
  4072. {
  4073. struct mddev *mddev = container_of(ko, struct mddev, kobj);
  4074. if (mddev->sysfs_state)
  4075. sysfs_put(mddev->sysfs_state);
  4076. if (mddev->gendisk) {
  4077. del_gendisk(mddev->gendisk);
  4078. put_disk(mddev->gendisk);
  4079. }
  4080. if (mddev->queue)
  4081. blk_cleanup_queue(mddev->queue);
  4082. kfree(mddev);
  4083. }
  4084. static const struct sysfs_ops md_sysfs_ops = {
  4085. .show = md_attr_show,
  4086. .store = md_attr_store,
  4087. };
  4088. static struct kobj_type md_ktype = {
  4089. .release = md_free,
  4090. .sysfs_ops = &md_sysfs_ops,
  4091. .default_attrs = md_default_attrs,
  4092. };
  4093. int mdp_major = 0;
  4094. static void mddev_delayed_delete(struct work_struct *ws)
  4095. {
  4096. struct mddev *mddev = container_of(ws, struct mddev, del_work);
  4097. sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
  4098. kobject_del(&mddev->kobj);
  4099. kobject_put(&mddev->kobj);
  4100. }
  4101. static int md_alloc(dev_t dev, char *name)
  4102. {
  4103. static DEFINE_MUTEX(disks_mutex);
  4104. struct mddev *mddev = mddev_find(dev);
  4105. struct gendisk *disk;
  4106. int partitioned;
  4107. int shift;
  4108. int unit;
  4109. int error;
  4110. if (!mddev)
  4111. return -ENODEV;
  4112. partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
  4113. shift = partitioned ? MdpMinorShift : 0;
  4114. unit = MINOR(mddev->unit) >> shift;
  4115. /* wait for any previous instance of this device to be
  4116. * completely removed (mddev_delayed_delete).
  4117. */
  4118. flush_workqueue(md_misc_wq);
  4119. mutex_lock(&disks_mutex);
  4120. error = -EEXIST;
  4121. if (mddev->gendisk)
  4122. goto abort;
  4123. if (name) {
  4124. /* Need to ensure that 'name' is not a duplicate.
  4125. */
  4126. struct mddev *mddev2;
  4127. spin_lock(&all_mddevs_lock);
  4128. list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
  4129. if (mddev2->gendisk &&
  4130. strcmp(mddev2->gendisk->disk_name, name) == 0) {
  4131. spin_unlock(&all_mddevs_lock);
  4132. goto abort;
  4133. }
  4134. spin_unlock(&all_mddevs_lock);
  4135. }
  4136. error = -ENOMEM;
  4137. mddev->queue = blk_alloc_queue(GFP_KERNEL);
  4138. if (!mddev->queue)
  4139. goto abort;
  4140. mddev->queue->queuedata = mddev;
  4141. blk_queue_make_request(mddev->queue, md_make_request);
  4142. blk_set_stacking_limits(&mddev->queue->limits);
  4143. disk = alloc_disk(1 << shift);
  4144. if (!disk) {
  4145. blk_cleanup_queue(mddev->queue);
  4146. mddev->queue = NULL;
  4147. goto abort;
  4148. }
  4149. disk->major = MAJOR(mddev->unit);
  4150. disk->first_minor = unit << shift;
  4151. if (name)
  4152. strcpy(disk->disk_name, name);
  4153. else if (partitioned)
  4154. sprintf(disk->disk_name, "md_d%d", unit);
  4155. else
  4156. sprintf(disk->disk_name, "md%d", unit);
  4157. disk->fops = &md_fops;
  4158. disk->private_data = mddev;
  4159. disk->queue = mddev->queue;
  4160. blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
  4161. /* Allow extended partitions. This makes the
  4162. * 'mdp' device redundant, but we can't really
  4163. * remove it now.
  4164. */
  4165. disk->flags |= GENHD_FL_EXT_DEVT;
  4166. mddev->gendisk = disk;
  4167. /* As soon as we call add_disk(), another thread could get
  4168. * through to md_open, so make sure it doesn't get too far
  4169. */
  4170. mutex_lock(&mddev->open_mutex);
  4171. add_disk(disk);
  4172. error = kobject_init_and_add(&mddev->kobj, &md_ktype,
  4173. &disk_to_dev(disk)->kobj, "%s", "md");
  4174. if (error) {
  4175. /* This isn't possible, but as kobject_init_and_add is marked
  4176. * __must_check, we must do something with the result
  4177. */
  4178. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  4179. disk->disk_name);
  4180. error = 0;
  4181. }
  4182. if (mddev->kobj.sd &&
  4183. sysfs_create_group(&mddev->kobj, &md_bitmap_group))
  4184. printk(KERN_DEBUG "pointless warning\n");
  4185. mutex_unlock(&mddev->open_mutex);
  4186. abort:
  4187. mutex_unlock(&disks_mutex);
  4188. if (!error && mddev->kobj.sd) {
  4189. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  4190. mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
  4191. }
  4192. mddev_put(mddev);
  4193. return error;
  4194. }
  4195. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  4196. {
  4197. md_alloc(dev, NULL);
  4198. return NULL;
  4199. }
  4200. static int add_named_array(const char *val, struct kernel_param *kp)
  4201. {
  4202. /* val must be "md_*" where * is not all digits.
  4203. * We allocate an array with a large free minor number, and
  4204. * set the name to val. val must not already be an active name.
  4205. */
  4206. int len = strlen(val);
  4207. char buf[DISK_NAME_LEN];
  4208. while (len && val[len-1] == '\n')
  4209. len--;
  4210. if (len >= DISK_NAME_LEN)
  4211. return -E2BIG;
  4212. strlcpy(buf, val, len+1);
  4213. if (strncmp(buf, "md_", 3) != 0)
  4214. return -EINVAL;
  4215. return md_alloc(0, buf);
  4216. }
  4217. static void md_safemode_timeout(unsigned long data)
  4218. {
  4219. struct mddev *mddev = (struct mddev *) data;
  4220. if (!atomic_read(&mddev->writes_pending)) {
  4221. mddev->safemode = 1;
  4222. if (mddev->external)
  4223. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4224. }
  4225. md_wakeup_thread(mddev->thread);
  4226. }
  4227. static int start_dirty_degraded;
  4228. int md_run(struct mddev *mddev)
  4229. {
  4230. int err;
  4231. struct md_rdev *rdev;
  4232. struct md_personality *pers;
  4233. if (list_empty(&mddev->disks))
  4234. /* cannot run an array with no devices.. */
  4235. return -EINVAL;
  4236. if (mddev->pers)
  4237. return -EBUSY;
  4238. /* Cannot run until previous stop completes properly */
  4239. if (mddev->sysfs_active)
  4240. return -EBUSY;
  4241. /*
  4242. * Analyze all RAID superblock(s)
  4243. */
  4244. if (!mddev->raid_disks) {
  4245. if (!mddev->persistent)
  4246. return -EINVAL;
  4247. analyze_sbs(mddev);
  4248. }
  4249. if (mddev->level != LEVEL_NONE)
  4250. request_module("md-level-%d", mddev->level);
  4251. else if (mddev->clevel[0])
  4252. request_module("md-%s", mddev->clevel);
  4253. /*
  4254. * Drop all container device buffers, from now on
  4255. * the only valid external interface is through the md
  4256. * device.
  4257. */
  4258. rdev_for_each(rdev, mddev) {
  4259. if (test_bit(Faulty, &rdev->flags))
  4260. continue;
  4261. sync_blockdev(rdev->bdev);
  4262. invalidate_bdev(rdev->bdev);
  4263. /* perform some consistency tests on the device.
  4264. * We don't want the data to overlap the metadata,
  4265. * Internal Bitmap issues have been handled elsewhere.
  4266. */
  4267. if (rdev->meta_bdev) {
  4268. /* Nothing to check */;
  4269. } else if (rdev->data_offset < rdev->sb_start) {
  4270. if (mddev->dev_sectors &&
  4271. rdev->data_offset + mddev->dev_sectors
  4272. > rdev->sb_start) {
  4273. printk("md: %s: data overlaps metadata\n",
  4274. mdname(mddev));
  4275. return -EINVAL;
  4276. }
  4277. } else {
  4278. if (rdev->sb_start + rdev->sb_size/512
  4279. > rdev->data_offset) {
  4280. printk("md: %s: metadata overlaps data\n",
  4281. mdname(mddev));
  4282. return -EINVAL;
  4283. }
  4284. }
  4285. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4286. }
  4287. if (mddev->bio_set == NULL)
  4288. mddev->bio_set = bioset_create(BIO_POOL_SIZE,
  4289. sizeof(struct mddev *));
  4290. spin_lock(&pers_lock);
  4291. pers = find_pers(mddev->level, mddev->clevel);
  4292. if (!pers || !try_module_get(pers->owner)) {
  4293. spin_unlock(&pers_lock);
  4294. if (mddev->level != LEVEL_NONE)
  4295. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  4296. mddev->level);
  4297. else
  4298. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  4299. mddev->clevel);
  4300. return -EINVAL;
  4301. }
  4302. mddev->pers = pers;
  4303. spin_unlock(&pers_lock);
  4304. if (mddev->level != pers->level) {
  4305. mddev->level = pers->level;
  4306. mddev->new_level = pers->level;
  4307. }
  4308. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  4309. if (mddev->reshape_position != MaxSector &&
  4310. pers->start_reshape == NULL) {
  4311. /* This personality cannot handle reshaping... */
  4312. mddev->pers = NULL;
  4313. module_put(pers->owner);
  4314. return -EINVAL;
  4315. }
  4316. if (pers->sync_request) {
  4317. /* Warn if this is a potentially silly
  4318. * configuration.
  4319. */
  4320. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4321. struct md_rdev *rdev2;
  4322. int warned = 0;
  4323. rdev_for_each(rdev, mddev)
  4324. rdev_for_each(rdev2, mddev) {
  4325. if (rdev < rdev2 &&
  4326. rdev->bdev->bd_contains ==
  4327. rdev2->bdev->bd_contains) {
  4328. printk(KERN_WARNING
  4329. "%s: WARNING: %s appears to be"
  4330. " on the same physical disk as"
  4331. " %s.\n",
  4332. mdname(mddev),
  4333. bdevname(rdev->bdev,b),
  4334. bdevname(rdev2->bdev,b2));
  4335. warned = 1;
  4336. }
  4337. }
  4338. if (warned)
  4339. printk(KERN_WARNING
  4340. "True protection against single-disk"
  4341. " failure might be compromised.\n");
  4342. }
  4343. mddev->recovery = 0;
  4344. /* may be over-ridden by personality */
  4345. mddev->resync_max_sectors = mddev->dev_sectors;
  4346. mddev->ok_start_degraded = start_dirty_degraded;
  4347. if (start_readonly && mddev->ro == 0)
  4348. mddev->ro = 2; /* read-only, but switch on first write */
  4349. err = mddev->pers->run(mddev);
  4350. if (err)
  4351. printk(KERN_ERR "md: pers->run() failed ...\n");
  4352. else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
  4353. WARN_ONCE(!mddev->external_size, "%s: default size too small,"
  4354. " but 'external_size' not in effect?\n", __func__);
  4355. printk(KERN_ERR
  4356. "md: invalid array_size %llu > default size %llu\n",
  4357. (unsigned long long)mddev->array_sectors / 2,
  4358. (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
  4359. err = -EINVAL;
  4360. mddev->pers->stop(mddev);
  4361. }
  4362. if (err == 0 && mddev->pers->sync_request) {
  4363. err = bitmap_create(mddev);
  4364. if (err) {
  4365. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  4366. mdname(mddev), err);
  4367. mddev->pers->stop(mddev);
  4368. }
  4369. }
  4370. if (err) {
  4371. module_put(mddev->pers->owner);
  4372. mddev->pers = NULL;
  4373. bitmap_destroy(mddev);
  4374. return err;
  4375. }
  4376. if (mddev->pers->sync_request) {
  4377. if (mddev->kobj.sd &&
  4378. sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  4379. printk(KERN_WARNING
  4380. "md: cannot register extra attributes for %s\n",
  4381. mdname(mddev));
  4382. mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
  4383. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  4384. mddev->ro = 0;
  4385. atomic_set(&mddev->writes_pending,0);
  4386. atomic_set(&mddev->max_corr_read_errors,
  4387. MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
  4388. mddev->safemode = 0;
  4389. mddev->safemode_timer.function = md_safemode_timeout;
  4390. mddev->safemode_timer.data = (unsigned long) mddev;
  4391. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  4392. mddev->in_sync = 1;
  4393. smp_wmb();
  4394. mddev->ready = 1;
  4395. rdev_for_each(rdev, mddev)
  4396. if (rdev->raid_disk >= 0)
  4397. if (sysfs_link_rdev(mddev, rdev))
  4398. /* failure here is OK */;
  4399. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4400. if (mddev->flags)
  4401. md_update_sb(mddev, 0);
  4402. md_new_event(mddev);
  4403. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4404. sysfs_notify_dirent_safe(mddev->sysfs_action);
  4405. sysfs_notify(&mddev->kobj, NULL, "degraded");
  4406. return 0;
  4407. }
  4408. EXPORT_SYMBOL_GPL(md_run);
  4409. static int do_md_run(struct mddev *mddev)
  4410. {
  4411. int err;
  4412. err = md_run(mddev);
  4413. if (err)
  4414. goto out;
  4415. err = bitmap_load(mddev);
  4416. if (err) {
  4417. bitmap_destroy(mddev);
  4418. goto out;
  4419. }
  4420. md_wakeup_thread(mddev->thread);
  4421. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  4422. set_capacity(mddev->gendisk, mddev->array_sectors);
  4423. revalidate_disk(mddev->gendisk);
  4424. mddev->changed = 1;
  4425. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4426. out:
  4427. return err;
  4428. }
  4429. static int restart_array(struct mddev *mddev)
  4430. {
  4431. struct gendisk *disk = mddev->gendisk;
  4432. /* Complain if it has no devices */
  4433. if (list_empty(&mddev->disks))
  4434. return -ENXIO;
  4435. if (!mddev->pers)
  4436. return -EINVAL;
  4437. if (!mddev->ro)
  4438. return -EBUSY;
  4439. mddev->safemode = 0;
  4440. mddev->ro = 0;
  4441. set_disk_ro(disk, 0);
  4442. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  4443. mdname(mddev));
  4444. /* Kick recovery or resync if necessary */
  4445. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4446. md_wakeup_thread(mddev->thread);
  4447. md_wakeup_thread(mddev->sync_thread);
  4448. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4449. return 0;
  4450. }
  4451. /* similar to deny_write_access, but accounts for our holding a reference
  4452. * to the file ourselves */
  4453. static int deny_bitmap_write_access(struct file * file)
  4454. {
  4455. struct inode *inode = file->f_mapping->host;
  4456. spin_lock(&inode->i_lock);
  4457. if (atomic_read(&inode->i_writecount) > 1) {
  4458. spin_unlock(&inode->i_lock);
  4459. return -ETXTBSY;
  4460. }
  4461. atomic_set(&inode->i_writecount, -1);
  4462. spin_unlock(&inode->i_lock);
  4463. return 0;
  4464. }
  4465. void restore_bitmap_write_access(struct file *file)
  4466. {
  4467. struct inode *inode = file->f_mapping->host;
  4468. spin_lock(&inode->i_lock);
  4469. atomic_set(&inode->i_writecount, 1);
  4470. spin_unlock(&inode->i_lock);
  4471. }
  4472. static void md_clean(struct mddev *mddev)
  4473. {
  4474. mddev->array_sectors = 0;
  4475. mddev->external_size = 0;
  4476. mddev->dev_sectors = 0;
  4477. mddev->raid_disks = 0;
  4478. mddev->recovery_cp = 0;
  4479. mddev->resync_min = 0;
  4480. mddev->resync_max = MaxSector;
  4481. mddev->reshape_position = MaxSector;
  4482. mddev->external = 0;
  4483. mddev->persistent = 0;
  4484. mddev->level = LEVEL_NONE;
  4485. mddev->clevel[0] = 0;
  4486. mddev->flags = 0;
  4487. mddev->ro = 0;
  4488. mddev->metadata_type[0] = 0;
  4489. mddev->chunk_sectors = 0;
  4490. mddev->ctime = mddev->utime = 0;
  4491. mddev->layout = 0;
  4492. mddev->max_disks = 0;
  4493. mddev->events = 0;
  4494. mddev->can_decrease_events = 0;
  4495. mddev->delta_disks = 0;
  4496. mddev->new_level = LEVEL_NONE;
  4497. mddev->new_layout = 0;
  4498. mddev->new_chunk_sectors = 0;
  4499. mddev->curr_resync = 0;
  4500. mddev->resync_mismatches = 0;
  4501. mddev->suspend_lo = mddev->suspend_hi = 0;
  4502. mddev->sync_speed_min = mddev->sync_speed_max = 0;
  4503. mddev->recovery = 0;
  4504. mddev->in_sync = 0;
  4505. mddev->changed = 0;
  4506. mddev->degraded = 0;
  4507. mddev->safemode = 0;
  4508. mddev->merge_check_needed = 0;
  4509. mddev->bitmap_info.offset = 0;
  4510. mddev->bitmap_info.default_offset = 0;
  4511. mddev->bitmap_info.chunksize = 0;
  4512. mddev->bitmap_info.daemon_sleep = 0;
  4513. mddev->bitmap_info.max_write_behind = 0;
  4514. }
  4515. static void __md_stop_writes(struct mddev *mddev)
  4516. {
  4517. if (mddev->sync_thread) {
  4518. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4519. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4520. reap_sync_thread(mddev);
  4521. }
  4522. del_timer_sync(&mddev->safemode_timer);
  4523. bitmap_flush(mddev);
  4524. md_super_wait(mddev);
  4525. if (!mddev->in_sync || mddev->flags) {
  4526. /* mark array as shutdown cleanly */
  4527. mddev->in_sync = 1;
  4528. md_update_sb(mddev, 1);
  4529. }
  4530. }
  4531. void md_stop_writes(struct mddev *mddev)
  4532. {
  4533. mddev_lock(mddev);
  4534. __md_stop_writes(mddev);
  4535. mddev_unlock(mddev);
  4536. }
  4537. EXPORT_SYMBOL_GPL(md_stop_writes);
  4538. void md_stop(struct mddev *mddev)
  4539. {
  4540. mddev->ready = 0;
  4541. mddev->pers->stop(mddev);
  4542. if (mddev->pers->sync_request && mddev->to_remove == NULL)
  4543. mddev->to_remove = &md_redundancy_group;
  4544. module_put(mddev->pers->owner);
  4545. mddev->pers = NULL;
  4546. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4547. }
  4548. EXPORT_SYMBOL_GPL(md_stop);
  4549. static int md_set_readonly(struct mddev *mddev, int is_open)
  4550. {
  4551. int err = 0;
  4552. mutex_lock(&mddev->open_mutex);
  4553. if (atomic_read(&mddev->openers) > is_open) {
  4554. printk("md: %s still in use.\n",mdname(mddev));
  4555. err = -EBUSY;
  4556. goto out;
  4557. }
  4558. if (mddev->pers) {
  4559. __md_stop_writes(mddev);
  4560. err = -ENXIO;
  4561. if (mddev->ro==1)
  4562. goto out;
  4563. mddev->ro = 1;
  4564. set_disk_ro(mddev->gendisk, 1);
  4565. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4566. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4567. err = 0;
  4568. }
  4569. out:
  4570. mutex_unlock(&mddev->open_mutex);
  4571. return err;
  4572. }
  4573. /* mode:
  4574. * 0 - completely stop and dis-assemble array
  4575. * 2 - stop but do not disassemble array
  4576. */
  4577. static int do_md_stop(struct mddev * mddev, int mode, int is_open)
  4578. {
  4579. struct gendisk *disk = mddev->gendisk;
  4580. struct md_rdev *rdev;
  4581. mutex_lock(&mddev->open_mutex);
  4582. if (atomic_read(&mddev->openers) > is_open ||
  4583. mddev->sysfs_active) {
  4584. printk("md: %s still in use.\n",mdname(mddev));
  4585. mutex_unlock(&mddev->open_mutex);
  4586. return -EBUSY;
  4587. }
  4588. if (mddev->pers) {
  4589. if (mddev->ro)
  4590. set_disk_ro(disk, 0);
  4591. __md_stop_writes(mddev);
  4592. md_stop(mddev);
  4593. mddev->queue->merge_bvec_fn = NULL;
  4594. mddev->queue->backing_dev_info.congested_fn = NULL;
  4595. /* tell userspace to handle 'inactive' */
  4596. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4597. rdev_for_each(rdev, mddev)
  4598. if (rdev->raid_disk >= 0)
  4599. sysfs_unlink_rdev(mddev, rdev);
  4600. set_capacity(disk, 0);
  4601. mutex_unlock(&mddev->open_mutex);
  4602. mddev->changed = 1;
  4603. revalidate_disk(disk);
  4604. if (mddev->ro)
  4605. mddev->ro = 0;
  4606. } else
  4607. mutex_unlock(&mddev->open_mutex);
  4608. /*
  4609. * Free resources if final stop
  4610. */
  4611. if (mode == 0) {
  4612. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  4613. bitmap_destroy(mddev);
  4614. if (mddev->bitmap_info.file) {
  4615. restore_bitmap_write_access(mddev->bitmap_info.file);
  4616. fput(mddev->bitmap_info.file);
  4617. mddev->bitmap_info.file = NULL;
  4618. }
  4619. mddev->bitmap_info.offset = 0;
  4620. export_array(mddev);
  4621. md_clean(mddev);
  4622. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4623. if (mddev->hold_active == UNTIL_STOP)
  4624. mddev->hold_active = 0;
  4625. }
  4626. blk_integrity_unregister(disk);
  4627. md_new_event(mddev);
  4628. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4629. return 0;
  4630. }
  4631. #ifndef MODULE
  4632. static void autorun_array(struct mddev *mddev)
  4633. {
  4634. struct md_rdev *rdev;
  4635. int err;
  4636. if (list_empty(&mddev->disks))
  4637. return;
  4638. printk(KERN_INFO "md: running: ");
  4639. rdev_for_each(rdev, mddev) {
  4640. char b[BDEVNAME_SIZE];
  4641. printk("<%s>", bdevname(rdev->bdev,b));
  4642. }
  4643. printk("\n");
  4644. err = do_md_run(mddev);
  4645. if (err) {
  4646. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  4647. do_md_stop(mddev, 0, 0);
  4648. }
  4649. }
  4650. /*
  4651. * lets try to run arrays based on all disks that have arrived
  4652. * until now. (those are in pending_raid_disks)
  4653. *
  4654. * the method: pick the first pending disk, collect all disks with
  4655. * the same UUID, remove all from the pending list and put them into
  4656. * the 'same_array' list. Then order this list based on superblock
  4657. * update time (freshest comes first), kick out 'old' disks and
  4658. * compare superblocks. If everything's fine then run it.
  4659. *
  4660. * If "unit" is allocated, then bump its reference count
  4661. */
  4662. static void autorun_devices(int part)
  4663. {
  4664. struct md_rdev *rdev0, *rdev, *tmp;
  4665. struct mddev *mddev;
  4666. char b[BDEVNAME_SIZE];
  4667. printk(KERN_INFO "md: autorun ...\n");
  4668. while (!list_empty(&pending_raid_disks)) {
  4669. int unit;
  4670. dev_t dev;
  4671. LIST_HEAD(candidates);
  4672. rdev0 = list_entry(pending_raid_disks.next,
  4673. struct md_rdev, same_set);
  4674. printk(KERN_INFO "md: considering %s ...\n",
  4675. bdevname(rdev0->bdev,b));
  4676. INIT_LIST_HEAD(&candidates);
  4677. rdev_for_each_list(rdev, tmp, &pending_raid_disks)
  4678. if (super_90_load(rdev, rdev0, 0) >= 0) {
  4679. printk(KERN_INFO "md: adding %s ...\n",
  4680. bdevname(rdev->bdev,b));
  4681. list_move(&rdev->same_set, &candidates);
  4682. }
  4683. /*
  4684. * now we have a set of devices, with all of them having
  4685. * mostly sane superblocks. It's time to allocate the
  4686. * mddev.
  4687. */
  4688. if (part) {
  4689. dev = MKDEV(mdp_major,
  4690. rdev0->preferred_minor << MdpMinorShift);
  4691. unit = MINOR(dev) >> MdpMinorShift;
  4692. } else {
  4693. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  4694. unit = MINOR(dev);
  4695. }
  4696. if (rdev0->preferred_minor != unit) {
  4697. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  4698. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  4699. break;
  4700. }
  4701. md_probe(dev, NULL, NULL);
  4702. mddev = mddev_find(dev);
  4703. if (!mddev || !mddev->gendisk) {
  4704. if (mddev)
  4705. mddev_put(mddev);
  4706. printk(KERN_ERR
  4707. "md: cannot allocate memory for md drive.\n");
  4708. break;
  4709. }
  4710. if (mddev_lock(mddev))
  4711. printk(KERN_WARNING "md: %s locked, cannot run\n",
  4712. mdname(mddev));
  4713. else if (mddev->raid_disks || mddev->major_version
  4714. || !list_empty(&mddev->disks)) {
  4715. printk(KERN_WARNING
  4716. "md: %s already running, cannot run %s\n",
  4717. mdname(mddev), bdevname(rdev0->bdev,b));
  4718. mddev_unlock(mddev);
  4719. } else {
  4720. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  4721. mddev->persistent = 1;
  4722. rdev_for_each_list(rdev, tmp, &candidates) {
  4723. list_del_init(&rdev->same_set);
  4724. if (bind_rdev_to_array(rdev, mddev))
  4725. export_rdev(rdev);
  4726. }
  4727. autorun_array(mddev);
  4728. mddev_unlock(mddev);
  4729. }
  4730. /* on success, candidates will be empty, on error
  4731. * it won't...
  4732. */
  4733. rdev_for_each_list(rdev, tmp, &candidates) {
  4734. list_del_init(&rdev->same_set);
  4735. export_rdev(rdev);
  4736. }
  4737. mddev_put(mddev);
  4738. }
  4739. printk(KERN_INFO "md: ... autorun DONE.\n");
  4740. }
  4741. #endif /* !MODULE */
  4742. static int get_version(void __user * arg)
  4743. {
  4744. mdu_version_t ver;
  4745. ver.major = MD_MAJOR_VERSION;
  4746. ver.minor = MD_MINOR_VERSION;
  4747. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  4748. if (copy_to_user(arg, &ver, sizeof(ver)))
  4749. return -EFAULT;
  4750. return 0;
  4751. }
  4752. static int get_array_info(struct mddev * mddev, void __user * arg)
  4753. {
  4754. mdu_array_info_t info;
  4755. int nr,working,insync,failed,spare;
  4756. struct md_rdev *rdev;
  4757. nr=working=insync=failed=spare=0;
  4758. rdev_for_each(rdev, mddev) {
  4759. nr++;
  4760. if (test_bit(Faulty, &rdev->flags))
  4761. failed++;
  4762. else {
  4763. working++;
  4764. if (test_bit(In_sync, &rdev->flags))
  4765. insync++;
  4766. else
  4767. spare++;
  4768. }
  4769. }
  4770. info.major_version = mddev->major_version;
  4771. info.minor_version = mddev->minor_version;
  4772. info.patch_version = MD_PATCHLEVEL_VERSION;
  4773. info.ctime = mddev->ctime;
  4774. info.level = mddev->level;
  4775. info.size = mddev->dev_sectors / 2;
  4776. if (info.size != mddev->dev_sectors / 2) /* overflow */
  4777. info.size = -1;
  4778. info.nr_disks = nr;
  4779. info.raid_disks = mddev->raid_disks;
  4780. info.md_minor = mddev->md_minor;
  4781. info.not_persistent= !mddev->persistent;
  4782. info.utime = mddev->utime;
  4783. info.state = 0;
  4784. if (mddev->in_sync)
  4785. info.state = (1<<MD_SB_CLEAN);
  4786. if (mddev->bitmap && mddev->bitmap_info.offset)
  4787. info.state = (1<<MD_SB_BITMAP_PRESENT);
  4788. info.active_disks = insync;
  4789. info.working_disks = working;
  4790. info.failed_disks = failed;
  4791. info.spare_disks = spare;
  4792. info.layout = mddev->layout;
  4793. info.chunk_size = mddev->chunk_sectors << 9;
  4794. if (copy_to_user(arg, &info, sizeof(info)))
  4795. return -EFAULT;
  4796. return 0;
  4797. }
  4798. static int get_bitmap_file(struct mddev * mddev, void __user * arg)
  4799. {
  4800. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  4801. char *ptr, *buf = NULL;
  4802. int err = -ENOMEM;
  4803. if (md_allow_write(mddev))
  4804. file = kmalloc(sizeof(*file), GFP_NOIO);
  4805. else
  4806. file = kmalloc(sizeof(*file), GFP_KERNEL);
  4807. if (!file)
  4808. goto out;
  4809. /* bitmap disabled, zero the first byte and copy out */
  4810. if (!mddev->bitmap || !mddev->bitmap->file) {
  4811. file->pathname[0] = '\0';
  4812. goto copy_out;
  4813. }
  4814. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  4815. if (!buf)
  4816. goto out;
  4817. ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
  4818. if (IS_ERR(ptr))
  4819. goto out;
  4820. strcpy(file->pathname, ptr);
  4821. copy_out:
  4822. err = 0;
  4823. if (copy_to_user(arg, file, sizeof(*file)))
  4824. err = -EFAULT;
  4825. out:
  4826. kfree(buf);
  4827. kfree(file);
  4828. return err;
  4829. }
  4830. static int get_disk_info(struct mddev * mddev, void __user * arg)
  4831. {
  4832. mdu_disk_info_t info;
  4833. struct md_rdev *rdev;
  4834. if (copy_from_user(&info, arg, sizeof(info)))
  4835. return -EFAULT;
  4836. rdev = find_rdev_nr(mddev, info.number);
  4837. if (rdev) {
  4838. info.major = MAJOR(rdev->bdev->bd_dev);
  4839. info.minor = MINOR(rdev->bdev->bd_dev);
  4840. info.raid_disk = rdev->raid_disk;
  4841. info.state = 0;
  4842. if (test_bit(Faulty, &rdev->flags))
  4843. info.state |= (1<<MD_DISK_FAULTY);
  4844. else if (test_bit(In_sync, &rdev->flags)) {
  4845. info.state |= (1<<MD_DISK_ACTIVE);
  4846. info.state |= (1<<MD_DISK_SYNC);
  4847. }
  4848. if (test_bit(WriteMostly, &rdev->flags))
  4849. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  4850. } else {
  4851. info.major = info.minor = 0;
  4852. info.raid_disk = -1;
  4853. info.state = (1<<MD_DISK_REMOVED);
  4854. }
  4855. if (copy_to_user(arg, &info, sizeof(info)))
  4856. return -EFAULT;
  4857. return 0;
  4858. }
  4859. static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
  4860. {
  4861. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4862. struct md_rdev *rdev;
  4863. dev_t dev = MKDEV(info->major,info->minor);
  4864. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  4865. return -EOVERFLOW;
  4866. if (!mddev->raid_disks) {
  4867. int err;
  4868. /* expecting a device which has a superblock */
  4869. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  4870. if (IS_ERR(rdev)) {
  4871. printk(KERN_WARNING
  4872. "md: md_import_device returned %ld\n",
  4873. PTR_ERR(rdev));
  4874. return PTR_ERR(rdev);
  4875. }
  4876. if (!list_empty(&mddev->disks)) {
  4877. struct md_rdev *rdev0
  4878. = list_entry(mddev->disks.next,
  4879. struct md_rdev, same_set);
  4880. err = super_types[mddev->major_version]
  4881. .load_super(rdev, rdev0, mddev->minor_version);
  4882. if (err < 0) {
  4883. printk(KERN_WARNING
  4884. "md: %s has different UUID to %s\n",
  4885. bdevname(rdev->bdev,b),
  4886. bdevname(rdev0->bdev,b2));
  4887. export_rdev(rdev);
  4888. return -EINVAL;
  4889. }
  4890. }
  4891. err = bind_rdev_to_array(rdev, mddev);
  4892. if (err)
  4893. export_rdev(rdev);
  4894. return err;
  4895. }
  4896. /*
  4897. * add_new_disk can be used once the array is assembled
  4898. * to add "hot spares". They must already have a superblock
  4899. * written
  4900. */
  4901. if (mddev->pers) {
  4902. int err;
  4903. if (!mddev->pers->hot_add_disk) {
  4904. printk(KERN_WARNING
  4905. "%s: personality does not support diskops!\n",
  4906. mdname(mddev));
  4907. return -EINVAL;
  4908. }
  4909. if (mddev->persistent)
  4910. rdev = md_import_device(dev, mddev->major_version,
  4911. mddev->minor_version);
  4912. else
  4913. rdev = md_import_device(dev, -1, -1);
  4914. if (IS_ERR(rdev)) {
  4915. printk(KERN_WARNING
  4916. "md: md_import_device returned %ld\n",
  4917. PTR_ERR(rdev));
  4918. return PTR_ERR(rdev);
  4919. }
  4920. /* set saved_raid_disk if appropriate */
  4921. if (!mddev->persistent) {
  4922. if (info->state & (1<<MD_DISK_SYNC) &&
  4923. info->raid_disk < mddev->raid_disks) {
  4924. rdev->raid_disk = info->raid_disk;
  4925. set_bit(In_sync, &rdev->flags);
  4926. } else
  4927. rdev->raid_disk = -1;
  4928. } else
  4929. super_types[mddev->major_version].
  4930. validate_super(mddev, rdev);
  4931. if ((info->state & (1<<MD_DISK_SYNC)) &&
  4932. (!test_bit(In_sync, &rdev->flags) ||
  4933. rdev->raid_disk != info->raid_disk)) {
  4934. /* This was a hot-add request, but events doesn't
  4935. * match, so reject it.
  4936. */
  4937. export_rdev(rdev);
  4938. return -EINVAL;
  4939. }
  4940. if (test_bit(In_sync, &rdev->flags))
  4941. rdev->saved_raid_disk = rdev->raid_disk;
  4942. else
  4943. rdev->saved_raid_disk = -1;
  4944. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  4945. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  4946. set_bit(WriteMostly, &rdev->flags);
  4947. else
  4948. clear_bit(WriteMostly, &rdev->flags);
  4949. rdev->raid_disk = -1;
  4950. err = bind_rdev_to_array(rdev, mddev);
  4951. if (!err && !mddev->pers->hot_remove_disk) {
  4952. /* If there is hot_add_disk but no hot_remove_disk
  4953. * then added disks for geometry changes,
  4954. * and should be added immediately.
  4955. */
  4956. super_types[mddev->major_version].
  4957. validate_super(mddev, rdev);
  4958. err = mddev->pers->hot_add_disk(mddev, rdev);
  4959. if (err)
  4960. unbind_rdev_from_array(rdev);
  4961. }
  4962. if (err)
  4963. export_rdev(rdev);
  4964. else
  4965. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4966. md_update_sb(mddev, 1);
  4967. if (mddev->degraded)
  4968. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  4969. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4970. if (!err)
  4971. md_new_event(mddev);
  4972. md_wakeup_thread(mddev->thread);
  4973. return err;
  4974. }
  4975. /* otherwise, add_new_disk is only allowed
  4976. * for major_version==0 superblocks
  4977. */
  4978. if (mddev->major_version != 0) {
  4979. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  4980. mdname(mddev));
  4981. return -EINVAL;
  4982. }
  4983. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  4984. int err;
  4985. rdev = md_import_device(dev, -1, 0);
  4986. if (IS_ERR(rdev)) {
  4987. printk(KERN_WARNING
  4988. "md: error, md_import_device() returned %ld\n",
  4989. PTR_ERR(rdev));
  4990. return PTR_ERR(rdev);
  4991. }
  4992. rdev->desc_nr = info->number;
  4993. if (info->raid_disk < mddev->raid_disks)
  4994. rdev->raid_disk = info->raid_disk;
  4995. else
  4996. rdev->raid_disk = -1;
  4997. if (rdev->raid_disk < mddev->raid_disks)
  4998. if (info->state & (1<<MD_DISK_SYNC))
  4999. set_bit(In_sync, &rdev->flags);
  5000. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5001. set_bit(WriteMostly, &rdev->flags);
  5002. if (!mddev->persistent) {
  5003. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  5004. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5005. } else
  5006. rdev->sb_start = calc_dev_sboffset(rdev);
  5007. rdev->sectors = rdev->sb_start;
  5008. err = bind_rdev_to_array(rdev, mddev);
  5009. if (err) {
  5010. export_rdev(rdev);
  5011. return err;
  5012. }
  5013. }
  5014. return 0;
  5015. }
  5016. static int hot_remove_disk(struct mddev * mddev, dev_t dev)
  5017. {
  5018. char b[BDEVNAME_SIZE];
  5019. struct md_rdev *rdev;
  5020. rdev = find_rdev(mddev, dev);
  5021. if (!rdev)
  5022. return -ENXIO;
  5023. if (rdev->raid_disk >= 0)
  5024. goto busy;
  5025. kick_rdev_from_array(rdev);
  5026. md_update_sb(mddev, 1);
  5027. md_new_event(mddev);
  5028. return 0;
  5029. busy:
  5030. printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
  5031. bdevname(rdev->bdev,b), mdname(mddev));
  5032. return -EBUSY;
  5033. }
  5034. static int hot_add_disk(struct mddev * mddev, dev_t dev)
  5035. {
  5036. char b[BDEVNAME_SIZE];
  5037. int err;
  5038. struct md_rdev *rdev;
  5039. if (!mddev->pers)
  5040. return -ENODEV;
  5041. if (mddev->major_version != 0) {
  5042. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  5043. " version-0 superblocks.\n",
  5044. mdname(mddev));
  5045. return -EINVAL;
  5046. }
  5047. if (!mddev->pers->hot_add_disk) {
  5048. printk(KERN_WARNING
  5049. "%s: personality does not support diskops!\n",
  5050. mdname(mddev));
  5051. return -EINVAL;
  5052. }
  5053. rdev = md_import_device(dev, -1, 0);
  5054. if (IS_ERR(rdev)) {
  5055. printk(KERN_WARNING
  5056. "md: error, md_import_device() returned %ld\n",
  5057. PTR_ERR(rdev));
  5058. return -EINVAL;
  5059. }
  5060. if (mddev->persistent)
  5061. rdev->sb_start = calc_dev_sboffset(rdev);
  5062. else
  5063. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5064. rdev->sectors = rdev->sb_start;
  5065. if (test_bit(Faulty, &rdev->flags)) {
  5066. printk(KERN_WARNING
  5067. "md: can not hot-add faulty %s disk to %s!\n",
  5068. bdevname(rdev->bdev,b), mdname(mddev));
  5069. err = -EINVAL;
  5070. goto abort_export;
  5071. }
  5072. clear_bit(In_sync, &rdev->flags);
  5073. rdev->desc_nr = -1;
  5074. rdev->saved_raid_disk = -1;
  5075. err = bind_rdev_to_array(rdev, mddev);
  5076. if (err)
  5077. goto abort_export;
  5078. /*
  5079. * The rest should better be atomic, we can have disk failures
  5080. * noticed in interrupt contexts ...
  5081. */
  5082. rdev->raid_disk = -1;
  5083. md_update_sb(mddev, 1);
  5084. /*
  5085. * Kick recovery, maybe this spare has to be added to the
  5086. * array immediately.
  5087. */
  5088. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5089. md_wakeup_thread(mddev->thread);
  5090. md_new_event(mddev);
  5091. return 0;
  5092. abort_export:
  5093. export_rdev(rdev);
  5094. return err;
  5095. }
  5096. static int set_bitmap_file(struct mddev *mddev, int fd)
  5097. {
  5098. int err;
  5099. if (mddev->pers) {
  5100. if (!mddev->pers->quiesce)
  5101. return -EBUSY;
  5102. if (mddev->recovery || mddev->sync_thread)
  5103. return -EBUSY;
  5104. /* we should be able to change the bitmap.. */
  5105. }
  5106. if (fd >= 0) {
  5107. if (mddev->bitmap)
  5108. return -EEXIST; /* cannot add when bitmap is present */
  5109. mddev->bitmap_info.file = fget(fd);
  5110. if (mddev->bitmap_info.file == NULL) {
  5111. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  5112. mdname(mddev));
  5113. return -EBADF;
  5114. }
  5115. err = deny_bitmap_write_access(mddev->bitmap_info.file);
  5116. if (err) {
  5117. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  5118. mdname(mddev));
  5119. fput(mddev->bitmap_info.file);
  5120. mddev->bitmap_info.file = NULL;
  5121. return err;
  5122. }
  5123. mddev->bitmap_info.offset = 0; /* file overrides offset */
  5124. } else if (mddev->bitmap == NULL)
  5125. return -ENOENT; /* cannot remove what isn't there */
  5126. err = 0;
  5127. if (mddev->pers) {
  5128. mddev->pers->quiesce(mddev, 1);
  5129. if (fd >= 0) {
  5130. err = bitmap_create(mddev);
  5131. if (!err)
  5132. err = bitmap_load(mddev);
  5133. }
  5134. if (fd < 0 || err) {
  5135. bitmap_destroy(mddev);
  5136. fd = -1; /* make sure to put the file */
  5137. }
  5138. mddev->pers->quiesce(mddev, 0);
  5139. }
  5140. if (fd < 0) {
  5141. if (mddev->bitmap_info.file) {
  5142. restore_bitmap_write_access(mddev->bitmap_info.file);
  5143. fput(mddev->bitmap_info.file);
  5144. }
  5145. mddev->bitmap_info.file = NULL;
  5146. }
  5147. return err;
  5148. }
  5149. /*
  5150. * set_array_info is used two different ways
  5151. * The original usage is when creating a new array.
  5152. * In this usage, raid_disks is > 0 and it together with
  5153. * level, size, not_persistent,layout,chunksize determine the
  5154. * shape of the array.
  5155. * This will always create an array with a type-0.90.0 superblock.
  5156. * The newer usage is when assembling an array.
  5157. * In this case raid_disks will be 0, and the major_version field is
  5158. * use to determine which style super-blocks are to be found on the devices.
  5159. * The minor and patch _version numbers are also kept incase the
  5160. * super_block handler wishes to interpret them.
  5161. */
  5162. static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
  5163. {
  5164. if (info->raid_disks == 0) {
  5165. /* just setting version number for superblock loading */
  5166. if (info->major_version < 0 ||
  5167. info->major_version >= ARRAY_SIZE(super_types) ||
  5168. super_types[info->major_version].name == NULL) {
  5169. /* maybe try to auto-load a module? */
  5170. printk(KERN_INFO
  5171. "md: superblock version %d not known\n",
  5172. info->major_version);
  5173. return -EINVAL;
  5174. }
  5175. mddev->major_version = info->major_version;
  5176. mddev->minor_version = info->minor_version;
  5177. mddev->patch_version = info->patch_version;
  5178. mddev->persistent = !info->not_persistent;
  5179. /* ensure mddev_put doesn't delete this now that there
  5180. * is some minimal configuration.
  5181. */
  5182. mddev->ctime = get_seconds();
  5183. return 0;
  5184. }
  5185. mddev->major_version = MD_MAJOR_VERSION;
  5186. mddev->minor_version = MD_MINOR_VERSION;
  5187. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  5188. mddev->ctime = get_seconds();
  5189. mddev->level = info->level;
  5190. mddev->clevel[0] = 0;
  5191. mddev->dev_sectors = 2 * (sector_t)info->size;
  5192. mddev->raid_disks = info->raid_disks;
  5193. /* don't set md_minor, it is determined by which /dev/md* was
  5194. * openned
  5195. */
  5196. if (info->state & (1<<MD_SB_CLEAN))
  5197. mddev->recovery_cp = MaxSector;
  5198. else
  5199. mddev->recovery_cp = 0;
  5200. mddev->persistent = ! info->not_persistent;
  5201. mddev->external = 0;
  5202. mddev->layout = info->layout;
  5203. mddev->chunk_sectors = info->chunk_size >> 9;
  5204. mddev->max_disks = MD_SB_DISKS;
  5205. if (mddev->persistent)
  5206. mddev->flags = 0;
  5207. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5208. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  5209. mddev->bitmap_info.offset = 0;
  5210. mddev->reshape_position = MaxSector;
  5211. /*
  5212. * Generate a 128 bit UUID
  5213. */
  5214. get_random_bytes(mddev->uuid, 16);
  5215. mddev->new_level = mddev->level;
  5216. mddev->new_chunk_sectors = mddev->chunk_sectors;
  5217. mddev->new_layout = mddev->layout;
  5218. mddev->delta_disks = 0;
  5219. return 0;
  5220. }
  5221. void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
  5222. {
  5223. WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
  5224. if (mddev->external_size)
  5225. return;
  5226. mddev->array_sectors = array_sectors;
  5227. }
  5228. EXPORT_SYMBOL(md_set_array_sectors);
  5229. static int update_size(struct mddev *mddev, sector_t num_sectors)
  5230. {
  5231. struct md_rdev *rdev;
  5232. int rv;
  5233. int fit = (num_sectors == 0);
  5234. if (mddev->pers->resize == NULL)
  5235. return -EINVAL;
  5236. /* The "num_sectors" is the number of sectors of each device that
  5237. * is used. This can only make sense for arrays with redundancy.
  5238. * linear and raid0 always use whatever space is available. We can only
  5239. * consider changing this number if no resync or reconstruction is
  5240. * happening, and if the new size is acceptable. It must fit before the
  5241. * sb_start or, if that is <data_offset, it must fit before the size
  5242. * of each device. If num_sectors is zero, we find the largest size
  5243. * that fits.
  5244. */
  5245. if (mddev->sync_thread)
  5246. return -EBUSY;
  5247. if (mddev->bitmap)
  5248. /* Sorry, cannot grow a bitmap yet, just remove it,
  5249. * grow, and re-add.
  5250. */
  5251. return -EBUSY;
  5252. rdev_for_each(rdev, mddev) {
  5253. sector_t avail = rdev->sectors;
  5254. if (fit && (num_sectors == 0 || num_sectors > avail))
  5255. num_sectors = avail;
  5256. if (avail < num_sectors)
  5257. return -ENOSPC;
  5258. }
  5259. rv = mddev->pers->resize(mddev, num_sectors);
  5260. if (!rv)
  5261. revalidate_disk(mddev->gendisk);
  5262. return rv;
  5263. }
  5264. static int update_raid_disks(struct mddev *mddev, int raid_disks)
  5265. {
  5266. int rv;
  5267. /* change the number of raid disks */
  5268. if (mddev->pers->check_reshape == NULL)
  5269. return -EINVAL;
  5270. if (raid_disks <= 0 ||
  5271. (mddev->max_disks && raid_disks >= mddev->max_disks))
  5272. return -EINVAL;
  5273. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  5274. return -EBUSY;
  5275. mddev->delta_disks = raid_disks - mddev->raid_disks;
  5276. rv = mddev->pers->check_reshape(mddev);
  5277. if (rv < 0)
  5278. mddev->delta_disks = 0;
  5279. return rv;
  5280. }
  5281. /*
  5282. * update_array_info is used to change the configuration of an
  5283. * on-line array.
  5284. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  5285. * fields in the info are checked against the array.
  5286. * Any differences that cannot be handled will cause an error.
  5287. * Normally, only one change can be managed at a time.
  5288. */
  5289. static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
  5290. {
  5291. int rv = 0;
  5292. int cnt = 0;
  5293. int state = 0;
  5294. /* calculate expected state,ignoring low bits */
  5295. if (mddev->bitmap && mddev->bitmap_info.offset)
  5296. state |= (1 << MD_SB_BITMAP_PRESENT);
  5297. if (mddev->major_version != info->major_version ||
  5298. mddev->minor_version != info->minor_version ||
  5299. /* mddev->patch_version != info->patch_version || */
  5300. mddev->ctime != info->ctime ||
  5301. mddev->level != info->level ||
  5302. /* mddev->layout != info->layout || */
  5303. !mddev->persistent != info->not_persistent||
  5304. mddev->chunk_sectors != info->chunk_size >> 9 ||
  5305. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  5306. ((state^info->state) & 0xfffffe00)
  5307. )
  5308. return -EINVAL;
  5309. /* Check there is only one change */
  5310. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5311. cnt++;
  5312. if (mddev->raid_disks != info->raid_disks)
  5313. cnt++;
  5314. if (mddev->layout != info->layout)
  5315. cnt++;
  5316. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
  5317. cnt++;
  5318. if (cnt == 0)
  5319. return 0;
  5320. if (cnt > 1)
  5321. return -EINVAL;
  5322. if (mddev->layout != info->layout) {
  5323. /* Change layout
  5324. * we don't need to do anything at the md level, the
  5325. * personality will take care of it all.
  5326. */
  5327. if (mddev->pers->check_reshape == NULL)
  5328. return -EINVAL;
  5329. else {
  5330. mddev->new_layout = info->layout;
  5331. rv = mddev->pers->check_reshape(mddev);
  5332. if (rv)
  5333. mddev->new_layout = mddev->layout;
  5334. return rv;
  5335. }
  5336. }
  5337. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5338. rv = update_size(mddev, (sector_t)info->size * 2);
  5339. if (mddev->raid_disks != info->raid_disks)
  5340. rv = update_raid_disks(mddev, info->raid_disks);
  5341. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  5342. if (mddev->pers->quiesce == NULL)
  5343. return -EINVAL;
  5344. if (mddev->recovery || mddev->sync_thread)
  5345. return -EBUSY;
  5346. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  5347. /* add the bitmap */
  5348. if (mddev->bitmap)
  5349. return -EEXIST;
  5350. if (mddev->bitmap_info.default_offset == 0)
  5351. return -EINVAL;
  5352. mddev->bitmap_info.offset =
  5353. mddev->bitmap_info.default_offset;
  5354. mddev->pers->quiesce(mddev, 1);
  5355. rv = bitmap_create(mddev);
  5356. if (!rv)
  5357. rv = bitmap_load(mddev);
  5358. if (rv)
  5359. bitmap_destroy(mddev);
  5360. mddev->pers->quiesce(mddev, 0);
  5361. } else {
  5362. /* remove the bitmap */
  5363. if (!mddev->bitmap)
  5364. return -ENOENT;
  5365. if (mddev->bitmap->file)
  5366. return -EINVAL;
  5367. mddev->pers->quiesce(mddev, 1);
  5368. bitmap_destroy(mddev);
  5369. mddev->pers->quiesce(mddev, 0);
  5370. mddev->bitmap_info.offset = 0;
  5371. }
  5372. }
  5373. md_update_sb(mddev, 1);
  5374. return rv;
  5375. }
  5376. static int set_disk_faulty(struct mddev *mddev, dev_t dev)
  5377. {
  5378. struct md_rdev *rdev;
  5379. if (mddev->pers == NULL)
  5380. return -ENODEV;
  5381. rdev = find_rdev(mddev, dev);
  5382. if (!rdev)
  5383. return -ENODEV;
  5384. md_error(mddev, rdev);
  5385. if (!test_bit(Faulty, &rdev->flags))
  5386. return -EBUSY;
  5387. return 0;
  5388. }
  5389. /*
  5390. * We have a problem here : there is no easy way to give a CHS
  5391. * virtual geometry. We currently pretend that we have a 2 heads
  5392. * 4 sectors (with a BIG number of cylinders...). This drives
  5393. * dosfs just mad... ;-)
  5394. */
  5395. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  5396. {
  5397. struct mddev *mddev = bdev->bd_disk->private_data;
  5398. geo->heads = 2;
  5399. geo->sectors = 4;
  5400. geo->cylinders = mddev->array_sectors / 8;
  5401. return 0;
  5402. }
  5403. static int md_ioctl(struct block_device *bdev, fmode_t mode,
  5404. unsigned int cmd, unsigned long arg)
  5405. {
  5406. int err = 0;
  5407. void __user *argp = (void __user *)arg;
  5408. struct mddev *mddev = NULL;
  5409. int ro;
  5410. switch (cmd) {
  5411. case RAID_VERSION:
  5412. case GET_ARRAY_INFO:
  5413. case GET_DISK_INFO:
  5414. break;
  5415. default:
  5416. if (!capable(CAP_SYS_ADMIN))
  5417. return -EACCES;
  5418. }
  5419. /*
  5420. * Commands dealing with the RAID driver but not any
  5421. * particular array:
  5422. */
  5423. switch (cmd)
  5424. {
  5425. case RAID_VERSION:
  5426. err = get_version(argp);
  5427. goto done;
  5428. case PRINT_RAID_DEBUG:
  5429. err = 0;
  5430. md_print_devices();
  5431. goto done;
  5432. #ifndef MODULE
  5433. case RAID_AUTORUN:
  5434. err = 0;
  5435. autostart_arrays(arg);
  5436. goto done;
  5437. #endif
  5438. default:;
  5439. }
  5440. /*
  5441. * Commands creating/starting a new array:
  5442. */
  5443. mddev = bdev->bd_disk->private_data;
  5444. if (!mddev) {
  5445. BUG();
  5446. goto abort;
  5447. }
  5448. err = mddev_lock(mddev);
  5449. if (err) {
  5450. printk(KERN_INFO
  5451. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  5452. err, cmd);
  5453. goto abort;
  5454. }
  5455. switch (cmd)
  5456. {
  5457. case SET_ARRAY_INFO:
  5458. {
  5459. mdu_array_info_t info;
  5460. if (!arg)
  5461. memset(&info, 0, sizeof(info));
  5462. else if (copy_from_user(&info, argp, sizeof(info))) {
  5463. err = -EFAULT;
  5464. goto abort_unlock;
  5465. }
  5466. if (mddev->pers) {
  5467. err = update_array_info(mddev, &info);
  5468. if (err) {
  5469. printk(KERN_WARNING "md: couldn't update"
  5470. " array info. %d\n", err);
  5471. goto abort_unlock;
  5472. }
  5473. goto done_unlock;
  5474. }
  5475. if (!list_empty(&mddev->disks)) {
  5476. printk(KERN_WARNING
  5477. "md: array %s already has disks!\n",
  5478. mdname(mddev));
  5479. err = -EBUSY;
  5480. goto abort_unlock;
  5481. }
  5482. if (mddev->raid_disks) {
  5483. printk(KERN_WARNING
  5484. "md: array %s already initialised!\n",
  5485. mdname(mddev));
  5486. err = -EBUSY;
  5487. goto abort_unlock;
  5488. }
  5489. err = set_array_info(mddev, &info);
  5490. if (err) {
  5491. printk(KERN_WARNING "md: couldn't set"
  5492. " array info. %d\n", err);
  5493. goto abort_unlock;
  5494. }
  5495. }
  5496. goto done_unlock;
  5497. default:;
  5498. }
  5499. /*
  5500. * Commands querying/configuring an existing array:
  5501. */
  5502. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  5503. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  5504. if ((!mddev->raid_disks && !mddev->external)
  5505. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  5506. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  5507. && cmd != GET_BITMAP_FILE) {
  5508. err = -ENODEV;
  5509. goto abort_unlock;
  5510. }
  5511. /*
  5512. * Commands even a read-only array can execute:
  5513. */
  5514. switch (cmd)
  5515. {
  5516. case GET_ARRAY_INFO:
  5517. err = get_array_info(mddev, argp);
  5518. goto done_unlock;
  5519. case GET_BITMAP_FILE:
  5520. err = get_bitmap_file(mddev, argp);
  5521. goto done_unlock;
  5522. case GET_DISK_INFO:
  5523. err = get_disk_info(mddev, argp);
  5524. goto done_unlock;
  5525. case RESTART_ARRAY_RW:
  5526. err = restart_array(mddev);
  5527. goto done_unlock;
  5528. case STOP_ARRAY:
  5529. err = do_md_stop(mddev, 0, 1);
  5530. goto done_unlock;
  5531. case STOP_ARRAY_RO:
  5532. err = md_set_readonly(mddev, 1);
  5533. goto done_unlock;
  5534. case BLKROSET:
  5535. if (get_user(ro, (int __user *)(arg))) {
  5536. err = -EFAULT;
  5537. goto done_unlock;
  5538. }
  5539. err = -EINVAL;
  5540. /* if the bdev is going readonly the value of mddev->ro
  5541. * does not matter, no writes are coming
  5542. */
  5543. if (ro)
  5544. goto done_unlock;
  5545. /* are we are already prepared for writes? */
  5546. if (mddev->ro != 1)
  5547. goto done_unlock;
  5548. /* transitioning to readauto need only happen for
  5549. * arrays that call md_write_start
  5550. */
  5551. if (mddev->pers) {
  5552. err = restart_array(mddev);
  5553. if (err == 0) {
  5554. mddev->ro = 2;
  5555. set_disk_ro(mddev->gendisk, 0);
  5556. }
  5557. }
  5558. goto done_unlock;
  5559. }
  5560. /*
  5561. * The remaining ioctls are changing the state of the
  5562. * superblock, so we do not allow them on read-only arrays.
  5563. * However non-MD ioctls (e.g. get-size) will still come through
  5564. * here and hit the 'default' below, so only disallow
  5565. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  5566. */
  5567. if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
  5568. if (mddev->ro == 2) {
  5569. mddev->ro = 0;
  5570. sysfs_notify_dirent_safe(mddev->sysfs_state);
  5571. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5572. md_wakeup_thread(mddev->thread);
  5573. } else {
  5574. err = -EROFS;
  5575. goto abort_unlock;
  5576. }
  5577. }
  5578. switch (cmd)
  5579. {
  5580. case ADD_NEW_DISK:
  5581. {
  5582. mdu_disk_info_t info;
  5583. if (copy_from_user(&info, argp, sizeof(info)))
  5584. err = -EFAULT;
  5585. else
  5586. err = add_new_disk(mddev, &info);
  5587. goto done_unlock;
  5588. }
  5589. case HOT_REMOVE_DISK:
  5590. err = hot_remove_disk(mddev, new_decode_dev(arg));
  5591. goto done_unlock;
  5592. case HOT_ADD_DISK:
  5593. err = hot_add_disk(mddev, new_decode_dev(arg));
  5594. goto done_unlock;
  5595. case SET_DISK_FAULTY:
  5596. err = set_disk_faulty(mddev, new_decode_dev(arg));
  5597. goto done_unlock;
  5598. case RUN_ARRAY:
  5599. err = do_md_run(mddev);
  5600. goto done_unlock;
  5601. case SET_BITMAP_FILE:
  5602. err = set_bitmap_file(mddev, (int)arg);
  5603. goto done_unlock;
  5604. default:
  5605. err = -EINVAL;
  5606. goto abort_unlock;
  5607. }
  5608. done_unlock:
  5609. abort_unlock:
  5610. if (mddev->hold_active == UNTIL_IOCTL &&
  5611. err != -EINVAL)
  5612. mddev->hold_active = 0;
  5613. mddev_unlock(mddev);
  5614. return err;
  5615. done:
  5616. if (err)
  5617. MD_BUG();
  5618. abort:
  5619. return err;
  5620. }
  5621. #ifdef CONFIG_COMPAT
  5622. static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
  5623. unsigned int cmd, unsigned long arg)
  5624. {
  5625. switch (cmd) {
  5626. case HOT_REMOVE_DISK:
  5627. case HOT_ADD_DISK:
  5628. case SET_DISK_FAULTY:
  5629. case SET_BITMAP_FILE:
  5630. /* These take in integer arg, do not convert */
  5631. break;
  5632. default:
  5633. arg = (unsigned long)compat_ptr(arg);
  5634. break;
  5635. }
  5636. return md_ioctl(bdev, mode, cmd, arg);
  5637. }
  5638. #endif /* CONFIG_COMPAT */
  5639. static int md_open(struct block_device *bdev, fmode_t mode)
  5640. {
  5641. /*
  5642. * Succeed if we can lock the mddev, which confirms that
  5643. * it isn't being stopped right now.
  5644. */
  5645. struct mddev *mddev = mddev_find(bdev->bd_dev);
  5646. int err;
  5647. if (mddev->gendisk != bdev->bd_disk) {
  5648. /* we are racing with mddev_put which is discarding this
  5649. * bd_disk.
  5650. */
  5651. mddev_put(mddev);
  5652. /* Wait until bdev->bd_disk is definitely gone */
  5653. flush_workqueue(md_misc_wq);
  5654. /* Then retry the open from the top */
  5655. return -ERESTARTSYS;
  5656. }
  5657. BUG_ON(mddev != bdev->bd_disk->private_data);
  5658. if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
  5659. goto out;
  5660. err = 0;
  5661. atomic_inc(&mddev->openers);
  5662. mutex_unlock(&mddev->open_mutex);
  5663. check_disk_change(bdev);
  5664. out:
  5665. return err;
  5666. }
  5667. static int md_release(struct gendisk *disk, fmode_t mode)
  5668. {
  5669. struct mddev *mddev = disk->private_data;
  5670. BUG_ON(!mddev);
  5671. atomic_dec(&mddev->openers);
  5672. mddev_put(mddev);
  5673. return 0;
  5674. }
  5675. static int md_media_changed(struct gendisk *disk)
  5676. {
  5677. struct mddev *mddev = disk->private_data;
  5678. return mddev->changed;
  5679. }
  5680. static int md_revalidate(struct gendisk *disk)
  5681. {
  5682. struct mddev *mddev = disk->private_data;
  5683. mddev->changed = 0;
  5684. return 0;
  5685. }
  5686. static const struct block_device_operations md_fops =
  5687. {
  5688. .owner = THIS_MODULE,
  5689. .open = md_open,
  5690. .release = md_release,
  5691. .ioctl = md_ioctl,
  5692. #ifdef CONFIG_COMPAT
  5693. .compat_ioctl = md_compat_ioctl,
  5694. #endif
  5695. .getgeo = md_getgeo,
  5696. .media_changed = md_media_changed,
  5697. .revalidate_disk= md_revalidate,
  5698. };
  5699. static int md_thread(void * arg)
  5700. {
  5701. struct md_thread *thread = arg;
  5702. /*
  5703. * md_thread is a 'system-thread', it's priority should be very
  5704. * high. We avoid resource deadlocks individually in each
  5705. * raid personality. (RAID5 does preallocation) We also use RR and
  5706. * the very same RT priority as kswapd, thus we will never get
  5707. * into a priority inversion deadlock.
  5708. *
  5709. * we definitely have to have equal or higher priority than
  5710. * bdflush, otherwise bdflush will deadlock if there are too
  5711. * many dirty RAID5 blocks.
  5712. */
  5713. allow_signal(SIGKILL);
  5714. while (!kthread_should_stop()) {
  5715. /* We need to wait INTERRUPTIBLE so that
  5716. * we don't add to the load-average.
  5717. * That means we need to be sure no signals are
  5718. * pending
  5719. */
  5720. if (signal_pending(current))
  5721. flush_signals(current);
  5722. wait_event_interruptible_timeout
  5723. (thread->wqueue,
  5724. test_bit(THREAD_WAKEUP, &thread->flags)
  5725. || kthread_should_stop(),
  5726. thread->timeout);
  5727. clear_bit(THREAD_WAKEUP, &thread->flags);
  5728. if (!kthread_should_stop())
  5729. thread->run(thread->mddev);
  5730. }
  5731. return 0;
  5732. }
  5733. void md_wakeup_thread(struct md_thread *thread)
  5734. {
  5735. if (thread) {
  5736. pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
  5737. set_bit(THREAD_WAKEUP, &thread->flags);
  5738. wake_up(&thread->wqueue);
  5739. }
  5740. }
  5741. struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
  5742. const char *name)
  5743. {
  5744. struct md_thread *thread;
  5745. thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
  5746. if (!thread)
  5747. return NULL;
  5748. init_waitqueue_head(&thread->wqueue);
  5749. thread->run = run;
  5750. thread->mddev = mddev;
  5751. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  5752. thread->tsk = kthread_run(md_thread, thread,
  5753. "%s_%s",
  5754. mdname(thread->mddev),
  5755. name ?: mddev->pers->name);
  5756. if (IS_ERR(thread->tsk)) {
  5757. kfree(thread);
  5758. return NULL;
  5759. }
  5760. return thread;
  5761. }
  5762. void md_unregister_thread(struct md_thread **threadp)
  5763. {
  5764. struct md_thread *thread = *threadp;
  5765. if (!thread)
  5766. return;
  5767. pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  5768. /* Locking ensures that mddev_unlock does not wake_up a
  5769. * non-existent thread
  5770. */
  5771. spin_lock(&pers_lock);
  5772. *threadp = NULL;
  5773. spin_unlock(&pers_lock);
  5774. kthread_stop(thread->tsk);
  5775. kfree(thread);
  5776. }
  5777. void md_error(struct mddev *mddev, struct md_rdev *rdev)
  5778. {
  5779. if (!mddev) {
  5780. MD_BUG();
  5781. return;
  5782. }
  5783. if (!rdev || test_bit(Faulty, &rdev->flags))
  5784. return;
  5785. if (!mddev->pers || !mddev->pers->error_handler)
  5786. return;
  5787. mddev->pers->error_handler(mddev,rdev);
  5788. if (mddev->degraded)
  5789. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5790. sysfs_notify_dirent_safe(rdev->sysfs_state);
  5791. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5792. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5793. md_wakeup_thread(mddev->thread);
  5794. if (mddev->event_work.func)
  5795. queue_work(md_misc_wq, &mddev->event_work);
  5796. md_new_event_inintr(mddev);
  5797. }
  5798. /* seq_file implementation /proc/mdstat */
  5799. static void status_unused(struct seq_file *seq)
  5800. {
  5801. int i = 0;
  5802. struct md_rdev *rdev;
  5803. seq_printf(seq, "unused devices: ");
  5804. list_for_each_entry(rdev, &pending_raid_disks, same_set) {
  5805. char b[BDEVNAME_SIZE];
  5806. i++;
  5807. seq_printf(seq, "%s ",
  5808. bdevname(rdev->bdev,b));
  5809. }
  5810. if (!i)
  5811. seq_printf(seq, "<none>");
  5812. seq_printf(seq, "\n");
  5813. }
  5814. static void status_resync(struct seq_file *seq, struct mddev * mddev)
  5815. {
  5816. sector_t max_sectors, resync, res;
  5817. unsigned long dt, db;
  5818. sector_t rt;
  5819. int scale;
  5820. unsigned int per_milli;
  5821. resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
  5822. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  5823. max_sectors = mddev->resync_max_sectors;
  5824. else
  5825. max_sectors = mddev->dev_sectors;
  5826. /*
  5827. * Should not happen.
  5828. */
  5829. if (!max_sectors) {
  5830. MD_BUG();
  5831. return;
  5832. }
  5833. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  5834. * in a sector_t, and (max_sectors>>scale) will fit in a
  5835. * u32, as those are the requirements for sector_div.
  5836. * Thus 'scale' must be at least 10
  5837. */
  5838. scale = 10;
  5839. if (sizeof(sector_t) > sizeof(unsigned long)) {
  5840. while ( max_sectors/2 > (1ULL<<(scale+32)))
  5841. scale++;
  5842. }
  5843. res = (resync>>scale)*1000;
  5844. sector_div(res, (u32)((max_sectors>>scale)+1));
  5845. per_milli = res;
  5846. {
  5847. int i, x = per_milli/50, y = 20-x;
  5848. seq_printf(seq, "[");
  5849. for (i = 0; i < x; i++)
  5850. seq_printf(seq, "=");
  5851. seq_printf(seq, ">");
  5852. for (i = 0; i < y; i++)
  5853. seq_printf(seq, ".");
  5854. seq_printf(seq, "] ");
  5855. }
  5856. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  5857. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  5858. "reshape" :
  5859. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  5860. "check" :
  5861. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  5862. "resync" : "recovery"))),
  5863. per_milli/10, per_milli % 10,
  5864. (unsigned long long) resync/2,
  5865. (unsigned long long) max_sectors/2);
  5866. /*
  5867. * dt: time from mark until now
  5868. * db: blocks written from mark until now
  5869. * rt: remaining time
  5870. *
  5871. * rt is a sector_t, so could be 32bit or 64bit.
  5872. * So we divide before multiply in case it is 32bit and close
  5873. * to the limit.
  5874. * We scale the divisor (db) by 32 to avoid losing precision
  5875. * near the end of resync when the number of remaining sectors
  5876. * is close to 'db'.
  5877. * We then divide rt by 32 after multiplying by db to compensate.
  5878. * The '+1' avoids division by zero if db is very small.
  5879. */
  5880. dt = ((jiffies - mddev->resync_mark) / HZ);
  5881. if (!dt) dt++;
  5882. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  5883. - mddev->resync_mark_cnt;
  5884. rt = max_sectors - resync; /* number of remaining sectors */
  5885. sector_div(rt, db/32+1);
  5886. rt *= dt;
  5887. rt >>= 5;
  5888. seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
  5889. ((unsigned long)rt % 60)/6);
  5890. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  5891. }
  5892. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  5893. {
  5894. struct list_head *tmp;
  5895. loff_t l = *pos;
  5896. struct mddev *mddev;
  5897. if (l >= 0x10000)
  5898. return NULL;
  5899. if (!l--)
  5900. /* header */
  5901. return (void*)1;
  5902. spin_lock(&all_mddevs_lock);
  5903. list_for_each(tmp,&all_mddevs)
  5904. if (!l--) {
  5905. mddev = list_entry(tmp, struct mddev, all_mddevs);
  5906. mddev_get(mddev);
  5907. spin_unlock(&all_mddevs_lock);
  5908. return mddev;
  5909. }
  5910. spin_unlock(&all_mddevs_lock);
  5911. if (!l--)
  5912. return (void*)2;/* tail */
  5913. return NULL;
  5914. }
  5915. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  5916. {
  5917. struct list_head *tmp;
  5918. struct mddev *next_mddev, *mddev = v;
  5919. ++*pos;
  5920. if (v == (void*)2)
  5921. return NULL;
  5922. spin_lock(&all_mddevs_lock);
  5923. if (v == (void*)1)
  5924. tmp = all_mddevs.next;
  5925. else
  5926. tmp = mddev->all_mddevs.next;
  5927. if (tmp != &all_mddevs)
  5928. next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
  5929. else {
  5930. next_mddev = (void*)2;
  5931. *pos = 0x10000;
  5932. }
  5933. spin_unlock(&all_mddevs_lock);
  5934. if (v != (void*)1)
  5935. mddev_put(mddev);
  5936. return next_mddev;
  5937. }
  5938. static void md_seq_stop(struct seq_file *seq, void *v)
  5939. {
  5940. struct mddev *mddev = v;
  5941. if (mddev && v != (void*)1 && v != (void*)2)
  5942. mddev_put(mddev);
  5943. }
  5944. static int md_seq_show(struct seq_file *seq, void *v)
  5945. {
  5946. struct mddev *mddev = v;
  5947. sector_t sectors;
  5948. struct md_rdev *rdev;
  5949. struct bitmap *bitmap;
  5950. if (v == (void*)1) {
  5951. struct md_personality *pers;
  5952. seq_printf(seq, "Personalities : ");
  5953. spin_lock(&pers_lock);
  5954. list_for_each_entry(pers, &pers_list, list)
  5955. seq_printf(seq, "[%s] ", pers->name);
  5956. spin_unlock(&pers_lock);
  5957. seq_printf(seq, "\n");
  5958. seq->poll_event = atomic_read(&md_event_count);
  5959. return 0;
  5960. }
  5961. if (v == (void*)2) {
  5962. status_unused(seq);
  5963. return 0;
  5964. }
  5965. if (mddev_lock(mddev) < 0)
  5966. return -EINTR;
  5967. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  5968. seq_printf(seq, "%s : %sactive", mdname(mddev),
  5969. mddev->pers ? "" : "in");
  5970. if (mddev->pers) {
  5971. if (mddev->ro==1)
  5972. seq_printf(seq, " (read-only)");
  5973. if (mddev->ro==2)
  5974. seq_printf(seq, " (auto-read-only)");
  5975. seq_printf(seq, " %s", mddev->pers->name);
  5976. }
  5977. sectors = 0;
  5978. rdev_for_each(rdev, mddev) {
  5979. char b[BDEVNAME_SIZE];
  5980. seq_printf(seq, " %s[%d]",
  5981. bdevname(rdev->bdev,b), rdev->desc_nr);
  5982. if (test_bit(WriteMostly, &rdev->flags))
  5983. seq_printf(seq, "(W)");
  5984. if (test_bit(Faulty, &rdev->flags)) {
  5985. seq_printf(seq, "(F)");
  5986. continue;
  5987. }
  5988. if (rdev->raid_disk < 0)
  5989. seq_printf(seq, "(S)"); /* spare */
  5990. if (test_bit(Replacement, &rdev->flags))
  5991. seq_printf(seq, "(R)");
  5992. sectors += rdev->sectors;
  5993. }
  5994. if (!list_empty(&mddev->disks)) {
  5995. if (mddev->pers)
  5996. seq_printf(seq, "\n %llu blocks",
  5997. (unsigned long long)
  5998. mddev->array_sectors / 2);
  5999. else
  6000. seq_printf(seq, "\n %llu blocks",
  6001. (unsigned long long)sectors / 2);
  6002. }
  6003. if (mddev->persistent) {
  6004. if (mddev->major_version != 0 ||
  6005. mddev->minor_version != 90) {
  6006. seq_printf(seq," super %d.%d",
  6007. mddev->major_version,
  6008. mddev->minor_version);
  6009. }
  6010. } else if (mddev->external)
  6011. seq_printf(seq, " super external:%s",
  6012. mddev->metadata_type);
  6013. else
  6014. seq_printf(seq, " super non-persistent");
  6015. if (mddev->pers) {
  6016. mddev->pers->status(seq, mddev);
  6017. seq_printf(seq, "\n ");
  6018. if (mddev->pers->sync_request) {
  6019. if (mddev->curr_resync > 2) {
  6020. status_resync(seq, mddev);
  6021. seq_printf(seq, "\n ");
  6022. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  6023. seq_printf(seq, "\tresync=DELAYED\n ");
  6024. else if (mddev->recovery_cp < MaxSector)
  6025. seq_printf(seq, "\tresync=PENDING\n ");
  6026. }
  6027. } else
  6028. seq_printf(seq, "\n ");
  6029. if ((bitmap = mddev->bitmap)) {
  6030. unsigned long chunk_kb;
  6031. unsigned long flags;
  6032. spin_lock_irqsave(&bitmap->lock, flags);
  6033. chunk_kb = mddev->bitmap_info.chunksize >> 10;
  6034. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  6035. "%lu%s chunk",
  6036. bitmap->pages - bitmap->missing_pages,
  6037. bitmap->pages,
  6038. (bitmap->pages - bitmap->missing_pages)
  6039. << (PAGE_SHIFT - 10),
  6040. chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
  6041. chunk_kb ? "KB" : "B");
  6042. if (bitmap->file) {
  6043. seq_printf(seq, ", file: ");
  6044. seq_path(seq, &bitmap->file->f_path, " \t\n");
  6045. }
  6046. seq_printf(seq, "\n");
  6047. spin_unlock_irqrestore(&bitmap->lock, flags);
  6048. }
  6049. seq_printf(seq, "\n");
  6050. }
  6051. mddev_unlock(mddev);
  6052. return 0;
  6053. }
  6054. static const struct seq_operations md_seq_ops = {
  6055. .start = md_seq_start,
  6056. .next = md_seq_next,
  6057. .stop = md_seq_stop,
  6058. .show = md_seq_show,
  6059. };
  6060. static int md_seq_open(struct inode *inode, struct file *file)
  6061. {
  6062. struct seq_file *seq;
  6063. int error;
  6064. error = seq_open(file, &md_seq_ops);
  6065. if (error)
  6066. return error;
  6067. seq = file->private_data;
  6068. seq->poll_event = atomic_read(&md_event_count);
  6069. return error;
  6070. }
  6071. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  6072. {
  6073. struct seq_file *seq = filp->private_data;
  6074. int mask;
  6075. poll_wait(filp, &md_event_waiters, wait);
  6076. /* always allow read */
  6077. mask = POLLIN | POLLRDNORM;
  6078. if (seq->poll_event != atomic_read(&md_event_count))
  6079. mask |= POLLERR | POLLPRI;
  6080. return mask;
  6081. }
  6082. static const struct file_operations md_seq_fops = {
  6083. .owner = THIS_MODULE,
  6084. .open = md_seq_open,
  6085. .read = seq_read,
  6086. .llseek = seq_lseek,
  6087. .release = seq_release_private,
  6088. .poll = mdstat_poll,
  6089. };
  6090. int register_md_personality(struct md_personality *p)
  6091. {
  6092. spin_lock(&pers_lock);
  6093. list_add_tail(&p->list, &pers_list);
  6094. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  6095. spin_unlock(&pers_lock);
  6096. return 0;
  6097. }
  6098. int unregister_md_personality(struct md_personality *p)
  6099. {
  6100. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  6101. spin_lock(&pers_lock);
  6102. list_del_init(&p->list);
  6103. spin_unlock(&pers_lock);
  6104. return 0;
  6105. }
  6106. static int is_mddev_idle(struct mddev *mddev, int init)
  6107. {
  6108. struct md_rdev * rdev;
  6109. int idle;
  6110. int curr_events;
  6111. idle = 1;
  6112. rcu_read_lock();
  6113. rdev_for_each_rcu(rdev, mddev) {
  6114. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  6115. curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
  6116. (int)part_stat_read(&disk->part0, sectors[1]) -
  6117. atomic_read(&disk->sync_io);
  6118. /* sync IO will cause sync_io to increase before the disk_stats
  6119. * as sync_io is counted when a request starts, and
  6120. * disk_stats is counted when it completes.
  6121. * So resync activity will cause curr_events to be smaller than
  6122. * when there was no such activity.
  6123. * non-sync IO will cause disk_stat to increase without
  6124. * increasing sync_io so curr_events will (eventually)
  6125. * be larger than it was before. Once it becomes
  6126. * substantially larger, the test below will cause
  6127. * the array to appear non-idle, and resync will slow
  6128. * down.
  6129. * If there is a lot of outstanding resync activity when
  6130. * we set last_event to curr_events, then all that activity
  6131. * completing might cause the array to appear non-idle
  6132. * and resync will be slowed down even though there might
  6133. * not have been non-resync activity. This will only
  6134. * happen once though. 'last_events' will soon reflect
  6135. * the state where there is little or no outstanding
  6136. * resync requests, and further resync activity will
  6137. * always make curr_events less than last_events.
  6138. *
  6139. */
  6140. if (init || curr_events - rdev->last_events > 64) {
  6141. rdev->last_events = curr_events;
  6142. idle = 0;
  6143. }
  6144. }
  6145. rcu_read_unlock();
  6146. return idle;
  6147. }
  6148. void md_done_sync(struct mddev *mddev, int blocks, int ok)
  6149. {
  6150. /* another "blocks" (512byte) blocks have been synced */
  6151. atomic_sub(blocks, &mddev->recovery_active);
  6152. wake_up(&mddev->recovery_wait);
  6153. if (!ok) {
  6154. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6155. md_wakeup_thread(mddev->thread);
  6156. // stop recovery, signal do_sync ....
  6157. }
  6158. }
  6159. /* md_write_start(mddev, bi)
  6160. * If we need to update some array metadata (e.g. 'active' flag
  6161. * in superblock) before writing, schedule a superblock update
  6162. * and wait for it to complete.
  6163. */
  6164. void md_write_start(struct mddev *mddev, struct bio *bi)
  6165. {
  6166. int did_change = 0;
  6167. if (bio_data_dir(bi) != WRITE)
  6168. return;
  6169. BUG_ON(mddev->ro == 1);
  6170. if (mddev->ro == 2) {
  6171. /* need to switch to read/write */
  6172. mddev->ro = 0;
  6173. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6174. md_wakeup_thread(mddev->thread);
  6175. md_wakeup_thread(mddev->sync_thread);
  6176. did_change = 1;
  6177. }
  6178. atomic_inc(&mddev->writes_pending);
  6179. if (mddev->safemode == 1)
  6180. mddev->safemode = 0;
  6181. if (mddev->in_sync) {
  6182. spin_lock_irq(&mddev->write_lock);
  6183. if (mddev->in_sync) {
  6184. mddev->in_sync = 0;
  6185. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6186. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6187. md_wakeup_thread(mddev->thread);
  6188. did_change = 1;
  6189. }
  6190. spin_unlock_irq(&mddev->write_lock);
  6191. }
  6192. if (did_change)
  6193. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6194. wait_event(mddev->sb_wait,
  6195. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  6196. }
  6197. void md_write_end(struct mddev *mddev)
  6198. {
  6199. if (atomic_dec_and_test(&mddev->writes_pending)) {
  6200. if (mddev->safemode == 2)
  6201. md_wakeup_thread(mddev->thread);
  6202. else if (mddev->safemode_delay)
  6203. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  6204. }
  6205. }
  6206. /* md_allow_write(mddev)
  6207. * Calling this ensures that the array is marked 'active' so that writes
  6208. * may proceed without blocking. It is important to call this before
  6209. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  6210. * Must be called with mddev_lock held.
  6211. *
  6212. * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
  6213. * is dropped, so return -EAGAIN after notifying userspace.
  6214. */
  6215. int md_allow_write(struct mddev *mddev)
  6216. {
  6217. if (!mddev->pers)
  6218. return 0;
  6219. if (mddev->ro)
  6220. return 0;
  6221. if (!mddev->pers->sync_request)
  6222. return 0;
  6223. spin_lock_irq(&mddev->write_lock);
  6224. if (mddev->in_sync) {
  6225. mddev->in_sync = 0;
  6226. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6227. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6228. if (mddev->safemode_delay &&
  6229. mddev->safemode == 0)
  6230. mddev->safemode = 1;
  6231. spin_unlock_irq(&mddev->write_lock);
  6232. md_update_sb(mddev, 0);
  6233. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6234. } else
  6235. spin_unlock_irq(&mddev->write_lock);
  6236. if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  6237. return -EAGAIN;
  6238. else
  6239. return 0;
  6240. }
  6241. EXPORT_SYMBOL_GPL(md_allow_write);
  6242. #define SYNC_MARKS 10
  6243. #define SYNC_MARK_STEP (3*HZ)
  6244. void md_do_sync(struct mddev *mddev)
  6245. {
  6246. struct mddev *mddev2;
  6247. unsigned int currspeed = 0,
  6248. window;
  6249. sector_t max_sectors,j, io_sectors;
  6250. unsigned long mark[SYNC_MARKS];
  6251. sector_t mark_cnt[SYNC_MARKS];
  6252. int last_mark,m;
  6253. struct list_head *tmp;
  6254. sector_t last_check;
  6255. int skipped = 0;
  6256. struct md_rdev *rdev;
  6257. char *desc;
  6258. /* just incase thread restarts... */
  6259. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  6260. return;
  6261. if (mddev->ro) /* never try to sync a read-only array */
  6262. return;
  6263. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6264. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  6265. desc = "data-check";
  6266. else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6267. desc = "requested-resync";
  6268. else
  6269. desc = "resync";
  6270. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6271. desc = "reshape";
  6272. else
  6273. desc = "recovery";
  6274. /* we overload curr_resync somewhat here.
  6275. * 0 == not engaged in resync at all
  6276. * 2 == checking that there is no conflict with another sync
  6277. * 1 == like 2, but have yielded to allow conflicting resync to
  6278. * commense
  6279. * other == active in resync - this many blocks
  6280. *
  6281. * Before starting a resync we must have set curr_resync to
  6282. * 2, and then checked that every "conflicting" array has curr_resync
  6283. * less than ours. When we find one that is the same or higher
  6284. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  6285. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  6286. * This will mean we have to start checking from the beginning again.
  6287. *
  6288. */
  6289. do {
  6290. mddev->curr_resync = 2;
  6291. try_again:
  6292. if (kthread_should_stop())
  6293. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6294. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6295. goto skip;
  6296. for_each_mddev(mddev2, tmp) {
  6297. if (mddev2 == mddev)
  6298. continue;
  6299. if (!mddev->parallel_resync
  6300. && mddev2->curr_resync
  6301. && match_mddev_units(mddev, mddev2)) {
  6302. DEFINE_WAIT(wq);
  6303. if (mddev < mddev2 && mddev->curr_resync == 2) {
  6304. /* arbitrarily yield */
  6305. mddev->curr_resync = 1;
  6306. wake_up(&resync_wait);
  6307. }
  6308. if (mddev > mddev2 && mddev->curr_resync == 1)
  6309. /* no need to wait here, we can wait the next
  6310. * time 'round when curr_resync == 2
  6311. */
  6312. continue;
  6313. /* We need to wait 'interruptible' so as not to
  6314. * contribute to the load average, and not to
  6315. * be caught by 'softlockup'
  6316. */
  6317. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  6318. if (!kthread_should_stop() &&
  6319. mddev2->curr_resync >= mddev->curr_resync) {
  6320. printk(KERN_INFO "md: delaying %s of %s"
  6321. " until %s has finished (they"
  6322. " share one or more physical units)\n",
  6323. desc, mdname(mddev), mdname(mddev2));
  6324. mddev_put(mddev2);
  6325. if (signal_pending(current))
  6326. flush_signals(current);
  6327. schedule();
  6328. finish_wait(&resync_wait, &wq);
  6329. goto try_again;
  6330. }
  6331. finish_wait(&resync_wait, &wq);
  6332. }
  6333. }
  6334. } while (mddev->curr_resync < 2);
  6335. j = 0;
  6336. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6337. /* resync follows the size requested by the personality,
  6338. * which defaults to physical size, but can be virtual size
  6339. */
  6340. max_sectors = mddev->resync_max_sectors;
  6341. mddev->resync_mismatches = 0;
  6342. /* we don't use the checkpoint if there's a bitmap */
  6343. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6344. j = mddev->resync_min;
  6345. else if (!mddev->bitmap)
  6346. j = mddev->recovery_cp;
  6347. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6348. max_sectors = mddev->dev_sectors;
  6349. else {
  6350. /* recovery follows the physical size of devices */
  6351. max_sectors = mddev->dev_sectors;
  6352. j = MaxSector;
  6353. rcu_read_lock();
  6354. rdev_for_each_rcu(rdev, mddev)
  6355. if (rdev->raid_disk >= 0 &&
  6356. !test_bit(Faulty, &rdev->flags) &&
  6357. !test_bit(In_sync, &rdev->flags) &&
  6358. rdev->recovery_offset < j)
  6359. j = rdev->recovery_offset;
  6360. rcu_read_unlock();
  6361. }
  6362. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  6363. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  6364. " %d KB/sec/disk.\n", speed_min(mddev));
  6365. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  6366. "(but not more than %d KB/sec) for %s.\n",
  6367. speed_max(mddev), desc);
  6368. is_mddev_idle(mddev, 1); /* this initializes IO event counters */
  6369. io_sectors = 0;
  6370. for (m = 0; m < SYNC_MARKS; m++) {
  6371. mark[m] = jiffies;
  6372. mark_cnt[m] = io_sectors;
  6373. }
  6374. last_mark = 0;
  6375. mddev->resync_mark = mark[last_mark];
  6376. mddev->resync_mark_cnt = mark_cnt[last_mark];
  6377. /*
  6378. * Tune reconstruction:
  6379. */
  6380. window = 32*(PAGE_SIZE/512);
  6381. printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
  6382. window/2, (unsigned long long)max_sectors/2);
  6383. atomic_set(&mddev->recovery_active, 0);
  6384. last_check = 0;
  6385. if (j>2) {
  6386. printk(KERN_INFO
  6387. "md: resuming %s of %s from checkpoint.\n",
  6388. desc, mdname(mddev));
  6389. mddev->curr_resync = j;
  6390. }
  6391. mddev->curr_resync_completed = j;
  6392. while (j < max_sectors) {
  6393. sector_t sectors;
  6394. skipped = 0;
  6395. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6396. ((mddev->curr_resync > mddev->curr_resync_completed &&
  6397. (mddev->curr_resync - mddev->curr_resync_completed)
  6398. > (max_sectors >> 4)) ||
  6399. (j - mddev->curr_resync_completed)*2
  6400. >= mddev->resync_max - mddev->curr_resync_completed
  6401. )) {
  6402. /* time to update curr_resync_completed */
  6403. wait_event(mddev->recovery_wait,
  6404. atomic_read(&mddev->recovery_active) == 0);
  6405. mddev->curr_resync_completed = j;
  6406. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6407. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6408. }
  6409. while (j >= mddev->resync_max && !kthread_should_stop()) {
  6410. /* As this condition is controlled by user-space,
  6411. * we can block indefinitely, so use '_interruptible'
  6412. * to avoid triggering warnings.
  6413. */
  6414. flush_signals(current); /* just in case */
  6415. wait_event_interruptible(mddev->recovery_wait,
  6416. mddev->resync_max > j
  6417. || kthread_should_stop());
  6418. }
  6419. if (kthread_should_stop())
  6420. goto interrupted;
  6421. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  6422. currspeed < speed_min(mddev));
  6423. if (sectors == 0) {
  6424. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6425. goto out;
  6426. }
  6427. if (!skipped) { /* actual IO requested */
  6428. io_sectors += sectors;
  6429. atomic_add(sectors, &mddev->recovery_active);
  6430. }
  6431. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6432. break;
  6433. j += sectors;
  6434. if (j>1) mddev->curr_resync = j;
  6435. mddev->curr_mark_cnt = io_sectors;
  6436. if (last_check == 0)
  6437. /* this is the earliest that rebuild will be
  6438. * visible in /proc/mdstat
  6439. */
  6440. md_new_event(mddev);
  6441. if (last_check + window > io_sectors || j == max_sectors)
  6442. continue;
  6443. last_check = io_sectors;
  6444. repeat:
  6445. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  6446. /* step marks */
  6447. int next = (last_mark+1) % SYNC_MARKS;
  6448. mddev->resync_mark = mark[next];
  6449. mddev->resync_mark_cnt = mark_cnt[next];
  6450. mark[next] = jiffies;
  6451. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  6452. last_mark = next;
  6453. }
  6454. if (kthread_should_stop())
  6455. goto interrupted;
  6456. /*
  6457. * this loop exits only if either when we are slower than
  6458. * the 'hard' speed limit, or the system was IO-idle for
  6459. * a jiffy.
  6460. * the system might be non-idle CPU-wise, but we only care
  6461. * about not overloading the IO subsystem. (things like an
  6462. * e2fsck being done on the RAID array should execute fast)
  6463. */
  6464. cond_resched();
  6465. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  6466. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  6467. if (currspeed > speed_min(mddev)) {
  6468. if ((currspeed > speed_max(mddev)) ||
  6469. !is_mddev_idle(mddev, 0)) {
  6470. msleep(500);
  6471. goto repeat;
  6472. }
  6473. }
  6474. }
  6475. printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
  6476. /*
  6477. * this also signals 'finished resyncing' to md_stop
  6478. */
  6479. out:
  6480. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  6481. /* tell personality that we are finished */
  6482. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  6483. if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  6484. mddev->curr_resync > 2) {
  6485. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6486. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6487. if (mddev->curr_resync >= mddev->recovery_cp) {
  6488. printk(KERN_INFO
  6489. "md: checkpointing %s of %s.\n",
  6490. desc, mdname(mddev));
  6491. mddev->recovery_cp =
  6492. mddev->curr_resync_completed;
  6493. }
  6494. } else
  6495. mddev->recovery_cp = MaxSector;
  6496. } else {
  6497. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6498. mddev->curr_resync = MaxSector;
  6499. rcu_read_lock();
  6500. rdev_for_each_rcu(rdev, mddev)
  6501. if (rdev->raid_disk >= 0 &&
  6502. mddev->delta_disks >= 0 &&
  6503. !test_bit(Faulty, &rdev->flags) &&
  6504. !test_bit(In_sync, &rdev->flags) &&
  6505. rdev->recovery_offset < mddev->curr_resync)
  6506. rdev->recovery_offset = mddev->curr_resync;
  6507. rcu_read_unlock();
  6508. }
  6509. }
  6510. skip:
  6511. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6512. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6513. /* We completed so min/max setting can be forgotten if used. */
  6514. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6515. mddev->resync_min = 0;
  6516. mddev->resync_max = MaxSector;
  6517. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6518. mddev->resync_min = mddev->curr_resync_completed;
  6519. mddev->curr_resync = 0;
  6520. wake_up(&resync_wait);
  6521. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6522. md_wakeup_thread(mddev->thread);
  6523. return;
  6524. interrupted:
  6525. /*
  6526. * got a signal, exit.
  6527. */
  6528. printk(KERN_INFO
  6529. "md: md_do_sync() got signal ... exiting\n");
  6530. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6531. goto out;
  6532. }
  6533. EXPORT_SYMBOL_GPL(md_do_sync);
  6534. static int remove_and_add_spares(struct mddev *mddev)
  6535. {
  6536. struct md_rdev *rdev;
  6537. int spares = 0;
  6538. int removed = 0;
  6539. mddev->curr_resync_completed = 0;
  6540. rdev_for_each(rdev, mddev)
  6541. if (rdev->raid_disk >= 0 &&
  6542. !test_bit(Blocked, &rdev->flags) &&
  6543. (test_bit(Faulty, &rdev->flags) ||
  6544. ! test_bit(In_sync, &rdev->flags)) &&
  6545. atomic_read(&rdev->nr_pending)==0) {
  6546. if (mddev->pers->hot_remove_disk(
  6547. mddev, rdev) == 0) {
  6548. sysfs_unlink_rdev(mddev, rdev);
  6549. rdev->raid_disk = -1;
  6550. removed++;
  6551. }
  6552. }
  6553. if (removed)
  6554. sysfs_notify(&mddev->kobj, NULL,
  6555. "degraded");
  6556. rdev_for_each(rdev, mddev) {
  6557. if (rdev->raid_disk >= 0 &&
  6558. !test_bit(In_sync, &rdev->flags) &&
  6559. !test_bit(Faulty, &rdev->flags))
  6560. spares++;
  6561. if (rdev->raid_disk < 0
  6562. && !test_bit(Faulty, &rdev->flags)) {
  6563. rdev->recovery_offset = 0;
  6564. if (mddev->pers->
  6565. hot_add_disk(mddev, rdev) == 0) {
  6566. if (sysfs_link_rdev(mddev, rdev))
  6567. /* failure here is OK */;
  6568. spares++;
  6569. md_new_event(mddev);
  6570. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6571. }
  6572. }
  6573. }
  6574. return spares;
  6575. }
  6576. static void reap_sync_thread(struct mddev *mddev)
  6577. {
  6578. struct md_rdev *rdev;
  6579. /* resync has finished, collect result */
  6580. md_unregister_thread(&mddev->sync_thread);
  6581. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  6582. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  6583. /* success...*/
  6584. /* activate any spares */
  6585. if (mddev->pers->spare_active(mddev))
  6586. sysfs_notify(&mddev->kobj, NULL,
  6587. "degraded");
  6588. }
  6589. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6590. mddev->pers->finish_reshape)
  6591. mddev->pers->finish_reshape(mddev);
  6592. /* If array is no-longer degraded, then any saved_raid_disk
  6593. * information must be scrapped. Also if any device is now
  6594. * In_sync we must scrape the saved_raid_disk for that device
  6595. * do the superblock for an incrementally recovered device
  6596. * written out.
  6597. */
  6598. rdev_for_each(rdev, mddev)
  6599. if (!mddev->degraded ||
  6600. test_bit(In_sync, &rdev->flags))
  6601. rdev->saved_raid_disk = -1;
  6602. md_update_sb(mddev, 1);
  6603. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6604. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6605. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6606. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6607. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6608. /* flag recovery needed just to double check */
  6609. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6610. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6611. md_new_event(mddev);
  6612. if (mddev->event_work.func)
  6613. queue_work(md_misc_wq, &mddev->event_work);
  6614. }
  6615. /*
  6616. * This routine is regularly called by all per-raid-array threads to
  6617. * deal with generic issues like resync and super-block update.
  6618. * Raid personalities that don't have a thread (linear/raid0) do not
  6619. * need this as they never do any recovery or update the superblock.
  6620. *
  6621. * It does not do any resync itself, but rather "forks" off other threads
  6622. * to do that as needed.
  6623. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  6624. * "->recovery" and create a thread at ->sync_thread.
  6625. * When the thread finishes it sets MD_RECOVERY_DONE
  6626. * and wakeups up this thread which will reap the thread and finish up.
  6627. * This thread also removes any faulty devices (with nr_pending == 0).
  6628. *
  6629. * The overall approach is:
  6630. * 1/ if the superblock needs updating, update it.
  6631. * 2/ If a recovery thread is running, don't do anything else.
  6632. * 3/ If recovery has finished, clean up, possibly marking spares active.
  6633. * 4/ If there are any faulty devices, remove them.
  6634. * 5/ If array is degraded, try to add spares devices
  6635. * 6/ If array has spares or is not in-sync, start a resync thread.
  6636. */
  6637. void md_check_recovery(struct mddev *mddev)
  6638. {
  6639. if (mddev->suspended)
  6640. return;
  6641. if (mddev->bitmap)
  6642. bitmap_daemon_work(mddev);
  6643. if (signal_pending(current)) {
  6644. if (mddev->pers->sync_request && !mddev->external) {
  6645. printk(KERN_INFO "md: %s in immediate safe mode\n",
  6646. mdname(mddev));
  6647. mddev->safemode = 2;
  6648. }
  6649. flush_signals(current);
  6650. }
  6651. if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  6652. return;
  6653. if ( ! (
  6654. (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
  6655. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  6656. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  6657. (mddev->external == 0 && mddev->safemode == 1) ||
  6658. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  6659. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  6660. ))
  6661. return;
  6662. if (mddev_trylock(mddev)) {
  6663. int spares = 0;
  6664. if (mddev->ro) {
  6665. /* Only thing we do on a ro array is remove
  6666. * failed devices.
  6667. */
  6668. struct md_rdev *rdev;
  6669. rdev_for_each(rdev, mddev)
  6670. if (rdev->raid_disk >= 0 &&
  6671. !test_bit(Blocked, &rdev->flags) &&
  6672. test_bit(Faulty, &rdev->flags) &&
  6673. atomic_read(&rdev->nr_pending)==0) {
  6674. if (mddev->pers->hot_remove_disk(
  6675. mddev, rdev) == 0) {
  6676. sysfs_unlink_rdev(mddev, rdev);
  6677. rdev->raid_disk = -1;
  6678. }
  6679. }
  6680. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6681. goto unlock;
  6682. }
  6683. if (!mddev->external) {
  6684. int did_change = 0;
  6685. spin_lock_irq(&mddev->write_lock);
  6686. if (mddev->safemode &&
  6687. !atomic_read(&mddev->writes_pending) &&
  6688. !mddev->in_sync &&
  6689. mddev->recovery_cp == MaxSector) {
  6690. mddev->in_sync = 1;
  6691. did_change = 1;
  6692. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6693. }
  6694. if (mddev->safemode == 1)
  6695. mddev->safemode = 0;
  6696. spin_unlock_irq(&mddev->write_lock);
  6697. if (did_change)
  6698. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6699. }
  6700. if (mddev->flags)
  6701. md_update_sb(mddev, 0);
  6702. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  6703. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  6704. /* resync/recovery still happening */
  6705. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6706. goto unlock;
  6707. }
  6708. if (mddev->sync_thread) {
  6709. reap_sync_thread(mddev);
  6710. goto unlock;
  6711. }
  6712. /* Set RUNNING before clearing NEEDED to avoid
  6713. * any transients in the value of "sync_action".
  6714. */
  6715. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6716. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6717. /* Clear some bits that don't mean anything, but
  6718. * might be left set
  6719. */
  6720. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6721. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6722. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  6723. goto unlock;
  6724. /* no recovery is running.
  6725. * remove any failed drives, then
  6726. * add spares if possible.
  6727. * Spare are also removed and re-added, to allow
  6728. * the personality to fail the re-add.
  6729. */
  6730. if (mddev->reshape_position != MaxSector) {
  6731. if (mddev->pers->check_reshape == NULL ||
  6732. mddev->pers->check_reshape(mddev) != 0)
  6733. /* Cannot proceed */
  6734. goto unlock;
  6735. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6736. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6737. } else if ((spares = remove_and_add_spares(mddev))) {
  6738. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6739. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6740. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6741. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6742. } else if (mddev->recovery_cp < MaxSector) {
  6743. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6744. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6745. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  6746. /* nothing to be done ... */
  6747. goto unlock;
  6748. if (mddev->pers->sync_request) {
  6749. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  6750. /* We are adding a device or devices to an array
  6751. * which has the bitmap stored on all devices.
  6752. * So make sure all bitmap pages get written
  6753. */
  6754. bitmap_write_all(mddev->bitmap);
  6755. }
  6756. mddev->sync_thread = md_register_thread(md_do_sync,
  6757. mddev,
  6758. "resync");
  6759. if (!mddev->sync_thread) {
  6760. printk(KERN_ERR "%s: could not start resync"
  6761. " thread...\n",
  6762. mdname(mddev));
  6763. /* leave the spares where they are, it shouldn't hurt */
  6764. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6765. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6766. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6767. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6768. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6769. } else
  6770. md_wakeup_thread(mddev->sync_thread);
  6771. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6772. md_new_event(mddev);
  6773. }
  6774. unlock:
  6775. if (!mddev->sync_thread) {
  6776. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6777. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  6778. &mddev->recovery))
  6779. if (mddev->sysfs_action)
  6780. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6781. }
  6782. mddev_unlock(mddev);
  6783. }
  6784. }
  6785. void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
  6786. {
  6787. sysfs_notify_dirent_safe(rdev->sysfs_state);
  6788. wait_event_timeout(rdev->blocked_wait,
  6789. !test_bit(Blocked, &rdev->flags) &&
  6790. !test_bit(BlockedBadBlocks, &rdev->flags),
  6791. msecs_to_jiffies(5000));
  6792. rdev_dec_pending(rdev, mddev);
  6793. }
  6794. EXPORT_SYMBOL(md_wait_for_blocked_rdev);
  6795. /* Bad block management.
  6796. * We can record which blocks on each device are 'bad' and so just
  6797. * fail those blocks, or that stripe, rather than the whole device.
  6798. * Entries in the bad-block table are 64bits wide. This comprises:
  6799. * Length of bad-range, in sectors: 0-511 for lengths 1-512
  6800. * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
  6801. * A 'shift' can be set so that larger blocks are tracked and
  6802. * consequently larger devices can be covered.
  6803. * 'Acknowledged' flag - 1 bit. - the most significant bit.
  6804. *
  6805. * Locking of the bad-block table uses a seqlock so md_is_badblock
  6806. * might need to retry if it is very unlucky.
  6807. * We will sometimes want to check for bad blocks in a bi_end_io function,
  6808. * so we use the write_seqlock_irq variant.
  6809. *
  6810. * When looking for a bad block we specify a range and want to
  6811. * know if any block in the range is bad. So we binary-search
  6812. * to the last range that starts at-or-before the given endpoint,
  6813. * (or "before the sector after the target range")
  6814. * then see if it ends after the given start.
  6815. * We return
  6816. * 0 if there are no known bad blocks in the range
  6817. * 1 if there are known bad block which are all acknowledged
  6818. * -1 if there are bad blocks which have not yet been acknowledged in metadata.
  6819. * plus the start/length of the first bad section we overlap.
  6820. */
  6821. int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
  6822. sector_t *first_bad, int *bad_sectors)
  6823. {
  6824. int hi;
  6825. int lo = 0;
  6826. u64 *p = bb->page;
  6827. int rv = 0;
  6828. sector_t target = s + sectors;
  6829. unsigned seq;
  6830. if (bb->shift > 0) {
  6831. /* round the start down, and the end up */
  6832. s >>= bb->shift;
  6833. target += (1<<bb->shift) - 1;
  6834. target >>= bb->shift;
  6835. sectors = target - s;
  6836. }
  6837. /* 'target' is now the first block after the bad range */
  6838. retry:
  6839. seq = read_seqbegin(&bb->lock);
  6840. hi = bb->count;
  6841. /* Binary search between lo and hi for 'target'
  6842. * i.e. for the last range that starts before 'target'
  6843. */
  6844. /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
  6845. * are known not to be the last range before target.
  6846. * VARIANT: hi-lo is the number of possible
  6847. * ranges, and decreases until it reaches 1
  6848. */
  6849. while (hi - lo > 1) {
  6850. int mid = (lo + hi) / 2;
  6851. sector_t a = BB_OFFSET(p[mid]);
  6852. if (a < target)
  6853. /* This could still be the one, earlier ranges
  6854. * could not. */
  6855. lo = mid;
  6856. else
  6857. /* This and later ranges are definitely out. */
  6858. hi = mid;
  6859. }
  6860. /* 'lo' might be the last that started before target, but 'hi' isn't */
  6861. if (hi > lo) {
  6862. /* need to check all range that end after 's' to see if
  6863. * any are unacknowledged.
  6864. */
  6865. while (lo >= 0 &&
  6866. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  6867. if (BB_OFFSET(p[lo]) < target) {
  6868. /* starts before the end, and finishes after
  6869. * the start, so they must overlap
  6870. */
  6871. if (rv != -1 && BB_ACK(p[lo]))
  6872. rv = 1;
  6873. else
  6874. rv = -1;
  6875. *first_bad = BB_OFFSET(p[lo]);
  6876. *bad_sectors = BB_LEN(p[lo]);
  6877. }
  6878. lo--;
  6879. }
  6880. }
  6881. if (read_seqretry(&bb->lock, seq))
  6882. goto retry;
  6883. return rv;
  6884. }
  6885. EXPORT_SYMBOL_GPL(md_is_badblock);
  6886. /*
  6887. * Add a range of bad blocks to the table.
  6888. * This might extend the table, or might contract it
  6889. * if two adjacent ranges can be merged.
  6890. * We binary-search to find the 'insertion' point, then
  6891. * decide how best to handle it.
  6892. */
  6893. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  6894. int acknowledged)
  6895. {
  6896. u64 *p;
  6897. int lo, hi;
  6898. int rv = 1;
  6899. if (bb->shift < 0)
  6900. /* badblocks are disabled */
  6901. return 0;
  6902. if (bb->shift) {
  6903. /* round the start down, and the end up */
  6904. sector_t next = s + sectors;
  6905. s >>= bb->shift;
  6906. next += (1<<bb->shift) - 1;
  6907. next >>= bb->shift;
  6908. sectors = next - s;
  6909. }
  6910. write_seqlock_irq(&bb->lock);
  6911. p = bb->page;
  6912. lo = 0;
  6913. hi = bb->count;
  6914. /* Find the last range that starts at-or-before 's' */
  6915. while (hi - lo > 1) {
  6916. int mid = (lo + hi) / 2;
  6917. sector_t a = BB_OFFSET(p[mid]);
  6918. if (a <= s)
  6919. lo = mid;
  6920. else
  6921. hi = mid;
  6922. }
  6923. if (hi > lo && BB_OFFSET(p[lo]) > s)
  6924. hi = lo;
  6925. if (hi > lo) {
  6926. /* we found a range that might merge with the start
  6927. * of our new range
  6928. */
  6929. sector_t a = BB_OFFSET(p[lo]);
  6930. sector_t e = a + BB_LEN(p[lo]);
  6931. int ack = BB_ACK(p[lo]);
  6932. if (e >= s) {
  6933. /* Yes, we can merge with a previous range */
  6934. if (s == a && s + sectors >= e)
  6935. /* new range covers old */
  6936. ack = acknowledged;
  6937. else
  6938. ack = ack && acknowledged;
  6939. if (e < s + sectors)
  6940. e = s + sectors;
  6941. if (e - a <= BB_MAX_LEN) {
  6942. p[lo] = BB_MAKE(a, e-a, ack);
  6943. s = e;
  6944. } else {
  6945. /* does not all fit in one range,
  6946. * make p[lo] maximal
  6947. */
  6948. if (BB_LEN(p[lo]) != BB_MAX_LEN)
  6949. p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
  6950. s = a + BB_MAX_LEN;
  6951. }
  6952. sectors = e - s;
  6953. }
  6954. }
  6955. if (sectors && hi < bb->count) {
  6956. /* 'hi' points to the first range that starts after 's'.
  6957. * Maybe we can merge with the start of that range */
  6958. sector_t a = BB_OFFSET(p[hi]);
  6959. sector_t e = a + BB_LEN(p[hi]);
  6960. int ack = BB_ACK(p[hi]);
  6961. if (a <= s + sectors) {
  6962. /* merging is possible */
  6963. if (e <= s + sectors) {
  6964. /* full overlap */
  6965. e = s + sectors;
  6966. ack = acknowledged;
  6967. } else
  6968. ack = ack && acknowledged;
  6969. a = s;
  6970. if (e - a <= BB_MAX_LEN) {
  6971. p[hi] = BB_MAKE(a, e-a, ack);
  6972. s = e;
  6973. } else {
  6974. p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
  6975. s = a + BB_MAX_LEN;
  6976. }
  6977. sectors = e - s;
  6978. lo = hi;
  6979. hi++;
  6980. }
  6981. }
  6982. if (sectors == 0 && hi < bb->count) {
  6983. /* we might be able to combine lo and hi */
  6984. /* Note: 's' is at the end of 'lo' */
  6985. sector_t a = BB_OFFSET(p[hi]);
  6986. int lolen = BB_LEN(p[lo]);
  6987. int hilen = BB_LEN(p[hi]);
  6988. int newlen = lolen + hilen - (s - a);
  6989. if (s >= a && newlen < BB_MAX_LEN) {
  6990. /* yes, we can combine them */
  6991. int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
  6992. p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
  6993. memmove(p + hi, p + hi + 1,
  6994. (bb->count - hi - 1) * 8);
  6995. bb->count--;
  6996. }
  6997. }
  6998. while (sectors) {
  6999. /* didn't merge (it all).
  7000. * Need to add a range just before 'hi' */
  7001. if (bb->count >= MD_MAX_BADBLOCKS) {
  7002. /* No room for more */
  7003. rv = 0;
  7004. break;
  7005. } else {
  7006. int this_sectors = sectors;
  7007. memmove(p + hi + 1, p + hi,
  7008. (bb->count - hi) * 8);
  7009. bb->count++;
  7010. if (this_sectors > BB_MAX_LEN)
  7011. this_sectors = BB_MAX_LEN;
  7012. p[hi] = BB_MAKE(s, this_sectors, acknowledged);
  7013. sectors -= this_sectors;
  7014. s += this_sectors;
  7015. }
  7016. }
  7017. bb->changed = 1;
  7018. if (!acknowledged)
  7019. bb->unacked_exist = 1;
  7020. write_sequnlock_irq(&bb->lock);
  7021. return rv;
  7022. }
  7023. int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7024. int acknowledged)
  7025. {
  7026. int rv = md_set_badblocks(&rdev->badblocks,
  7027. s + rdev->data_offset, sectors, acknowledged);
  7028. if (rv) {
  7029. /* Make sure they get written out promptly */
  7030. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7031. set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
  7032. md_wakeup_thread(rdev->mddev->thread);
  7033. }
  7034. return rv;
  7035. }
  7036. EXPORT_SYMBOL_GPL(rdev_set_badblocks);
  7037. /*
  7038. * Remove a range of bad blocks from the table.
  7039. * This may involve extending the table if we spilt a region,
  7040. * but it must not fail. So if the table becomes full, we just
  7041. * drop the remove request.
  7042. */
  7043. static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
  7044. {
  7045. u64 *p;
  7046. int lo, hi;
  7047. sector_t target = s + sectors;
  7048. int rv = 0;
  7049. if (bb->shift > 0) {
  7050. /* When clearing we round the start up and the end down.
  7051. * This should not matter as the shift should align with
  7052. * the block size and no rounding should ever be needed.
  7053. * However it is better the think a block is bad when it
  7054. * isn't than to think a block is not bad when it is.
  7055. */
  7056. s += (1<<bb->shift) - 1;
  7057. s >>= bb->shift;
  7058. target >>= bb->shift;
  7059. sectors = target - s;
  7060. }
  7061. write_seqlock_irq(&bb->lock);
  7062. p = bb->page;
  7063. lo = 0;
  7064. hi = bb->count;
  7065. /* Find the last range that starts before 'target' */
  7066. while (hi - lo > 1) {
  7067. int mid = (lo + hi) / 2;
  7068. sector_t a = BB_OFFSET(p[mid]);
  7069. if (a < target)
  7070. lo = mid;
  7071. else
  7072. hi = mid;
  7073. }
  7074. if (hi > lo) {
  7075. /* p[lo] is the last range that could overlap the
  7076. * current range. Earlier ranges could also overlap,
  7077. * but only this one can overlap the end of the range.
  7078. */
  7079. if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
  7080. /* Partial overlap, leave the tail of this range */
  7081. int ack = BB_ACK(p[lo]);
  7082. sector_t a = BB_OFFSET(p[lo]);
  7083. sector_t end = a + BB_LEN(p[lo]);
  7084. if (a < s) {
  7085. /* we need to split this range */
  7086. if (bb->count >= MD_MAX_BADBLOCKS) {
  7087. rv = 0;
  7088. goto out;
  7089. }
  7090. memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
  7091. bb->count++;
  7092. p[lo] = BB_MAKE(a, s-a, ack);
  7093. lo++;
  7094. }
  7095. p[lo] = BB_MAKE(target, end - target, ack);
  7096. /* there is no longer an overlap */
  7097. hi = lo;
  7098. lo--;
  7099. }
  7100. while (lo >= 0 &&
  7101. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7102. /* This range does overlap */
  7103. if (BB_OFFSET(p[lo]) < s) {
  7104. /* Keep the early parts of this range. */
  7105. int ack = BB_ACK(p[lo]);
  7106. sector_t start = BB_OFFSET(p[lo]);
  7107. p[lo] = BB_MAKE(start, s - start, ack);
  7108. /* now low doesn't overlap, so.. */
  7109. break;
  7110. }
  7111. lo--;
  7112. }
  7113. /* 'lo' is strictly before, 'hi' is strictly after,
  7114. * anything between needs to be discarded
  7115. */
  7116. if (hi - lo > 1) {
  7117. memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
  7118. bb->count -= (hi - lo - 1);
  7119. }
  7120. }
  7121. bb->changed = 1;
  7122. out:
  7123. write_sequnlock_irq(&bb->lock);
  7124. return rv;
  7125. }
  7126. int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors)
  7127. {
  7128. return md_clear_badblocks(&rdev->badblocks,
  7129. s + rdev->data_offset,
  7130. sectors);
  7131. }
  7132. EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
  7133. /*
  7134. * Acknowledge all bad blocks in a list.
  7135. * This only succeeds if ->changed is clear. It is used by
  7136. * in-kernel metadata updates
  7137. */
  7138. void md_ack_all_badblocks(struct badblocks *bb)
  7139. {
  7140. if (bb->page == NULL || bb->changed)
  7141. /* no point even trying */
  7142. return;
  7143. write_seqlock_irq(&bb->lock);
  7144. if (bb->changed == 0) {
  7145. u64 *p = bb->page;
  7146. int i;
  7147. for (i = 0; i < bb->count ; i++) {
  7148. if (!BB_ACK(p[i])) {
  7149. sector_t start = BB_OFFSET(p[i]);
  7150. int len = BB_LEN(p[i]);
  7151. p[i] = BB_MAKE(start, len, 1);
  7152. }
  7153. }
  7154. bb->unacked_exist = 0;
  7155. }
  7156. write_sequnlock_irq(&bb->lock);
  7157. }
  7158. EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
  7159. /* sysfs access to bad-blocks list.
  7160. * We present two files.
  7161. * 'bad-blocks' lists sector numbers and lengths of ranges that
  7162. * are recorded as bad. The list is truncated to fit within
  7163. * the one-page limit of sysfs.
  7164. * Writing "sector length" to this file adds an acknowledged
  7165. * bad block list.
  7166. * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
  7167. * been acknowledged. Writing to this file adds bad blocks
  7168. * without acknowledging them. This is largely for testing.
  7169. */
  7170. static ssize_t
  7171. badblocks_show(struct badblocks *bb, char *page, int unack)
  7172. {
  7173. size_t len;
  7174. int i;
  7175. u64 *p = bb->page;
  7176. unsigned seq;
  7177. if (bb->shift < 0)
  7178. return 0;
  7179. retry:
  7180. seq = read_seqbegin(&bb->lock);
  7181. len = 0;
  7182. i = 0;
  7183. while (len < PAGE_SIZE && i < bb->count) {
  7184. sector_t s = BB_OFFSET(p[i]);
  7185. unsigned int length = BB_LEN(p[i]);
  7186. int ack = BB_ACK(p[i]);
  7187. i++;
  7188. if (unack && ack)
  7189. continue;
  7190. len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
  7191. (unsigned long long)s << bb->shift,
  7192. length << bb->shift);
  7193. }
  7194. if (unack && len == 0)
  7195. bb->unacked_exist = 0;
  7196. if (read_seqretry(&bb->lock, seq))
  7197. goto retry;
  7198. return len;
  7199. }
  7200. #define DO_DEBUG 1
  7201. static ssize_t
  7202. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
  7203. {
  7204. unsigned long long sector;
  7205. int length;
  7206. char newline;
  7207. #ifdef DO_DEBUG
  7208. /* Allow clearing via sysfs *only* for testing/debugging.
  7209. * Normally only a successful write may clear a badblock
  7210. */
  7211. int clear = 0;
  7212. if (page[0] == '-') {
  7213. clear = 1;
  7214. page++;
  7215. }
  7216. #endif /* DO_DEBUG */
  7217. switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
  7218. case 3:
  7219. if (newline != '\n')
  7220. return -EINVAL;
  7221. case 2:
  7222. if (length <= 0)
  7223. return -EINVAL;
  7224. break;
  7225. default:
  7226. return -EINVAL;
  7227. }
  7228. #ifdef DO_DEBUG
  7229. if (clear) {
  7230. md_clear_badblocks(bb, sector, length);
  7231. return len;
  7232. }
  7233. #endif /* DO_DEBUG */
  7234. if (md_set_badblocks(bb, sector, length, !unack))
  7235. return len;
  7236. else
  7237. return -ENOSPC;
  7238. }
  7239. static int md_notify_reboot(struct notifier_block *this,
  7240. unsigned long code, void *x)
  7241. {
  7242. struct list_head *tmp;
  7243. struct mddev *mddev;
  7244. int need_delay = 0;
  7245. for_each_mddev(mddev, tmp) {
  7246. if (mddev_trylock(mddev)) {
  7247. __md_stop_writes(mddev);
  7248. mddev->safemode = 2;
  7249. mddev_unlock(mddev);
  7250. }
  7251. need_delay = 1;
  7252. }
  7253. /*
  7254. * certain more exotic SCSI devices are known to be
  7255. * volatile wrt too early system reboots. While the
  7256. * right place to handle this issue is the given
  7257. * driver, we do want to have a safe RAID driver ...
  7258. */
  7259. if (need_delay)
  7260. mdelay(1000*1);
  7261. return NOTIFY_DONE;
  7262. }
  7263. static struct notifier_block md_notifier = {
  7264. .notifier_call = md_notify_reboot,
  7265. .next = NULL,
  7266. .priority = INT_MAX, /* before any real devices */
  7267. };
  7268. static void md_geninit(void)
  7269. {
  7270. pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  7271. proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
  7272. }
  7273. static int __init md_init(void)
  7274. {
  7275. int ret = -ENOMEM;
  7276. md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
  7277. if (!md_wq)
  7278. goto err_wq;
  7279. md_misc_wq = alloc_workqueue("md_misc", 0, 0);
  7280. if (!md_misc_wq)
  7281. goto err_misc_wq;
  7282. if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
  7283. goto err_md;
  7284. if ((ret = register_blkdev(0, "mdp")) < 0)
  7285. goto err_mdp;
  7286. mdp_major = ret;
  7287. blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
  7288. md_probe, NULL, NULL);
  7289. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  7290. md_probe, NULL, NULL);
  7291. register_reboot_notifier(&md_notifier);
  7292. raid_table_header = register_sysctl_table(raid_root_table);
  7293. md_geninit();
  7294. return 0;
  7295. err_mdp:
  7296. unregister_blkdev(MD_MAJOR, "md");
  7297. err_md:
  7298. destroy_workqueue(md_misc_wq);
  7299. err_misc_wq:
  7300. destroy_workqueue(md_wq);
  7301. err_wq:
  7302. return ret;
  7303. }
  7304. #ifndef MODULE
  7305. /*
  7306. * Searches all registered partitions for autorun RAID arrays
  7307. * at boot time.
  7308. */
  7309. static LIST_HEAD(all_detected_devices);
  7310. struct detected_devices_node {
  7311. struct list_head list;
  7312. dev_t dev;
  7313. };
  7314. void md_autodetect_dev(dev_t dev)
  7315. {
  7316. struct detected_devices_node *node_detected_dev;
  7317. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  7318. if (node_detected_dev) {
  7319. node_detected_dev->dev = dev;
  7320. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  7321. } else {
  7322. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  7323. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  7324. }
  7325. }
  7326. static void autostart_arrays(int part)
  7327. {
  7328. struct md_rdev *rdev;
  7329. struct detected_devices_node *node_detected_dev;
  7330. dev_t dev;
  7331. int i_scanned, i_passed;
  7332. i_scanned = 0;
  7333. i_passed = 0;
  7334. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  7335. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  7336. i_scanned++;
  7337. node_detected_dev = list_entry(all_detected_devices.next,
  7338. struct detected_devices_node, list);
  7339. list_del(&node_detected_dev->list);
  7340. dev = node_detected_dev->dev;
  7341. kfree(node_detected_dev);
  7342. rdev = md_import_device(dev,0, 90);
  7343. if (IS_ERR(rdev))
  7344. continue;
  7345. if (test_bit(Faulty, &rdev->flags)) {
  7346. MD_BUG();
  7347. continue;
  7348. }
  7349. set_bit(AutoDetected, &rdev->flags);
  7350. list_add(&rdev->same_set, &pending_raid_disks);
  7351. i_passed++;
  7352. }
  7353. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  7354. i_scanned, i_passed);
  7355. autorun_devices(part);
  7356. }
  7357. #endif /* !MODULE */
  7358. static __exit void md_exit(void)
  7359. {
  7360. struct mddev *mddev;
  7361. struct list_head *tmp;
  7362. blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
  7363. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  7364. unregister_blkdev(MD_MAJOR,"md");
  7365. unregister_blkdev(mdp_major, "mdp");
  7366. unregister_reboot_notifier(&md_notifier);
  7367. unregister_sysctl_table(raid_table_header);
  7368. remove_proc_entry("mdstat", NULL);
  7369. for_each_mddev(mddev, tmp) {
  7370. export_array(mddev);
  7371. mddev->hold_active = 0;
  7372. }
  7373. destroy_workqueue(md_misc_wq);
  7374. destroy_workqueue(md_wq);
  7375. }
  7376. subsys_initcall(md_init);
  7377. module_exit(md_exit)
  7378. static int get_ro(char *buffer, struct kernel_param *kp)
  7379. {
  7380. return sprintf(buffer, "%d", start_readonly);
  7381. }
  7382. static int set_ro(const char *val, struct kernel_param *kp)
  7383. {
  7384. char *e;
  7385. int num = simple_strtoul(val, &e, 10);
  7386. if (*val && (*e == '\0' || *e == '\n')) {
  7387. start_readonly = num;
  7388. return 0;
  7389. }
  7390. return -EINVAL;
  7391. }
  7392. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  7393. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  7394. module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
  7395. EXPORT_SYMBOL(register_md_personality);
  7396. EXPORT_SYMBOL(unregister_md_personality);
  7397. EXPORT_SYMBOL(md_error);
  7398. EXPORT_SYMBOL(md_done_sync);
  7399. EXPORT_SYMBOL(md_write_start);
  7400. EXPORT_SYMBOL(md_write_end);
  7401. EXPORT_SYMBOL(md_register_thread);
  7402. EXPORT_SYMBOL(md_unregister_thread);
  7403. EXPORT_SYMBOL(md_wakeup_thread);
  7404. EXPORT_SYMBOL(md_check_recovery);
  7405. MODULE_LICENSE("GPL");
  7406. MODULE_DESCRIPTION("MD RAID framework");
  7407. MODULE_ALIAS("md");
  7408. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);