vmx.c 90 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "vmx.h"
  19. #include "mmu.h"
  20. #include <linux/kvm_host.h>
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/mm.h>
  24. #include <linux/highmem.h>
  25. #include <linux/sched.h>
  26. #include <linux/moduleparam.h>
  27. #include "kvm_cache_regs.h"
  28. #include "x86.h"
  29. #include <asm/io.h>
  30. #include <asm/desc.h>
  31. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  32. MODULE_AUTHOR("Qumranet");
  33. MODULE_LICENSE("GPL");
  34. static int bypass_guest_pf = 1;
  35. module_param(bypass_guest_pf, bool, 0);
  36. static int enable_vpid = 1;
  37. module_param(enable_vpid, bool, 0);
  38. static int flexpriority_enabled = 1;
  39. module_param(flexpriority_enabled, bool, 0);
  40. static int enable_ept = 1;
  41. module_param(enable_ept, bool, 0);
  42. static int emulate_invalid_guest_state = 0;
  43. module_param(emulate_invalid_guest_state, bool, 0);
  44. struct vmcs {
  45. u32 revision_id;
  46. u32 abort;
  47. char data[0];
  48. };
  49. struct vcpu_vmx {
  50. struct kvm_vcpu vcpu;
  51. struct list_head local_vcpus_link;
  52. unsigned long host_rsp;
  53. int launched;
  54. u8 fail;
  55. u32 idt_vectoring_info;
  56. struct kvm_msr_entry *guest_msrs;
  57. struct kvm_msr_entry *host_msrs;
  58. int nmsrs;
  59. int save_nmsrs;
  60. int msr_offset_efer;
  61. #ifdef CONFIG_X86_64
  62. int msr_offset_kernel_gs_base;
  63. #endif
  64. struct vmcs *vmcs;
  65. struct {
  66. int loaded;
  67. u16 fs_sel, gs_sel, ldt_sel;
  68. int gs_ldt_reload_needed;
  69. int fs_reload_needed;
  70. int guest_efer_loaded;
  71. } host_state;
  72. struct {
  73. struct {
  74. bool pending;
  75. u8 vector;
  76. unsigned rip;
  77. } irq;
  78. } rmode;
  79. int vpid;
  80. bool emulation_required;
  81. };
  82. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  83. {
  84. return container_of(vcpu, struct vcpu_vmx, vcpu);
  85. }
  86. static int init_rmode(struct kvm *kvm);
  87. static u64 construct_eptp(unsigned long root_hpa);
  88. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  89. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  90. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  91. static struct page *vmx_io_bitmap_a;
  92. static struct page *vmx_io_bitmap_b;
  93. static struct page *vmx_msr_bitmap;
  94. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  95. static DEFINE_SPINLOCK(vmx_vpid_lock);
  96. static struct vmcs_config {
  97. int size;
  98. int order;
  99. u32 revision_id;
  100. u32 pin_based_exec_ctrl;
  101. u32 cpu_based_exec_ctrl;
  102. u32 cpu_based_2nd_exec_ctrl;
  103. u32 vmexit_ctrl;
  104. u32 vmentry_ctrl;
  105. } vmcs_config;
  106. struct vmx_capability {
  107. u32 ept;
  108. u32 vpid;
  109. } vmx_capability;
  110. #define VMX_SEGMENT_FIELD(seg) \
  111. [VCPU_SREG_##seg] = { \
  112. .selector = GUEST_##seg##_SELECTOR, \
  113. .base = GUEST_##seg##_BASE, \
  114. .limit = GUEST_##seg##_LIMIT, \
  115. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  116. }
  117. static struct kvm_vmx_segment_field {
  118. unsigned selector;
  119. unsigned base;
  120. unsigned limit;
  121. unsigned ar_bytes;
  122. } kvm_vmx_segment_fields[] = {
  123. VMX_SEGMENT_FIELD(CS),
  124. VMX_SEGMENT_FIELD(DS),
  125. VMX_SEGMENT_FIELD(ES),
  126. VMX_SEGMENT_FIELD(FS),
  127. VMX_SEGMENT_FIELD(GS),
  128. VMX_SEGMENT_FIELD(SS),
  129. VMX_SEGMENT_FIELD(TR),
  130. VMX_SEGMENT_FIELD(LDTR),
  131. };
  132. /*
  133. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  134. * away by decrementing the array size.
  135. */
  136. static const u32 vmx_msr_index[] = {
  137. #ifdef CONFIG_X86_64
  138. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  139. #endif
  140. MSR_EFER, MSR_K6_STAR,
  141. };
  142. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  143. static void load_msrs(struct kvm_msr_entry *e, int n)
  144. {
  145. int i;
  146. for (i = 0; i < n; ++i)
  147. wrmsrl(e[i].index, e[i].data);
  148. }
  149. static void save_msrs(struct kvm_msr_entry *e, int n)
  150. {
  151. int i;
  152. for (i = 0; i < n; ++i)
  153. rdmsrl(e[i].index, e[i].data);
  154. }
  155. static inline int is_page_fault(u32 intr_info)
  156. {
  157. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  158. INTR_INFO_VALID_MASK)) ==
  159. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  160. }
  161. static inline int is_no_device(u32 intr_info)
  162. {
  163. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  164. INTR_INFO_VALID_MASK)) ==
  165. (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  166. }
  167. static inline int is_invalid_opcode(u32 intr_info)
  168. {
  169. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  170. INTR_INFO_VALID_MASK)) ==
  171. (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  172. }
  173. static inline int is_external_interrupt(u32 intr_info)
  174. {
  175. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  176. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  177. }
  178. static inline int cpu_has_vmx_msr_bitmap(void)
  179. {
  180. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS);
  181. }
  182. static inline int cpu_has_vmx_tpr_shadow(void)
  183. {
  184. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
  185. }
  186. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  187. {
  188. return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
  189. }
  190. static inline int cpu_has_secondary_exec_ctrls(void)
  191. {
  192. return (vmcs_config.cpu_based_exec_ctrl &
  193. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
  194. }
  195. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  196. {
  197. return flexpriority_enabled
  198. && (vmcs_config.cpu_based_2nd_exec_ctrl &
  199. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  200. }
  201. static inline int cpu_has_vmx_invept_individual_addr(void)
  202. {
  203. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT));
  204. }
  205. static inline int cpu_has_vmx_invept_context(void)
  206. {
  207. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT));
  208. }
  209. static inline int cpu_has_vmx_invept_global(void)
  210. {
  211. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT));
  212. }
  213. static inline int cpu_has_vmx_ept(void)
  214. {
  215. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  216. SECONDARY_EXEC_ENABLE_EPT);
  217. }
  218. static inline int vm_need_ept(void)
  219. {
  220. return (cpu_has_vmx_ept() && enable_ept);
  221. }
  222. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  223. {
  224. return ((cpu_has_vmx_virtualize_apic_accesses()) &&
  225. (irqchip_in_kernel(kvm)));
  226. }
  227. static inline int cpu_has_vmx_vpid(void)
  228. {
  229. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  230. SECONDARY_EXEC_ENABLE_VPID);
  231. }
  232. static inline int cpu_has_virtual_nmis(void)
  233. {
  234. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  235. }
  236. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  237. {
  238. int i;
  239. for (i = 0; i < vmx->nmsrs; ++i)
  240. if (vmx->guest_msrs[i].index == msr)
  241. return i;
  242. return -1;
  243. }
  244. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  245. {
  246. struct {
  247. u64 vpid : 16;
  248. u64 rsvd : 48;
  249. u64 gva;
  250. } operand = { vpid, 0, gva };
  251. asm volatile (__ex(ASM_VMX_INVVPID)
  252. /* CF==1 or ZF==1 --> rc = -1 */
  253. "; ja 1f ; ud2 ; 1:"
  254. : : "a"(&operand), "c"(ext) : "cc", "memory");
  255. }
  256. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  257. {
  258. struct {
  259. u64 eptp, gpa;
  260. } operand = {eptp, gpa};
  261. asm volatile (__ex(ASM_VMX_INVEPT)
  262. /* CF==1 or ZF==1 --> rc = -1 */
  263. "; ja 1f ; ud2 ; 1:\n"
  264. : : "a" (&operand), "c" (ext) : "cc", "memory");
  265. }
  266. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  267. {
  268. int i;
  269. i = __find_msr_index(vmx, msr);
  270. if (i >= 0)
  271. return &vmx->guest_msrs[i];
  272. return NULL;
  273. }
  274. static void vmcs_clear(struct vmcs *vmcs)
  275. {
  276. u64 phys_addr = __pa(vmcs);
  277. u8 error;
  278. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  279. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  280. : "cc", "memory");
  281. if (error)
  282. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  283. vmcs, phys_addr);
  284. }
  285. static void __vcpu_clear(void *arg)
  286. {
  287. struct vcpu_vmx *vmx = arg;
  288. int cpu = raw_smp_processor_id();
  289. if (vmx->vcpu.cpu == cpu)
  290. vmcs_clear(vmx->vmcs);
  291. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  292. per_cpu(current_vmcs, cpu) = NULL;
  293. rdtscll(vmx->vcpu.arch.host_tsc);
  294. list_del(&vmx->local_vcpus_link);
  295. vmx->vcpu.cpu = -1;
  296. vmx->launched = 0;
  297. }
  298. static void vcpu_clear(struct vcpu_vmx *vmx)
  299. {
  300. if (vmx->vcpu.cpu == -1)
  301. return;
  302. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  303. }
  304. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  305. {
  306. if (vmx->vpid == 0)
  307. return;
  308. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  309. }
  310. static inline void ept_sync_global(void)
  311. {
  312. if (cpu_has_vmx_invept_global())
  313. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  314. }
  315. static inline void ept_sync_context(u64 eptp)
  316. {
  317. if (vm_need_ept()) {
  318. if (cpu_has_vmx_invept_context())
  319. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  320. else
  321. ept_sync_global();
  322. }
  323. }
  324. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  325. {
  326. if (vm_need_ept()) {
  327. if (cpu_has_vmx_invept_individual_addr())
  328. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  329. eptp, gpa);
  330. else
  331. ept_sync_context(eptp);
  332. }
  333. }
  334. static unsigned long vmcs_readl(unsigned long field)
  335. {
  336. unsigned long value;
  337. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  338. : "=a"(value) : "d"(field) : "cc");
  339. return value;
  340. }
  341. static u16 vmcs_read16(unsigned long field)
  342. {
  343. return vmcs_readl(field);
  344. }
  345. static u32 vmcs_read32(unsigned long field)
  346. {
  347. return vmcs_readl(field);
  348. }
  349. static u64 vmcs_read64(unsigned long field)
  350. {
  351. #ifdef CONFIG_X86_64
  352. return vmcs_readl(field);
  353. #else
  354. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  355. #endif
  356. }
  357. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  358. {
  359. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  360. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  361. dump_stack();
  362. }
  363. static void vmcs_writel(unsigned long field, unsigned long value)
  364. {
  365. u8 error;
  366. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  367. : "=q"(error) : "a"(value), "d"(field) : "cc");
  368. if (unlikely(error))
  369. vmwrite_error(field, value);
  370. }
  371. static void vmcs_write16(unsigned long field, u16 value)
  372. {
  373. vmcs_writel(field, value);
  374. }
  375. static void vmcs_write32(unsigned long field, u32 value)
  376. {
  377. vmcs_writel(field, value);
  378. }
  379. static void vmcs_write64(unsigned long field, u64 value)
  380. {
  381. vmcs_writel(field, value);
  382. #ifndef CONFIG_X86_64
  383. asm volatile ("");
  384. vmcs_writel(field+1, value >> 32);
  385. #endif
  386. }
  387. static void vmcs_clear_bits(unsigned long field, u32 mask)
  388. {
  389. vmcs_writel(field, vmcs_readl(field) & ~mask);
  390. }
  391. static void vmcs_set_bits(unsigned long field, u32 mask)
  392. {
  393. vmcs_writel(field, vmcs_readl(field) | mask);
  394. }
  395. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  396. {
  397. u32 eb;
  398. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
  399. if (!vcpu->fpu_active)
  400. eb |= 1u << NM_VECTOR;
  401. if (vcpu->guest_debug.enabled)
  402. eb |= 1u << DB_VECTOR;
  403. if (vcpu->arch.rmode.active)
  404. eb = ~0;
  405. if (vm_need_ept())
  406. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  407. vmcs_write32(EXCEPTION_BITMAP, eb);
  408. }
  409. static void reload_tss(void)
  410. {
  411. /*
  412. * VT restores TR but not its size. Useless.
  413. */
  414. struct descriptor_table gdt;
  415. struct desc_struct *descs;
  416. kvm_get_gdt(&gdt);
  417. descs = (void *)gdt.base;
  418. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  419. load_TR_desc();
  420. }
  421. static void load_transition_efer(struct vcpu_vmx *vmx)
  422. {
  423. int efer_offset = vmx->msr_offset_efer;
  424. u64 host_efer = vmx->host_msrs[efer_offset].data;
  425. u64 guest_efer = vmx->guest_msrs[efer_offset].data;
  426. u64 ignore_bits;
  427. if (efer_offset < 0)
  428. return;
  429. /*
  430. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  431. * outside long mode
  432. */
  433. ignore_bits = EFER_NX | EFER_SCE;
  434. #ifdef CONFIG_X86_64
  435. ignore_bits |= EFER_LMA | EFER_LME;
  436. /* SCE is meaningful only in long mode on Intel */
  437. if (guest_efer & EFER_LMA)
  438. ignore_bits &= ~(u64)EFER_SCE;
  439. #endif
  440. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  441. return;
  442. vmx->host_state.guest_efer_loaded = 1;
  443. guest_efer &= ~ignore_bits;
  444. guest_efer |= host_efer & ignore_bits;
  445. wrmsrl(MSR_EFER, guest_efer);
  446. vmx->vcpu.stat.efer_reload++;
  447. }
  448. static void reload_host_efer(struct vcpu_vmx *vmx)
  449. {
  450. if (vmx->host_state.guest_efer_loaded) {
  451. vmx->host_state.guest_efer_loaded = 0;
  452. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  453. }
  454. }
  455. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  456. {
  457. struct vcpu_vmx *vmx = to_vmx(vcpu);
  458. if (vmx->host_state.loaded)
  459. return;
  460. vmx->host_state.loaded = 1;
  461. /*
  462. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  463. * allow segment selectors with cpl > 0 or ti == 1.
  464. */
  465. vmx->host_state.ldt_sel = kvm_read_ldt();
  466. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  467. vmx->host_state.fs_sel = kvm_read_fs();
  468. if (!(vmx->host_state.fs_sel & 7)) {
  469. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  470. vmx->host_state.fs_reload_needed = 0;
  471. } else {
  472. vmcs_write16(HOST_FS_SELECTOR, 0);
  473. vmx->host_state.fs_reload_needed = 1;
  474. }
  475. vmx->host_state.gs_sel = kvm_read_gs();
  476. if (!(vmx->host_state.gs_sel & 7))
  477. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  478. else {
  479. vmcs_write16(HOST_GS_SELECTOR, 0);
  480. vmx->host_state.gs_ldt_reload_needed = 1;
  481. }
  482. #ifdef CONFIG_X86_64
  483. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  484. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  485. #else
  486. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  487. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  488. #endif
  489. #ifdef CONFIG_X86_64
  490. if (is_long_mode(&vmx->vcpu))
  491. save_msrs(vmx->host_msrs +
  492. vmx->msr_offset_kernel_gs_base, 1);
  493. #endif
  494. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  495. load_transition_efer(vmx);
  496. }
  497. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  498. {
  499. unsigned long flags;
  500. if (!vmx->host_state.loaded)
  501. return;
  502. ++vmx->vcpu.stat.host_state_reload;
  503. vmx->host_state.loaded = 0;
  504. if (vmx->host_state.fs_reload_needed)
  505. kvm_load_fs(vmx->host_state.fs_sel);
  506. if (vmx->host_state.gs_ldt_reload_needed) {
  507. kvm_load_ldt(vmx->host_state.ldt_sel);
  508. /*
  509. * If we have to reload gs, we must take care to
  510. * preserve our gs base.
  511. */
  512. local_irq_save(flags);
  513. kvm_load_gs(vmx->host_state.gs_sel);
  514. #ifdef CONFIG_X86_64
  515. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  516. #endif
  517. local_irq_restore(flags);
  518. }
  519. reload_tss();
  520. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  521. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  522. reload_host_efer(vmx);
  523. }
  524. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  525. {
  526. preempt_disable();
  527. __vmx_load_host_state(vmx);
  528. preempt_enable();
  529. }
  530. /*
  531. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  532. * vcpu mutex is already taken.
  533. */
  534. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  535. {
  536. struct vcpu_vmx *vmx = to_vmx(vcpu);
  537. u64 phys_addr = __pa(vmx->vmcs);
  538. u64 tsc_this, delta, new_offset;
  539. if (vcpu->cpu != cpu) {
  540. vcpu_clear(vmx);
  541. kvm_migrate_timers(vcpu);
  542. vpid_sync_vcpu_all(vmx);
  543. local_irq_disable();
  544. list_add(&vmx->local_vcpus_link,
  545. &per_cpu(vcpus_on_cpu, cpu));
  546. local_irq_enable();
  547. }
  548. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  549. u8 error;
  550. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  551. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  552. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  553. : "cc");
  554. if (error)
  555. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  556. vmx->vmcs, phys_addr);
  557. }
  558. if (vcpu->cpu != cpu) {
  559. struct descriptor_table dt;
  560. unsigned long sysenter_esp;
  561. vcpu->cpu = cpu;
  562. /*
  563. * Linux uses per-cpu TSS and GDT, so set these when switching
  564. * processors.
  565. */
  566. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  567. kvm_get_gdt(&dt);
  568. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  569. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  570. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  571. /*
  572. * Make sure the time stamp counter is monotonous.
  573. */
  574. rdtscll(tsc_this);
  575. if (tsc_this < vcpu->arch.host_tsc) {
  576. delta = vcpu->arch.host_tsc - tsc_this;
  577. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  578. vmcs_write64(TSC_OFFSET, new_offset);
  579. }
  580. }
  581. }
  582. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  583. {
  584. __vmx_load_host_state(to_vmx(vcpu));
  585. }
  586. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  587. {
  588. if (vcpu->fpu_active)
  589. return;
  590. vcpu->fpu_active = 1;
  591. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  592. if (vcpu->arch.cr0 & X86_CR0_TS)
  593. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  594. update_exception_bitmap(vcpu);
  595. }
  596. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  597. {
  598. if (!vcpu->fpu_active)
  599. return;
  600. vcpu->fpu_active = 0;
  601. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  602. update_exception_bitmap(vcpu);
  603. }
  604. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  605. {
  606. return vmcs_readl(GUEST_RFLAGS);
  607. }
  608. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  609. {
  610. if (vcpu->arch.rmode.active)
  611. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  612. vmcs_writel(GUEST_RFLAGS, rflags);
  613. }
  614. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  615. {
  616. unsigned long rip;
  617. u32 interruptibility;
  618. rip = kvm_rip_read(vcpu);
  619. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  620. kvm_rip_write(vcpu, rip);
  621. /*
  622. * We emulated an instruction, so temporary interrupt blocking
  623. * should be removed, if set.
  624. */
  625. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  626. if (interruptibility & 3)
  627. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  628. interruptibility & ~3);
  629. vcpu->arch.interrupt_window_open = 1;
  630. }
  631. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  632. bool has_error_code, u32 error_code)
  633. {
  634. struct vcpu_vmx *vmx = to_vmx(vcpu);
  635. if (has_error_code)
  636. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  637. if (vcpu->arch.rmode.active) {
  638. vmx->rmode.irq.pending = true;
  639. vmx->rmode.irq.vector = nr;
  640. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  641. if (nr == BP_VECTOR)
  642. vmx->rmode.irq.rip++;
  643. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  644. nr | INTR_TYPE_SOFT_INTR
  645. | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
  646. | INTR_INFO_VALID_MASK);
  647. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  648. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  649. return;
  650. }
  651. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  652. nr | INTR_TYPE_EXCEPTION
  653. | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
  654. | INTR_INFO_VALID_MASK);
  655. }
  656. static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
  657. {
  658. return false;
  659. }
  660. /*
  661. * Swap MSR entry in host/guest MSR entry array.
  662. */
  663. #ifdef CONFIG_X86_64
  664. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  665. {
  666. struct kvm_msr_entry tmp;
  667. tmp = vmx->guest_msrs[to];
  668. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  669. vmx->guest_msrs[from] = tmp;
  670. tmp = vmx->host_msrs[to];
  671. vmx->host_msrs[to] = vmx->host_msrs[from];
  672. vmx->host_msrs[from] = tmp;
  673. }
  674. #endif
  675. /*
  676. * Set up the vmcs to automatically save and restore system
  677. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  678. * mode, as fiddling with msrs is very expensive.
  679. */
  680. static void setup_msrs(struct vcpu_vmx *vmx)
  681. {
  682. int save_nmsrs;
  683. vmx_load_host_state(vmx);
  684. save_nmsrs = 0;
  685. #ifdef CONFIG_X86_64
  686. if (is_long_mode(&vmx->vcpu)) {
  687. int index;
  688. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  689. if (index >= 0)
  690. move_msr_up(vmx, index, save_nmsrs++);
  691. index = __find_msr_index(vmx, MSR_LSTAR);
  692. if (index >= 0)
  693. move_msr_up(vmx, index, save_nmsrs++);
  694. index = __find_msr_index(vmx, MSR_CSTAR);
  695. if (index >= 0)
  696. move_msr_up(vmx, index, save_nmsrs++);
  697. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  698. if (index >= 0)
  699. move_msr_up(vmx, index, save_nmsrs++);
  700. /*
  701. * MSR_K6_STAR is only needed on long mode guests, and only
  702. * if efer.sce is enabled.
  703. */
  704. index = __find_msr_index(vmx, MSR_K6_STAR);
  705. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  706. move_msr_up(vmx, index, save_nmsrs++);
  707. }
  708. #endif
  709. vmx->save_nmsrs = save_nmsrs;
  710. #ifdef CONFIG_X86_64
  711. vmx->msr_offset_kernel_gs_base =
  712. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  713. #endif
  714. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  715. }
  716. /*
  717. * reads and returns guest's timestamp counter "register"
  718. * guest_tsc = host_tsc + tsc_offset -- 21.3
  719. */
  720. static u64 guest_read_tsc(void)
  721. {
  722. u64 host_tsc, tsc_offset;
  723. rdtscll(host_tsc);
  724. tsc_offset = vmcs_read64(TSC_OFFSET);
  725. return host_tsc + tsc_offset;
  726. }
  727. /*
  728. * writes 'guest_tsc' into guest's timestamp counter "register"
  729. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  730. */
  731. static void guest_write_tsc(u64 guest_tsc)
  732. {
  733. u64 host_tsc;
  734. rdtscll(host_tsc);
  735. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  736. }
  737. /*
  738. * Reads an msr value (of 'msr_index') into 'pdata'.
  739. * Returns 0 on success, non-0 otherwise.
  740. * Assumes vcpu_load() was already called.
  741. */
  742. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  743. {
  744. u64 data;
  745. struct kvm_msr_entry *msr;
  746. if (!pdata) {
  747. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  748. return -EINVAL;
  749. }
  750. switch (msr_index) {
  751. #ifdef CONFIG_X86_64
  752. case MSR_FS_BASE:
  753. data = vmcs_readl(GUEST_FS_BASE);
  754. break;
  755. case MSR_GS_BASE:
  756. data = vmcs_readl(GUEST_GS_BASE);
  757. break;
  758. case MSR_EFER:
  759. return kvm_get_msr_common(vcpu, msr_index, pdata);
  760. #endif
  761. case MSR_IA32_TIME_STAMP_COUNTER:
  762. data = guest_read_tsc();
  763. break;
  764. case MSR_IA32_SYSENTER_CS:
  765. data = vmcs_read32(GUEST_SYSENTER_CS);
  766. break;
  767. case MSR_IA32_SYSENTER_EIP:
  768. data = vmcs_readl(GUEST_SYSENTER_EIP);
  769. break;
  770. case MSR_IA32_SYSENTER_ESP:
  771. data = vmcs_readl(GUEST_SYSENTER_ESP);
  772. break;
  773. default:
  774. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  775. if (msr) {
  776. data = msr->data;
  777. break;
  778. }
  779. return kvm_get_msr_common(vcpu, msr_index, pdata);
  780. }
  781. *pdata = data;
  782. return 0;
  783. }
  784. /*
  785. * Writes msr value into into the appropriate "register".
  786. * Returns 0 on success, non-0 otherwise.
  787. * Assumes vcpu_load() was already called.
  788. */
  789. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  790. {
  791. struct vcpu_vmx *vmx = to_vmx(vcpu);
  792. struct kvm_msr_entry *msr;
  793. int ret = 0;
  794. switch (msr_index) {
  795. #ifdef CONFIG_X86_64
  796. case MSR_EFER:
  797. vmx_load_host_state(vmx);
  798. ret = kvm_set_msr_common(vcpu, msr_index, data);
  799. break;
  800. case MSR_FS_BASE:
  801. vmcs_writel(GUEST_FS_BASE, data);
  802. break;
  803. case MSR_GS_BASE:
  804. vmcs_writel(GUEST_GS_BASE, data);
  805. break;
  806. #endif
  807. case MSR_IA32_SYSENTER_CS:
  808. vmcs_write32(GUEST_SYSENTER_CS, data);
  809. break;
  810. case MSR_IA32_SYSENTER_EIP:
  811. vmcs_writel(GUEST_SYSENTER_EIP, data);
  812. break;
  813. case MSR_IA32_SYSENTER_ESP:
  814. vmcs_writel(GUEST_SYSENTER_ESP, data);
  815. break;
  816. case MSR_IA32_TIME_STAMP_COUNTER:
  817. guest_write_tsc(data);
  818. break;
  819. case MSR_P6_PERFCTR0:
  820. case MSR_P6_PERFCTR1:
  821. case MSR_P6_EVNTSEL0:
  822. case MSR_P6_EVNTSEL1:
  823. /*
  824. * Just discard all writes to the performance counters; this
  825. * should keep both older linux and windows 64-bit guests
  826. * happy
  827. */
  828. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index, data);
  829. break;
  830. default:
  831. vmx_load_host_state(vmx);
  832. msr = find_msr_entry(vmx, msr_index);
  833. if (msr) {
  834. msr->data = data;
  835. break;
  836. }
  837. ret = kvm_set_msr_common(vcpu, msr_index, data);
  838. }
  839. return ret;
  840. }
  841. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  842. {
  843. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  844. switch (reg) {
  845. case VCPU_REGS_RSP:
  846. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  847. break;
  848. case VCPU_REGS_RIP:
  849. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  850. break;
  851. default:
  852. break;
  853. }
  854. }
  855. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  856. {
  857. unsigned long dr7 = 0x400;
  858. int old_singlestep;
  859. old_singlestep = vcpu->guest_debug.singlestep;
  860. vcpu->guest_debug.enabled = dbg->enabled;
  861. if (vcpu->guest_debug.enabled) {
  862. int i;
  863. dr7 |= 0x200; /* exact */
  864. for (i = 0; i < 4; ++i) {
  865. if (!dbg->breakpoints[i].enabled)
  866. continue;
  867. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  868. dr7 |= 2 << (i*2); /* global enable */
  869. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  870. }
  871. vcpu->guest_debug.singlestep = dbg->singlestep;
  872. } else
  873. vcpu->guest_debug.singlestep = 0;
  874. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  875. unsigned long flags;
  876. flags = vmcs_readl(GUEST_RFLAGS);
  877. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  878. vmcs_writel(GUEST_RFLAGS, flags);
  879. }
  880. update_exception_bitmap(vcpu);
  881. vmcs_writel(GUEST_DR7, dr7);
  882. return 0;
  883. }
  884. static int vmx_get_irq(struct kvm_vcpu *vcpu)
  885. {
  886. if (!vcpu->arch.interrupt.pending)
  887. return -1;
  888. return vcpu->arch.interrupt.nr;
  889. }
  890. static __init int cpu_has_kvm_support(void)
  891. {
  892. unsigned long ecx = cpuid_ecx(1);
  893. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  894. }
  895. static __init int vmx_disabled_by_bios(void)
  896. {
  897. u64 msr;
  898. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  899. return (msr & (IA32_FEATURE_CONTROL_LOCKED_BIT |
  900. IA32_FEATURE_CONTROL_VMXON_ENABLED_BIT))
  901. == IA32_FEATURE_CONTROL_LOCKED_BIT;
  902. /* locked but not enabled */
  903. }
  904. static void hardware_enable(void *garbage)
  905. {
  906. int cpu = raw_smp_processor_id();
  907. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  908. u64 old;
  909. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  910. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  911. if ((old & (IA32_FEATURE_CONTROL_LOCKED_BIT |
  912. IA32_FEATURE_CONTROL_VMXON_ENABLED_BIT))
  913. != (IA32_FEATURE_CONTROL_LOCKED_BIT |
  914. IA32_FEATURE_CONTROL_VMXON_ENABLED_BIT))
  915. /* enable and lock */
  916. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  917. IA32_FEATURE_CONTROL_LOCKED_BIT |
  918. IA32_FEATURE_CONTROL_VMXON_ENABLED_BIT);
  919. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  920. asm volatile (ASM_VMX_VMXON_RAX
  921. : : "a"(&phys_addr), "m"(phys_addr)
  922. : "memory", "cc");
  923. }
  924. static void vmclear_local_vcpus(void)
  925. {
  926. int cpu = raw_smp_processor_id();
  927. struct vcpu_vmx *vmx, *n;
  928. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  929. local_vcpus_link)
  930. __vcpu_clear(vmx);
  931. }
  932. static void hardware_disable(void *garbage)
  933. {
  934. vmclear_local_vcpus();
  935. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  936. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  937. }
  938. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  939. u32 msr, u32 *result)
  940. {
  941. u32 vmx_msr_low, vmx_msr_high;
  942. u32 ctl = ctl_min | ctl_opt;
  943. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  944. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  945. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  946. /* Ensure minimum (required) set of control bits are supported. */
  947. if (ctl_min & ~ctl)
  948. return -EIO;
  949. *result = ctl;
  950. return 0;
  951. }
  952. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  953. {
  954. u32 vmx_msr_low, vmx_msr_high;
  955. u32 min, opt, min2, opt2;
  956. u32 _pin_based_exec_control = 0;
  957. u32 _cpu_based_exec_control = 0;
  958. u32 _cpu_based_2nd_exec_control = 0;
  959. u32 _vmexit_control = 0;
  960. u32 _vmentry_control = 0;
  961. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  962. opt = PIN_BASED_VIRTUAL_NMIS;
  963. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  964. &_pin_based_exec_control) < 0)
  965. return -EIO;
  966. min = CPU_BASED_HLT_EXITING |
  967. #ifdef CONFIG_X86_64
  968. CPU_BASED_CR8_LOAD_EXITING |
  969. CPU_BASED_CR8_STORE_EXITING |
  970. #endif
  971. CPU_BASED_CR3_LOAD_EXITING |
  972. CPU_BASED_CR3_STORE_EXITING |
  973. CPU_BASED_USE_IO_BITMAPS |
  974. CPU_BASED_MOV_DR_EXITING |
  975. CPU_BASED_USE_TSC_OFFSETING;
  976. opt = CPU_BASED_TPR_SHADOW |
  977. CPU_BASED_USE_MSR_BITMAPS |
  978. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  979. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  980. &_cpu_based_exec_control) < 0)
  981. return -EIO;
  982. #ifdef CONFIG_X86_64
  983. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  984. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  985. ~CPU_BASED_CR8_STORE_EXITING;
  986. #endif
  987. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  988. min2 = 0;
  989. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  990. SECONDARY_EXEC_WBINVD_EXITING |
  991. SECONDARY_EXEC_ENABLE_VPID |
  992. SECONDARY_EXEC_ENABLE_EPT;
  993. if (adjust_vmx_controls(min2, opt2,
  994. MSR_IA32_VMX_PROCBASED_CTLS2,
  995. &_cpu_based_2nd_exec_control) < 0)
  996. return -EIO;
  997. }
  998. #ifndef CONFIG_X86_64
  999. if (!(_cpu_based_2nd_exec_control &
  1000. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1001. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1002. #endif
  1003. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1004. /* CR3 accesses don't need to cause VM Exits when EPT enabled */
  1005. min &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1006. CPU_BASED_CR3_STORE_EXITING);
  1007. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1008. &_cpu_based_exec_control) < 0)
  1009. return -EIO;
  1010. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1011. vmx_capability.ept, vmx_capability.vpid);
  1012. }
  1013. min = 0;
  1014. #ifdef CONFIG_X86_64
  1015. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1016. #endif
  1017. opt = 0;
  1018. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1019. &_vmexit_control) < 0)
  1020. return -EIO;
  1021. min = opt = 0;
  1022. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1023. &_vmentry_control) < 0)
  1024. return -EIO;
  1025. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1026. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1027. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1028. return -EIO;
  1029. #ifdef CONFIG_X86_64
  1030. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1031. if (vmx_msr_high & (1u<<16))
  1032. return -EIO;
  1033. #endif
  1034. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1035. if (((vmx_msr_high >> 18) & 15) != 6)
  1036. return -EIO;
  1037. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1038. vmcs_conf->order = get_order(vmcs_config.size);
  1039. vmcs_conf->revision_id = vmx_msr_low;
  1040. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1041. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1042. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1043. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1044. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1045. return 0;
  1046. }
  1047. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1048. {
  1049. int node = cpu_to_node(cpu);
  1050. struct page *pages;
  1051. struct vmcs *vmcs;
  1052. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
  1053. if (!pages)
  1054. return NULL;
  1055. vmcs = page_address(pages);
  1056. memset(vmcs, 0, vmcs_config.size);
  1057. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1058. return vmcs;
  1059. }
  1060. static struct vmcs *alloc_vmcs(void)
  1061. {
  1062. return alloc_vmcs_cpu(raw_smp_processor_id());
  1063. }
  1064. static void free_vmcs(struct vmcs *vmcs)
  1065. {
  1066. free_pages((unsigned long)vmcs, vmcs_config.order);
  1067. }
  1068. static void free_kvm_area(void)
  1069. {
  1070. int cpu;
  1071. for_each_online_cpu(cpu)
  1072. free_vmcs(per_cpu(vmxarea, cpu));
  1073. }
  1074. static __init int alloc_kvm_area(void)
  1075. {
  1076. int cpu;
  1077. for_each_online_cpu(cpu) {
  1078. struct vmcs *vmcs;
  1079. vmcs = alloc_vmcs_cpu(cpu);
  1080. if (!vmcs) {
  1081. free_kvm_area();
  1082. return -ENOMEM;
  1083. }
  1084. per_cpu(vmxarea, cpu) = vmcs;
  1085. }
  1086. return 0;
  1087. }
  1088. static __init int hardware_setup(void)
  1089. {
  1090. if (setup_vmcs_config(&vmcs_config) < 0)
  1091. return -EIO;
  1092. if (boot_cpu_has(X86_FEATURE_NX))
  1093. kvm_enable_efer_bits(EFER_NX);
  1094. return alloc_kvm_area();
  1095. }
  1096. static __exit void hardware_unsetup(void)
  1097. {
  1098. free_kvm_area();
  1099. }
  1100. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1101. {
  1102. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1103. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1104. vmcs_write16(sf->selector, save->selector);
  1105. vmcs_writel(sf->base, save->base);
  1106. vmcs_write32(sf->limit, save->limit);
  1107. vmcs_write32(sf->ar_bytes, save->ar);
  1108. } else {
  1109. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1110. << AR_DPL_SHIFT;
  1111. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1112. }
  1113. }
  1114. static void enter_pmode(struct kvm_vcpu *vcpu)
  1115. {
  1116. unsigned long flags;
  1117. vcpu->arch.rmode.active = 0;
  1118. vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
  1119. vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
  1120. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
  1121. flags = vmcs_readl(GUEST_RFLAGS);
  1122. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1123. flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
  1124. vmcs_writel(GUEST_RFLAGS, flags);
  1125. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1126. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1127. update_exception_bitmap(vcpu);
  1128. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1129. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1130. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1131. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1132. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1133. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1134. vmcs_write16(GUEST_CS_SELECTOR,
  1135. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1136. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1137. }
  1138. static gva_t rmode_tss_base(struct kvm *kvm)
  1139. {
  1140. if (!kvm->arch.tss_addr) {
  1141. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  1142. kvm->memslots[0].npages - 3;
  1143. return base_gfn << PAGE_SHIFT;
  1144. }
  1145. return kvm->arch.tss_addr;
  1146. }
  1147. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1148. {
  1149. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1150. save->selector = vmcs_read16(sf->selector);
  1151. save->base = vmcs_readl(sf->base);
  1152. save->limit = vmcs_read32(sf->limit);
  1153. save->ar = vmcs_read32(sf->ar_bytes);
  1154. vmcs_write16(sf->selector, save->base >> 4);
  1155. vmcs_write32(sf->base, save->base & 0xfffff);
  1156. vmcs_write32(sf->limit, 0xffff);
  1157. vmcs_write32(sf->ar_bytes, 0xf3);
  1158. }
  1159. static void enter_rmode(struct kvm_vcpu *vcpu)
  1160. {
  1161. unsigned long flags;
  1162. vcpu->arch.rmode.active = 1;
  1163. vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1164. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1165. vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1166. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1167. vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1168. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1169. flags = vmcs_readl(GUEST_RFLAGS);
  1170. vcpu->arch.rmode.save_iopl
  1171. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1172. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1173. vmcs_writel(GUEST_RFLAGS, flags);
  1174. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1175. update_exception_bitmap(vcpu);
  1176. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1177. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1178. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1179. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1180. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1181. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1182. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1183. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1184. fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1185. fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1186. fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1187. fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1188. kvm_mmu_reset_context(vcpu);
  1189. init_rmode(vcpu->kvm);
  1190. }
  1191. #ifdef CONFIG_X86_64
  1192. static void enter_lmode(struct kvm_vcpu *vcpu)
  1193. {
  1194. u32 guest_tr_ar;
  1195. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1196. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1197. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1198. __func__);
  1199. vmcs_write32(GUEST_TR_AR_BYTES,
  1200. (guest_tr_ar & ~AR_TYPE_MASK)
  1201. | AR_TYPE_BUSY_64_TSS);
  1202. }
  1203. vcpu->arch.shadow_efer |= EFER_LMA;
  1204. find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
  1205. vmcs_write32(VM_ENTRY_CONTROLS,
  1206. vmcs_read32(VM_ENTRY_CONTROLS)
  1207. | VM_ENTRY_IA32E_MODE);
  1208. }
  1209. static void exit_lmode(struct kvm_vcpu *vcpu)
  1210. {
  1211. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1212. vmcs_write32(VM_ENTRY_CONTROLS,
  1213. vmcs_read32(VM_ENTRY_CONTROLS)
  1214. & ~VM_ENTRY_IA32E_MODE);
  1215. }
  1216. #endif
  1217. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1218. {
  1219. vpid_sync_vcpu_all(to_vmx(vcpu));
  1220. if (vm_need_ept())
  1221. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1222. }
  1223. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1224. {
  1225. vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
  1226. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1227. }
  1228. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1229. {
  1230. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1231. if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
  1232. printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
  1233. return;
  1234. }
  1235. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1236. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1237. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1238. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1239. }
  1240. }
  1241. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1242. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1243. unsigned long cr0,
  1244. struct kvm_vcpu *vcpu)
  1245. {
  1246. if (!(cr0 & X86_CR0_PG)) {
  1247. /* From paging/starting to nonpaging */
  1248. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1249. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1250. (CPU_BASED_CR3_LOAD_EXITING |
  1251. CPU_BASED_CR3_STORE_EXITING));
  1252. vcpu->arch.cr0 = cr0;
  1253. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1254. *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
  1255. *hw_cr0 &= ~X86_CR0_WP;
  1256. } else if (!is_paging(vcpu)) {
  1257. /* From nonpaging to paging */
  1258. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1259. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1260. ~(CPU_BASED_CR3_LOAD_EXITING |
  1261. CPU_BASED_CR3_STORE_EXITING));
  1262. vcpu->arch.cr0 = cr0;
  1263. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1264. if (!(vcpu->arch.cr0 & X86_CR0_WP))
  1265. *hw_cr0 &= ~X86_CR0_WP;
  1266. }
  1267. }
  1268. static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
  1269. struct kvm_vcpu *vcpu)
  1270. {
  1271. if (!is_paging(vcpu)) {
  1272. *hw_cr4 &= ~X86_CR4_PAE;
  1273. *hw_cr4 |= X86_CR4_PSE;
  1274. } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
  1275. *hw_cr4 &= ~X86_CR4_PAE;
  1276. }
  1277. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1278. {
  1279. unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
  1280. KVM_VM_CR0_ALWAYS_ON;
  1281. vmx_fpu_deactivate(vcpu);
  1282. if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
  1283. enter_pmode(vcpu);
  1284. if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
  1285. enter_rmode(vcpu);
  1286. #ifdef CONFIG_X86_64
  1287. if (vcpu->arch.shadow_efer & EFER_LME) {
  1288. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1289. enter_lmode(vcpu);
  1290. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1291. exit_lmode(vcpu);
  1292. }
  1293. #endif
  1294. if (vm_need_ept())
  1295. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1296. vmcs_writel(CR0_READ_SHADOW, cr0);
  1297. vmcs_writel(GUEST_CR0, hw_cr0);
  1298. vcpu->arch.cr0 = cr0;
  1299. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1300. vmx_fpu_activate(vcpu);
  1301. }
  1302. static u64 construct_eptp(unsigned long root_hpa)
  1303. {
  1304. u64 eptp;
  1305. /* TODO write the value reading from MSR */
  1306. eptp = VMX_EPT_DEFAULT_MT |
  1307. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1308. eptp |= (root_hpa & PAGE_MASK);
  1309. return eptp;
  1310. }
  1311. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1312. {
  1313. unsigned long guest_cr3;
  1314. u64 eptp;
  1315. guest_cr3 = cr3;
  1316. if (vm_need_ept()) {
  1317. eptp = construct_eptp(cr3);
  1318. vmcs_write64(EPT_POINTER, eptp);
  1319. ept_sync_context(eptp);
  1320. ept_load_pdptrs(vcpu);
  1321. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1322. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1323. }
  1324. vmx_flush_tlb(vcpu);
  1325. vmcs_writel(GUEST_CR3, guest_cr3);
  1326. if (vcpu->arch.cr0 & X86_CR0_PE)
  1327. vmx_fpu_deactivate(vcpu);
  1328. }
  1329. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1330. {
  1331. unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
  1332. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1333. vcpu->arch.cr4 = cr4;
  1334. if (vm_need_ept())
  1335. ept_update_paging_mode_cr4(&hw_cr4, vcpu);
  1336. vmcs_writel(CR4_READ_SHADOW, cr4);
  1337. vmcs_writel(GUEST_CR4, hw_cr4);
  1338. }
  1339. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1340. {
  1341. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1342. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1343. vcpu->arch.shadow_efer = efer;
  1344. if (!msr)
  1345. return;
  1346. if (efer & EFER_LMA) {
  1347. vmcs_write32(VM_ENTRY_CONTROLS,
  1348. vmcs_read32(VM_ENTRY_CONTROLS) |
  1349. VM_ENTRY_IA32E_MODE);
  1350. msr->data = efer;
  1351. } else {
  1352. vmcs_write32(VM_ENTRY_CONTROLS,
  1353. vmcs_read32(VM_ENTRY_CONTROLS) &
  1354. ~VM_ENTRY_IA32E_MODE);
  1355. msr->data = efer & ~EFER_LME;
  1356. }
  1357. setup_msrs(vmx);
  1358. }
  1359. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1360. {
  1361. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1362. return vmcs_readl(sf->base);
  1363. }
  1364. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1365. struct kvm_segment *var, int seg)
  1366. {
  1367. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1368. u32 ar;
  1369. var->base = vmcs_readl(sf->base);
  1370. var->limit = vmcs_read32(sf->limit);
  1371. var->selector = vmcs_read16(sf->selector);
  1372. ar = vmcs_read32(sf->ar_bytes);
  1373. if (ar & AR_UNUSABLE_MASK)
  1374. ar = 0;
  1375. var->type = ar & 15;
  1376. var->s = (ar >> 4) & 1;
  1377. var->dpl = (ar >> 5) & 3;
  1378. var->present = (ar >> 7) & 1;
  1379. var->avl = (ar >> 12) & 1;
  1380. var->l = (ar >> 13) & 1;
  1381. var->db = (ar >> 14) & 1;
  1382. var->g = (ar >> 15) & 1;
  1383. var->unusable = (ar >> 16) & 1;
  1384. }
  1385. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1386. {
  1387. struct kvm_segment kvm_seg;
  1388. if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
  1389. return 0;
  1390. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1391. return 3;
  1392. vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
  1393. return kvm_seg.selector & 3;
  1394. }
  1395. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1396. {
  1397. u32 ar;
  1398. if (var->unusable)
  1399. ar = 1 << 16;
  1400. else {
  1401. ar = var->type & 15;
  1402. ar |= (var->s & 1) << 4;
  1403. ar |= (var->dpl & 3) << 5;
  1404. ar |= (var->present & 1) << 7;
  1405. ar |= (var->avl & 1) << 12;
  1406. ar |= (var->l & 1) << 13;
  1407. ar |= (var->db & 1) << 14;
  1408. ar |= (var->g & 1) << 15;
  1409. }
  1410. if (ar == 0) /* a 0 value means unusable */
  1411. ar = AR_UNUSABLE_MASK;
  1412. return ar;
  1413. }
  1414. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1415. struct kvm_segment *var, int seg)
  1416. {
  1417. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1418. u32 ar;
  1419. if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
  1420. vcpu->arch.rmode.tr.selector = var->selector;
  1421. vcpu->arch.rmode.tr.base = var->base;
  1422. vcpu->arch.rmode.tr.limit = var->limit;
  1423. vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
  1424. return;
  1425. }
  1426. vmcs_writel(sf->base, var->base);
  1427. vmcs_write32(sf->limit, var->limit);
  1428. vmcs_write16(sf->selector, var->selector);
  1429. if (vcpu->arch.rmode.active && var->s) {
  1430. /*
  1431. * Hack real-mode segments into vm86 compatibility.
  1432. */
  1433. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1434. vmcs_writel(sf->base, 0xf0000);
  1435. ar = 0xf3;
  1436. } else
  1437. ar = vmx_segment_access_rights(var);
  1438. vmcs_write32(sf->ar_bytes, ar);
  1439. }
  1440. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1441. {
  1442. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1443. *db = (ar >> 14) & 1;
  1444. *l = (ar >> 13) & 1;
  1445. }
  1446. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1447. {
  1448. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1449. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1450. }
  1451. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1452. {
  1453. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1454. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1455. }
  1456. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1457. {
  1458. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1459. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1460. }
  1461. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1462. {
  1463. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1464. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1465. }
  1466. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1467. {
  1468. struct kvm_segment var;
  1469. u32 ar;
  1470. vmx_get_segment(vcpu, &var, seg);
  1471. ar = vmx_segment_access_rights(&var);
  1472. if (var.base != (var.selector << 4))
  1473. return false;
  1474. if (var.limit != 0xffff)
  1475. return false;
  1476. if (ar != 0xf3)
  1477. return false;
  1478. return true;
  1479. }
  1480. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  1481. {
  1482. struct kvm_segment cs;
  1483. unsigned int cs_rpl;
  1484. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1485. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  1486. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  1487. return false;
  1488. if (!cs.s)
  1489. return false;
  1490. if (!(~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK))) {
  1491. if (cs.dpl > cs_rpl)
  1492. return false;
  1493. } else if (cs.type & AR_TYPE_CODE_MASK) {
  1494. if (cs.dpl != cs_rpl)
  1495. return false;
  1496. }
  1497. if (!cs.present)
  1498. return false;
  1499. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  1500. return true;
  1501. }
  1502. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  1503. {
  1504. struct kvm_segment ss;
  1505. unsigned int ss_rpl;
  1506. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1507. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  1508. if ((ss.type != 3) || (ss.type != 7))
  1509. return false;
  1510. if (!ss.s)
  1511. return false;
  1512. if (ss.dpl != ss_rpl) /* DPL != RPL */
  1513. return false;
  1514. if (!ss.present)
  1515. return false;
  1516. return true;
  1517. }
  1518. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1519. {
  1520. struct kvm_segment var;
  1521. unsigned int rpl;
  1522. vmx_get_segment(vcpu, &var, seg);
  1523. rpl = var.selector & SELECTOR_RPL_MASK;
  1524. if (!var.s)
  1525. return false;
  1526. if (!var.present)
  1527. return false;
  1528. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  1529. if (var.dpl < rpl) /* DPL < RPL */
  1530. return false;
  1531. }
  1532. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  1533. * rights flags
  1534. */
  1535. return true;
  1536. }
  1537. static bool tr_valid(struct kvm_vcpu *vcpu)
  1538. {
  1539. struct kvm_segment tr;
  1540. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  1541. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1542. return false;
  1543. if ((tr.type != 3) || (tr.type != 11)) /* TODO: Check if guest is in IA32e mode */
  1544. return false;
  1545. if (!tr.present)
  1546. return false;
  1547. return true;
  1548. }
  1549. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  1550. {
  1551. struct kvm_segment ldtr;
  1552. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  1553. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1554. return false;
  1555. if (ldtr.type != 2)
  1556. return false;
  1557. if (!ldtr.present)
  1558. return false;
  1559. return true;
  1560. }
  1561. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  1562. {
  1563. struct kvm_segment cs, ss;
  1564. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1565. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1566. return ((cs.selector & SELECTOR_RPL_MASK) ==
  1567. (ss.selector & SELECTOR_RPL_MASK));
  1568. }
  1569. /*
  1570. * Check if guest state is valid. Returns true if valid, false if
  1571. * not.
  1572. * We assume that registers are always usable
  1573. */
  1574. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  1575. {
  1576. /* real mode guest state checks */
  1577. if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
  1578. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  1579. return false;
  1580. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  1581. return false;
  1582. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  1583. return false;
  1584. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  1585. return false;
  1586. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  1587. return false;
  1588. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  1589. return false;
  1590. } else {
  1591. /* protected mode guest state checks */
  1592. if (!cs_ss_rpl_check(vcpu))
  1593. return false;
  1594. if (!code_segment_valid(vcpu))
  1595. return false;
  1596. if (!stack_segment_valid(vcpu))
  1597. return false;
  1598. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  1599. return false;
  1600. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  1601. return false;
  1602. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  1603. return false;
  1604. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  1605. return false;
  1606. if (!tr_valid(vcpu))
  1607. return false;
  1608. if (!ldtr_valid(vcpu))
  1609. return false;
  1610. }
  1611. /* TODO:
  1612. * - Add checks on RIP
  1613. * - Add checks on RFLAGS
  1614. */
  1615. return true;
  1616. }
  1617. static int init_rmode_tss(struct kvm *kvm)
  1618. {
  1619. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1620. u16 data = 0;
  1621. int ret = 0;
  1622. int r;
  1623. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1624. if (r < 0)
  1625. goto out;
  1626. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1627. r = kvm_write_guest_page(kvm, fn++, &data,
  1628. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  1629. if (r < 0)
  1630. goto out;
  1631. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1632. if (r < 0)
  1633. goto out;
  1634. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1635. if (r < 0)
  1636. goto out;
  1637. data = ~0;
  1638. r = kvm_write_guest_page(kvm, fn, &data,
  1639. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1640. sizeof(u8));
  1641. if (r < 0)
  1642. goto out;
  1643. ret = 1;
  1644. out:
  1645. return ret;
  1646. }
  1647. static int init_rmode_identity_map(struct kvm *kvm)
  1648. {
  1649. int i, r, ret;
  1650. pfn_t identity_map_pfn;
  1651. u32 tmp;
  1652. if (!vm_need_ept())
  1653. return 1;
  1654. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1655. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1656. "haven't been allocated!\n");
  1657. return 0;
  1658. }
  1659. if (likely(kvm->arch.ept_identity_pagetable_done))
  1660. return 1;
  1661. ret = 0;
  1662. identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
  1663. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1664. if (r < 0)
  1665. goto out;
  1666. /* Set up identity-mapping pagetable for EPT in real mode */
  1667. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1668. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1669. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1670. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1671. &tmp, i * sizeof(tmp), sizeof(tmp));
  1672. if (r < 0)
  1673. goto out;
  1674. }
  1675. kvm->arch.ept_identity_pagetable_done = true;
  1676. ret = 1;
  1677. out:
  1678. return ret;
  1679. }
  1680. static void seg_setup(int seg)
  1681. {
  1682. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1683. vmcs_write16(sf->selector, 0);
  1684. vmcs_writel(sf->base, 0);
  1685. vmcs_write32(sf->limit, 0xffff);
  1686. vmcs_write32(sf->ar_bytes, 0x93);
  1687. }
  1688. static int alloc_apic_access_page(struct kvm *kvm)
  1689. {
  1690. struct kvm_userspace_memory_region kvm_userspace_mem;
  1691. int r = 0;
  1692. down_write(&kvm->slots_lock);
  1693. if (kvm->arch.apic_access_page)
  1694. goto out;
  1695. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1696. kvm_userspace_mem.flags = 0;
  1697. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1698. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1699. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1700. if (r)
  1701. goto out;
  1702. down_read(&current->mm->mmap_sem);
  1703. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1704. up_read(&current->mm->mmap_sem);
  1705. out:
  1706. up_write(&kvm->slots_lock);
  1707. return r;
  1708. }
  1709. static int alloc_identity_pagetable(struct kvm *kvm)
  1710. {
  1711. struct kvm_userspace_memory_region kvm_userspace_mem;
  1712. int r = 0;
  1713. down_write(&kvm->slots_lock);
  1714. if (kvm->arch.ept_identity_pagetable)
  1715. goto out;
  1716. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  1717. kvm_userspace_mem.flags = 0;
  1718. kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1719. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1720. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1721. if (r)
  1722. goto out;
  1723. down_read(&current->mm->mmap_sem);
  1724. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  1725. VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
  1726. up_read(&current->mm->mmap_sem);
  1727. out:
  1728. up_write(&kvm->slots_lock);
  1729. return r;
  1730. }
  1731. static void allocate_vpid(struct vcpu_vmx *vmx)
  1732. {
  1733. int vpid;
  1734. vmx->vpid = 0;
  1735. if (!enable_vpid || !cpu_has_vmx_vpid())
  1736. return;
  1737. spin_lock(&vmx_vpid_lock);
  1738. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1739. if (vpid < VMX_NR_VPIDS) {
  1740. vmx->vpid = vpid;
  1741. __set_bit(vpid, vmx_vpid_bitmap);
  1742. }
  1743. spin_unlock(&vmx_vpid_lock);
  1744. }
  1745. static void vmx_disable_intercept_for_msr(struct page *msr_bitmap, u32 msr)
  1746. {
  1747. void *va;
  1748. if (!cpu_has_vmx_msr_bitmap())
  1749. return;
  1750. /*
  1751. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1752. * have the write-low and read-high bitmap offsets the wrong way round.
  1753. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1754. */
  1755. va = kmap(msr_bitmap);
  1756. if (msr <= 0x1fff) {
  1757. __clear_bit(msr, va + 0x000); /* read-low */
  1758. __clear_bit(msr, va + 0x800); /* write-low */
  1759. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1760. msr &= 0x1fff;
  1761. __clear_bit(msr, va + 0x400); /* read-high */
  1762. __clear_bit(msr, va + 0xc00); /* write-high */
  1763. }
  1764. kunmap(msr_bitmap);
  1765. }
  1766. /*
  1767. * Sets up the vmcs for emulated real mode.
  1768. */
  1769. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1770. {
  1771. u32 host_sysenter_cs;
  1772. u32 junk;
  1773. unsigned long a;
  1774. struct descriptor_table dt;
  1775. int i;
  1776. unsigned long kvm_vmx_return;
  1777. u32 exec_control;
  1778. /* I/O */
  1779. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  1780. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  1781. if (cpu_has_vmx_msr_bitmap())
  1782. vmcs_write64(MSR_BITMAP, page_to_phys(vmx_msr_bitmap));
  1783. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1784. /* Control */
  1785. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1786. vmcs_config.pin_based_exec_ctrl);
  1787. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1788. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1789. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1790. #ifdef CONFIG_X86_64
  1791. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1792. CPU_BASED_CR8_LOAD_EXITING;
  1793. #endif
  1794. }
  1795. if (!vm_need_ept())
  1796. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  1797. CPU_BASED_CR3_LOAD_EXITING;
  1798. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1799. if (cpu_has_secondary_exec_ctrls()) {
  1800. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1801. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1802. exec_control &=
  1803. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1804. if (vmx->vpid == 0)
  1805. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  1806. if (!vm_need_ept())
  1807. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  1808. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1809. }
  1810. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1811. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1812. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1813. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1814. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1815. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1816. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1817. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1818. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1819. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  1820. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  1821. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1822. #ifdef CONFIG_X86_64
  1823. rdmsrl(MSR_FS_BASE, a);
  1824. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1825. rdmsrl(MSR_GS_BASE, a);
  1826. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1827. #else
  1828. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1829. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1830. #endif
  1831. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1832. kvm_get_idt(&dt);
  1833. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1834. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1835. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1836. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1837. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1838. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1839. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1840. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1841. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1842. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1843. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1844. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1845. for (i = 0; i < NR_VMX_MSR; ++i) {
  1846. u32 index = vmx_msr_index[i];
  1847. u32 data_low, data_high;
  1848. u64 data;
  1849. int j = vmx->nmsrs;
  1850. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1851. continue;
  1852. if (wrmsr_safe(index, data_low, data_high) < 0)
  1853. continue;
  1854. data = data_low | ((u64)data_high << 32);
  1855. vmx->host_msrs[j].index = index;
  1856. vmx->host_msrs[j].reserved = 0;
  1857. vmx->host_msrs[j].data = data;
  1858. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1859. ++vmx->nmsrs;
  1860. }
  1861. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  1862. /* 22.2.1, 20.8.1 */
  1863. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  1864. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1865. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1866. return 0;
  1867. }
  1868. static int init_rmode(struct kvm *kvm)
  1869. {
  1870. if (!init_rmode_tss(kvm))
  1871. return 0;
  1872. if (!init_rmode_identity_map(kvm))
  1873. return 0;
  1874. return 1;
  1875. }
  1876. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  1877. {
  1878. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1879. u64 msr;
  1880. int ret;
  1881. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  1882. down_read(&vcpu->kvm->slots_lock);
  1883. if (!init_rmode(vmx->vcpu.kvm)) {
  1884. ret = -ENOMEM;
  1885. goto out;
  1886. }
  1887. vmx->vcpu.arch.rmode.active = 0;
  1888. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1889. kvm_set_cr8(&vmx->vcpu, 0);
  1890. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1891. if (vmx->vcpu.vcpu_id == 0)
  1892. msr |= MSR_IA32_APICBASE_BSP;
  1893. kvm_set_apic_base(&vmx->vcpu, msr);
  1894. fx_init(&vmx->vcpu);
  1895. /*
  1896. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1897. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1898. */
  1899. if (vmx->vcpu.vcpu_id == 0) {
  1900. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1901. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1902. } else {
  1903. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  1904. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  1905. }
  1906. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1907. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1908. seg_setup(VCPU_SREG_DS);
  1909. seg_setup(VCPU_SREG_ES);
  1910. seg_setup(VCPU_SREG_FS);
  1911. seg_setup(VCPU_SREG_GS);
  1912. seg_setup(VCPU_SREG_SS);
  1913. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1914. vmcs_writel(GUEST_TR_BASE, 0);
  1915. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1916. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1917. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1918. vmcs_writel(GUEST_LDTR_BASE, 0);
  1919. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1920. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1921. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1922. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1923. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1924. vmcs_writel(GUEST_RFLAGS, 0x02);
  1925. if (vmx->vcpu.vcpu_id == 0)
  1926. kvm_rip_write(vcpu, 0xfff0);
  1927. else
  1928. kvm_rip_write(vcpu, 0);
  1929. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  1930. /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
  1931. vmcs_writel(GUEST_DR7, 0x400);
  1932. vmcs_writel(GUEST_GDTR_BASE, 0);
  1933. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  1934. vmcs_writel(GUEST_IDTR_BASE, 0);
  1935. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  1936. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  1937. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  1938. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  1939. guest_write_tsc(0);
  1940. /* Special registers */
  1941. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  1942. setup_msrs(vmx);
  1943. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1944. if (cpu_has_vmx_tpr_shadow()) {
  1945. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  1946. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  1947. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  1948. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  1949. vmcs_write32(TPR_THRESHOLD, 0);
  1950. }
  1951. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1952. vmcs_write64(APIC_ACCESS_ADDR,
  1953. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  1954. if (vmx->vpid != 0)
  1955. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  1956. vmx->vcpu.arch.cr0 = 0x60000010;
  1957. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  1958. vmx_set_cr4(&vmx->vcpu, 0);
  1959. vmx_set_efer(&vmx->vcpu, 0);
  1960. vmx_fpu_activate(&vmx->vcpu);
  1961. update_exception_bitmap(&vmx->vcpu);
  1962. vpid_sync_vcpu_all(vmx);
  1963. ret = 0;
  1964. out:
  1965. up_read(&vcpu->kvm->slots_lock);
  1966. return ret;
  1967. }
  1968. static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
  1969. {
  1970. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1971. KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
  1972. if (vcpu->arch.rmode.active) {
  1973. vmx->rmode.irq.pending = true;
  1974. vmx->rmode.irq.vector = irq;
  1975. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  1976. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1977. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  1978. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  1979. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  1980. return;
  1981. }
  1982. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1983. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1984. }
  1985. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  1986. {
  1987. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1988. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  1989. }
  1990. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1991. {
  1992. int word_index = __ffs(vcpu->arch.irq_summary);
  1993. int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
  1994. int irq = word_index * BITS_PER_LONG + bit_index;
  1995. clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
  1996. if (!vcpu->arch.irq_pending[word_index])
  1997. clear_bit(word_index, &vcpu->arch.irq_summary);
  1998. kvm_queue_interrupt(vcpu, irq);
  1999. }
  2000. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  2001. struct kvm_run *kvm_run)
  2002. {
  2003. u32 cpu_based_vm_exec_control;
  2004. vcpu->arch.interrupt_window_open =
  2005. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2006. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  2007. if (vcpu->arch.interrupt_window_open &&
  2008. vcpu->arch.irq_summary && !vcpu->arch.interrupt.pending)
  2009. kvm_do_inject_irq(vcpu);
  2010. if (vcpu->arch.interrupt_window_open && vcpu->arch.interrupt.pending)
  2011. vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
  2012. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2013. if (!vcpu->arch.interrupt_window_open &&
  2014. (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
  2015. /*
  2016. * Interrupts blocked. Wait for unblock.
  2017. */
  2018. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2019. else
  2020. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2021. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2022. }
  2023. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2024. {
  2025. int ret;
  2026. struct kvm_userspace_memory_region tss_mem = {
  2027. .slot = 8,
  2028. .guest_phys_addr = addr,
  2029. .memory_size = PAGE_SIZE * 3,
  2030. .flags = 0,
  2031. };
  2032. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2033. if (ret)
  2034. return ret;
  2035. kvm->arch.tss_addr = addr;
  2036. return 0;
  2037. }
  2038. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  2039. {
  2040. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  2041. set_debugreg(dbg->bp[0], 0);
  2042. set_debugreg(dbg->bp[1], 1);
  2043. set_debugreg(dbg->bp[2], 2);
  2044. set_debugreg(dbg->bp[3], 3);
  2045. if (dbg->singlestep) {
  2046. unsigned long flags;
  2047. flags = vmcs_readl(GUEST_RFLAGS);
  2048. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  2049. vmcs_writel(GUEST_RFLAGS, flags);
  2050. }
  2051. }
  2052. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2053. int vec, u32 err_code)
  2054. {
  2055. /*
  2056. * Instruction with address size override prefix opcode 0x67
  2057. * Cause the #SS fault with 0 error code in VM86 mode.
  2058. */
  2059. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2060. if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
  2061. return 1;
  2062. /*
  2063. * Forward all other exceptions that are valid in real mode.
  2064. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2065. * the required debugging infrastructure rework.
  2066. */
  2067. switch (vec) {
  2068. case DE_VECTOR:
  2069. case DB_VECTOR:
  2070. case BP_VECTOR:
  2071. case OF_VECTOR:
  2072. case BR_VECTOR:
  2073. case UD_VECTOR:
  2074. case DF_VECTOR:
  2075. case SS_VECTOR:
  2076. case GP_VECTOR:
  2077. case MF_VECTOR:
  2078. kvm_queue_exception(vcpu, vec);
  2079. return 1;
  2080. }
  2081. return 0;
  2082. }
  2083. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2084. {
  2085. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2086. u32 intr_info, error_code;
  2087. unsigned long cr2, rip;
  2088. u32 vect_info;
  2089. enum emulation_result er;
  2090. vect_info = vmx->idt_vectoring_info;
  2091. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2092. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2093. !is_page_fault(intr_info))
  2094. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  2095. "intr info 0x%x\n", __func__, vect_info, intr_info);
  2096. if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
  2097. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  2098. set_bit(irq, vcpu->arch.irq_pending);
  2099. set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  2100. }
  2101. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
  2102. return 1; /* already handled by vmx_vcpu_run() */
  2103. if (is_no_device(intr_info)) {
  2104. vmx_fpu_activate(vcpu);
  2105. return 1;
  2106. }
  2107. if (is_invalid_opcode(intr_info)) {
  2108. er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
  2109. if (er != EMULATE_DONE)
  2110. kvm_queue_exception(vcpu, UD_VECTOR);
  2111. return 1;
  2112. }
  2113. error_code = 0;
  2114. rip = kvm_rip_read(vcpu);
  2115. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2116. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2117. if (is_page_fault(intr_info)) {
  2118. /* EPT won't cause page fault directly */
  2119. if (vm_need_ept())
  2120. BUG();
  2121. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2122. KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
  2123. (u32)((u64)cr2 >> 32), handler);
  2124. if (vcpu->arch.interrupt.pending || vcpu->arch.exception.pending)
  2125. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2126. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  2127. }
  2128. if (vcpu->arch.rmode.active &&
  2129. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2130. error_code)) {
  2131. if (vcpu->arch.halt_request) {
  2132. vcpu->arch.halt_request = 0;
  2133. return kvm_emulate_halt(vcpu);
  2134. }
  2135. return 1;
  2136. }
  2137. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
  2138. (INTR_TYPE_EXCEPTION | 1)) {
  2139. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2140. return 0;
  2141. }
  2142. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2143. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  2144. kvm_run->ex.error_code = error_code;
  2145. return 0;
  2146. }
  2147. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  2148. struct kvm_run *kvm_run)
  2149. {
  2150. ++vcpu->stat.irq_exits;
  2151. KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
  2152. return 1;
  2153. }
  2154. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2155. {
  2156. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  2157. return 0;
  2158. }
  2159. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2160. {
  2161. unsigned long exit_qualification;
  2162. int size, down, in, string, rep;
  2163. unsigned port;
  2164. ++vcpu->stat.io_exits;
  2165. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2166. string = (exit_qualification & 16) != 0;
  2167. if (string) {
  2168. if (emulate_instruction(vcpu,
  2169. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  2170. return 0;
  2171. return 1;
  2172. }
  2173. size = (exit_qualification & 7) + 1;
  2174. in = (exit_qualification & 8) != 0;
  2175. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  2176. rep = (exit_qualification & 32) != 0;
  2177. port = exit_qualification >> 16;
  2178. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  2179. }
  2180. static void
  2181. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2182. {
  2183. /*
  2184. * Patch in the VMCALL instruction:
  2185. */
  2186. hypercall[0] = 0x0f;
  2187. hypercall[1] = 0x01;
  2188. hypercall[2] = 0xc1;
  2189. }
  2190. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2191. {
  2192. unsigned long exit_qualification;
  2193. int cr;
  2194. int reg;
  2195. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2196. cr = exit_qualification & 15;
  2197. reg = (exit_qualification >> 8) & 15;
  2198. switch ((exit_qualification >> 4) & 3) {
  2199. case 0: /* mov to cr */
  2200. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
  2201. (u32)kvm_register_read(vcpu, reg),
  2202. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2203. handler);
  2204. switch (cr) {
  2205. case 0:
  2206. kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
  2207. skip_emulated_instruction(vcpu);
  2208. return 1;
  2209. case 3:
  2210. kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
  2211. skip_emulated_instruction(vcpu);
  2212. return 1;
  2213. case 4:
  2214. kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
  2215. skip_emulated_instruction(vcpu);
  2216. return 1;
  2217. case 8:
  2218. kvm_set_cr8(vcpu, kvm_register_read(vcpu, reg));
  2219. skip_emulated_instruction(vcpu);
  2220. if (irqchip_in_kernel(vcpu->kvm))
  2221. return 1;
  2222. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  2223. return 0;
  2224. };
  2225. break;
  2226. case 2: /* clts */
  2227. vmx_fpu_deactivate(vcpu);
  2228. vcpu->arch.cr0 &= ~X86_CR0_TS;
  2229. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  2230. vmx_fpu_activate(vcpu);
  2231. KVMTRACE_0D(CLTS, vcpu, handler);
  2232. skip_emulated_instruction(vcpu);
  2233. return 1;
  2234. case 1: /*mov from cr*/
  2235. switch (cr) {
  2236. case 3:
  2237. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2238. KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
  2239. (u32)kvm_register_read(vcpu, reg),
  2240. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2241. handler);
  2242. skip_emulated_instruction(vcpu);
  2243. return 1;
  2244. case 8:
  2245. kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
  2246. KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
  2247. (u32)kvm_register_read(vcpu, reg), handler);
  2248. skip_emulated_instruction(vcpu);
  2249. return 1;
  2250. }
  2251. break;
  2252. case 3: /* lmsw */
  2253. kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  2254. skip_emulated_instruction(vcpu);
  2255. return 1;
  2256. default:
  2257. break;
  2258. }
  2259. kvm_run->exit_reason = 0;
  2260. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2261. (int)(exit_qualification >> 4) & 3, cr);
  2262. return 0;
  2263. }
  2264. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2265. {
  2266. unsigned long exit_qualification;
  2267. unsigned long val;
  2268. int dr, reg;
  2269. /*
  2270. * FIXME: this code assumes the host is debugging the guest.
  2271. * need to deal with guest debugging itself too.
  2272. */
  2273. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2274. dr = exit_qualification & 7;
  2275. reg = (exit_qualification >> 8) & 15;
  2276. if (exit_qualification & 16) {
  2277. /* mov from dr */
  2278. switch (dr) {
  2279. case 6:
  2280. val = 0xffff0ff0;
  2281. break;
  2282. case 7:
  2283. val = 0x400;
  2284. break;
  2285. default:
  2286. val = 0;
  2287. }
  2288. kvm_register_write(vcpu, reg, val);
  2289. KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
  2290. } else {
  2291. /* mov to dr */
  2292. }
  2293. skip_emulated_instruction(vcpu);
  2294. return 1;
  2295. }
  2296. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2297. {
  2298. kvm_emulate_cpuid(vcpu);
  2299. return 1;
  2300. }
  2301. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2302. {
  2303. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2304. u64 data;
  2305. if (vmx_get_msr(vcpu, ecx, &data)) {
  2306. kvm_inject_gp(vcpu, 0);
  2307. return 1;
  2308. }
  2309. KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2310. handler);
  2311. /* FIXME: handling of bits 32:63 of rax, rdx */
  2312. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2313. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2314. skip_emulated_instruction(vcpu);
  2315. return 1;
  2316. }
  2317. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2318. {
  2319. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2320. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2321. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2322. KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2323. handler);
  2324. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2325. kvm_inject_gp(vcpu, 0);
  2326. return 1;
  2327. }
  2328. skip_emulated_instruction(vcpu);
  2329. return 1;
  2330. }
  2331. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  2332. struct kvm_run *kvm_run)
  2333. {
  2334. return 1;
  2335. }
  2336. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  2337. struct kvm_run *kvm_run)
  2338. {
  2339. u32 cpu_based_vm_exec_control;
  2340. /* clear pending irq */
  2341. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2342. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2343. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2344. KVMTRACE_0D(PEND_INTR, vcpu, handler);
  2345. /*
  2346. * If the user space waits to inject interrupts, exit as soon as
  2347. * possible
  2348. */
  2349. if (kvm_run->request_interrupt_window &&
  2350. !vcpu->arch.irq_summary) {
  2351. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2352. ++vcpu->stat.irq_window_exits;
  2353. return 0;
  2354. }
  2355. return 1;
  2356. }
  2357. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2358. {
  2359. skip_emulated_instruction(vcpu);
  2360. return kvm_emulate_halt(vcpu);
  2361. }
  2362. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2363. {
  2364. skip_emulated_instruction(vcpu);
  2365. kvm_emulate_hypercall(vcpu);
  2366. return 1;
  2367. }
  2368. static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2369. {
  2370. skip_emulated_instruction(vcpu);
  2371. /* TODO: Add support for VT-d/pass-through device */
  2372. return 1;
  2373. }
  2374. static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2375. {
  2376. u64 exit_qualification;
  2377. enum emulation_result er;
  2378. unsigned long offset;
  2379. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2380. offset = exit_qualification & 0xffful;
  2381. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2382. if (er != EMULATE_DONE) {
  2383. printk(KERN_ERR
  2384. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2385. offset);
  2386. return -ENOTSUPP;
  2387. }
  2388. return 1;
  2389. }
  2390. static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2391. {
  2392. unsigned long exit_qualification;
  2393. u16 tss_selector;
  2394. int reason;
  2395. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2396. reason = (u32)exit_qualification >> 30;
  2397. tss_selector = exit_qualification;
  2398. return kvm_task_switch(vcpu, tss_selector, reason);
  2399. }
  2400. static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2401. {
  2402. u64 exit_qualification;
  2403. enum emulation_result er;
  2404. gpa_t gpa;
  2405. unsigned long hva;
  2406. int gla_validity;
  2407. int r;
  2408. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2409. if (exit_qualification & (1 << 6)) {
  2410. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2411. return -ENOTSUPP;
  2412. }
  2413. gla_validity = (exit_qualification >> 7) & 0x3;
  2414. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2415. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2416. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2417. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2418. (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
  2419. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2420. (long unsigned int)exit_qualification);
  2421. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2422. kvm_run->hw.hardware_exit_reason = 0;
  2423. return -ENOTSUPP;
  2424. }
  2425. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2426. hva = gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT);
  2427. if (!kvm_is_error_hva(hva)) {
  2428. r = kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2429. if (r < 0) {
  2430. printk(KERN_ERR "EPT: Not enough memory!\n");
  2431. return -ENOMEM;
  2432. }
  2433. return 1;
  2434. } else {
  2435. /* must be MMIO */
  2436. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2437. if (er == EMULATE_FAIL) {
  2438. printk(KERN_ERR
  2439. "EPT: Fail to handle EPT violation vmexit!er is %d\n",
  2440. er);
  2441. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2442. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2443. (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
  2444. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2445. (long unsigned int)exit_qualification);
  2446. return -ENOTSUPP;
  2447. } else if (er == EMULATE_DO_MMIO)
  2448. return 0;
  2449. }
  2450. return 1;
  2451. }
  2452. static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2453. {
  2454. u32 cpu_based_vm_exec_control;
  2455. /* clear pending NMI */
  2456. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2457. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  2458. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2459. ++vcpu->stat.nmi_window_exits;
  2460. return 1;
  2461. }
  2462. /*
  2463. * The exit handlers return 1 if the exit was handled fully and guest execution
  2464. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  2465. * to be done to userspace and return 0.
  2466. */
  2467. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  2468. struct kvm_run *kvm_run) = {
  2469. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  2470. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  2471. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  2472. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  2473. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  2474. [EXIT_REASON_CR_ACCESS] = handle_cr,
  2475. [EXIT_REASON_DR_ACCESS] = handle_dr,
  2476. [EXIT_REASON_CPUID] = handle_cpuid,
  2477. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  2478. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  2479. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  2480. [EXIT_REASON_HLT] = handle_halt,
  2481. [EXIT_REASON_VMCALL] = handle_vmcall,
  2482. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  2483. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  2484. [EXIT_REASON_WBINVD] = handle_wbinvd,
  2485. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  2486. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  2487. };
  2488. static const int kvm_vmx_max_exit_handlers =
  2489. ARRAY_SIZE(kvm_vmx_exit_handlers);
  2490. /*
  2491. * The guest has exited. See if we can fix it or if we need userspace
  2492. * assistance.
  2493. */
  2494. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  2495. {
  2496. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  2497. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2498. u32 vectoring_info = vmx->idt_vectoring_info;
  2499. KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
  2500. (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
  2501. /* Access CR3 don't cause VMExit in paging mode, so we need
  2502. * to sync with guest real CR3. */
  2503. if (vm_need_ept() && is_paging(vcpu)) {
  2504. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2505. ept_load_pdptrs(vcpu);
  2506. }
  2507. if (unlikely(vmx->fail)) {
  2508. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2509. kvm_run->fail_entry.hardware_entry_failure_reason
  2510. = vmcs_read32(VM_INSTRUCTION_ERROR);
  2511. return 0;
  2512. }
  2513. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2514. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  2515. exit_reason != EXIT_REASON_EPT_VIOLATION))
  2516. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  2517. "exit reason is 0x%x\n", __func__, exit_reason);
  2518. if (exit_reason < kvm_vmx_max_exit_handlers
  2519. && kvm_vmx_exit_handlers[exit_reason])
  2520. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  2521. else {
  2522. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2523. kvm_run->hw.hardware_exit_reason = exit_reason;
  2524. }
  2525. return 0;
  2526. }
  2527. static void update_tpr_threshold(struct kvm_vcpu *vcpu)
  2528. {
  2529. int max_irr, tpr;
  2530. if (!vm_need_tpr_shadow(vcpu->kvm))
  2531. return;
  2532. if (!kvm_lapic_enabled(vcpu) ||
  2533. ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
  2534. vmcs_write32(TPR_THRESHOLD, 0);
  2535. return;
  2536. }
  2537. tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
  2538. vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
  2539. }
  2540. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2541. {
  2542. u32 cpu_based_vm_exec_control;
  2543. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2544. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2545. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2546. }
  2547. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2548. {
  2549. u32 cpu_based_vm_exec_control;
  2550. if (!cpu_has_virtual_nmis())
  2551. return;
  2552. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2553. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2554. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2555. }
  2556. static int vmx_nmi_enabled(struct kvm_vcpu *vcpu)
  2557. {
  2558. u32 guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  2559. return !(guest_intr & (GUEST_INTR_STATE_NMI |
  2560. GUEST_INTR_STATE_MOV_SS |
  2561. GUEST_INTR_STATE_STI));
  2562. }
  2563. static int vmx_irq_enabled(struct kvm_vcpu *vcpu)
  2564. {
  2565. u32 guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  2566. return (!(guest_intr & (GUEST_INTR_STATE_MOV_SS |
  2567. GUEST_INTR_STATE_STI)) &&
  2568. (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
  2569. }
  2570. static void enable_intr_window(struct kvm_vcpu *vcpu)
  2571. {
  2572. if (vcpu->arch.nmi_pending)
  2573. enable_nmi_window(vcpu);
  2574. else if (kvm_cpu_has_interrupt(vcpu))
  2575. enable_irq_window(vcpu);
  2576. }
  2577. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  2578. {
  2579. u32 exit_intr_info;
  2580. u32 idt_vectoring_info;
  2581. bool unblock_nmi;
  2582. u8 vector;
  2583. int type;
  2584. bool idtv_info_valid;
  2585. u32 error;
  2586. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2587. if (cpu_has_virtual_nmis()) {
  2588. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  2589. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  2590. /*
  2591. * SDM 3: 25.7.1.2
  2592. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  2593. * a guest IRET fault.
  2594. */
  2595. if (unblock_nmi && vector != DF_VECTOR)
  2596. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2597. GUEST_INTR_STATE_NMI);
  2598. }
  2599. idt_vectoring_info = vmx->idt_vectoring_info;
  2600. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  2601. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  2602. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  2603. if (vmx->vcpu.arch.nmi_injected) {
  2604. /*
  2605. * SDM 3: 25.7.1.2
  2606. * Clear bit "block by NMI" before VM entry if a NMI delivery
  2607. * faulted.
  2608. */
  2609. if (idtv_info_valid && type == INTR_TYPE_NMI_INTR)
  2610. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2611. GUEST_INTR_STATE_NMI);
  2612. else
  2613. vmx->vcpu.arch.nmi_injected = false;
  2614. }
  2615. kvm_clear_exception_queue(&vmx->vcpu);
  2616. if (idtv_info_valid && type == INTR_TYPE_EXCEPTION) {
  2617. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  2618. error = vmcs_read32(IDT_VECTORING_ERROR_CODE);
  2619. kvm_queue_exception_e(&vmx->vcpu, vector, error);
  2620. } else
  2621. kvm_queue_exception(&vmx->vcpu, vector);
  2622. vmx->idt_vectoring_info = 0;
  2623. }
  2624. kvm_clear_interrupt_queue(&vmx->vcpu);
  2625. if (idtv_info_valid && type == INTR_TYPE_EXT_INTR) {
  2626. kvm_queue_interrupt(&vmx->vcpu, vector);
  2627. vmx->idt_vectoring_info = 0;
  2628. }
  2629. }
  2630. static void vmx_intr_assist(struct kvm_vcpu *vcpu)
  2631. {
  2632. u32 intr_info_field;
  2633. update_tpr_threshold(vcpu);
  2634. intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
  2635. if (cpu_has_virtual_nmis()) {
  2636. if (vcpu->arch.nmi_pending && !vcpu->arch.nmi_injected) {
  2637. if (vmx_nmi_enabled(vcpu)) {
  2638. vcpu->arch.nmi_pending = false;
  2639. vcpu->arch.nmi_injected = true;
  2640. } else {
  2641. enable_intr_window(vcpu);
  2642. return;
  2643. }
  2644. }
  2645. if (vcpu->arch.nmi_injected) {
  2646. vmx_inject_nmi(vcpu);
  2647. enable_intr_window(vcpu);
  2648. return;
  2649. }
  2650. }
  2651. if (!vcpu->arch.interrupt.pending && kvm_cpu_has_interrupt(vcpu)) {
  2652. if (vmx_irq_enabled(vcpu))
  2653. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu));
  2654. else
  2655. enable_irq_window(vcpu);
  2656. }
  2657. if (vcpu->arch.interrupt.pending) {
  2658. vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
  2659. kvm_timer_intr_post(vcpu, vcpu->arch.interrupt.nr);
  2660. }
  2661. }
  2662. /*
  2663. * Failure to inject an interrupt should give us the information
  2664. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  2665. * when fetching the interrupt redirection bitmap in the real-mode
  2666. * tss, this doesn't happen. So we do it ourselves.
  2667. */
  2668. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  2669. {
  2670. vmx->rmode.irq.pending = 0;
  2671. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  2672. return;
  2673. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  2674. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  2675. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  2676. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  2677. return;
  2678. }
  2679. vmx->idt_vectoring_info =
  2680. VECTORING_INFO_VALID_MASK
  2681. | INTR_TYPE_EXT_INTR
  2682. | vmx->rmode.irq.vector;
  2683. }
  2684. #ifdef CONFIG_X86_64
  2685. #define R "r"
  2686. #define Q "q"
  2687. #else
  2688. #define R "e"
  2689. #define Q "l"
  2690. #endif
  2691. static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2692. {
  2693. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2694. u32 intr_info;
  2695. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  2696. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  2697. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  2698. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  2699. /*
  2700. * Loading guest fpu may have cleared host cr0.ts
  2701. */
  2702. vmcs_writel(HOST_CR0, read_cr0());
  2703. asm(
  2704. /* Store host registers */
  2705. "push %%"R"dx; push %%"R"bp;"
  2706. "push %%"R"cx \n\t"
  2707. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  2708. "je 1f \n\t"
  2709. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  2710. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  2711. "1: \n\t"
  2712. /* Check if vmlaunch of vmresume is needed */
  2713. "cmpl $0, %c[launched](%0) \n\t"
  2714. /* Load guest registers. Don't clobber flags. */
  2715. "mov %c[cr2](%0), %%"R"ax \n\t"
  2716. "mov %%"R"ax, %%cr2 \n\t"
  2717. "mov %c[rax](%0), %%"R"ax \n\t"
  2718. "mov %c[rbx](%0), %%"R"bx \n\t"
  2719. "mov %c[rdx](%0), %%"R"dx \n\t"
  2720. "mov %c[rsi](%0), %%"R"si \n\t"
  2721. "mov %c[rdi](%0), %%"R"di \n\t"
  2722. "mov %c[rbp](%0), %%"R"bp \n\t"
  2723. #ifdef CONFIG_X86_64
  2724. "mov %c[r8](%0), %%r8 \n\t"
  2725. "mov %c[r9](%0), %%r9 \n\t"
  2726. "mov %c[r10](%0), %%r10 \n\t"
  2727. "mov %c[r11](%0), %%r11 \n\t"
  2728. "mov %c[r12](%0), %%r12 \n\t"
  2729. "mov %c[r13](%0), %%r13 \n\t"
  2730. "mov %c[r14](%0), %%r14 \n\t"
  2731. "mov %c[r15](%0), %%r15 \n\t"
  2732. #endif
  2733. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  2734. /* Enter guest mode */
  2735. "jne .Llaunched \n\t"
  2736. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  2737. "jmp .Lkvm_vmx_return \n\t"
  2738. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  2739. ".Lkvm_vmx_return: "
  2740. /* Save guest registers, load host registers, keep flags */
  2741. "xchg %0, (%%"R"sp) \n\t"
  2742. "mov %%"R"ax, %c[rax](%0) \n\t"
  2743. "mov %%"R"bx, %c[rbx](%0) \n\t"
  2744. "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
  2745. "mov %%"R"dx, %c[rdx](%0) \n\t"
  2746. "mov %%"R"si, %c[rsi](%0) \n\t"
  2747. "mov %%"R"di, %c[rdi](%0) \n\t"
  2748. "mov %%"R"bp, %c[rbp](%0) \n\t"
  2749. #ifdef CONFIG_X86_64
  2750. "mov %%r8, %c[r8](%0) \n\t"
  2751. "mov %%r9, %c[r9](%0) \n\t"
  2752. "mov %%r10, %c[r10](%0) \n\t"
  2753. "mov %%r11, %c[r11](%0) \n\t"
  2754. "mov %%r12, %c[r12](%0) \n\t"
  2755. "mov %%r13, %c[r13](%0) \n\t"
  2756. "mov %%r14, %c[r14](%0) \n\t"
  2757. "mov %%r15, %c[r15](%0) \n\t"
  2758. #endif
  2759. "mov %%cr2, %%"R"ax \n\t"
  2760. "mov %%"R"ax, %c[cr2](%0) \n\t"
  2761. "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
  2762. "setbe %c[fail](%0) \n\t"
  2763. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  2764. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  2765. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  2766. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  2767. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  2768. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  2769. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  2770. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  2771. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  2772. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  2773. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  2774. #ifdef CONFIG_X86_64
  2775. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  2776. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  2777. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  2778. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  2779. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  2780. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  2781. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  2782. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  2783. #endif
  2784. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  2785. : "cc", "memory"
  2786. , R"bx", R"di", R"si"
  2787. #ifdef CONFIG_X86_64
  2788. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  2789. #endif
  2790. );
  2791. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  2792. vcpu->arch.regs_dirty = 0;
  2793. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  2794. if (vmx->rmode.irq.pending)
  2795. fixup_rmode_irq(vmx);
  2796. vcpu->arch.interrupt_window_open =
  2797. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2798. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)) == 0;
  2799. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  2800. vmx->launched = 1;
  2801. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2802. /* We need to handle NMIs before interrupts are enabled */
  2803. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200 &&
  2804. (intr_info & INTR_INFO_VALID_MASK)) {
  2805. KVMTRACE_0D(NMI, vcpu, handler);
  2806. asm("int $2");
  2807. }
  2808. vmx_complete_interrupts(vmx);
  2809. }
  2810. #undef R
  2811. #undef Q
  2812. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  2813. {
  2814. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2815. if (vmx->vmcs) {
  2816. vcpu_clear(vmx);
  2817. free_vmcs(vmx->vmcs);
  2818. vmx->vmcs = NULL;
  2819. }
  2820. }
  2821. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  2822. {
  2823. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2824. spin_lock(&vmx_vpid_lock);
  2825. if (vmx->vpid != 0)
  2826. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  2827. spin_unlock(&vmx_vpid_lock);
  2828. vmx_free_vmcs(vcpu);
  2829. kfree(vmx->host_msrs);
  2830. kfree(vmx->guest_msrs);
  2831. kvm_vcpu_uninit(vcpu);
  2832. kmem_cache_free(kvm_vcpu_cache, vmx);
  2833. }
  2834. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  2835. {
  2836. int err;
  2837. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  2838. int cpu;
  2839. if (!vmx)
  2840. return ERR_PTR(-ENOMEM);
  2841. allocate_vpid(vmx);
  2842. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  2843. if (err)
  2844. goto free_vcpu;
  2845. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2846. if (!vmx->guest_msrs) {
  2847. err = -ENOMEM;
  2848. goto uninit_vcpu;
  2849. }
  2850. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2851. if (!vmx->host_msrs)
  2852. goto free_guest_msrs;
  2853. vmx->vmcs = alloc_vmcs();
  2854. if (!vmx->vmcs)
  2855. goto free_msrs;
  2856. vmcs_clear(vmx->vmcs);
  2857. cpu = get_cpu();
  2858. vmx_vcpu_load(&vmx->vcpu, cpu);
  2859. err = vmx_vcpu_setup(vmx);
  2860. vmx_vcpu_put(&vmx->vcpu);
  2861. put_cpu();
  2862. if (err)
  2863. goto free_vmcs;
  2864. if (vm_need_virtualize_apic_accesses(kvm))
  2865. if (alloc_apic_access_page(kvm) != 0)
  2866. goto free_vmcs;
  2867. if (vm_need_ept())
  2868. if (alloc_identity_pagetable(kvm) != 0)
  2869. goto free_vmcs;
  2870. return &vmx->vcpu;
  2871. free_vmcs:
  2872. free_vmcs(vmx->vmcs);
  2873. free_msrs:
  2874. kfree(vmx->host_msrs);
  2875. free_guest_msrs:
  2876. kfree(vmx->guest_msrs);
  2877. uninit_vcpu:
  2878. kvm_vcpu_uninit(&vmx->vcpu);
  2879. free_vcpu:
  2880. kmem_cache_free(kvm_vcpu_cache, vmx);
  2881. return ERR_PTR(err);
  2882. }
  2883. static void __init vmx_check_processor_compat(void *rtn)
  2884. {
  2885. struct vmcs_config vmcs_conf;
  2886. *(int *)rtn = 0;
  2887. if (setup_vmcs_config(&vmcs_conf) < 0)
  2888. *(int *)rtn = -EIO;
  2889. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  2890. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  2891. smp_processor_id());
  2892. *(int *)rtn = -EIO;
  2893. }
  2894. }
  2895. static int get_ept_level(void)
  2896. {
  2897. return VMX_EPT_DEFAULT_GAW + 1;
  2898. }
  2899. static struct kvm_x86_ops vmx_x86_ops = {
  2900. .cpu_has_kvm_support = cpu_has_kvm_support,
  2901. .disabled_by_bios = vmx_disabled_by_bios,
  2902. .hardware_setup = hardware_setup,
  2903. .hardware_unsetup = hardware_unsetup,
  2904. .check_processor_compatibility = vmx_check_processor_compat,
  2905. .hardware_enable = hardware_enable,
  2906. .hardware_disable = hardware_disable,
  2907. .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
  2908. .vcpu_create = vmx_create_vcpu,
  2909. .vcpu_free = vmx_free_vcpu,
  2910. .vcpu_reset = vmx_vcpu_reset,
  2911. .prepare_guest_switch = vmx_save_host_state,
  2912. .vcpu_load = vmx_vcpu_load,
  2913. .vcpu_put = vmx_vcpu_put,
  2914. .set_guest_debug = set_guest_debug,
  2915. .guest_debug_pre = kvm_guest_debug_pre,
  2916. .get_msr = vmx_get_msr,
  2917. .set_msr = vmx_set_msr,
  2918. .get_segment_base = vmx_get_segment_base,
  2919. .get_segment = vmx_get_segment,
  2920. .set_segment = vmx_set_segment,
  2921. .get_cpl = vmx_get_cpl,
  2922. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  2923. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  2924. .set_cr0 = vmx_set_cr0,
  2925. .set_cr3 = vmx_set_cr3,
  2926. .set_cr4 = vmx_set_cr4,
  2927. .set_efer = vmx_set_efer,
  2928. .get_idt = vmx_get_idt,
  2929. .set_idt = vmx_set_idt,
  2930. .get_gdt = vmx_get_gdt,
  2931. .set_gdt = vmx_set_gdt,
  2932. .cache_reg = vmx_cache_reg,
  2933. .get_rflags = vmx_get_rflags,
  2934. .set_rflags = vmx_set_rflags,
  2935. .tlb_flush = vmx_flush_tlb,
  2936. .run = vmx_vcpu_run,
  2937. .handle_exit = kvm_handle_exit,
  2938. .skip_emulated_instruction = skip_emulated_instruction,
  2939. .patch_hypercall = vmx_patch_hypercall,
  2940. .get_irq = vmx_get_irq,
  2941. .set_irq = vmx_inject_irq,
  2942. .queue_exception = vmx_queue_exception,
  2943. .exception_injected = vmx_exception_injected,
  2944. .inject_pending_irq = vmx_intr_assist,
  2945. .inject_pending_vectors = do_interrupt_requests,
  2946. .set_tss_addr = vmx_set_tss_addr,
  2947. .get_tdp_level = get_ept_level,
  2948. };
  2949. static int __init vmx_init(void)
  2950. {
  2951. void *va;
  2952. int r;
  2953. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2954. if (!vmx_io_bitmap_a)
  2955. return -ENOMEM;
  2956. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2957. if (!vmx_io_bitmap_b) {
  2958. r = -ENOMEM;
  2959. goto out;
  2960. }
  2961. vmx_msr_bitmap = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2962. if (!vmx_msr_bitmap) {
  2963. r = -ENOMEM;
  2964. goto out1;
  2965. }
  2966. /*
  2967. * Allow direct access to the PC debug port (it is often used for I/O
  2968. * delays, but the vmexits simply slow things down).
  2969. */
  2970. va = kmap(vmx_io_bitmap_a);
  2971. memset(va, 0xff, PAGE_SIZE);
  2972. clear_bit(0x80, va);
  2973. kunmap(vmx_io_bitmap_a);
  2974. va = kmap(vmx_io_bitmap_b);
  2975. memset(va, 0xff, PAGE_SIZE);
  2976. kunmap(vmx_io_bitmap_b);
  2977. va = kmap(vmx_msr_bitmap);
  2978. memset(va, 0xff, PAGE_SIZE);
  2979. kunmap(vmx_msr_bitmap);
  2980. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  2981. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  2982. if (r)
  2983. goto out2;
  2984. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_FS_BASE);
  2985. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_GS_BASE);
  2986. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_CS);
  2987. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_ESP);
  2988. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_EIP);
  2989. if (vm_need_ept()) {
  2990. bypass_guest_pf = 0;
  2991. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  2992. VMX_EPT_WRITABLE_MASK |
  2993. VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT);
  2994. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  2995. VMX_EPT_EXECUTABLE_MASK);
  2996. kvm_enable_tdp();
  2997. } else
  2998. kvm_disable_tdp();
  2999. if (bypass_guest_pf)
  3000. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  3001. ept_sync_global();
  3002. return 0;
  3003. out2:
  3004. __free_page(vmx_msr_bitmap);
  3005. out1:
  3006. __free_page(vmx_io_bitmap_b);
  3007. out:
  3008. __free_page(vmx_io_bitmap_a);
  3009. return r;
  3010. }
  3011. static void __exit vmx_exit(void)
  3012. {
  3013. __free_page(vmx_msr_bitmap);
  3014. __free_page(vmx_io_bitmap_b);
  3015. __free_page(vmx_io_bitmap_a);
  3016. kvm_exit();
  3017. }
  3018. module_init(vmx_init)
  3019. module_exit(vmx_exit)