intel_cacheinfo.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234
  1. /*
  2. * Routines to indentify caches on Intel CPU.
  3. *
  4. * Changes:
  5. * Venkatesh Pallipadi : Adding cache identification through cpuid(4)
  6. * Ashok Raj <ashok.raj@intel.com>: Work with CPU hotplug infrastructure.
  7. * Andi Kleen / Andreas Herrmann : CPUID4 emulation on AMD.
  8. */
  9. #include <linux/init.h>
  10. #include <linux/slab.h>
  11. #include <linux/device.h>
  12. #include <linux/compiler.h>
  13. #include <linux/cpu.h>
  14. #include <linux/sched.h>
  15. #include <linux/pci.h>
  16. #include <asm/processor.h>
  17. #include <linux/smp.h>
  18. #include <asm/amd_nb.h>
  19. #include <asm/smp.h>
  20. #define LVL_1_INST 1
  21. #define LVL_1_DATA 2
  22. #define LVL_2 3
  23. #define LVL_3 4
  24. #define LVL_TRACE 5
  25. struct _cache_table {
  26. unsigned char descriptor;
  27. char cache_type;
  28. short size;
  29. };
  30. #define MB(x) ((x) * 1024)
  31. /* All the cache descriptor types we care about (no TLB or
  32. trace cache entries) */
  33. static const struct _cache_table __cpuinitconst cache_table[] =
  34. {
  35. { 0x06, LVL_1_INST, 8 }, /* 4-way set assoc, 32 byte line size */
  36. { 0x08, LVL_1_INST, 16 }, /* 4-way set assoc, 32 byte line size */
  37. { 0x09, LVL_1_INST, 32 }, /* 4-way set assoc, 64 byte line size */
  38. { 0x0a, LVL_1_DATA, 8 }, /* 2 way set assoc, 32 byte line size */
  39. { 0x0c, LVL_1_DATA, 16 }, /* 4-way set assoc, 32 byte line size */
  40. { 0x0d, LVL_1_DATA, 16 }, /* 4-way set assoc, 64 byte line size */
  41. { 0x0e, LVL_1_DATA, 24 }, /* 6-way set assoc, 64 byte line size */
  42. { 0x21, LVL_2, 256 }, /* 8-way set assoc, 64 byte line size */
  43. { 0x22, LVL_3, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  44. { 0x23, LVL_3, MB(1) }, /* 8-way set assoc, sectored cache, 64 byte line size */
  45. { 0x25, LVL_3, MB(2) }, /* 8-way set assoc, sectored cache, 64 byte line size */
  46. { 0x29, LVL_3, MB(4) }, /* 8-way set assoc, sectored cache, 64 byte line size */
  47. { 0x2c, LVL_1_DATA, 32 }, /* 8-way set assoc, 64 byte line size */
  48. { 0x30, LVL_1_INST, 32 }, /* 8-way set assoc, 64 byte line size */
  49. { 0x39, LVL_2, 128 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  50. { 0x3a, LVL_2, 192 }, /* 6-way set assoc, sectored cache, 64 byte line size */
  51. { 0x3b, LVL_2, 128 }, /* 2-way set assoc, sectored cache, 64 byte line size */
  52. { 0x3c, LVL_2, 256 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  53. { 0x3d, LVL_2, 384 }, /* 6-way set assoc, sectored cache, 64 byte line size */
  54. { 0x3e, LVL_2, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  55. { 0x3f, LVL_2, 256 }, /* 2-way set assoc, 64 byte line size */
  56. { 0x41, LVL_2, 128 }, /* 4-way set assoc, 32 byte line size */
  57. { 0x42, LVL_2, 256 }, /* 4-way set assoc, 32 byte line size */
  58. { 0x43, LVL_2, 512 }, /* 4-way set assoc, 32 byte line size */
  59. { 0x44, LVL_2, MB(1) }, /* 4-way set assoc, 32 byte line size */
  60. { 0x45, LVL_2, MB(2) }, /* 4-way set assoc, 32 byte line size */
  61. { 0x46, LVL_3, MB(4) }, /* 4-way set assoc, 64 byte line size */
  62. { 0x47, LVL_3, MB(8) }, /* 8-way set assoc, 64 byte line size */
  63. { 0x48, LVL_2, MB(3) }, /* 12-way set assoc, 64 byte line size */
  64. { 0x49, LVL_3, MB(4) }, /* 16-way set assoc, 64 byte line size */
  65. { 0x4a, LVL_3, MB(6) }, /* 12-way set assoc, 64 byte line size */
  66. { 0x4b, LVL_3, MB(8) }, /* 16-way set assoc, 64 byte line size */
  67. { 0x4c, LVL_3, MB(12) }, /* 12-way set assoc, 64 byte line size */
  68. { 0x4d, LVL_3, MB(16) }, /* 16-way set assoc, 64 byte line size */
  69. { 0x4e, LVL_2, MB(6) }, /* 24-way set assoc, 64 byte line size */
  70. { 0x60, LVL_1_DATA, 16 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  71. { 0x66, LVL_1_DATA, 8 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  72. { 0x67, LVL_1_DATA, 16 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  73. { 0x68, LVL_1_DATA, 32 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  74. { 0x70, LVL_TRACE, 12 }, /* 8-way set assoc */
  75. { 0x71, LVL_TRACE, 16 }, /* 8-way set assoc */
  76. { 0x72, LVL_TRACE, 32 }, /* 8-way set assoc */
  77. { 0x73, LVL_TRACE, 64 }, /* 8-way set assoc */
  78. { 0x78, LVL_2, MB(1) }, /* 4-way set assoc, 64 byte line size */
  79. { 0x79, LVL_2, 128 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  80. { 0x7a, LVL_2, 256 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  81. { 0x7b, LVL_2, 512 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  82. { 0x7c, LVL_2, MB(1) }, /* 8-way set assoc, sectored cache, 64 byte line size */
  83. { 0x7d, LVL_2, MB(2) }, /* 8-way set assoc, 64 byte line size */
  84. { 0x7f, LVL_2, 512 }, /* 2-way set assoc, 64 byte line size */
  85. { 0x80, LVL_2, 512 }, /* 8-way set assoc, 64 byte line size */
  86. { 0x82, LVL_2, 256 }, /* 8-way set assoc, 32 byte line size */
  87. { 0x83, LVL_2, 512 }, /* 8-way set assoc, 32 byte line size */
  88. { 0x84, LVL_2, MB(1) }, /* 8-way set assoc, 32 byte line size */
  89. { 0x85, LVL_2, MB(2) }, /* 8-way set assoc, 32 byte line size */
  90. { 0x86, LVL_2, 512 }, /* 4-way set assoc, 64 byte line size */
  91. { 0x87, LVL_2, MB(1) }, /* 8-way set assoc, 64 byte line size */
  92. { 0xd0, LVL_3, 512 }, /* 4-way set assoc, 64 byte line size */
  93. { 0xd1, LVL_3, MB(1) }, /* 4-way set assoc, 64 byte line size */
  94. { 0xd2, LVL_3, MB(2) }, /* 4-way set assoc, 64 byte line size */
  95. { 0xd6, LVL_3, MB(1) }, /* 8-way set assoc, 64 byte line size */
  96. { 0xd7, LVL_3, MB(2) }, /* 8-way set assoc, 64 byte line size */
  97. { 0xd8, LVL_3, MB(4) }, /* 12-way set assoc, 64 byte line size */
  98. { 0xdc, LVL_3, MB(2) }, /* 12-way set assoc, 64 byte line size */
  99. { 0xdd, LVL_3, MB(4) }, /* 12-way set assoc, 64 byte line size */
  100. { 0xde, LVL_3, MB(8) }, /* 12-way set assoc, 64 byte line size */
  101. { 0xe2, LVL_3, MB(2) }, /* 16-way set assoc, 64 byte line size */
  102. { 0xe3, LVL_3, MB(4) }, /* 16-way set assoc, 64 byte line size */
  103. { 0xe4, LVL_3, MB(8) }, /* 16-way set assoc, 64 byte line size */
  104. { 0xea, LVL_3, MB(12) }, /* 24-way set assoc, 64 byte line size */
  105. { 0xeb, LVL_3, MB(18) }, /* 24-way set assoc, 64 byte line size */
  106. { 0xec, LVL_3, MB(24) }, /* 24-way set assoc, 64 byte line size */
  107. { 0x00, 0, 0}
  108. };
  109. enum _cache_type {
  110. CACHE_TYPE_NULL = 0,
  111. CACHE_TYPE_DATA = 1,
  112. CACHE_TYPE_INST = 2,
  113. CACHE_TYPE_UNIFIED = 3
  114. };
  115. union _cpuid4_leaf_eax {
  116. struct {
  117. enum _cache_type type:5;
  118. unsigned int level:3;
  119. unsigned int is_self_initializing:1;
  120. unsigned int is_fully_associative:1;
  121. unsigned int reserved:4;
  122. unsigned int num_threads_sharing:12;
  123. unsigned int num_cores_on_die:6;
  124. } split;
  125. u32 full;
  126. };
  127. union _cpuid4_leaf_ebx {
  128. struct {
  129. unsigned int coherency_line_size:12;
  130. unsigned int physical_line_partition:10;
  131. unsigned int ways_of_associativity:10;
  132. } split;
  133. u32 full;
  134. };
  135. union _cpuid4_leaf_ecx {
  136. struct {
  137. unsigned int number_of_sets:32;
  138. } split;
  139. u32 full;
  140. };
  141. struct _cpuid4_info_regs {
  142. union _cpuid4_leaf_eax eax;
  143. union _cpuid4_leaf_ebx ebx;
  144. union _cpuid4_leaf_ecx ecx;
  145. unsigned long size;
  146. struct amd_northbridge *nb;
  147. };
  148. struct _cpuid4_info {
  149. struct _cpuid4_info_regs base;
  150. DECLARE_BITMAP(shared_cpu_map, NR_CPUS);
  151. };
  152. unsigned short num_cache_leaves;
  153. /* AMD doesn't have CPUID4. Emulate it here to report the same
  154. information to the user. This makes some assumptions about the machine:
  155. L2 not shared, no SMT etc. that is currently true on AMD CPUs.
  156. In theory the TLBs could be reported as fake type (they are in "dummy").
  157. Maybe later */
  158. union l1_cache {
  159. struct {
  160. unsigned line_size:8;
  161. unsigned lines_per_tag:8;
  162. unsigned assoc:8;
  163. unsigned size_in_kb:8;
  164. };
  165. unsigned val;
  166. };
  167. union l2_cache {
  168. struct {
  169. unsigned line_size:8;
  170. unsigned lines_per_tag:4;
  171. unsigned assoc:4;
  172. unsigned size_in_kb:16;
  173. };
  174. unsigned val;
  175. };
  176. union l3_cache {
  177. struct {
  178. unsigned line_size:8;
  179. unsigned lines_per_tag:4;
  180. unsigned assoc:4;
  181. unsigned res:2;
  182. unsigned size_encoded:14;
  183. };
  184. unsigned val;
  185. };
  186. static const unsigned short __cpuinitconst assocs[] = {
  187. [1] = 1,
  188. [2] = 2,
  189. [4] = 4,
  190. [6] = 8,
  191. [8] = 16,
  192. [0xa] = 32,
  193. [0xb] = 48,
  194. [0xc] = 64,
  195. [0xd] = 96,
  196. [0xe] = 128,
  197. [0xf] = 0xffff /* fully associative - no way to show this currently */
  198. };
  199. static const unsigned char __cpuinitconst levels[] = { 1, 1, 2, 3 };
  200. static const unsigned char __cpuinitconst types[] = { 1, 2, 3, 3 };
  201. static void __cpuinit
  202. amd_cpuid4(int leaf, union _cpuid4_leaf_eax *eax,
  203. union _cpuid4_leaf_ebx *ebx,
  204. union _cpuid4_leaf_ecx *ecx)
  205. {
  206. unsigned dummy;
  207. unsigned line_size, lines_per_tag, assoc, size_in_kb;
  208. union l1_cache l1i, l1d;
  209. union l2_cache l2;
  210. union l3_cache l3;
  211. union l1_cache *l1 = &l1d;
  212. eax->full = 0;
  213. ebx->full = 0;
  214. ecx->full = 0;
  215. cpuid(0x80000005, &dummy, &dummy, &l1d.val, &l1i.val);
  216. cpuid(0x80000006, &dummy, &dummy, &l2.val, &l3.val);
  217. switch (leaf) {
  218. case 1:
  219. l1 = &l1i;
  220. case 0:
  221. if (!l1->val)
  222. return;
  223. assoc = assocs[l1->assoc];
  224. line_size = l1->line_size;
  225. lines_per_tag = l1->lines_per_tag;
  226. size_in_kb = l1->size_in_kb;
  227. break;
  228. case 2:
  229. if (!l2.val)
  230. return;
  231. assoc = assocs[l2.assoc];
  232. line_size = l2.line_size;
  233. lines_per_tag = l2.lines_per_tag;
  234. /* cpu_data has errata corrections for K7 applied */
  235. size_in_kb = __this_cpu_read(cpu_info.x86_cache_size);
  236. break;
  237. case 3:
  238. if (!l3.val)
  239. return;
  240. assoc = assocs[l3.assoc];
  241. line_size = l3.line_size;
  242. lines_per_tag = l3.lines_per_tag;
  243. size_in_kb = l3.size_encoded * 512;
  244. if (boot_cpu_has(X86_FEATURE_AMD_DCM)) {
  245. size_in_kb = size_in_kb >> 1;
  246. assoc = assoc >> 1;
  247. }
  248. break;
  249. default:
  250. return;
  251. }
  252. eax->split.is_self_initializing = 1;
  253. eax->split.type = types[leaf];
  254. eax->split.level = levels[leaf];
  255. eax->split.num_threads_sharing = 0;
  256. eax->split.num_cores_on_die = __this_cpu_read(cpu_info.x86_max_cores) - 1;
  257. if (assoc == 0xffff)
  258. eax->split.is_fully_associative = 1;
  259. ebx->split.coherency_line_size = line_size - 1;
  260. ebx->split.ways_of_associativity = assoc - 1;
  261. ebx->split.physical_line_partition = lines_per_tag - 1;
  262. ecx->split.number_of_sets = (size_in_kb * 1024) / line_size /
  263. (ebx->split.ways_of_associativity + 1) - 1;
  264. }
  265. struct _cache_attr {
  266. struct attribute attr;
  267. ssize_t (*show)(struct _cpuid4_info *, char *, unsigned int);
  268. ssize_t (*store)(struct _cpuid4_info *, const char *, size_t count,
  269. unsigned int);
  270. };
  271. #ifdef CONFIG_AMD_NB
  272. /*
  273. * L3 cache descriptors
  274. */
  275. static void __cpuinit amd_calc_l3_indices(struct amd_northbridge *nb)
  276. {
  277. struct amd_l3_cache *l3 = &nb->l3_cache;
  278. unsigned int sc0, sc1, sc2, sc3;
  279. u32 val = 0;
  280. pci_read_config_dword(nb->misc, 0x1C4, &val);
  281. /* calculate subcache sizes */
  282. l3->subcaches[0] = sc0 = !(val & BIT(0));
  283. l3->subcaches[1] = sc1 = !(val & BIT(4));
  284. if (boot_cpu_data.x86 == 0x15) {
  285. l3->subcaches[0] = sc0 += !(val & BIT(1));
  286. l3->subcaches[1] = sc1 += !(val & BIT(5));
  287. }
  288. l3->subcaches[2] = sc2 = !(val & BIT(8)) + !(val & BIT(9));
  289. l3->subcaches[3] = sc3 = !(val & BIT(12)) + !(val & BIT(13));
  290. l3->indices = (max(max3(sc0, sc1, sc2), sc3) << 10) - 1;
  291. }
  292. static void __cpuinit amd_init_l3_cache(struct _cpuid4_info_regs *this_leaf, int index)
  293. {
  294. int node;
  295. /* only for L3, and not in virtualized environments */
  296. if (index < 3)
  297. return;
  298. node = amd_get_nb_id(smp_processor_id());
  299. this_leaf->nb = node_to_amd_nb(node);
  300. if (this_leaf->nb && !this_leaf->nb->l3_cache.indices)
  301. amd_calc_l3_indices(this_leaf->nb);
  302. }
  303. /*
  304. * check whether a slot used for disabling an L3 index is occupied.
  305. * @l3: L3 cache descriptor
  306. * @slot: slot number (0..1)
  307. *
  308. * @returns: the disabled index if used or negative value if slot free.
  309. */
  310. int amd_get_l3_disable_slot(struct amd_northbridge *nb, unsigned slot)
  311. {
  312. unsigned int reg = 0;
  313. pci_read_config_dword(nb->misc, 0x1BC + slot * 4, &reg);
  314. /* check whether this slot is activated already */
  315. if (reg & (3UL << 30))
  316. return reg & 0xfff;
  317. return -1;
  318. }
  319. static ssize_t show_cache_disable(struct _cpuid4_info *this_leaf, char *buf,
  320. unsigned int slot)
  321. {
  322. int index;
  323. if (!this_leaf->base.nb || !amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE))
  324. return -EINVAL;
  325. index = amd_get_l3_disable_slot(this_leaf->base.nb, slot);
  326. if (index >= 0)
  327. return sprintf(buf, "%d\n", index);
  328. return sprintf(buf, "FREE\n");
  329. }
  330. #define SHOW_CACHE_DISABLE(slot) \
  331. static ssize_t \
  332. show_cache_disable_##slot(struct _cpuid4_info *this_leaf, char *buf, \
  333. unsigned int cpu) \
  334. { \
  335. return show_cache_disable(this_leaf, buf, slot); \
  336. }
  337. SHOW_CACHE_DISABLE(0)
  338. SHOW_CACHE_DISABLE(1)
  339. static void amd_l3_disable_index(struct amd_northbridge *nb, int cpu,
  340. unsigned slot, unsigned long idx)
  341. {
  342. int i;
  343. idx |= BIT(30);
  344. /*
  345. * disable index in all 4 subcaches
  346. */
  347. for (i = 0; i < 4; i++) {
  348. u32 reg = idx | (i << 20);
  349. if (!nb->l3_cache.subcaches[i])
  350. continue;
  351. pci_write_config_dword(nb->misc, 0x1BC + slot * 4, reg);
  352. /*
  353. * We need to WBINVD on a core on the node containing the L3
  354. * cache which indices we disable therefore a simple wbinvd()
  355. * is not sufficient.
  356. */
  357. wbinvd_on_cpu(cpu);
  358. reg |= BIT(31);
  359. pci_write_config_dword(nb->misc, 0x1BC + slot * 4, reg);
  360. }
  361. }
  362. /*
  363. * disable a L3 cache index by using a disable-slot
  364. *
  365. * @l3: L3 cache descriptor
  366. * @cpu: A CPU on the node containing the L3 cache
  367. * @slot: slot number (0..1)
  368. * @index: index to disable
  369. *
  370. * @return: 0 on success, error status on failure
  371. */
  372. int amd_set_l3_disable_slot(struct amd_northbridge *nb, int cpu, unsigned slot,
  373. unsigned long index)
  374. {
  375. int ret = 0;
  376. /* check if @slot is already used or the index is already disabled */
  377. ret = amd_get_l3_disable_slot(nb, slot);
  378. if (ret >= 0)
  379. return -EEXIST;
  380. if (index > nb->l3_cache.indices)
  381. return -EINVAL;
  382. /* check whether the other slot has disabled the same index already */
  383. if (index == amd_get_l3_disable_slot(nb, !slot))
  384. return -EEXIST;
  385. amd_l3_disable_index(nb, cpu, slot, index);
  386. return 0;
  387. }
  388. static ssize_t store_cache_disable(struct _cpuid4_info *this_leaf,
  389. const char *buf, size_t count,
  390. unsigned int slot)
  391. {
  392. unsigned long val = 0;
  393. int cpu, err = 0;
  394. if (!capable(CAP_SYS_ADMIN))
  395. return -EPERM;
  396. if (!this_leaf->base.nb || !amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE))
  397. return -EINVAL;
  398. cpu = cpumask_first(to_cpumask(this_leaf->shared_cpu_map));
  399. if (strict_strtoul(buf, 10, &val) < 0)
  400. return -EINVAL;
  401. err = amd_set_l3_disable_slot(this_leaf->base.nb, cpu, slot, val);
  402. if (err) {
  403. if (err == -EEXIST)
  404. pr_warning("L3 slot %d in use/index already disabled!\n",
  405. slot);
  406. return err;
  407. }
  408. return count;
  409. }
  410. #define STORE_CACHE_DISABLE(slot) \
  411. static ssize_t \
  412. store_cache_disable_##slot(struct _cpuid4_info *this_leaf, \
  413. const char *buf, size_t count, \
  414. unsigned int cpu) \
  415. { \
  416. return store_cache_disable(this_leaf, buf, count, slot); \
  417. }
  418. STORE_CACHE_DISABLE(0)
  419. STORE_CACHE_DISABLE(1)
  420. static struct _cache_attr cache_disable_0 = __ATTR(cache_disable_0, 0644,
  421. show_cache_disable_0, store_cache_disable_0);
  422. static struct _cache_attr cache_disable_1 = __ATTR(cache_disable_1, 0644,
  423. show_cache_disable_1, store_cache_disable_1);
  424. static ssize_t
  425. show_subcaches(struct _cpuid4_info *this_leaf, char *buf, unsigned int cpu)
  426. {
  427. if (!this_leaf->base.nb || !amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
  428. return -EINVAL;
  429. return sprintf(buf, "%x\n", amd_get_subcaches(cpu));
  430. }
  431. static ssize_t
  432. store_subcaches(struct _cpuid4_info *this_leaf, const char *buf, size_t count,
  433. unsigned int cpu)
  434. {
  435. unsigned long val;
  436. if (!capable(CAP_SYS_ADMIN))
  437. return -EPERM;
  438. if (!this_leaf->base.nb || !amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
  439. return -EINVAL;
  440. if (strict_strtoul(buf, 16, &val) < 0)
  441. return -EINVAL;
  442. if (amd_set_subcaches(cpu, val))
  443. return -EINVAL;
  444. return count;
  445. }
  446. static struct _cache_attr subcaches =
  447. __ATTR(subcaches, 0644, show_subcaches, store_subcaches);
  448. #else /* CONFIG_AMD_NB */
  449. #define amd_init_l3_cache(x, y)
  450. #endif /* CONFIG_AMD_NB */
  451. static int
  452. __cpuinit cpuid4_cache_lookup_regs(int index,
  453. struct _cpuid4_info_regs *this_leaf)
  454. {
  455. union _cpuid4_leaf_eax eax;
  456. union _cpuid4_leaf_ebx ebx;
  457. union _cpuid4_leaf_ecx ecx;
  458. unsigned edx;
  459. if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
  460. amd_cpuid4(index, &eax, &ebx, &ecx);
  461. amd_init_l3_cache(this_leaf, index);
  462. } else {
  463. cpuid_count(4, index, &eax.full, &ebx.full, &ecx.full, &edx);
  464. }
  465. if (eax.split.type == CACHE_TYPE_NULL)
  466. return -EIO; /* better error ? */
  467. this_leaf->eax = eax;
  468. this_leaf->ebx = ebx;
  469. this_leaf->ecx = ecx;
  470. this_leaf->size = (ecx.split.number_of_sets + 1) *
  471. (ebx.split.coherency_line_size + 1) *
  472. (ebx.split.physical_line_partition + 1) *
  473. (ebx.split.ways_of_associativity + 1);
  474. return 0;
  475. }
  476. static int __cpuinit find_num_cache_leaves(struct cpuinfo_x86 *c)
  477. {
  478. unsigned int eax, ebx, ecx, edx, op;
  479. union _cpuid4_leaf_eax cache_eax;
  480. int i = -1;
  481. if (c->x86_vendor == X86_VENDOR_AMD)
  482. op = 0x8000001d;
  483. else
  484. op = 4;
  485. do {
  486. ++i;
  487. /* Do cpuid(op) loop to find out num_cache_leaves */
  488. cpuid_count(op, i, &eax, &ebx, &ecx, &edx);
  489. cache_eax.full = eax;
  490. } while (cache_eax.split.type != CACHE_TYPE_NULL);
  491. return i;
  492. }
  493. void __cpuinit init_amd_cacheinfo(struct cpuinfo_x86 *c)
  494. {
  495. if (cpu_has_topoext) {
  496. num_cache_leaves = find_num_cache_leaves(c);
  497. } else if (c->extended_cpuid_level >= 0x80000006) {
  498. if (cpuid_edx(0x80000006) & 0xf000)
  499. num_cache_leaves = 4;
  500. else
  501. num_cache_leaves = 3;
  502. }
  503. }
  504. unsigned int __cpuinit init_intel_cacheinfo(struct cpuinfo_x86 *c)
  505. {
  506. /* Cache sizes */
  507. unsigned int trace = 0, l1i = 0, l1d = 0, l2 = 0, l3 = 0;
  508. unsigned int new_l1d = 0, new_l1i = 0; /* Cache sizes from cpuid(4) */
  509. unsigned int new_l2 = 0, new_l3 = 0, i; /* Cache sizes from cpuid(4) */
  510. unsigned int l2_id = 0, l3_id = 0, num_threads_sharing, index_msb;
  511. #ifdef CONFIG_X86_HT
  512. unsigned int cpu = c->cpu_index;
  513. #endif
  514. if (c->cpuid_level > 3) {
  515. static int is_initialized;
  516. if (is_initialized == 0) {
  517. /* Init num_cache_leaves from boot CPU */
  518. num_cache_leaves = find_num_cache_leaves(c);
  519. is_initialized++;
  520. }
  521. /*
  522. * Whenever possible use cpuid(4), deterministic cache
  523. * parameters cpuid leaf to find the cache details
  524. */
  525. for (i = 0; i < num_cache_leaves; i++) {
  526. struct _cpuid4_info_regs this_leaf;
  527. int retval;
  528. retval = cpuid4_cache_lookup_regs(i, &this_leaf);
  529. if (retval >= 0) {
  530. switch (this_leaf.eax.split.level) {
  531. case 1:
  532. if (this_leaf.eax.split.type ==
  533. CACHE_TYPE_DATA)
  534. new_l1d = this_leaf.size/1024;
  535. else if (this_leaf.eax.split.type ==
  536. CACHE_TYPE_INST)
  537. new_l1i = this_leaf.size/1024;
  538. break;
  539. case 2:
  540. new_l2 = this_leaf.size/1024;
  541. num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
  542. index_msb = get_count_order(num_threads_sharing);
  543. l2_id = c->apicid & ~((1 << index_msb) - 1);
  544. break;
  545. case 3:
  546. new_l3 = this_leaf.size/1024;
  547. num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
  548. index_msb = get_count_order(
  549. num_threads_sharing);
  550. l3_id = c->apicid & ~((1 << index_msb) - 1);
  551. break;
  552. default:
  553. break;
  554. }
  555. }
  556. }
  557. }
  558. /*
  559. * Don't use cpuid2 if cpuid4 is supported. For P4, we use cpuid2 for
  560. * trace cache
  561. */
  562. if ((num_cache_leaves == 0 || c->x86 == 15) && c->cpuid_level > 1) {
  563. /* supports eax=2 call */
  564. int j, n;
  565. unsigned int regs[4];
  566. unsigned char *dp = (unsigned char *)regs;
  567. int only_trace = 0;
  568. if (num_cache_leaves != 0 && c->x86 == 15)
  569. only_trace = 1;
  570. /* Number of times to iterate */
  571. n = cpuid_eax(2) & 0xFF;
  572. for (i = 0 ; i < n ; i++) {
  573. cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
  574. /* If bit 31 is set, this is an unknown format */
  575. for (j = 0 ; j < 3 ; j++)
  576. if (regs[j] & (1 << 31))
  577. regs[j] = 0;
  578. /* Byte 0 is level count, not a descriptor */
  579. for (j = 1 ; j < 16 ; j++) {
  580. unsigned char des = dp[j];
  581. unsigned char k = 0;
  582. /* look up this descriptor in the table */
  583. while (cache_table[k].descriptor != 0) {
  584. if (cache_table[k].descriptor == des) {
  585. if (only_trace && cache_table[k].cache_type != LVL_TRACE)
  586. break;
  587. switch (cache_table[k].cache_type) {
  588. case LVL_1_INST:
  589. l1i += cache_table[k].size;
  590. break;
  591. case LVL_1_DATA:
  592. l1d += cache_table[k].size;
  593. break;
  594. case LVL_2:
  595. l2 += cache_table[k].size;
  596. break;
  597. case LVL_3:
  598. l3 += cache_table[k].size;
  599. break;
  600. case LVL_TRACE:
  601. trace += cache_table[k].size;
  602. break;
  603. }
  604. break;
  605. }
  606. k++;
  607. }
  608. }
  609. }
  610. }
  611. if (new_l1d)
  612. l1d = new_l1d;
  613. if (new_l1i)
  614. l1i = new_l1i;
  615. if (new_l2) {
  616. l2 = new_l2;
  617. #ifdef CONFIG_X86_HT
  618. per_cpu(cpu_llc_id, cpu) = l2_id;
  619. #endif
  620. }
  621. if (new_l3) {
  622. l3 = new_l3;
  623. #ifdef CONFIG_X86_HT
  624. per_cpu(cpu_llc_id, cpu) = l3_id;
  625. #endif
  626. }
  627. c->x86_cache_size = l3 ? l3 : (l2 ? l2 : (l1i+l1d));
  628. return l2;
  629. }
  630. #ifdef CONFIG_SYSFS
  631. /* pointer to _cpuid4_info array (for each cache leaf) */
  632. static DEFINE_PER_CPU(struct _cpuid4_info *, ici_cpuid4_info);
  633. #define CPUID4_INFO_IDX(x, y) (&((per_cpu(ici_cpuid4_info, x))[y]))
  634. #ifdef CONFIG_SMP
  635. static int __cpuinit cache_shared_amd_cpu_map_setup(unsigned int cpu, int index)
  636. {
  637. struct _cpuid4_info *this_leaf;
  638. int ret, i, sibling;
  639. struct cpuinfo_x86 *c = &cpu_data(cpu);
  640. ret = 0;
  641. if (index == 3) {
  642. ret = 1;
  643. for_each_cpu(i, cpu_llc_shared_mask(cpu)) {
  644. if (!per_cpu(ici_cpuid4_info, i))
  645. continue;
  646. this_leaf = CPUID4_INFO_IDX(i, index);
  647. for_each_cpu(sibling, cpu_llc_shared_mask(cpu)) {
  648. if (!cpu_online(sibling))
  649. continue;
  650. set_bit(sibling, this_leaf->shared_cpu_map);
  651. }
  652. }
  653. } else if ((c->x86 == 0x15) && ((index == 1) || (index == 2))) {
  654. ret = 1;
  655. for_each_cpu(i, cpu_sibling_mask(cpu)) {
  656. if (!per_cpu(ici_cpuid4_info, i))
  657. continue;
  658. this_leaf = CPUID4_INFO_IDX(i, index);
  659. for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
  660. if (!cpu_online(sibling))
  661. continue;
  662. set_bit(sibling, this_leaf->shared_cpu_map);
  663. }
  664. }
  665. }
  666. return ret;
  667. }
  668. static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu, int index)
  669. {
  670. struct _cpuid4_info *this_leaf, *sibling_leaf;
  671. unsigned long num_threads_sharing;
  672. int index_msb, i;
  673. struct cpuinfo_x86 *c = &cpu_data(cpu);
  674. if (c->x86_vendor == X86_VENDOR_AMD) {
  675. if (cache_shared_amd_cpu_map_setup(cpu, index))
  676. return;
  677. }
  678. this_leaf = CPUID4_INFO_IDX(cpu, index);
  679. num_threads_sharing = 1 + this_leaf->base.eax.split.num_threads_sharing;
  680. if (num_threads_sharing == 1)
  681. cpumask_set_cpu(cpu, to_cpumask(this_leaf->shared_cpu_map));
  682. else {
  683. index_msb = get_count_order(num_threads_sharing);
  684. for_each_online_cpu(i) {
  685. if (cpu_data(i).apicid >> index_msb ==
  686. c->apicid >> index_msb) {
  687. cpumask_set_cpu(i,
  688. to_cpumask(this_leaf->shared_cpu_map));
  689. if (i != cpu && per_cpu(ici_cpuid4_info, i)) {
  690. sibling_leaf =
  691. CPUID4_INFO_IDX(i, index);
  692. cpumask_set_cpu(cpu, to_cpumask(
  693. sibling_leaf->shared_cpu_map));
  694. }
  695. }
  696. }
  697. }
  698. }
  699. static void __cpuinit cache_remove_shared_cpu_map(unsigned int cpu, int index)
  700. {
  701. struct _cpuid4_info *this_leaf, *sibling_leaf;
  702. int sibling;
  703. this_leaf = CPUID4_INFO_IDX(cpu, index);
  704. for_each_cpu(sibling, to_cpumask(this_leaf->shared_cpu_map)) {
  705. sibling_leaf = CPUID4_INFO_IDX(sibling, index);
  706. cpumask_clear_cpu(cpu,
  707. to_cpumask(sibling_leaf->shared_cpu_map));
  708. }
  709. }
  710. #else
  711. static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu, int index)
  712. {
  713. }
  714. static void __cpuinit cache_remove_shared_cpu_map(unsigned int cpu, int index)
  715. {
  716. }
  717. #endif
  718. static void __cpuinit free_cache_attributes(unsigned int cpu)
  719. {
  720. int i;
  721. for (i = 0; i < num_cache_leaves; i++)
  722. cache_remove_shared_cpu_map(cpu, i);
  723. kfree(per_cpu(ici_cpuid4_info, cpu));
  724. per_cpu(ici_cpuid4_info, cpu) = NULL;
  725. }
  726. static void __cpuinit get_cpu_leaves(void *_retval)
  727. {
  728. int j, *retval = _retval, cpu = smp_processor_id();
  729. /* Do cpuid and store the results */
  730. for (j = 0; j < num_cache_leaves; j++) {
  731. struct _cpuid4_info *this_leaf = CPUID4_INFO_IDX(cpu, j);
  732. *retval = cpuid4_cache_lookup_regs(j, &this_leaf->base);
  733. if (unlikely(*retval < 0)) {
  734. int i;
  735. for (i = 0; i < j; i++)
  736. cache_remove_shared_cpu_map(cpu, i);
  737. break;
  738. }
  739. cache_shared_cpu_map_setup(cpu, j);
  740. }
  741. }
  742. static int __cpuinit detect_cache_attributes(unsigned int cpu)
  743. {
  744. int retval;
  745. if (num_cache_leaves == 0)
  746. return -ENOENT;
  747. per_cpu(ici_cpuid4_info, cpu) = kzalloc(
  748. sizeof(struct _cpuid4_info) * num_cache_leaves, GFP_KERNEL);
  749. if (per_cpu(ici_cpuid4_info, cpu) == NULL)
  750. return -ENOMEM;
  751. smp_call_function_single(cpu, get_cpu_leaves, &retval, true);
  752. if (retval) {
  753. kfree(per_cpu(ici_cpuid4_info, cpu));
  754. per_cpu(ici_cpuid4_info, cpu) = NULL;
  755. }
  756. return retval;
  757. }
  758. #include <linux/kobject.h>
  759. #include <linux/sysfs.h>
  760. #include <linux/cpu.h>
  761. /* pointer to kobject for cpuX/cache */
  762. static DEFINE_PER_CPU(struct kobject *, ici_cache_kobject);
  763. struct _index_kobject {
  764. struct kobject kobj;
  765. unsigned int cpu;
  766. unsigned short index;
  767. };
  768. /* pointer to array of kobjects for cpuX/cache/indexY */
  769. static DEFINE_PER_CPU(struct _index_kobject *, ici_index_kobject);
  770. #define INDEX_KOBJECT_PTR(x, y) (&((per_cpu(ici_index_kobject, x))[y]))
  771. #define show_one_plus(file_name, object, val) \
  772. static ssize_t show_##file_name(struct _cpuid4_info *this_leaf, char *buf, \
  773. unsigned int cpu) \
  774. { \
  775. return sprintf(buf, "%lu\n", (unsigned long)this_leaf->object + val); \
  776. }
  777. show_one_plus(level, base.eax.split.level, 0);
  778. show_one_plus(coherency_line_size, base.ebx.split.coherency_line_size, 1);
  779. show_one_plus(physical_line_partition, base.ebx.split.physical_line_partition, 1);
  780. show_one_plus(ways_of_associativity, base.ebx.split.ways_of_associativity, 1);
  781. show_one_plus(number_of_sets, base.ecx.split.number_of_sets, 1);
  782. static ssize_t show_size(struct _cpuid4_info *this_leaf, char *buf,
  783. unsigned int cpu)
  784. {
  785. return sprintf(buf, "%luK\n", this_leaf->base.size / 1024);
  786. }
  787. static ssize_t show_shared_cpu_map_func(struct _cpuid4_info *this_leaf,
  788. int type, char *buf)
  789. {
  790. ptrdiff_t len = PTR_ALIGN(buf + PAGE_SIZE - 1, PAGE_SIZE) - buf;
  791. int n = 0;
  792. if (len > 1) {
  793. const struct cpumask *mask;
  794. mask = to_cpumask(this_leaf->shared_cpu_map);
  795. n = type ?
  796. cpulist_scnprintf(buf, len-2, mask) :
  797. cpumask_scnprintf(buf, len-2, mask);
  798. buf[n++] = '\n';
  799. buf[n] = '\0';
  800. }
  801. return n;
  802. }
  803. static inline ssize_t show_shared_cpu_map(struct _cpuid4_info *leaf, char *buf,
  804. unsigned int cpu)
  805. {
  806. return show_shared_cpu_map_func(leaf, 0, buf);
  807. }
  808. static inline ssize_t show_shared_cpu_list(struct _cpuid4_info *leaf, char *buf,
  809. unsigned int cpu)
  810. {
  811. return show_shared_cpu_map_func(leaf, 1, buf);
  812. }
  813. static ssize_t show_type(struct _cpuid4_info *this_leaf, char *buf,
  814. unsigned int cpu)
  815. {
  816. switch (this_leaf->base.eax.split.type) {
  817. case CACHE_TYPE_DATA:
  818. return sprintf(buf, "Data\n");
  819. case CACHE_TYPE_INST:
  820. return sprintf(buf, "Instruction\n");
  821. case CACHE_TYPE_UNIFIED:
  822. return sprintf(buf, "Unified\n");
  823. default:
  824. return sprintf(buf, "Unknown\n");
  825. }
  826. }
  827. #define to_object(k) container_of(k, struct _index_kobject, kobj)
  828. #define to_attr(a) container_of(a, struct _cache_attr, attr)
  829. #define define_one_ro(_name) \
  830. static struct _cache_attr _name = \
  831. __ATTR(_name, 0444, show_##_name, NULL)
  832. define_one_ro(level);
  833. define_one_ro(type);
  834. define_one_ro(coherency_line_size);
  835. define_one_ro(physical_line_partition);
  836. define_one_ro(ways_of_associativity);
  837. define_one_ro(number_of_sets);
  838. define_one_ro(size);
  839. define_one_ro(shared_cpu_map);
  840. define_one_ro(shared_cpu_list);
  841. static struct attribute *default_attrs[] = {
  842. &type.attr,
  843. &level.attr,
  844. &coherency_line_size.attr,
  845. &physical_line_partition.attr,
  846. &ways_of_associativity.attr,
  847. &number_of_sets.attr,
  848. &size.attr,
  849. &shared_cpu_map.attr,
  850. &shared_cpu_list.attr,
  851. NULL
  852. };
  853. #ifdef CONFIG_AMD_NB
  854. static struct attribute ** __cpuinit amd_l3_attrs(void)
  855. {
  856. static struct attribute **attrs;
  857. int n;
  858. if (attrs)
  859. return attrs;
  860. n = ARRAY_SIZE(default_attrs);
  861. if (amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE))
  862. n += 2;
  863. if (amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
  864. n += 1;
  865. attrs = kzalloc(n * sizeof (struct attribute *), GFP_KERNEL);
  866. if (attrs == NULL)
  867. return attrs = default_attrs;
  868. for (n = 0; default_attrs[n]; n++)
  869. attrs[n] = default_attrs[n];
  870. if (amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE)) {
  871. attrs[n++] = &cache_disable_0.attr;
  872. attrs[n++] = &cache_disable_1.attr;
  873. }
  874. if (amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
  875. attrs[n++] = &subcaches.attr;
  876. return attrs;
  877. }
  878. #endif
  879. static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
  880. {
  881. struct _cache_attr *fattr = to_attr(attr);
  882. struct _index_kobject *this_leaf = to_object(kobj);
  883. ssize_t ret;
  884. ret = fattr->show ?
  885. fattr->show(CPUID4_INFO_IDX(this_leaf->cpu, this_leaf->index),
  886. buf, this_leaf->cpu) :
  887. 0;
  888. return ret;
  889. }
  890. static ssize_t store(struct kobject *kobj, struct attribute *attr,
  891. const char *buf, size_t count)
  892. {
  893. struct _cache_attr *fattr = to_attr(attr);
  894. struct _index_kobject *this_leaf = to_object(kobj);
  895. ssize_t ret;
  896. ret = fattr->store ?
  897. fattr->store(CPUID4_INFO_IDX(this_leaf->cpu, this_leaf->index),
  898. buf, count, this_leaf->cpu) :
  899. 0;
  900. return ret;
  901. }
  902. static const struct sysfs_ops sysfs_ops = {
  903. .show = show,
  904. .store = store,
  905. };
  906. static struct kobj_type ktype_cache = {
  907. .sysfs_ops = &sysfs_ops,
  908. .default_attrs = default_attrs,
  909. };
  910. static struct kobj_type ktype_percpu_entry = {
  911. .sysfs_ops = &sysfs_ops,
  912. };
  913. static void __cpuinit cpuid4_cache_sysfs_exit(unsigned int cpu)
  914. {
  915. kfree(per_cpu(ici_cache_kobject, cpu));
  916. kfree(per_cpu(ici_index_kobject, cpu));
  917. per_cpu(ici_cache_kobject, cpu) = NULL;
  918. per_cpu(ici_index_kobject, cpu) = NULL;
  919. free_cache_attributes(cpu);
  920. }
  921. static int __cpuinit cpuid4_cache_sysfs_init(unsigned int cpu)
  922. {
  923. int err;
  924. if (num_cache_leaves == 0)
  925. return -ENOENT;
  926. err = detect_cache_attributes(cpu);
  927. if (err)
  928. return err;
  929. /* Allocate all required memory */
  930. per_cpu(ici_cache_kobject, cpu) =
  931. kzalloc(sizeof(struct kobject), GFP_KERNEL);
  932. if (unlikely(per_cpu(ici_cache_kobject, cpu) == NULL))
  933. goto err_out;
  934. per_cpu(ici_index_kobject, cpu) = kzalloc(
  935. sizeof(struct _index_kobject) * num_cache_leaves, GFP_KERNEL);
  936. if (unlikely(per_cpu(ici_index_kobject, cpu) == NULL))
  937. goto err_out;
  938. return 0;
  939. err_out:
  940. cpuid4_cache_sysfs_exit(cpu);
  941. return -ENOMEM;
  942. }
  943. static DECLARE_BITMAP(cache_dev_map, NR_CPUS);
  944. /* Add/Remove cache interface for CPU device */
  945. static int __cpuinit cache_add_dev(struct device *dev)
  946. {
  947. unsigned int cpu = dev->id;
  948. unsigned long i, j;
  949. struct _index_kobject *this_object;
  950. struct _cpuid4_info *this_leaf;
  951. int retval;
  952. retval = cpuid4_cache_sysfs_init(cpu);
  953. if (unlikely(retval < 0))
  954. return retval;
  955. retval = kobject_init_and_add(per_cpu(ici_cache_kobject, cpu),
  956. &ktype_percpu_entry,
  957. &dev->kobj, "%s", "cache");
  958. if (retval < 0) {
  959. cpuid4_cache_sysfs_exit(cpu);
  960. return retval;
  961. }
  962. for (i = 0; i < num_cache_leaves; i++) {
  963. this_object = INDEX_KOBJECT_PTR(cpu, i);
  964. this_object->cpu = cpu;
  965. this_object->index = i;
  966. this_leaf = CPUID4_INFO_IDX(cpu, i);
  967. ktype_cache.default_attrs = default_attrs;
  968. #ifdef CONFIG_AMD_NB
  969. if (this_leaf->base.nb)
  970. ktype_cache.default_attrs = amd_l3_attrs();
  971. #endif
  972. retval = kobject_init_and_add(&(this_object->kobj),
  973. &ktype_cache,
  974. per_cpu(ici_cache_kobject, cpu),
  975. "index%1lu", i);
  976. if (unlikely(retval)) {
  977. for (j = 0; j < i; j++)
  978. kobject_put(&(INDEX_KOBJECT_PTR(cpu, j)->kobj));
  979. kobject_put(per_cpu(ici_cache_kobject, cpu));
  980. cpuid4_cache_sysfs_exit(cpu);
  981. return retval;
  982. }
  983. kobject_uevent(&(this_object->kobj), KOBJ_ADD);
  984. }
  985. cpumask_set_cpu(cpu, to_cpumask(cache_dev_map));
  986. kobject_uevent(per_cpu(ici_cache_kobject, cpu), KOBJ_ADD);
  987. return 0;
  988. }
  989. static void __cpuinit cache_remove_dev(struct device *dev)
  990. {
  991. unsigned int cpu = dev->id;
  992. unsigned long i;
  993. if (per_cpu(ici_cpuid4_info, cpu) == NULL)
  994. return;
  995. if (!cpumask_test_cpu(cpu, to_cpumask(cache_dev_map)))
  996. return;
  997. cpumask_clear_cpu(cpu, to_cpumask(cache_dev_map));
  998. for (i = 0; i < num_cache_leaves; i++)
  999. kobject_put(&(INDEX_KOBJECT_PTR(cpu, i)->kobj));
  1000. kobject_put(per_cpu(ici_cache_kobject, cpu));
  1001. cpuid4_cache_sysfs_exit(cpu);
  1002. }
  1003. static int __cpuinit cacheinfo_cpu_callback(struct notifier_block *nfb,
  1004. unsigned long action, void *hcpu)
  1005. {
  1006. unsigned int cpu = (unsigned long)hcpu;
  1007. struct device *dev;
  1008. dev = get_cpu_device(cpu);
  1009. switch (action) {
  1010. case CPU_ONLINE:
  1011. case CPU_ONLINE_FROZEN:
  1012. cache_add_dev(dev);
  1013. break;
  1014. case CPU_DEAD:
  1015. case CPU_DEAD_FROZEN:
  1016. cache_remove_dev(dev);
  1017. break;
  1018. }
  1019. return NOTIFY_OK;
  1020. }
  1021. static struct notifier_block __cpuinitdata cacheinfo_cpu_notifier = {
  1022. .notifier_call = cacheinfo_cpu_callback,
  1023. };
  1024. static int __cpuinit cache_sysfs_init(void)
  1025. {
  1026. int i;
  1027. if (num_cache_leaves == 0)
  1028. return 0;
  1029. for_each_online_cpu(i) {
  1030. int err;
  1031. struct device *dev = get_cpu_device(i);
  1032. err = cache_add_dev(dev);
  1033. if (err)
  1034. return err;
  1035. }
  1036. register_hotcpu_notifier(&cacheinfo_cpu_notifier);
  1037. return 0;
  1038. }
  1039. device_initcall(cache_sysfs_init);
  1040. #endif