kmemleak.c 46 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651
  1. /*
  2. * mm/kmemleak.c
  3. *
  4. * Copyright (C) 2008 ARM Limited
  5. * Written by Catalin Marinas <catalin.marinas@arm.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19. *
  20. *
  21. * For more information on the algorithm and kmemleak usage, please see
  22. * Documentation/kmemleak.txt.
  23. *
  24. * Notes on locking
  25. * ----------------
  26. *
  27. * The following locks and mutexes are used by kmemleak:
  28. *
  29. * - kmemleak_lock (rwlock): protects the object_list modifications and
  30. * accesses to the object_tree_root. The object_list is the main list
  31. * holding the metadata (struct kmemleak_object) for the allocated memory
  32. * blocks. The object_tree_root is a priority search tree used to look-up
  33. * metadata based on a pointer to the corresponding memory block. The
  34. * kmemleak_object structures are added to the object_list and
  35. * object_tree_root in the create_object() function called from the
  36. * kmemleak_alloc() callback and removed in delete_object() called from the
  37. * kmemleak_free() callback
  38. * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
  39. * the metadata (e.g. count) are protected by this lock. Note that some
  40. * members of this structure may be protected by other means (atomic or
  41. * kmemleak_lock). This lock is also held when scanning the corresponding
  42. * memory block to avoid the kernel freeing it via the kmemleak_free()
  43. * callback. This is less heavyweight than holding a global lock like
  44. * kmemleak_lock during scanning
  45. * - scan_mutex (mutex): ensures that only one thread may scan the memory for
  46. * unreferenced objects at a time. The gray_list contains the objects which
  47. * are already referenced or marked as false positives and need to be
  48. * scanned. This list is only modified during a scanning episode when the
  49. * scan_mutex is held. At the end of a scan, the gray_list is always empty.
  50. * Note that the kmemleak_object.use_count is incremented when an object is
  51. * added to the gray_list and therefore cannot be freed. This mutex also
  52. * prevents multiple users of the "kmemleak" debugfs file together with
  53. * modifications to the memory scanning parameters including the scan_thread
  54. * pointer
  55. *
  56. * The kmemleak_object structures have a use_count incremented or decremented
  57. * using the get_object()/put_object() functions. When the use_count becomes
  58. * 0, this count can no longer be incremented and put_object() schedules the
  59. * kmemleak_object freeing via an RCU callback. All calls to the get_object()
  60. * function must be protected by rcu_read_lock() to avoid accessing a freed
  61. * structure.
  62. */
  63. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  64. #include <linux/init.h>
  65. #include <linux/kernel.h>
  66. #include <linux/list.h>
  67. #include <linux/sched.h>
  68. #include <linux/jiffies.h>
  69. #include <linux/delay.h>
  70. #include <linux/module.h>
  71. #include <linux/kthread.h>
  72. #include <linux/prio_tree.h>
  73. #include <linux/gfp.h>
  74. #include <linux/fs.h>
  75. #include <linux/debugfs.h>
  76. #include <linux/seq_file.h>
  77. #include <linux/cpumask.h>
  78. #include <linux/spinlock.h>
  79. #include <linux/mutex.h>
  80. #include <linux/rcupdate.h>
  81. #include <linux/stacktrace.h>
  82. #include <linux/cache.h>
  83. #include <linux/percpu.h>
  84. #include <linux/hardirq.h>
  85. #include <linux/mmzone.h>
  86. #include <linux/slab.h>
  87. #include <linux/thread_info.h>
  88. #include <linux/err.h>
  89. #include <linux/uaccess.h>
  90. #include <linux/string.h>
  91. #include <linux/nodemask.h>
  92. #include <linux/mm.h>
  93. #include <asm/sections.h>
  94. #include <asm/processor.h>
  95. #include <asm/atomic.h>
  96. #include <linux/kmemleak.h>
  97. /*
  98. * Kmemleak configuration and common defines.
  99. */
  100. #define MAX_TRACE 16 /* stack trace length */
  101. #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
  102. #define SECS_FIRST_SCAN 60 /* delay before the first scan */
  103. #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
  104. #define GRAY_LIST_PASSES 25 /* maximum number of gray list scans */
  105. #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
  106. #define BYTES_PER_POINTER sizeof(void *)
  107. /* GFP bitmask for kmemleak internal allocations */
  108. #define GFP_KMEMLEAK_MASK (GFP_KERNEL | GFP_ATOMIC)
  109. /* scanning area inside a memory block */
  110. struct kmemleak_scan_area {
  111. struct hlist_node node;
  112. unsigned long offset;
  113. size_t length;
  114. };
  115. /*
  116. * Structure holding the metadata for each allocated memory block.
  117. * Modifications to such objects should be made while holding the
  118. * object->lock. Insertions or deletions from object_list, gray_list or
  119. * tree_node are already protected by the corresponding locks or mutex (see
  120. * the notes on locking above). These objects are reference-counted
  121. * (use_count) and freed using the RCU mechanism.
  122. */
  123. struct kmemleak_object {
  124. spinlock_t lock;
  125. unsigned long flags; /* object status flags */
  126. struct list_head object_list;
  127. struct list_head gray_list;
  128. struct prio_tree_node tree_node;
  129. struct rcu_head rcu; /* object_list lockless traversal */
  130. /* object usage count; object freed when use_count == 0 */
  131. atomic_t use_count;
  132. unsigned long pointer;
  133. size_t size;
  134. /* minimum number of a pointers found before it is considered leak */
  135. int min_count;
  136. /* the total number of pointers found pointing to this object */
  137. int count;
  138. /* memory ranges to be scanned inside an object (empty for all) */
  139. struct hlist_head area_list;
  140. unsigned long trace[MAX_TRACE];
  141. unsigned int trace_len;
  142. unsigned long jiffies; /* creation timestamp */
  143. pid_t pid; /* pid of the current task */
  144. char comm[TASK_COMM_LEN]; /* executable name */
  145. };
  146. /* flag representing the memory block allocation status */
  147. #define OBJECT_ALLOCATED (1 << 0)
  148. /* flag set after the first reporting of an unreference object */
  149. #define OBJECT_REPORTED (1 << 1)
  150. /* flag set to not scan the object */
  151. #define OBJECT_NO_SCAN (1 << 2)
  152. /* flag set on newly allocated objects */
  153. #define OBJECT_NEW (1 << 3)
  154. /* number of bytes to print per line; must be 16 or 32 */
  155. #define HEX_ROW_SIZE 16
  156. /* number of bytes to print at a time (1, 2, 4, 8) */
  157. #define HEX_GROUP_SIZE 1
  158. /* include ASCII after the hex output */
  159. #define HEX_ASCII 1
  160. /* max number of lines to be printed */
  161. #define HEX_MAX_LINES 2
  162. /* the list of all allocated objects */
  163. static LIST_HEAD(object_list);
  164. /* the list of gray-colored objects (see color_gray comment below) */
  165. static LIST_HEAD(gray_list);
  166. /* prio search tree for object boundaries */
  167. static struct prio_tree_root object_tree_root;
  168. /* rw_lock protecting the access to object_list and prio_tree_root */
  169. static DEFINE_RWLOCK(kmemleak_lock);
  170. /* allocation caches for kmemleak internal data */
  171. static struct kmem_cache *object_cache;
  172. static struct kmem_cache *scan_area_cache;
  173. /* set if tracing memory operations is enabled */
  174. static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
  175. /* set in the late_initcall if there were no errors */
  176. static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
  177. /* enables or disables early logging of the memory operations */
  178. static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
  179. /* set if a fata kmemleak error has occurred */
  180. static atomic_t kmemleak_error = ATOMIC_INIT(0);
  181. /* minimum and maximum address that may be valid pointers */
  182. static unsigned long min_addr = ULONG_MAX;
  183. static unsigned long max_addr;
  184. static struct task_struct *scan_thread;
  185. /* used to avoid reporting of recently allocated objects */
  186. static unsigned long jiffies_min_age;
  187. static unsigned long jiffies_last_scan;
  188. /* delay between automatic memory scannings */
  189. static signed long jiffies_scan_wait;
  190. /* enables or disables the task stacks scanning */
  191. static int kmemleak_stack_scan = 1;
  192. /* protects the memory scanning, parameters and debug/kmemleak file access */
  193. static DEFINE_MUTEX(scan_mutex);
  194. /*
  195. * Early object allocation/freeing logging. Kmemleak is initialized after the
  196. * kernel allocator. However, both the kernel allocator and kmemleak may
  197. * allocate memory blocks which need to be tracked. Kmemleak defines an
  198. * arbitrary buffer to hold the allocation/freeing information before it is
  199. * fully initialized.
  200. */
  201. /* kmemleak operation type for early logging */
  202. enum {
  203. KMEMLEAK_ALLOC,
  204. KMEMLEAK_FREE,
  205. KMEMLEAK_FREE_PART,
  206. KMEMLEAK_NOT_LEAK,
  207. KMEMLEAK_IGNORE,
  208. KMEMLEAK_SCAN_AREA,
  209. KMEMLEAK_NO_SCAN
  210. };
  211. /*
  212. * Structure holding the information passed to kmemleak callbacks during the
  213. * early logging.
  214. */
  215. struct early_log {
  216. int op_type; /* kmemleak operation type */
  217. const void *ptr; /* allocated/freed memory block */
  218. size_t size; /* memory block size */
  219. int min_count; /* minimum reference count */
  220. unsigned long offset; /* scan area offset */
  221. size_t length; /* scan area length */
  222. unsigned long trace[MAX_TRACE]; /* stack trace */
  223. unsigned int trace_len; /* stack trace length */
  224. };
  225. /* early logging buffer and current position */
  226. static struct early_log
  227. early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
  228. static int crt_early_log __initdata;
  229. static void kmemleak_disable(void);
  230. /*
  231. * Print a warning and dump the stack trace.
  232. */
  233. #define kmemleak_warn(x...) do { \
  234. pr_warning(x); \
  235. dump_stack(); \
  236. } while (0)
  237. /*
  238. * Macro invoked when a serious kmemleak condition occured and cannot be
  239. * recovered from. Kmemleak will be disabled and further allocation/freeing
  240. * tracing no longer available.
  241. */
  242. #define kmemleak_stop(x...) do { \
  243. kmemleak_warn(x); \
  244. kmemleak_disable(); \
  245. } while (0)
  246. /*
  247. * Printing of the objects hex dump to the seq file. The number of lines to be
  248. * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
  249. * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
  250. * with the object->lock held.
  251. */
  252. static void hex_dump_object(struct seq_file *seq,
  253. struct kmemleak_object *object)
  254. {
  255. const u8 *ptr = (const u8 *)object->pointer;
  256. int i, len, remaining;
  257. unsigned char linebuf[HEX_ROW_SIZE * 5];
  258. /* limit the number of lines to HEX_MAX_LINES */
  259. remaining = len =
  260. min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
  261. seq_printf(seq, " hex dump (first %d bytes):\n", len);
  262. for (i = 0; i < len; i += HEX_ROW_SIZE) {
  263. int linelen = min(remaining, HEX_ROW_SIZE);
  264. remaining -= HEX_ROW_SIZE;
  265. hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
  266. HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
  267. HEX_ASCII);
  268. seq_printf(seq, " %s\n", linebuf);
  269. }
  270. }
  271. /*
  272. * Object colors, encoded with count and min_count:
  273. * - white - orphan object, not enough references to it (count < min_count)
  274. * - gray - not orphan, not marked as false positive (min_count == 0) or
  275. * sufficient references to it (count >= min_count)
  276. * - black - ignore, it doesn't contain references (e.g. text section)
  277. * (min_count == -1). No function defined for this color.
  278. * Newly created objects don't have any color assigned (object->count == -1)
  279. * before the next memory scan when they become white.
  280. */
  281. static int color_white(const struct kmemleak_object *object)
  282. {
  283. return object->count != -1 && object->count < object->min_count;
  284. }
  285. static int color_gray(const struct kmemleak_object *object)
  286. {
  287. return object->min_count != -1 && object->count >= object->min_count;
  288. }
  289. static int color_black(const struct kmemleak_object *object)
  290. {
  291. return object->min_count == -1;
  292. }
  293. /*
  294. * Objects are considered unreferenced only if their color is white, they have
  295. * not be deleted and have a minimum age to avoid false positives caused by
  296. * pointers temporarily stored in CPU registers.
  297. */
  298. static int unreferenced_object(struct kmemleak_object *object)
  299. {
  300. return (object->flags & OBJECT_ALLOCATED) && color_white(object) &&
  301. time_before_eq(object->jiffies + jiffies_min_age,
  302. jiffies_last_scan);
  303. }
  304. /*
  305. * Printing of the unreferenced objects information to the seq file. The
  306. * print_unreferenced function must be called with the object->lock held.
  307. */
  308. static void print_unreferenced(struct seq_file *seq,
  309. struct kmemleak_object *object)
  310. {
  311. int i;
  312. seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
  313. object->pointer, object->size);
  314. seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu\n",
  315. object->comm, object->pid, object->jiffies);
  316. hex_dump_object(seq, object);
  317. seq_printf(seq, " backtrace:\n");
  318. for (i = 0; i < object->trace_len; i++) {
  319. void *ptr = (void *)object->trace[i];
  320. seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
  321. }
  322. }
  323. /*
  324. * Print the kmemleak_object information. This function is used mainly for
  325. * debugging special cases when kmemleak operations. It must be called with
  326. * the object->lock held.
  327. */
  328. static void dump_object_info(struct kmemleak_object *object)
  329. {
  330. struct stack_trace trace;
  331. trace.nr_entries = object->trace_len;
  332. trace.entries = object->trace;
  333. pr_notice("Object 0x%08lx (size %zu):\n",
  334. object->tree_node.start, object->size);
  335. pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
  336. object->comm, object->pid, object->jiffies);
  337. pr_notice(" min_count = %d\n", object->min_count);
  338. pr_notice(" count = %d\n", object->count);
  339. pr_notice(" flags = 0x%lx\n", object->flags);
  340. pr_notice(" backtrace:\n");
  341. print_stack_trace(&trace, 4);
  342. }
  343. /*
  344. * Look-up a memory block metadata (kmemleak_object) in the priority search
  345. * tree based on a pointer value. If alias is 0, only values pointing to the
  346. * beginning of the memory block are allowed. The kmemleak_lock must be held
  347. * when calling this function.
  348. */
  349. static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
  350. {
  351. struct prio_tree_node *node;
  352. struct prio_tree_iter iter;
  353. struct kmemleak_object *object;
  354. prio_tree_iter_init(&iter, &object_tree_root, ptr, ptr);
  355. node = prio_tree_next(&iter);
  356. if (node) {
  357. object = prio_tree_entry(node, struct kmemleak_object,
  358. tree_node);
  359. if (!alias && object->pointer != ptr) {
  360. kmemleak_warn("Found object by alias");
  361. object = NULL;
  362. }
  363. } else
  364. object = NULL;
  365. return object;
  366. }
  367. /*
  368. * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
  369. * that once an object's use_count reached 0, the RCU freeing was already
  370. * registered and the object should no longer be used. This function must be
  371. * called under the protection of rcu_read_lock().
  372. */
  373. static int get_object(struct kmemleak_object *object)
  374. {
  375. return atomic_inc_not_zero(&object->use_count);
  376. }
  377. /*
  378. * RCU callback to free a kmemleak_object.
  379. */
  380. static void free_object_rcu(struct rcu_head *rcu)
  381. {
  382. struct hlist_node *elem, *tmp;
  383. struct kmemleak_scan_area *area;
  384. struct kmemleak_object *object =
  385. container_of(rcu, struct kmemleak_object, rcu);
  386. /*
  387. * Once use_count is 0 (guaranteed by put_object), there is no other
  388. * code accessing this object, hence no need for locking.
  389. */
  390. hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) {
  391. hlist_del(elem);
  392. kmem_cache_free(scan_area_cache, area);
  393. }
  394. kmem_cache_free(object_cache, object);
  395. }
  396. /*
  397. * Decrement the object use_count. Once the count is 0, free the object using
  398. * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
  399. * delete_object() path, the delayed RCU freeing ensures that there is no
  400. * recursive call to the kernel allocator. Lock-less RCU object_list traversal
  401. * is also possible.
  402. */
  403. static void put_object(struct kmemleak_object *object)
  404. {
  405. if (!atomic_dec_and_test(&object->use_count))
  406. return;
  407. /* should only get here after delete_object was called */
  408. WARN_ON(object->flags & OBJECT_ALLOCATED);
  409. call_rcu(&object->rcu, free_object_rcu);
  410. }
  411. /*
  412. * Look up an object in the prio search tree and increase its use_count.
  413. */
  414. static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
  415. {
  416. unsigned long flags;
  417. struct kmemleak_object *object = NULL;
  418. rcu_read_lock();
  419. read_lock_irqsave(&kmemleak_lock, flags);
  420. if (ptr >= min_addr && ptr < max_addr)
  421. object = lookup_object(ptr, alias);
  422. read_unlock_irqrestore(&kmemleak_lock, flags);
  423. /* check whether the object is still available */
  424. if (object && !get_object(object))
  425. object = NULL;
  426. rcu_read_unlock();
  427. return object;
  428. }
  429. /*
  430. * Save stack trace to the given array of MAX_TRACE size.
  431. */
  432. static int __save_stack_trace(unsigned long *trace)
  433. {
  434. struct stack_trace stack_trace;
  435. stack_trace.max_entries = MAX_TRACE;
  436. stack_trace.nr_entries = 0;
  437. stack_trace.entries = trace;
  438. stack_trace.skip = 2;
  439. save_stack_trace(&stack_trace);
  440. return stack_trace.nr_entries;
  441. }
  442. /*
  443. * Create the metadata (struct kmemleak_object) corresponding to an allocated
  444. * memory block and add it to the object_list and object_tree_root.
  445. */
  446. static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
  447. int min_count, gfp_t gfp)
  448. {
  449. unsigned long flags;
  450. struct kmemleak_object *object;
  451. struct prio_tree_node *node;
  452. object = kmem_cache_alloc(object_cache, gfp & GFP_KMEMLEAK_MASK);
  453. if (!object) {
  454. kmemleak_stop("Cannot allocate a kmemleak_object structure\n");
  455. return NULL;
  456. }
  457. INIT_LIST_HEAD(&object->object_list);
  458. INIT_LIST_HEAD(&object->gray_list);
  459. INIT_HLIST_HEAD(&object->area_list);
  460. spin_lock_init(&object->lock);
  461. atomic_set(&object->use_count, 1);
  462. object->flags = OBJECT_ALLOCATED | OBJECT_NEW;
  463. object->pointer = ptr;
  464. object->size = size;
  465. object->min_count = min_count;
  466. object->count = -1; /* no color initially */
  467. object->jiffies = jiffies;
  468. /* task information */
  469. if (in_irq()) {
  470. object->pid = 0;
  471. strncpy(object->comm, "hardirq", sizeof(object->comm));
  472. } else if (in_softirq()) {
  473. object->pid = 0;
  474. strncpy(object->comm, "softirq", sizeof(object->comm));
  475. } else {
  476. object->pid = current->pid;
  477. /*
  478. * There is a small chance of a race with set_task_comm(),
  479. * however using get_task_comm() here may cause locking
  480. * dependency issues with current->alloc_lock. In the worst
  481. * case, the command line is not correct.
  482. */
  483. strncpy(object->comm, current->comm, sizeof(object->comm));
  484. }
  485. /* kernel backtrace */
  486. object->trace_len = __save_stack_trace(object->trace);
  487. INIT_PRIO_TREE_NODE(&object->tree_node);
  488. object->tree_node.start = ptr;
  489. object->tree_node.last = ptr + size - 1;
  490. write_lock_irqsave(&kmemleak_lock, flags);
  491. min_addr = min(min_addr, ptr);
  492. max_addr = max(max_addr, ptr + size);
  493. node = prio_tree_insert(&object_tree_root, &object->tree_node);
  494. /*
  495. * The code calling the kernel does not yet have the pointer to the
  496. * memory block to be able to free it. However, we still hold the
  497. * kmemleak_lock here in case parts of the kernel started freeing
  498. * random memory blocks.
  499. */
  500. if (node != &object->tree_node) {
  501. unsigned long flags;
  502. kmemleak_stop("Cannot insert 0x%lx into the object search tree "
  503. "(already existing)\n", ptr);
  504. object = lookup_object(ptr, 1);
  505. spin_lock_irqsave(&object->lock, flags);
  506. dump_object_info(object);
  507. spin_unlock_irqrestore(&object->lock, flags);
  508. goto out;
  509. }
  510. list_add_tail_rcu(&object->object_list, &object_list);
  511. out:
  512. write_unlock_irqrestore(&kmemleak_lock, flags);
  513. return object;
  514. }
  515. /*
  516. * Remove the metadata (struct kmemleak_object) for a memory block from the
  517. * object_list and object_tree_root and decrement its use_count.
  518. */
  519. static void __delete_object(struct kmemleak_object *object)
  520. {
  521. unsigned long flags;
  522. write_lock_irqsave(&kmemleak_lock, flags);
  523. prio_tree_remove(&object_tree_root, &object->tree_node);
  524. list_del_rcu(&object->object_list);
  525. write_unlock_irqrestore(&kmemleak_lock, flags);
  526. WARN_ON(!(object->flags & OBJECT_ALLOCATED));
  527. WARN_ON(atomic_read(&object->use_count) < 2);
  528. /*
  529. * Locking here also ensures that the corresponding memory block
  530. * cannot be freed when it is being scanned.
  531. */
  532. spin_lock_irqsave(&object->lock, flags);
  533. object->flags &= ~OBJECT_ALLOCATED;
  534. spin_unlock_irqrestore(&object->lock, flags);
  535. put_object(object);
  536. }
  537. /*
  538. * Look up the metadata (struct kmemleak_object) corresponding to ptr and
  539. * delete it.
  540. */
  541. static void delete_object_full(unsigned long ptr)
  542. {
  543. struct kmemleak_object *object;
  544. object = find_and_get_object(ptr, 0);
  545. if (!object) {
  546. #ifdef DEBUG
  547. kmemleak_warn("Freeing unknown object at 0x%08lx\n",
  548. ptr);
  549. #endif
  550. return;
  551. }
  552. __delete_object(object);
  553. put_object(object);
  554. }
  555. /*
  556. * Look up the metadata (struct kmemleak_object) corresponding to ptr and
  557. * delete it. If the memory block is partially freed, the function may create
  558. * additional metadata for the remaining parts of the block.
  559. */
  560. static void delete_object_part(unsigned long ptr, size_t size)
  561. {
  562. struct kmemleak_object *object;
  563. unsigned long start, end;
  564. object = find_and_get_object(ptr, 1);
  565. if (!object) {
  566. #ifdef DEBUG
  567. kmemleak_warn("Partially freeing unknown object at 0x%08lx "
  568. "(size %zu)\n", ptr, size);
  569. #endif
  570. return;
  571. }
  572. __delete_object(object);
  573. /*
  574. * Create one or two objects that may result from the memory block
  575. * split. Note that partial freeing is only done by free_bootmem() and
  576. * this happens before kmemleak_init() is called. The path below is
  577. * only executed during early log recording in kmemleak_init(), so
  578. * GFP_KERNEL is enough.
  579. */
  580. start = object->pointer;
  581. end = object->pointer + object->size;
  582. if (ptr > start)
  583. create_object(start, ptr - start, object->min_count,
  584. GFP_KERNEL);
  585. if (ptr + size < end)
  586. create_object(ptr + size, end - ptr - size, object->min_count,
  587. GFP_KERNEL);
  588. put_object(object);
  589. }
  590. /*
  591. * Make a object permanently as gray-colored so that it can no longer be
  592. * reported as a leak. This is used in general to mark a false positive.
  593. */
  594. static void make_gray_object(unsigned long ptr)
  595. {
  596. unsigned long flags;
  597. struct kmemleak_object *object;
  598. object = find_and_get_object(ptr, 0);
  599. if (!object) {
  600. kmemleak_warn("Graying unknown object at 0x%08lx\n", ptr);
  601. return;
  602. }
  603. spin_lock_irqsave(&object->lock, flags);
  604. object->min_count = 0;
  605. spin_unlock_irqrestore(&object->lock, flags);
  606. put_object(object);
  607. }
  608. /*
  609. * Mark the object as black-colored so that it is ignored from scans and
  610. * reporting.
  611. */
  612. static void make_black_object(unsigned long ptr)
  613. {
  614. unsigned long flags;
  615. struct kmemleak_object *object;
  616. object = find_and_get_object(ptr, 0);
  617. if (!object) {
  618. kmemleak_warn("Blacking unknown object at 0x%08lx\n", ptr);
  619. return;
  620. }
  621. spin_lock_irqsave(&object->lock, flags);
  622. object->min_count = -1;
  623. object->flags |= OBJECT_NO_SCAN;
  624. spin_unlock_irqrestore(&object->lock, flags);
  625. put_object(object);
  626. }
  627. /*
  628. * Add a scanning area to the object. If at least one such area is added,
  629. * kmemleak will only scan these ranges rather than the whole memory block.
  630. */
  631. static void add_scan_area(unsigned long ptr, unsigned long offset,
  632. size_t length, gfp_t gfp)
  633. {
  634. unsigned long flags;
  635. struct kmemleak_object *object;
  636. struct kmemleak_scan_area *area;
  637. object = find_and_get_object(ptr, 0);
  638. if (!object) {
  639. kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
  640. ptr);
  641. return;
  642. }
  643. area = kmem_cache_alloc(scan_area_cache, gfp & GFP_KMEMLEAK_MASK);
  644. if (!area) {
  645. kmemleak_warn("Cannot allocate a scan area\n");
  646. goto out;
  647. }
  648. spin_lock_irqsave(&object->lock, flags);
  649. if (offset + length > object->size) {
  650. kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
  651. dump_object_info(object);
  652. kmem_cache_free(scan_area_cache, area);
  653. goto out_unlock;
  654. }
  655. INIT_HLIST_NODE(&area->node);
  656. area->offset = offset;
  657. area->length = length;
  658. hlist_add_head(&area->node, &object->area_list);
  659. out_unlock:
  660. spin_unlock_irqrestore(&object->lock, flags);
  661. out:
  662. put_object(object);
  663. }
  664. /*
  665. * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
  666. * pointer. Such object will not be scanned by kmemleak but references to it
  667. * are searched.
  668. */
  669. static void object_no_scan(unsigned long ptr)
  670. {
  671. unsigned long flags;
  672. struct kmemleak_object *object;
  673. object = find_and_get_object(ptr, 0);
  674. if (!object) {
  675. kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
  676. return;
  677. }
  678. spin_lock_irqsave(&object->lock, flags);
  679. object->flags |= OBJECT_NO_SCAN;
  680. spin_unlock_irqrestore(&object->lock, flags);
  681. put_object(object);
  682. }
  683. /*
  684. * Log an early kmemleak_* call to the early_log buffer. These calls will be
  685. * processed later once kmemleak is fully initialized.
  686. */
  687. static void __init log_early(int op_type, const void *ptr, size_t size,
  688. int min_count, unsigned long offset, size_t length)
  689. {
  690. unsigned long flags;
  691. struct early_log *log;
  692. if (crt_early_log >= ARRAY_SIZE(early_log)) {
  693. pr_warning("Early log buffer exceeded\n");
  694. kmemleak_disable();
  695. return;
  696. }
  697. /*
  698. * There is no need for locking since the kernel is still in UP mode
  699. * at this stage. Disabling the IRQs is enough.
  700. */
  701. local_irq_save(flags);
  702. log = &early_log[crt_early_log];
  703. log->op_type = op_type;
  704. log->ptr = ptr;
  705. log->size = size;
  706. log->min_count = min_count;
  707. log->offset = offset;
  708. log->length = length;
  709. if (op_type == KMEMLEAK_ALLOC)
  710. log->trace_len = __save_stack_trace(log->trace);
  711. crt_early_log++;
  712. local_irq_restore(flags);
  713. }
  714. /*
  715. * Log an early allocated block and populate the stack trace.
  716. */
  717. static void early_alloc(struct early_log *log)
  718. {
  719. struct kmemleak_object *object;
  720. unsigned long flags;
  721. int i;
  722. if (!atomic_read(&kmemleak_enabled) || !log->ptr || IS_ERR(log->ptr))
  723. return;
  724. /*
  725. * RCU locking needed to ensure object is not freed via put_object().
  726. */
  727. rcu_read_lock();
  728. object = create_object((unsigned long)log->ptr, log->size,
  729. log->min_count, GFP_KERNEL);
  730. spin_lock_irqsave(&object->lock, flags);
  731. for (i = 0; i < log->trace_len; i++)
  732. object->trace[i] = log->trace[i];
  733. object->trace_len = log->trace_len;
  734. spin_unlock_irqrestore(&object->lock, flags);
  735. rcu_read_unlock();
  736. }
  737. /*
  738. * Memory allocation function callback. This function is called from the
  739. * kernel allocators when a new block is allocated (kmem_cache_alloc, kmalloc,
  740. * vmalloc etc.).
  741. */
  742. void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
  743. gfp_t gfp)
  744. {
  745. pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
  746. if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
  747. create_object((unsigned long)ptr, size, min_count, gfp);
  748. else if (atomic_read(&kmemleak_early_log))
  749. log_early(KMEMLEAK_ALLOC, ptr, size, min_count, 0, 0);
  750. }
  751. EXPORT_SYMBOL_GPL(kmemleak_alloc);
  752. /*
  753. * Memory freeing function callback. This function is called from the kernel
  754. * allocators when a block is freed (kmem_cache_free, kfree, vfree etc.).
  755. */
  756. void __ref kmemleak_free(const void *ptr)
  757. {
  758. pr_debug("%s(0x%p)\n", __func__, ptr);
  759. if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
  760. delete_object_full((unsigned long)ptr);
  761. else if (atomic_read(&kmemleak_early_log))
  762. log_early(KMEMLEAK_FREE, ptr, 0, 0, 0, 0);
  763. }
  764. EXPORT_SYMBOL_GPL(kmemleak_free);
  765. /*
  766. * Partial memory freeing function callback. This function is usually called
  767. * from bootmem allocator when (part of) a memory block is freed.
  768. */
  769. void __ref kmemleak_free_part(const void *ptr, size_t size)
  770. {
  771. pr_debug("%s(0x%p)\n", __func__, ptr);
  772. if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
  773. delete_object_part((unsigned long)ptr, size);
  774. else if (atomic_read(&kmemleak_early_log))
  775. log_early(KMEMLEAK_FREE_PART, ptr, size, 0, 0, 0);
  776. }
  777. EXPORT_SYMBOL_GPL(kmemleak_free_part);
  778. /*
  779. * Mark an already allocated memory block as a false positive. This will cause
  780. * the block to no longer be reported as leak and always be scanned.
  781. */
  782. void __ref kmemleak_not_leak(const void *ptr)
  783. {
  784. pr_debug("%s(0x%p)\n", __func__, ptr);
  785. if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
  786. make_gray_object((unsigned long)ptr);
  787. else if (atomic_read(&kmemleak_early_log))
  788. log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0, 0, 0);
  789. }
  790. EXPORT_SYMBOL(kmemleak_not_leak);
  791. /*
  792. * Ignore a memory block. This is usually done when it is known that the
  793. * corresponding block is not a leak and does not contain any references to
  794. * other allocated memory blocks.
  795. */
  796. void __ref kmemleak_ignore(const void *ptr)
  797. {
  798. pr_debug("%s(0x%p)\n", __func__, ptr);
  799. if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
  800. make_black_object((unsigned long)ptr);
  801. else if (atomic_read(&kmemleak_early_log))
  802. log_early(KMEMLEAK_IGNORE, ptr, 0, 0, 0, 0);
  803. }
  804. EXPORT_SYMBOL(kmemleak_ignore);
  805. /*
  806. * Limit the range to be scanned in an allocated memory block.
  807. */
  808. void __ref kmemleak_scan_area(const void *ptr, unsigned long offset,
  809. size_t length, gfp_t gfp)
  810. {
  811. pr_debug("%s(0x%p)\n", __func__, ptr);
  812. if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
  813. add_scan_area((unsigned long)ptr, offset, length, gfp);
  814. else if (atomic_read(&kmemleak_early_log))
  815. log_early(KMEMLEAK_SCAN_AREA, ptr, 0, 0, offset, length);
  816. }
  817. EXPORT_SYMBOL(kmemleak_scan_area);
  818. /*
  819. * Inform kmemleak not to scan the given memory block.
  820. */
  821. void __ref kmemleak_no_scan(const void *ptr)
  822. {
  823. pr_debug("%s(0x%p)\n", __func__, ptr);
  824. if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
  825. object_no_scan((unsigned long)ptr);
  826. else if (atomic_read(&kmemleak_early_log))
  827. log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0, 0, 0);
  828. }
  829. EXPORT_SYMBOL(kmemleak_no_scan);
  830. /*
  831. * Memory scanning is a long process and it needs to be interruptable. This
  832. * function checks whether such interrupt condition occured.
  833. */
  834. static int scan_should_stop(void)
  835. {
  836. if (!atomic_read(&kmemleak_enabled))
  837. return 1;
  838. /*
  839. * This function may be called from either process or kthread context,
  840. * hence the need to check for both stop conditions.
  841. */
  842. if (current->mm)
  843. return signal_pending(current);
  844. else
  845. return kthread_should_stop();
  846. return 0;
  847. }
  848. /*
  849. * Scan a memory block (exclusive range) for valid pointers and add those
  850. * found to the gray list.
  851. */
  852. static void scan_block(void *_start, void *_end,
  853. struct kmemleak_object *scanned, int allow_resched)
  854. {
  855. unsigned long *ptr;
  856. unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
  857. unsigned long *end = _end - (BYTES_PER_POINTER - 1);
  858. for (ptr = start; ptr < end; ptr++) {
  859. unsigned long flags;
  860. unsigned long pointer = *ptr;
  861. struct kmemleak_object *object;
  862. if (allow_resched)
  863. cond_resched();
  864. if (scan_should_stop())
  865. break;
  866. object = find_and_get_object(pointer, 1);
  867. if (!object)
  868. continue;
  869. if (object == scanned) {
  870. /* self referenced, ignore */
  871. put_object(object);
  872. continue;
  873. }
  874. /*
  875. * Avoid the lockdep recursive warning on object->lock being
  876. * previously acquired in scan_object(). These locks are
  877. * enclosed by scan_mutex.
  878. */
  879. spin_lock_irqsave_nested(&object->lock, flags,
  880. SINGLE_DEPTH_NESTING);
  881. if (!color_white(object)) {
  882. /* non-orphan, ignored or new */
  883. spin_unlock_irqrestore(&object->lock, flags);
  884. put_object(object);
  885. continue;
  886. }
  887. /*
  888. * Increase the object's reference count (number of pointers
  889. * to the memory block). If this count reaches the required
  890. * minimum, the object's color will become gray and it will be
  891. * added to the gray_list.
  892. */
  893. object->count++;
  894. if (color_gray(object))
  895. list_add_tail(&object->gray_list, &gray_list);
  896. else
  897. put_object(object);
  898. spin_unlock_irqrestore(&object->lock, flags);
  899. }
  900. }
  901. /*
  902. * Scan a memory block corresponding to a kmemleak_object. A condition is
  903. * that object->use_count >= 1.
  904. */
  905. static void scan_object(struct kmemleak_object *object)
  906. {
  907. struct kmemleak_scan_area *area;
  908. struct hlist_node *elem;
  909. unsigned long flags;
  910. /*
  911. * Once the object->lock is aquired, the corresponding memory block
  912. * cannot be freed (the same lock is aquired in delete_object).
  913. */
  914. spin_lock_irqsave(&object->lock, flags);
  915. if (object->flags & OBJECT_NO_SCAN)
  916. goto out;
  917. if (!(object->flags & OBJECT_ALLOCATED))
  918. /* already freed object */
  919. goto out;
  920. if (hlist_empty(&object->area_list)) {
  921. void *start = (void *)object->pointer;
  922. void *end = (void *)(object->pointer + object->size);
  923. while (start < end && (object->flags & OBJECT_ALLOCATED) &&
  924. !(object->flags & OBJECT_NO_SCAN)) {
  925. scan_block(start, min(start + MAX_SCAN_SIZE, end),
  926. object, 0);
  927. start += MAX_SCAN_SIZE;
  928. spin_unlock_irqrestore(&object->lock, flags);
  929. cond_resched();
  930. spin_lock_irqsave(&object->lock, flags);
  931. }
  932. } else
  933. hlist_for_each_entry(area, elem, &object->area_list, node)
  934. scan_block((void *)(object->pointer + area->offset),
  935. (void *)(object->pointer + area->offset
  936. + area->length), object, 0);
  937. out:
  938. spin_unlock_irqrestore(&object->lock, flags);
  939. }
  940. /*
  941. * Scan data sections and all the referenced memory blocks allocated via the
  942. * kernel's standard allocators. This function must be called with the
  943. * scan_mutex held.
  944. */
  945. static void kmemleak_scan(void)
  946. {
  947. unsigned long flags;
  948. struct kmemleak_object *object, *tmp;
  949. struct task_struct *task;
  950. int i;
  951. int new_leaks = 0;
  952. int gray_list_pass = 0;
  953. jiffies_last_scan = jiffies;
  954. /* prepare the kmemleak_object's */
  955. rcu_read_lock();
  956. list_for_each_entry_rcu(object, &object_list, object_list) {
  957. spin_lock_irqsave(&object->lock, flags);
  958. #ifdef DEBUG
  959. /*
  960. * With a few exceptions there should be a maximum of
  961. * 1 reference to any object at this point.
  962. */
  963. if (atomic_read(&object->use_count) > 1) {
  964. pr_debug("object->use_count = %d\n",
  965. atomic_read(&object->use_count));
  966. dump_object_info(object);
  967. }
  968. #endif
  969. /* reset the reference count (whiten the object) */
  970. object->count = 0;
  971. object->flags &= ~OBJECT_NEW;
  972. if (color_gray(object) && get_object(object))
  973. list_add_tail(&object->gray_list, &gray_list);
  974. spin_unlock_irqrestore(&object->lock, flags);
  975. }
  976. rcu_read_unlock();
  977. /* data/bss scanning */
  978. scan_block(_sdata, _edata, NULL, 1);
  979. scan_block(__bss_start, __bss_stop, NULL, 1);
  980. #ifdef CONFIG_SMP
  981. /* per-cpu sections scanning */
  982. for_each_possible_cpu(i)
  983. scan_block(__per_cpu_start + per_cpu_offset(i),
  984. __per_cpu_end + per_cpu_offset(i), NULL, 1);
  985. #endif
  986. /*
  987. * Struct page scanning for each node. The code below is not yet safe
  988. * with MEMORY_HOTPLUG.
  989. */
  990. for_each_online_node(i) {
  991. pg_data_t *pgdat = NODE_DATA(i);
  992. unsigned long start_pfn = pgdat->node_start_pfn;
  993. unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
  994. unsigned long pfn;
  995. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  996. struct page *page;
  997. if (!pfn_valid(pfn))
  998. continue;
  999. page = pfn_to_page(pfn);
  1000. /* only scan if page is in use */
  1001. if (page_count(page) == 0)
  1002. continue;
  1003. scan_block(page, page + 1, NULL, 1);
  1004. }
  1005. }
  1006. /*
  1007. * Scanning the task stacks may introduce false negatives and it is
  1008. * not enabled by default.
  1009. */
  1010. if (kmemleak_stack_scan) {
  1011. read_lock(&tasklist_lock);
  1012. for_each_process(task)
  1013. scan_block(task_stack_page(task),
  1014. task_stack_page(task) + THREAD_SIZE,
  1015. NULL, 0);
  1016. read_unlock(&tasklist_lock);
  1017. }
  1018. /*
  1019. * Scan the objects already referenced from the sections scanned
  1020. * above. More objects will be referenced and, if there are no memory
  1021. * leaks, all the objects will be scanned. The list traversal is safe
  1022. * for both tail additions and removals from inside the loop. The
  1023. * kmemleak objects cannot be freed from outside the loop because their
  1024. * use_count was increased.
  1025. */
  1026. repeat:
  1027. object = list_entry(gray_list.next, typeof(*object), gray_list);
  1028. while (&object->gray_list != &gray_list) {
  1029. cond_resched();
  1030. /* may add new objects to the list */
  1031. if (!scan_should_stop())
  1032. scan_object(object);
  1033. tmp = list_entry(object->gray_list.next, typeof(*object),
  1034. gray_list);
  1035. /* remove the object from the list and release it */
  1036. list_del(&object->gray_list);
  1037. put_object(object);
  1038. object = tmp;
  1039. }
  1040. if (scan_should_stop() || ++gray_list_pass >= GRAY_LIST_PASSES)
  1041. goto scan_end;
  1042. /*
  1043. * Check for new objects allocated during this scanning and add them
  1044. * to the gray list.
  1045. */
  1046. rcu_read_lock();
  1047. list_for_each_entry_rcu(object, &object_list, object_list) {
  1048. spin_lock_irqsave(&object->lock, flags);
  1049. if ((object->flags & OBJECT_NEW) && !color_black(object) &&
  1050. get_object(object)) {
  1051. object->flags &= ~OBJECT_NEW;
  1052. list_add_tail(&object->gray_list, &gray_list);
  1053. }
  1054. spin_unlock_irqrestore(&object->lock, flags);
  1055. }
  1056. rcu_read_unlock();
  1057. if (!list_empty(&gray_list))
  1058. goto repeat;
  1059. scan_end:
  1060. WARN_ON(!list_empty(&gray_list));
  1061. /*
  1062. * If scanning was stopped or new objects were being allocated at a
  1063. * higher rate than gray list scanning, do not report any new
  1064. * unreferenced objects.
  1065. */
  1066. if (scan_should_stop() || gray_list_pass >= GRAY_LIST_PASSES)
  1067. return;
  1068. /*
  1069. * Scanning result reporting.
  1070. */
  1071. rcu_read_lock();
  1072. list_for_each_entry_rcu(object, &object_list, object_list) {
  1073. spin_lock_irqsave(&object->lock, flags);
  1074. if (unreferenced_object(object) &&
  1075. !(object->flags & OBJECT_REPORTED)) {
  1076. object->flags |= OBJECT_REPORTED;
  1077. new_leaks++;
  1078. }
  1079. spin_unlock_irqrestore(&object->lock, flags);
  1080. }
  1081. rcu_read_unlock();
  1082. if (new_leaks)
  1083. pr_info("%d new suspected memory leaks (see "
  1084. "/sys/kernel/debug/kmemleak)\n", new_leaks);
  1085. }
  1086. /*
  1087. * Thread function performing automatic memory scanning. Unreferenced objects
  1088. * at the end of a memory scan are reported but only the first time.
  1089. */
  1090. static int kmemleak_scan_thread(void *arg)
  1091. {
  1092. static int first_run = 1;
  1093. pr_info("Automatic memory scanning thread started\n");
  1094. set_user_nice(current, 10);
  1095. /*
  1096. * Wait before the first scan to allow the system to fully initialize.
  1097. */
  1098. if (first_run) {
  1099. first_run = 0;
  1100. ssleep(SECS_FIRST_SCAN);
  1101. }
  1102. while (!kthread_should_stop()) {
  1103. signed long timeout = jiffies_scan_wait;
  1104. mutex_lock(&scan_mutex);
  1105. kmemleak_scan();
  1106. mutex_unlock(&scan_mutex);
  1107. /* wait before the next scan */
  1108. while (timeout && !kthread_should_stop())
  1109. timeout = schedule_timeout_interruptible(timeout);
  1110. }
  1111. pr_info("Automatic memory scanning thread ended\n");
  1112. return 0;
  1113. }
  1114. /*
  1115. * Start the automatic memory scanning thread. This function must be called
  1116. * with the scan_mutex held.
  1117. */
  1118. void start_scan_thread(void)
  1119. {
  1120. if (scan_thread)
  1121. return;
  1122. scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
  1123. if (IS_ERR(scan_thread)) {
  1124. pr_warning("Failed to create the scan thread\n");
  1125. scan_thread = NULL;
  1126. }
  1127. }
  1128. /*
  1129. * Stop the automatic memory scanning thread. This function must be called
  1130. * with the scan_mutex held.
  1131. */
  1132. void stop_scan_thread(void)
  1133. {
  1134. if (scan_thread) {
  1135. kthread_stop(scan_thread);
  1136. scan_thread = NULL;
  1137. }
  1138. }
  1139. /*
  1140. * Iterate over the object_list and return the first valid object at or after
  1141. * the required position with its use_count incremented. The function triggers
  1142. * a memory scanning when the pos argument points to the first position.
  1143. */
  1144. static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
  1145. {
  1146. struct kmemleak_object *object;
  1147. loff_t n = *pos;
  1148. int err;
  1149. err = mutex_lock_interruptible(&scan_mutex);
  1150. if (err < 0)
  1151. return ERR_PTR(err);
  1152. rcu_read_lock();
  1153. list_for_each_entry_rcu(object, &object_list, object_list) {
  1154. if (n-- > 0)
  1155. continue;
  1156. if (get_object(object))
  1157. goto out;
  1158. }
  1159. object = NULL;
  1160. out:
  1161. return object;
  1162. }
  1163. /*
  1164. * Return the next object in the object_list. The function decrements the
  1165. * use_count of the previous object and increases that of the next one.
  1166. */
  1167. static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1168. {
  1169. struct kmemleak_object *prev_obj = v;
  1170. struct kmemleak_object *next_obj = NULL;
  1171. struct list_head *n = &prev_obj->object_list;
  1172. ++(*pos);
  1173. list_for_each_continue_rcu(n, &object_list) {
  1174. next_obj = list_entry(n, struct kmemleak_object, object_list);
  1175. if (get_object(next_obj))
  1176. break;
  1177. }
  1178. put_object(prev_obj);
  1179. return next_obj;
  1180. }
  1181. /*
  1182. * Decrement the use_count of the last object required, if any.
  1183. */
  1184. static void kmemleak_seq_stop(struct seq_file *seq, void *v)
  1185. {
  1186. if (!IS_ERR(v)) {
  1187. /*
  1188. * kmemleak_seq_start may return ERR_PTR if the scan_mutex
  1189. * waiting was interrupted, so only release it if !IS_ERR.
  1190. */
  1191. rcu_read_unlock();
  1192. mutex_unlock(&scan_mutex);
  1193. if (v)
  1194. put_object(v);
  1195. }
  1196. }
  1197. /*
  1198. * Print the information for an unreferenced object to the seq file.
  1199. */
  1200. static int kmemleak_seq_show(struct seq_file *seq, void *v)
  1201. {
  1202. struct kmemleak_object *object = v;
  1203. unsigned long flags;
  1204. spin_lock_irqsave(&object->lock, flags);
  1205. if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
  1206. print_unreferenced(seq, object);
  1207. spin_unlock_irqrestore(&object->lock, flags);
  1208. return 0;
  1209. }
  1210. static const struct seq_operations kmemleak_seq_ops = {
  1211. .start = kmemleak_seq_start,
  1212. .next = kmemleak_seq_next,
  1213. .stop = kmemleak_seq_stop,
  1214. .show = kmemleak_seq_show,
  1215. };
  1216. static int kmemleak_open(struct inode *inode, struct file *file)
  1217. {
  1218. if (!atomic_read(&kmemleak_enabled))
  1219. return -EBUSY;
  1220. return seq_open(file, &kmemleak_seq_ops);
  1221. }
  1222. static int kmemleak_release(struct inode *inode, struct file *file)
  1223. {
  1224. return seq_release(inode, file);
  1225. }
  1226. static int dump_str_object_info(const char *str)
  1227. {
  1228. unsigned long flags;
  1229. struct kmemleak_object *object;
  1230. unsigned long addr;
  1231. addr= simple_strtoul(str, NULL, 0);
  1232. object = find_and_get_object(addr, 0);
  1233. if (!object) {
  1234. pr_info("Unknown object at 0x%08lx\n", addr);
  1235. return -EINVAL;
  1236. }
  1237. spin_lock_irqsave(&object->lock, flags);
  1238. dump_object_info(object);
  1239. spin_unlock_irqrestore(&object->lock, flags);
  1240. put_object(object);
  1241. return 0;
  1242. }
  1243. /*
  1244. * File write operation to configure kmemleak at run-time. The following
  1245. * commands can be written to the /sys/kernel/debug/kmemleak file:
  1246. * off - disable kmemleak (irreversible)
  1247. * stack=on - enable the task stacks scanning
  1248. * stack=off - disable the tasks stacks scanning
  1249. * scan=on - start the automatic memory scanning thread
  1250. * scan=off - stop the automatic memory scanning thread
  1251. * scan=... - set the automatic memory scanning period in seconds (0 to
  1252. * disable it)
  1253. * scan - trigger a memory scan
  1254. * dump=... - dump information about the object found at the given address
  1255. */
  1256. static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
  1257. size_t size, loff_t *ppos)
  1258. {
  1259. char buf[64];
  1260. int buf_size;
  1261. int ret;
  1262. buf_size = min(size, (sizeof(buf) - 1));
  1263. if (strncpy_from_user(buf, user_buf, buf_size) < 0)
  1264. return -EFAULT;
  1265. buf[buf_size] = 0;
  1266. ret = mutex_lock_interruptible(&scan_mutex);
  1267. if (ret < 0)
  1268. return ret;
  1269. if (strncmp(buf, "off", 3) == 0)
  1270. kmemleak_disable();
  1271. else if (strncmp(buf, "stack=on", 8) == 0)
  1272. kmemleak_stack_scan = 1;
  1273. else if (strncmp(buf, "stack=off", 9) == 0)
  1274. kmemleak_stack_scan = 0;
  1275. else if (strncmp(buf, "scan=on", 7) == 0)
  1276. start_scan_thread();
  1277. else if (strncmp(buf, "scan=off", 8) == 0)
  1278. stop_scan_thread();
  1279. else if (strncmp(buf, "scan=", 5) == 0) {
  1280. unsigned long secs;
  1281. ret = strict_strtoul(buf + 5, 0, &secs);
  1282. if (ret < 0)
  1283. goto out;
  1284. stop_scan_thread();
  1285. if (secs) {
  1286. jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
  1287. start_scan_thread();
  1288. }
  1289. } else if (strncmp(buf, "scan", 4) == 0)
  1290. kmemleak_scan();
  1291. else if (strncmp(buf, "dump=", 5) == 0)
  1292. ret = dump_str_object_info(buf + 5);
  1293. else
  1294. ret = -EINVAL;
  1295. out:
  1296. mutex_unlock(&scan_mutex);
  1297. if (ret < 0)
  1298. return ret;
  1299. /* ignore the rest of the buffer, only one command at a time */
  1300. *ppos += size;
  1301. return size;
  1302. }
  1303. static const struct file_operations kmemleak_fops = {
  1304. .owner = THIS_MODULE,
  1305. .open = kmemleak_open,
  1306. .read = seq_read,
  1307. .write = kmemleak_write,
  1308. .llseek = seq_lseek,
  1309. .release = kmemleak_release,
  1310. };
  1311. /*
  1312. * Perform the freeing of the kmemleak internal objects after waiting for any
  1313. * current memory scan to complete.
  1314. */
  1315. static int kmemleak_cleanup_thread(void *arg)
  1316. {
  1317. struct kmemleak_object *object;
  1318. mutex_lock(&scan_mutex);
  1319. stop_scan_thread();
  1320. rcu_read_lock();
  1321. list_for_each_entry_rcu(object, &object_list, object_list)
  1322. delete_object_full(object->pointer);
  1323. rcu_read_unlock();
  1324. mutex_unlock(&scan_mutex);
  1325. return 0;
  1326. }
  1327. /*
  1328. * Start the clean-up thread.
  1329. */
  1330. static void kmemleak_cleanup(void)
  1331. {
  1332. struct task_struct *cleanup_thread;
  1333. cleanup_thread = kthread_run(kmemleak_cleanup_thread, NULL,
  1334. "kmemleak-clean");
  1335. if (IS_ERR(cleanup_thread))
  1336. pr_warning("Failed to create the clean-up thread\n");
  1337. }
  1338. /*
  1339. * Disable kmemleak. No memory allocation/freeing will be traced once this
  1340. * function is called. Disabling kmemleak is an irreversible operation.
  1341. */
  1342. static void kmemleak_disable(void)
  1343. {
  1344. /* atomically check whether it was already invoked */
  1345. if (atomic_cmpxchg(&kmemleak_error, 0, 1))
  1346. return;
  1347. /* stop any memory operation tracing */
  1348. atomic_set(&kmemleak_early_log, 0);
  1349. atomic_set(&kmemleak_enabled, 0);
  1350. /* check whether it is too early for a kernel thread */
  1351. if (atomic_read(&kmemleak_initialized))
  1352. kmemleak_cleanup();
  1353. pr_info("Kernel memory leak detector disabled\n");
  1354. }
  1355. /*
  1356. * Allow boot-time kmemleak disabling (enabled by default).
  1357. */
  1358. static int kmemleak_boot_config(char *str)
  1359. {
  1360. if (!str)
  1361. return -EINVAL;
  1362. if (strcmp(str, "off") == 0)
  1363. kmemleak_disable();
  1364. else if (strcmp(str, "on") != 0)
  1365. return -EINVAL;
  1366. return 0;
  1367. }
  1368. early_param("kmemleak", kmemleak_boot_config);
  1369. /*
  1370. * Kmemleak initialization.
  1371. */
  1372. void __init kmemleak_init(void)
  1373. {
  1374. int i;
  1375. unsigned long flags;
  1376. jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
  1377. jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
  1378. object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
  1379. scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
  1380. INIT_PRIO_TREE_ROOT(&object_tree_root);
  1381. /* the kernel is still in UP mode, so disabling the IRQs is enough */
  1382. local_irq_save(flags);
  1383. if (!atomic_read(&kmemleak_error)) {
  1384. atomic_set(&kmemleak_enabled, 1);
  1385. atomic_set(&kmemleak_early_log, 0);
  1386. }
  1387. local_irq_restore(flags);
  1388. /*
  1389. * This is the point where tracking allocations is safe. Automatic
  1390. * scanning is started during the late initcall. Add the early logged
  1391. * callbacks to the kmemleak infrastructure.
  1392. */
  1393. for (i = 0; i < crt_early_log; i++) {
  1394. struct early_log *log = &early_log[i];
  1395. switch (log->op_type) {
  1396. case KMEMLEAK_ALLOC:
  1397. early_alloc(log);
  1398. break;
  1399. case KMEMLEAK_FREE:
  1400. kmemleak_free(log->ptr);
  1401. break;
  1402. case KMEMLEAK_FREE_PART:
  1403. kmemleak_free_part(log->ptr, log->size);
  1404. break;
  1405. case KMEMLEAK_NOT_LEAK:
  1406. kmemleak_not_leak(log->ptr);
  1407. break;
  1408. case KMEMLEAK_IGNORE:
  1409. kmemleak_ignore(log->ptr);
  1410. break;
  1411. case KMEMLEAK_SCAN_AREA:
  1412. kmemleak_scan_area(log->ptr, log->offset, log->length,
  1413. GFP_KERNEL);
  1414. break;
  1415. case KMEMLEAK_NO_SCAN:
  1416. kmemleak_no_scan(log->ptr);
  1417. break;
  1418. default:
  1419. WARN_ON(1);
  1420. }
  1421. }
  1422. }
  1423. /*
  1424. * Late initialization function.
  1425. */
  1426. static int __init kmemleak_late_init(void)
  1427. {
  1428. struct dentry *dentry;
  1429. atomic_set(&kmemleak_initialized, 1);
  1430. if (atomic_read(&kmemleak_error)) {
  1431. /*
  1432. * Some error occured and kmemleak was disabled. There is a
  1433. * small chance that kmemleak_disable() was called immediately
  1434. * after setting kmemleak_initialized and we may end up with
  1435. * two clean-up threads but serialized by scan_mutex.
  1436. */
  1437. kmemleak_cleanup();
  1438. return -ENOMEM;
  1439. }
  1440. dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
  1441. &kmemleak_fops);
  1442. if (!dentry)
  1443. pr_warning("Failed to create the debugfs kmemleak file\n");
  1444. mutex_lock(&scan_mutex);
  1445. start_scan_thread();
  1446. mutex_unlock(&scan_mutex);
  1447. pr_info("Kernel memory leak detector initialized\n");
  1448. return 0;
  1449. }
  1450. late_initcall(kmemleak_late_init);