smp.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729
  1. /*
  2. * SMP support for ppc.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
  5. * deal of code from the sparc and intel versions.
  6. *
  7. * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
  8. *
  9. * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
  10. * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
  11. *
  12. * This program is free software; you can redistribute it and/or
  13. * modify it under the terms of the GNU General Public License
  14. * as published by the Free Software Foundation; either version
  15. * 2 of the License, or (at your option) any later version.
  16. */
  17. #undef DEBUG
  18. #include <linux/kernel.h>
  19. #include <linux/export.h>
  20. #include <linux/sched.h>
  21. #include <linux/smp.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/delay.h>
  24. #include <linux/init.h>
  25. #include <linux/spinlock.h>
  26. #include <linux/cache.h>
  27. #include <linux/err.h>
  28. #include <linux/device.h>
  29. #include <linux/cpu.h>
  30. #include <linux/notifier.h>
  31. #include <linux/topology.h>
  32. #include <asm/ptrace.h>
  33. #include <linux/atomic.h>
  34. #include <asm/irq.h>
  35. #include <asm/page.h>
  36. #include <asm/pgtable.h>
  37. #include <asm/prom.h>
  38. #include <asm/smp.h>
  39. #include <asm/time.h>
  40. #include <asm/machdep.h>
  41. #include <asm/cputhreads.h>
  42. #include <asm/cputable.h>
  43. #include <asm/mpic.h>
  44. #include <asm/vdso_datapage.h>
  45. #ifdef CONFIG_PPC64
  46. #include <asm/paca.h>
  47. #endif
  48. #include <asm/vdso.h>
  49. #include <asm/debug.h>
  50. #ifdef DEBUG
  51. #include <asm/udbg.h>
  52. #define DBG(fmt...) udbg_printf(fmt)
  53. #else
  54. #define DBG(fmt...)
  55. #endif
  56. #ifdef CONFIG_HOTPLUG_CPU
  57. /* State of each CPU during hotplug phases */
  58. static DEFINE_PER_CPU(int, cpu_state) = { 0 };
  59. #endif
  60. struct thread_info *secondary_ti;
  61. DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
  62. DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
  63. EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  64. EXPORT_PER_CPU_SYMBOL(cpu_core_map);
  65. /* SMP operations for this machine */
  66. struct smp_ops_t *smp_ops;
  67. /* Can't be static due to PowerMac hackery */
  68. volatile unsigned int cpu_callin_map[NR_CPUS];
  69. int smt_enabled_at_boot = 1;
  70. static void (*crash_ipi_function_ptr)(struct pt_regs *) = NULL;
  71. #ifdef CONFIG_PPC64
  72. int __devinit smp_generic_kick_cpu(int nr)
  73. {
  74. BUG_ON(nr < 0 || nr >= NR_CPUS);
  75. /*
  76. * The processor is currently spinning, waiting for the
  77. * cpu_start field to become non-zero After we set cpu_start,
  78. * the processor will continue on to secondary_start
  79. */
  80. if (!paca[nr].cpu_start) {
  81. paca[nr].cpu_start = 1;
  82. smp_mb();
  83. return 0;
  84. }
  85. #ifdef CONFIG_HOTPLUG_CPU
  86. /*
  87. * Ok it's not there, so it might be soft-unplugged, let's
  88. * try to bring it back
  89. */
  90. per_cpu(cpu_state, nr) = CPU_UP_PREPARE;
  91. smp_wmb();
  92. smp_send_reschedule(nr);
  93. #endif /* CONFIG_HOTPLUG_CPU */
  94. return 0;
  95. }
  96. #endif /* CONFIG_PPC64 */
  97. static irqreturn_t call_function_action(int irq, void *data)
  98. {
  99. generic_smp_call_function_interrupt();
  100. return IRQ_HANDLED;
  101. }
  102. static irqreturn_t reschedule_action(int irq, void *data)
  103. {
  104. scheduler_ipi();
  105. return IRQ_HANDLED;
  106. }
  107. static irqreturn_t call_function_single_action(int irq, void *data)
  108. {
  109. generic_smp_call_function_single_interrupt();
  110. return IRQ_HANDLED;
  111. }
  112. static irqreturn_t debug_ipi_action(int irq, void *data)
  113. {
  114. if (crash_ipi_function_ptr) {
  115. crash_ipi_function_ptr(get_irq_regs());
  116. return IRQ_HANDLED;
  117. }
  118. #ifdef CONFIG_DEBUGGER
  119. debugger_ipi(get_irq_regs());
  120. #endif /* CONFIG_DEBUGGER */
  121. return IRQ_HANDLED;
  122. }
  123. static irq_handler_t smp_ipi_action[] = {
  124. [PPC_MSG_CALL_FUNCTION] = call_function_action,
  125. [PPC_MSG_RESCHEDULE] = reschedule_action,
  126. [PPC_MSG_CALL_FUNC_SINGLE] = call_function_single_action,
  127. [PPC_MSG_DEBUGGER_BREAK] = debug_ipi_action,
  128. };
  129. const char *smp_ipi_name[] = {
  130. [PPC_MSG_CALL_FUNCTION] = "ipi call function",
  131. [PPC_MSG_RESCHEDULE] = "ipi reschedule",
  132. [PPC_MSG_CALL_FUNC_SINGLE] = "ipi call function single",
  133. [PPC_MSG_DEBUGGER_BREAK] = "ipi debugger",
  134. };
  135. /* optional function to request ipi, for controllers with >= 4 ipis */
  136. int smp_request_message_ipi(int virq, int msg)
  137. {
  138. int err;
  139. if (msg < 0 || msg > PPC_MSG_DEBUGGER_BREAK) {
  140. return -EINVAL;
  141. }
  142. #if !defined(CONFIG_DEBUGGER) && !defined(CONFIG_KEXEC)
  143. if (msg == PPC_MSG_DEBUGGER_BREAK) {
  144. return 1;
  145. }
  146. #endif
  147. err = request_irq(virq, smp_ipi_action[msg],
  148. IRQF_PERCPU | IRQF_NO_THREAD,
  149. smp_ipi_name[msg], 0);
  150. WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
  151. virq, smp_ipi_name[msg], err);
  152. return err;
  153. }
  154. #ifdef CONFIG_PPC_SMP_MUXED_IPI
  155. struct cpu_messages {
  156. int messages; /* current messages */
  157. unsigned long data; /* data for cause ipi */
  158. };
  159. static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
  160. void smp_muxed_ipi_set_data(int cpu, unsigned long data)
  161. {
  162. struct cpu_messages *info = &per_cpu(ipi_message, cpu);
  163. info->data = data;
  164. }
  165. void smp_muxed_ipi_message_pass(int cpu, int msg)
  166. {
  167. struct cpu_messages *info = &per_cpu(ipi_message, cpu);
  168. char *message = (char *)&info->messages;
  169. /*
  170. * Order previous accesses before accesses in the IPI handler.
  171. */
  172. smp_mb();
  173. message[msg] = 1;
  174. /*
  175. * cause_ipi functions are required to include a full barrier
  176. * before doing whatever causes the IPI.
  177. */
  178. smp_ops->cause_ipi(cpu, info->data);
  179. }
  180. irqreturn_t smp_ipi_demux(void)
  181. {
  182. struct cpu_messages *info = &__get_cpu_var(ipi_message);
  183. unsigned int all;
  184. mb(); /* order any irq clear */
  185. do {
  186. all = xchg(&info->messages, 0);
  187. #ifdef __BIG_ENDIAN
  188. if (all & (1 << (24 - 8 * PPC_MSG_CALL_FUNCTION)))
  189. generic_smp_call_function_interrupt();
  190. if (all & (1 << (24 - 8 * PPC_MSG_RESCHEDULE)))
  191. scheduler_ipi();
  192. if (all & (1 << (24 - 8 * PPC_MSG_CALL_FUNC_SINGLE)))
  193. generic_smp_call_function_single_interrupt();
  194. if (all & (1 << (24 - 8 * PPC_MSG_DEBUGGER_BREAK)))
  195. debug_ipi_action(0, NULL);
  196. #else
  197. #error Unsupported ENDIAN
  198. #endif
  199. } while (info->messages);
  200. return IRQ_HANDLED;
  201. }
  202. #endif /* CONFIG_PPC_SMP_MUXED_IPI */
  203. static inline void do_message_pass(int cpu, int msg)
  204. {
  205. if (smp_ops->message_pass)
  206. smp_ops->message_pass(cpu, msg);
  207. #ifdef CONFIG_PPC_SMP_MUXED_IPI
  208. else
  209. smp_muxed_ipi_message_pass(cpu, msg);
  210. #endif
  211. }
  212. void smp_send_reschedule(int cpu)
  213. {
  214. if (likely(smp_ops))
  215. do_message_pass(cpu, PPC_MSG_RESCHEDULE);
  216. }
  217. EXPORT_SYMBOL_GPL(smp_send_reschedule);
  218. void arch_send_call_function_single_ipi(int cpu)
  219. {
  220. do_message_pass(cpu, PPC_MSG_CALL_FUNC_SINGLE);
  221. }
  222. void arch_send_call_function_ipi_mask(const struct cpumask *mask)
  223. {
  224. unsigned int cpu;
  225. for_each_cpu(cpu, mask)
  226. do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
  227. }
  228. #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
  229. void smp_send_debugger_break(void)
  230. {
  231. int cpu;
  232. int me = raw_smp_processor_id();
  233. if (unlikely(!smp_ops))
  234. return;
  235. for_each_online_cpu(cpu)
  236. if (cpu != me)
  237. do_message_pass(cpu, PPC_MSG_DEBUGGER_BREAK);
  238. }
  239. #endif
  240. #ifdef CONFIG_KEXEC
  241. void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
  242. {
  243. crash_ipi_function_ptr = crash_ipi_callback;
  244. if (crash_ipi_callback) {
  245. mb();
  246. smp_send_debugger_break();
  247. }
  248. }
  249. #endif
  250. static void stop_this_cpu(void *dummy)
  251. {
  252. /* Remove this CPU */
  253. set_cpu_online(smp_processor_id(), false);
  254. local_irq_disable();
  255. while (1)
  256. ;
  257. }
  258. void smp_send_stop(void)
  259. {
  260. smp_call_function(stop_this_cpu, NULL, 0);
  261. }
  262. struct thread_info *current_set[NR_CPUS];
  263. static void __devinit smp_store_cpu_info(int id)
  264. {
  265. per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
  266. #ifdef CONFIG_PPC_FSL_BOOK3E
  267. per_cpu(next_tlbcam_idx, id)
  268. = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
  269. #endif
  270. }
  271. void __init smp_prepare_cpus(unsigned int max_cpus)
  272. {
  273. unsigned int cpu;
  274. DBG("smp_prepare_cpus\n");
  275. /*
  276. * setup_cpu may need to be called on the boot cpu. We havent
  277. * spun any cpus up but lets be paranoid.
  278. */
  279. BUG_ON(boot_cpuid != smp_processor_id());
  280. /* Fixup boot cpu */
  281. smp_store_cpu_info(boot_cpuid);
  282. cpu_callin_map[boot_cpuid] = 1;
  283. for_each_possible_cpu(cpu) {
  284. zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
  285. GFP_KERNEL, cpu_to_node(cpu));
  286. zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
  287. GFP_KERNEL, cpu_to_node(cpu));
  288. }
  289. cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
  290. cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
  291. if (smp_ops)
  292. if (smp_ops->probe)
  293. max_cpus = smp_ops->probe();
  294. else
  295. max_cpus = NR_CPUS;
  296. else
  297. max_cpus = 1;
  298. }
  299. void __devinit smp_prepare_boot_cpu(void)
  300. {
  301. BUG_ON(smp_processor_id() != boot_cpuid);
  302. #ifdef CONFIG_PPC64
  303. paca[boot_cpuid].__current = current;
  304. #endif
  305. current_set[boot_cpuid] = task_thread_info(current);
  306. }
  307. #ifdef CONFIG_HOTPLUG_CPU
  308. int generic_cpu_disable(void)
  309. {
  310. unsigned int cpu = smp_processor_id();
  311. if (cpu == boot_cpuid)
  312. return -EBUSY;
  313. set_cpu_online(cpu, false);
  314. #ifdef CONFIG_PPC64
  315. vdso_data->processorCount--;
  316. #endif
  317. migrate_irqs();
  318. return 0;
  319. }
  320. void generic_cpu_die(unsigned int cpu)
  321. {
  322. int i;
  323. for (i = 0; i < 100; i++) {
  324. smp_rmb();
  325. if (per_cpu(cpu_state, cpu) == CPU_DEAD)
  326. return;
  327. msleep(100);
  328. }
  329. printk(KERN_ERR "CPU%d didn't die...\n", cpu);
  330. }
  331. void generic_mach_cpu_die(void)
  332. {
  333. unsigned int cpu;
  334. local_irq_disable();
  335. idle_task_exit();
  336. cpu = smp_processor_id();
  337. printk(KERN_DEBUG "CPU%d offline\n", cpu);
  338. __get_cpu_var(cpu_state) = CPU_DEAD;
  339. smp_wmb();
  340. while (__get_cpu_var(cpu_state) != CPU_UP_PREPARE)
  341. cpu_relax();
  342. }
  343. void generic_set_cpu_dead(unsigned int cpu)
  344. {
  345. per_cpu(cpu_state, cpu) = CPU_DEAD;
  346. }
  347. int generic_check_cpu_restart(unsigned int cpu)
  348. {
  349. return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
  350. }
  351. #endif
  352. static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
  353. {
  354. struct thread_info *ti = task_thread_info(idle);
  355. #ifdef CONFIG_PPC64
  356. paca[cpu].__current = idle;
  357. paca[cpu].kstack = (unsigned long)ti + THREAD_SIZE - STACK_FRAME_OVERHEAD;
  358. #endif
  359. ti->cpu = cpu;
  360. secondary_ti = current_set[cpu] = ti;
  361. }
  362. int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle)
  363. {
  364. int rc, c;
  365. if (smp_ops == NULL ||
  366. (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
  367. return -EINVAL;
  368. cpu_idle_thread_init(cpu, tidle);
  369. /* Make sure callin-map entry is 0 (can be leftover a CPU
  370. * hotplug
  371. */
  372. cpu_callin_map[cpu] = 0;
  373. /* The information for processor bringup must
  374. * be written out to main store before we release
  375. * the processor.
  376. */
  377. smp_mb();
  378. /* wake up cpus */
  379. DBG("smp: kicking cpu %d\n", cpu);
  380. rc = smp_ops->kick_cpu(cpu);
  381. if (rc) {
  382. pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
  383. return rc;
  384. }
  385. /*
  386. * wait to see if the cpu made a callin (is actually up).
  387. * use this value that I found through experimentation.
  388. * -- Cort
  389. */
  390. if (system_state < SYSTEM_RUNNING)
  391. for (c = 50000; c && !cpu_callin_map[cpu]; c--)
  392. udelay(100);
  393. #ifdef CONFIG_HOTPLUG_CPU
  394. else
  395. /*
  396. * CPUs can take much longer to come up in the
  397. * hotplug case. Wait five seconds.
  398. */
  399. for (c = 5000; c && !cpu_callin_map[cpu]; c--)
  400. msleep(1);
  401. #endif
  402. if (!cpu_callin_map[cpu]) {
  403. printk(KERN_ERR "Processor %u is stuck.\n", cpu);
  404. return -ENOENT;
  405. }
  406. DBG("Processor %u found.\n", cpu);
  407. if (smp_ops->give_timebase)
  408. smp_ops->give_timebase();
  409. /* Wait until cpu puts itself in the online map */
  410. while (!cpu_online(cpu))
  411. cpu_relax();
  412. return 0;
  413. }
  414. /* Return the value of the reg property corresponding to the given
  415. * logical cpu.
  416. */
  417. int cpu_to_core_id(int cpu)
  418. {
  419. struct device_node *np;
  420. const int *reg;
  421. int id = -1;
  422. np = of_get_cpu_node(cpu, NULL);
  423. if (!np)
  424. goto out;
  425. reg = of_get_property(np, "reg", NULL);
  426. if (!reg)
  427. goto out;
  428. id = *reg;
  429. out:
  430. of_node_put(np);
  431. return id;
  432. }
  433. /* Helper routines for cpu to core mapping */
  434. int cpu_core_index_of_thread(int cpu)
  435. {
  436. return cpu >> threads_shift;
  437. }
  438. EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
  439. int cpu_first_thread_of_core(int core)
  440. {
  441. return core << threads_shift;
  442. }
  443. EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
  444. /* Must be called when no change can occur to cpu_present_mask,
  445. * i.e. during cpu online or offline.
  446. */
  447. static struct device_node *cpu_to_l2cache(int cpu)
  448. {
  449. struct device_node *np;
  450. struct device_node *cache;
  451. if (!cpu_present(cpu))
  452. return NULL;
  453. np = of_get_cpu_node(cpu, NULL);
  454. if (np == NULL)
  455. return NULL;
  456. cache = of_find_next_cache_node(np);
  457. of_node_put(np);
  458. return cache;
  459. }
  460. /* Activate a secondary processor. */
  461. void __devinit start_secondary(void *unused)
  462. {
  463. unsigned int cpu = smp_processor_id();
  464. struct device_node *l2_cache;
  465. int i, base;
  466. atomic_inc(&init_mm.mm_count);
  467. current->active_mm = &init_mm;
  468. smp_store_cpu_info(cpu);
  469. set_dec(tb_ticks_per_jiffy);
  470. preempt_disable();
  471. cpu_callin_map[cpu] = 1;
  472. if (smp_ops->setup_cpu)
  473. smp_ops->setup_cpu(cpu);
  474. if (smp_ops->take_timebase)
  475. smp_ops->take_timebase();
  476. secondary_cpu_time_init();
  477. #ifdef CONFIG_PPC64
  478. if (system_state == SYSTEM_RUNNING)
  479. vdso_data->processorCount++;
  480. vdso_getcpu_init();
  481. #endif
  482. notify_cpu_starting(cpu);
  483. set_cpu_online(cpu, true);
  484. /* Update sibling maps */
  485. base = cpu_first_thread_sibling(cpu);
  486. for (i = 0; i < threads_per_core; i++) {
  487. if (cpu_is_offline(base + i))
  488. continue;
  489. cpumask_set_cpu(cpu, cpu_sibling_mask(base + i));
  490. cpumask_set_cpu(base + i, cpu_sibling_mask(cpu));
  491. /* cpu_core_map should be a superset of
  492. * cpu_sibling_map even if we don't have cache
  493. * information, so update the former here, too.
  494. */
  495. cpumask_set_cpu(cpu, cpu_core_mask(base + i));
  496. cpumask_set_cpu(base + i, cpu_core_mask(cpu));
  497. }
  498. l2_cache = cpu_to_l2cache(cpu);
  499. for_each_online_cpu(i) {
  500. struct device_node *np = cpu_to_l2cache(i);
  501. if (!np)
  502. continue;
  503. if (np == l2_cache) {
  504. cpumask_set_cpu(cpu, cpu_core_mask(i));
  505. cpumask_set_cpu(i, cpu_core_mask(cpu));
  506. }
  507. of_node_put(np);
  508. }
  509. of_node_put(l2_cache);
  510. local_irq_enable();
  511. cpu_idle();
  512. BUG();
  513. }
  514. int setup_profiling_timer(unsigned int multiplier)
  515. {
  516. return 0;
  517. }
  518. void __init smp_cpus_done(unsigned int max_cpus)
  519. {
  520. cpumask_var_t old_mask;
  521. /* We want the setup_cpu() here to be called from CPU 0, but our
  522. * init thread may have been "borrowed" by another CPU in the meantime
  523. * se we pin us down to CPU 0 for a short while
  524. */
  525. alloc_cpumask_var(&old_mask, GFP_NOWAIT);
  526. cpumask_copy(old_mask, tsk_cpus_allowed(current));
  527. set_cpus_allowed_ptr(current, cpumask_of(boot_cpuid));
  528. if (smp_ops && smp_ops->setup_cpu)
  529. smp_ops->setup_cpu(boot_cpuid);
  530. set_cpus_allowed_ptr(current, old_mask);
  531. free_cpumask_var(old_mask);
  532. if (smp_ops && smp_ops->bringup_done)
  533. smp_ops->bringup_done();
  534. dump_numa_cpu_topology();
  535. }
  536. int arch_sd_sibling_asym_packing(void)
  537. {
  538. if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
  539. printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
  540. return SD_ASYM_PACKING;
  541. }
  542. return 0;
  543. }
  544. #ifdef CONFIG_HOTPLUG_CPU
  545. int __cpu_disable(void)
  546. {
  547. struct device_node *l2_cache;
  548. int cpu = smp_processor_id();
  549. int base, i;
  550. int err;
  551. if (!smp_ops->cpu_disable)
  552. return -ENOSYS;
  553. err = smp_ops->cpu_disable();
  554. if (err)
  555. return err;
  556. /* Update sibling maps */
  557. base = cpu_first_thread_sibling(cpu);
  558. for (i = 0; i < threads_per_core; i++) {
  559. cpumask_clear_cpu(cpu, cpu_sibling_mask(base + i));
  560. cpumask_clear_cpu(base + i, cpu_sibling_mask(cpu));
  561. cpumask_clear_cpu(cpu, cpu_core_mask(base + i));
  562. cpumask_clear_cpu(base + i, cpu_core_mask(cpu));
  563. }
  564. l2_cache = cpu_to_l2cache(cpu);
  565. for_each_present_cpu(i) {
  566. struct device_node *np = cpu_to_l2cache(i);
  567. if (!np)
  568. continue;
  569. if (np == l2_cache) {
  570. cpumask_clear_cpu(cpu, cpu_core_mask(i));
  571. cpumask_clear_cpu(i, cpu_core_mask(cpu));
  572. }
  573. of_node_put(np);
  574. }
  575. of_node_put(l2_cache);
  576. return 0;
  577. }
  578. void __cpu_die(unsigned int cpu)
  579. {
  580. if (smp_ops->cpu_die)
  581. smp_ops->cpu_die(cpu);
  582. }
  583. static DEFINE_MUTEX(powerpc_cpu_hotplug_driver_mutex);
  584. void cpu_hotplug_driver_lock()
  585. {
  586. mutex_lock(&powerpc_cpu_hotplug_driver_mutex);
  587. }
  588. void cpu_hotplug_driver_unlock()
  589. {
  590. mutex_unlock(&powerpc_cpu_hotplug_driver_mutex);
  591. }
  592. void cpu_die(void)
  593. {
  594. if (ppc_md.cpu_die)
  595. ppc_md.cpu_die();
  596. /* If we return, we re-enter start_secondary */
  597. start_secondary_resume();
  598. }
  599. #endif