dma.c 5.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239
  1. /*
  2. * Copyright (C) 2006 Benjamin Herrenschmidt, IBM Corporation
  3. *
  4. * Provide default implementations of the DMA mapping callbacks for
  5. * directly mapped busses.
  6. */
  7. #include <linux/device.h>
  8. #include <linux/dma-mapping.h>
  9. #include <linux/dma-debug.h>
  10. #include <linux/gfp.h>
  11. #include <linux/memblock.h>
  12. #include <linux/export.h>
  13. #include <linux/pci.h>
  14. #include <asm/vio.h>
  15. #include <asm/bug.h>
  16. #include <asm/machdep.h>
  17. /*
  18. * Generic direct DMA implementation
  19. *
  20. * This implementation supports a per-device offset that can be applied if
  21. * the address at which memory is visible to devices is not 0. Platform code
  22. * can set archdata.dma_data to an unsigned long holding the offset. By
  23. * default the offset is PCI_DRAM_OFFSET.
  24. */
  25. void *dma_direct_alloc_coherent(struct device *dev, size_t size,
  26. dma_addr_t *dma_handle, gfp_t flag,
  27. struct dma_attrs *attrs)
  28. {
  29. void *ret;
  30. #ifdef CONFIG_NOT_COHERENT_CACHE
  31. ret = __dma_alloc_coherent(dev, size, dma_handle, flag);
  32. if (ret == NULL)
  33. return NULL;
  34. *dma_handle += get_dma_offset(dev);
  35. return ret;
  36. #else
  37. struct page *page;
  38. int node = dev_to_node(dev);
  39. /* ignore region specifiers */
  40. flag &= ~(__GFP_HIGHMEM);
  41. page = alloc_pages_node(node, flag, get_order(size));
  42. if (page == NULL)
  43. return NULL;
  44. ret = page_address(page);
  45. memset(ret, 0, size);
  46. *dma_handle = __pa(ret) + get_dma_offset(dev);
  47. return ret;
  48. #endif
  49. }
  50. void dma_direct_free_coherent(struct device *dev, size_t size,
  51. void *vaddr, dma_addr_t dma_handle,
  52. struct dma_attrs *attrs)
  53. {
  54. #ifdef CONFIG_NOT_COHERENT_CACHE
  55. __dma_free_coherent(size, vaddr);
  56. #else
  57. free_pages((unsigned long)vaddr, get_order(size));
  58. #endif
  59. }
  60. int dma_direct_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
  61. void *cpu_addr, dma_addr_t handle, size_t size,
  62. struct dma_attrs *attrs)
  63. {
  64. unsigned long pfn;
  65. #ifdef CONFIG_NOT_COHERENT_CACHE
  66. vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
  67. pfn = __dma_get_coherent_pfn((unsigned long)cpu_addr);
  68. #else
  69. pfn = page_to_pfn(virt_to_page(cpu_addr));
  70. #endif
  71. return remap_pfn_range(vma, vma->vm_start,
  72. pfn + vma->vm_pgoff,
  73. vma->vm_end - vma->vm_start,
  74. vma->vm_page_prot);
  75. }
  76. static int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl,
  77. int nents, enum dma_data_direction direction,
  78. struct dma_attrs *attrs)
  79. {
  80. struct scatterlist *sg;
  81. int i;
  82. for_each_sg(sgl, sg, nents, i) {
  83. sg->dma_address = sg_phys(sg) + get_dma_offset(dev);
  84. sg->dma_length = sg->length;
  85. __dma_sync_page(sg_page(sg), sg->offset, sg->length, direction);
  86. }
  87. return nents;
  88. }
  89. static void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sg,
  90. int nents, enum dma_data_direction direction,
  91. struct dma_attrs *attrs)
  92. {
  93. }
  94. static int dma_direct_dma_supported(struct device *dev, u64 mask)
  95. {
  96. #ifdef CONFIG_PPC64
  97. /* Could be improved so platforms can set the limit in case
  98. * they have limited DMA windows
  99. */
  100. return mask >= get_dma_offset(dev) + (memblock_end_of_DRAM() - 1);
  101. #else
  102. return 1;
  103. #endif
  104. }
  105. static u64 dma_direct_get_required_mask(struct device *dev)
  106. {
  107. u64 end, mask;
  108. end = memblock_end_of_DRAM() + get_dma_offset(dev);
  109. mask = 1ULL << (fls64(end) - 1);
  110. mask += mask - 1;
  111. return mask;
  112. }
  113. static inline dma_addr_t dma_direct_map_page(struct device *dev,
  114. struct page *page,
  115. unsigned long offset,
  116. size_t size,
  117. enum dma_data_direction dir,
  118. struct dma_attrs *attrs)
  119. {
  120. BUG_ON(dir == DMA_NONE);
  121. __dma_sync_page(page, offset, size, dir);
  122. return page_to_phys(page) + offset + get_dma_offset(dev);
  123. }
  124. static inline void dma_direct_unmap_page(struct device *dev,
  125. dma_addr_t dma_address,
  126. size_t size,
  127. enum dma_data_direction direction,
  128. struct dma_attrs *attrs)
  129. {
  130. }
  131. #ifdef CONFIG_NOT_COHERENT_CACHE
  132. static inline void dma_direct_sync_sg(struct device *dev,
  133. struct scatterlist *sgl, int nents,
  134. enum dma_data_direction direction)
  135. {
  136. struct scatterlist *sg;
  137. int i;
  138. for_each_sg(sgl, sg, nents, i)
  139. __dma_sync_page(sg_page(sg), sg->offset, sg->length, direction);
  140. }
  141. static inline void dma_direct_sync_single(struct device *dev,
  142. dma_addr_t dma_handle, size_t size,
  143. enum dma_data_direction direction)
  144. {
  145. __dma_sync(bus_to_virt(dma_handle), size, direction);
  146. }
  147. #endif
  148. struct dma_map_ops dma_direct_ops = {
  149. .alloc = dma_direct_alloc_coherent,
  150. .free = dma_direct_free_coherent,
  151. .mmap = dma_direct_mmap_coherent,
  152. .map_sg = dma_direct_map_sg,
  153. .unmap_sg = dma_direct_unmap_sg,
  154. .dma_supported = dma_direct_dma_supported,
  155. .map_page = dma_direct_map_page,
  156. .unmap_page = dma_direct_unmap_page,
  157. .get_required_mask = dma_direct_get_required_mask,
  158. #ifdef CONFIG_NOT_COHERENT_CACHE
  159. .sync_single_for_cpu = dma_direct_sync_single,
  160. .sync_single_for_device = dma_direct_sync_single,
  161. .sync_sg_for_cpu = dma_direct_sync_sg,
  162. .sync_sg_for_device = dma_direct_sync_sg,
  163. #endif
  164. };
  165. EXPORT_SYMBOL(dma_direct_ops);
  166. #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
  167. int dma_set_mask(struct device *dev, u64 dma_mask)
  168. {
  169. struct dma_map_ops *dma_ops = get_dma_ops(dev);
  170. if (ppc_md.dma_set_mask)
  171. return ppc_md.dma_set_mask(dev, dma_mask);
  172. if ((dma_ops != NULL) && (dma_ops->set_dma_mask != NULL))
  173. return dma_ops->set_dma_mask(dev, dma_mask);
  174. if (!dev->dma_mask || !dma_supported(dev, dma_mask))
  175. return -EIO;
  176. *dev->dma_mask = dma_mask;
  177. return 0;
  178. }
  179. EXPORT_SYMBOL(dma_set_mask);
  180. u64 dma_get_required_mask(struct device *dev)
  181. {
  182. struct dma_map_ops *dma_ops = get_dma_ops(dev);
  183. if (ppc_md.dma_get_required_mask)
  184. return ppc_md.dma_get_required_mask(dev);
  185. if (unlikely(dma_ops == NULL))
  186. return 0;
  187. if (dma_ops->get_required_mask)
  188. return dma_ops->get_required_mask(dev);
  189. return DMA_BIT_MASK(8 * sizeof(dma_addr_t));
  190. }
  191. EXPORT_SYMBOL_GPL(dma_get_required_mask);
  192. static int __init dma_init(void)
  193. {
  194. dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
  195. #ifdef CONFIG_PCI
  196. dma_debug_add_bus(&pci_bus_type);
  197. #endif
  198. #ifdef CONFIG_IBMVIO
  199. dma_debug_add_bus(&vio_bus_type);
  200. #endif
  201. return 0;
  202. }
  203. fs_initcall(dma_init);