xfs_aops.c 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690
  1. /*
  2. * Copyright (c) 2000-2005 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_bit.h"
  20. #include "xfs_log.h"
  21. #include "xfs_inum.h"
  22. #include "xfs_sb.h"
  23. #include "xfs_ag.h"
  24. #include "xfs_dir2.h"
  25. #include "xfs_trans.h"
  26. #include "xfs_dmapi.h"
  27. #include "xfs_mount.h"
  28. #include "xfs_bmap_btree.h"
  29. #include "xfs_alloc_btree.h"
  30. #include "xfs_ialloc_btree.h"
  31. #include "xfs_dir2_sf.h"
  32. #include "xfs_attr_sf.h"
  33. #include "xfs_dinode.h"
  34. #include "xfs_inode.h"
  35. #include "xfs_alloc.h"
  36. #include "xfs_btree.h"
  37. #include "xfs_error.h"
  38. #include "xfs_rw.h"
  39. #include "xfs_iomap.h"
  40. #include "xfs_vnodeops.h"
  41. #include "xfs_trace.h"
  42. #include "xfs_bmap.h"
  43. #include <linux/gfp.h>
  44. #include <linux/mpage.h>
  45. #include <linux/pagevec.h>
  46. #include <linux/writeback.h>
  47. /*
  48. * Prime number of hash buckets since address is used as the key.
  49. */
  50. #define NVSYNC 37
  51. #define to_ioend_wq(v) (&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
  52. static wait_queue_head_t xfs_ioend_wq[NVSYNC];
  53. void __init
  54. xfs_ioend_init(void)
  55. {
  56. int i;
  57. for (i = 0; i < NVSYNC; i++)
  58. init_waitqueue_head(&xfs_ioend_wq[i]);
  59. }
  60. void
  61. xfs_ioend_wait(
  62. xfs_inode_t *ip)
  63. {
  64. wait_queue_head_t *wq = to_ioend_wq(ip);
  65. wait_event(*wq, (atomic_read(&ip->i_iocount) == 0));
  66. }
  67. STATIC void
  68. xfs_ioend_wake(
  69. xfs_inode_t *ip)
  70. {
  71. if (atomic_dec_and_test(&ip->i_iocount))
  72. wake_up(to_ioend_wq(ip));
  73. }
  74. void
  75. xfs_count_page_state(
  76. struct page *page,
  77. int *delalloc,
  78. int *unmapped,
  79. int *unwritten)
  80. {
  81. struct buffer_head *bh, *head;
  82. *delalloc = *unmapped = *unwritten = 0;
  83. bh = head = page_buffers(page);
  84. do {
  85. if (buffer_uptodate(bh) && !buffer_mapped(bh))
  86. (*unmapped) = 1;
  87. else if (buffer_unwritten(bh))
  88. (*unwritten) = 1;
  89. else if (buffer_delay(bh))
  90. (*delalloc) = 1;
  91. } while ((bh = bh->b_this_page) != head);
  92. }
  93. STATIC struct block_device *
  94. xfs_find_bdev_for_inode(
  95. struct inode *inode)
  96. {
  97. struct xfs_inode *ip = XFS_I(inode);
  98. struct xfs_mount *mp = ip->i_mount;
  99. if (XFS_IS_REALTIME_INODE(ip))
  100. return mp->m_rtdev_targp->bt_bdev;
  101. else
  102. return mp->m_ddev_targp->bt_bdev;
  103. }
  104. /*
  105. * We're now finished for good with this ioend structure.
  106. * Update the page state via the associated buffer_heads,
  107. * release holds on the inode and bio, and finally free
  108. * up memory. Do not use the ioend after this.
  109. */
  110. STATIC void
  111. xfs_destroy_ioend(
  112. xfs_ioend_t *ioend)
  113. {
  114. struct buffer_head *bh, *next;
  115. struct xfs_inode *ip = XFS_I(ioend->io_inode);
  116. for (bh = ioend->io_buffer_head; bh; bh = next) {
  117. next = bh->b_private;
  118. bh->b_end_io(bh, !ioend->io_error);
  119. }
  120. /*
  121. * Volume managers supporting multiple paths can send back ENODEV
  122. * when the final path disappears. In this case continuing to fill
  123. * the page cache with dirty data which cannot be written out is
  124. * evil, so prevent that.
  125. */
  126. if (unlikely(ioend->io_error == -ENODEV)) {
  127. xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ,
  128. __FILE__, __LINE__);
  129. }
  130. xfs_ioend_wake(ip);
  131. mempool_free(ioend, xfs_ioend_pool);
  132. }
  133. /*
  134. * If the end of the current ioend is beyond the current EOF,
  135. * return the new EOF value, otherwise zero.
  136. */
  137. STATIC xfs_fsize_t
  138. xfs_ioend_new_eof(
  139. xfs_ioend_t *ioend)
  140. {
  141. xfs_inode_t *ip = XFS_I(ioend->io_inode);
  142. xfs_fsize_t isize;
  143. xfs_fsize_t bsize;
  144. bsize = ioend->io_offset + ioend->io_size;
  145. isize = MAX(ip->i_size, ip->i_new_size);
  146. isize = MIN(isize, bsize);
  147. return isize > ip->i_d.di_size ? isize : 0;
  148. }
  149. /*
  150. * Update on-disk file size now that data has been written to disk. The
  151. * current in-memory file size is i_size. If a write is beyond eof i_new_size
  152. * will be the intended file size until i_size is updated. If this write does
  153. * not extend all the way to the valid file size then restrict this update to
  154. * the end of the write.
  155. *
  156. * This function does not block as blocking on the inode lock in IO completion
  157. * can lead to IO completion order dependency deadlocks.. If it can't get the
  158. * inode ilock it will return EAGAIN. Callers must handle this.
  159. */
  160. STATIC int
  161. xfs_setfilesize(
  162. xfs_ioend_t *ioend)
  163. {
  164. xfs_inode_t *ip = XFS_I(ioend->io_inode);
  165. xfs_fsize_t isize;
  166. ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
  167. ASSERT(ioend->io_type != IOMAP_READ);
  168. if (unlikely(ioend->io_error))
  169. return 0;
  170. if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
  171. return EAGAIN;
  172. isize = xfs_ioend_new_eof(ioend);
  173. if (isize) {
  174. ip->i_d.di_size = isize;
  175. xfs_mark_inode_dirty(ip);
  176. }
  177. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  178. return 0;
  179. }
  180. /*
  181. * Schedule IO completion handling on a xfsdatad if this was
  182. * the final hold on this ioend. If we are asked to wait,
  183. * flush the workqueue.
  184. */
  185. STATIC void
  186. xfs_finish_ioend(
  187. xfs_ioend_t *ioend,
  188. int wait)
  189. {
  190. if (atomic_dec_and_test(&ioend->io_remaining)) {
  191. struct workqueue_struct *wq;
  192. wq = (ioend->io_type == IOMAP_UNWRITTEN) ?
  193. xfsconvertd_workqueue : xfsdatad_workqueue;
  194. queue_work(wq, &ioend->io_work);
  195. if (wait)
  196. flush_workqueue(wq);
  197. }
  198. }
  199. /*
  200. * IO write completion.
  201. */
  202. STATIC void
  203. xfs_end_io(
  204. struct work_struct *work)
  205. {
  206. xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
  207. struct xfs_inode *ip = XFS_I(ioend->io_inode);
  208. int error = 0;
  209. /*
  210. * For unwritten extents we need to issue transactions to convert a
  211. * range to normal written extens after the data I/O has finished.
  212. */
  213. if (ioend->io_type == IOMAP_UNWRITTEN &&
  214. likely(!ioend->io_error && !XFS_FORCED_SHUTDOWN(ip->i_mount))) {
  215. error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
  216. ioend->io_size);
  217. if (error)
  218. ioend->io_error = error;
  219. }
  220. /*
  221. * We might have to update the on-disk file size after extending
  222. * writes.
  223. */
  224. if (ioend->io_type != IOMAP_READ) {
  225. error = xfs_setfilesize(ioend);
  226. ASSERT(!error || error == EAGAIN);
  227. }
  228. /*
  229. * If we didn't complete processing of the ioend, requeue it to the
  230. * tail of the workqueue for another attempt later. Otherwise destroy
  231. * it.
  232. */
  233. if (error == EAGAIN) {
  234. atomic_inc(&ioend->io_remaining);
  235. xfs_finish_ioend(ioend, 0);
  236. /* ensure we don't spin on blocked ioends */
  237. delay(1);
  238. } else
  239. xfs_destroy_ioend(ioend);
  240. }
  241. /*
  242. * Allocate and initialise an IO completion structure.
  243. * We need to track unwritten extent write completion here initially.
  244. * We'll need to extend this for updating the ondisk inode size later
  245. * (vs. incore size).
  246. */
  247. STATIC xfs_ioend_t *
  248. xfs_alloc_ioend(
  249. struct inode *inode,
  250. unsigned int type)
  251. {
  252. xfs_ioend_t *ioend;
  253. ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
  254. /*
  255. * Set the count to 1 initially, which will prevent an I/O
  256. * completion callback from happening before we have started
  257. * all the I/O from calling the completion routine too early.
  258. */
  259. atomic_set(&ioend->io_remaining, 1);
  260. ioend->io_error = 0;
  261. ioend->io_list = NULL;
  262. ioend->io_type = type;
  263. ioend->io_inode = inode;
  264. ioend->io_buffer_head = NULL;
  265. ioend->io_buffer_tail = NULL;
  266. atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
  267. ioend->io_offset = 0;
  268. ioend->io_size = 0;
  269. INIT_WORK(&ioend->io_work, xfs_end_io);
  270. return ioend;
  271. }
  272. STATIC int
  273. xfs_map_blocks(
  274. struct inode *inode,
  275. loff_t offset,
  276. ssize_t count,
  277. xfs_iomap_t *mapp,
  278. int flags)
  279. {
  280. int nmaps = 1;
  281. return -xfs_iomap(XFS_I(inode), offset, count, flags, mapp, &nmaps);
  282. }
  283. STATIC int
  284. xfs_iomap_valid(
  285. xfs_iomap_t *iomapp,
  286. loff_t offset)
  287. {
  288. return offset >= iomapp->iomap_offset &&
  289. offset < iomapp->iomap_offset + iomapp->iomap_bsize;
  290. }
  291. /*
  292. * BIO completion handler for buffered IO.
  293. */
  294. STATIC void
  295. xfs_end_bio(
  296. struct bio *bio,
  297. int error)
  298. {
  299. xfs_ioend_t *ioend = bio->bi_private;
  300. ASSERT(atomic_read(&bio->bi_cnt) >= 1);
  301. ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
  302. /* Toss bio and pass work off to an xfsdatad thread */
  303. bio->bi_private = NULL;
  304. bio->bi_end_io = NULL;
  305. bio_put(bio);
  306. xfs_finish_ioend(ioend, 0);
  307. }
  308. STATIC void
  309. xfs_submit_ioend_bio(
  310. struct writeback_control *wbc,
  311. xfs_ioend_t *ioend,
  312. struct bio *bio)
  313. {
  314. atomic_inc(&ioend->io_remaining);
  315. bio->bi_private = ioend;
  316. bio->bi_end_io = xfs_end_bio;
  317. /*
  318. * If the I/O is beyond EOF we mark the inode dirty immediately
  319. * but don't update the inode size until I/O completion.
  320. */
  321. if (xfs_ioend_new_eof(ioend))
  322. xfs_mark_inode_dirty(XFS_I(ioend->io_inode));
  323. submit_bio(wbc->sync_mode == WB_SYNC_ALL ?
  324. WRITE_SYNC_PLUG : WRITE, bio);
  325. ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
  326. bio_put(bio);
  327. }
  328. STATIC struct bio *
  329. xfs_alloc_ioend_bio(
  330. struct buffer_head *bh)
  331. {
  332. struct bio *bio;
  333. int nvecs = bio_get_nr_vecs(bh->b_bdev);
  334. do {
  335. bio = bio_alloc(GFP_NOIO, nvecs);
  336. nvecs >>= 1;
  337. } while (!bio);
  338. ASSERT(bio->bi_private == NULL);
  339. bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
  340. bio->bi_bdev = bh->b_bdev;
  341. bio_get(bio);
  342. return bio;
  343. }
  344. STATIC void
  345. xfs_start_buffer_writeback(
  346. struct buffer_head *bh)
  347. {
  348. ASSERT(buffer_mapped(bh));
  349. ASSERT(buffer_locked(bh));
  350. ASSERT(!buffer_delay(bh));
  351. ASSERT(!buffer_unwritten(bh));
  352. mark_buffer_async_write(bh);
  353. set_buffer_uptodate(bh);
  354. clear_buffer_dirty(bh);
  355. }
  356. STATIC void
  357. xfs_start_page_writeback(
  358. struct page *page,
  359. int clear_dirty,
  360. int buffers)
  361. {
  362. ASSERT(PageLocked(page));
  363. ASSERT(!PageWriteback(page));
  364. if (clear_dirty)
  365. clear_page_dirty_for_io(page);
  366. set_page_writeback(page);
  367. unlock_page(page);
  368. /* If no buffers on the page are to be written, finish it here */
  369. if (!buffers)
  370. end_page_writeback(page);
  371. }
  372. static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
  373. {
  374. return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
  375. }
  376. /*
  377. * Submit all of the bios for all of the ioends we have saved up, covering the
  378. * initial writepage page and also any probed pages.
  379. *
  380. * Because we may have multiple ioends spanning a page, we need to start
  381. * writeback on all the buffers before we submit them for I/O. If we mark the
  382. * buffers as we got, then we can end up with a page that only has buffers
  383. * marked async write and I/O complete on can occur before we mark the other
  384. * buffers async write.
  385. *
  386. * The end result of this is that we trip a bug in end_page_writeback() because
  387. * we call it twice for the one page as the code in end_buffer_async_write()
  388. * assumes that all buffers on the page are started at the same time.
  389. *
  390. * The fix is two passes across the ioend list - one to start writeback on the
  391. * buffer_heads, and then submit them for I/O on the second pass.
  392. */
  393. STATIC void
  394. xfs_submit_ioend(
  395. struct writeback_control *wbc,
  396. xfs_ioend_t *ioend)
  397. {
  398. xfs_ioend_t *head = ioend;
  399. xfs_ioend_t *next;
  400. struct buffer_head *bh;
  401. struct bio *bio;
  402. sector_t lastblock = 0;
  403. /* Pass 1 - start writeback */
  404. do {
  405. next = ioend->io_list;
  406. for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
  407. xfs_start_buffer_writeback(bh);
  408. }
  409. } while ((ioend = next) != NULL);
  410. /* Pass 2 - submit I/O */
  411. ioend = head;
  412. do {
  413. next = ioend->io_list;
  414. bio = NULL;
  415. for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
  416. if (!bio) {
  417. retry:
  418. bio = xfs_alloc_ioend_bio(bh);
  419. } else if (bh->b_blocknr != lastblock + 1) {
  420. xfs_submit_ioend_bio(wbc, ioend, bio);
  421. goto retry;
  422. }
  423. if (bio_add_buffer(bio, bh) != bh->b_size) {
  424. xfs_submit_ioend_bio(wbc, ioend, bio);
  425. goto retry;
  426. }
  427. lastblock = bh->b_blocknr;
  428. }
  429. if (bio)
  430. xfs_submit_ioend_bio(wbc, ioend, bio);
  431. xfs_finish_ioend(ioend, 0);
  432. } while ((ioend = next) != NULL);
  433. }
  434. /*
  435. * Cancel submission of all buffer_heads so far in this endio.
  436. * Toss the endio too. Only ever called for the initial page
  437. * in a writepage request, so only ever one page.
  438. */
  439. STATIC void
  440. xfs_cancel_ioend(
  441. xfs_ioend_t *ioend)
  442. {
  443. xfs_ioend_t *next;
  444. struct buffer_head *bh, *next_bh;
  445. do {
  446. next = ioend->io_list;
  447. bh = ioend->io_buffer_head;
  448. do {
  449. next_bh = bh->b_private;
  450. clear_buffer_async_write(bh);
  451. unlock_buffer(bh);
  452. } while ((bh = next_bh) != NULL);
  453. xfs_ioend_wake(XFS_I(ioend->io_inode));
  454. mempool_free(ioend, xfs_ioend_pool);
  455. } while ((ioend = next) != NULL);
  456. }
  457. /*
  458. * Test to see if we've been building up a completion structure for
  459. * earlier buffers -- if so, we try to append to this ioend if we
  460. * can, otherwise we finish off any current ioend and start another.
  461. * Return true if we've finished the given ioend.
  462. */
  463. STATIC void
  464. xfs_add_to_ioend(
  465. struct inode *inode,
  466. struct buffer_head *bh,
  467. xfs_off_t offset,
  468. unsigned int type,
  469. xfs_ioend_t **result,
  470. int need_ioend)
  471. {
  472. xfs_ioend_t *ioend = *result;
  473. if (!ioend || need_ioend || type != ioend->io_type) {
  474. xfs_ioend_t *previous = *result;
  475. ioend = xfs_alloc_ioend(inode, type);
  476. ioend->io_offset = offset;
  477. ioend->io_buffer_head = bh;
  478. ioend->io_buffer_tail = bh;
  479. if (previous)
  480. previous->io_list = ioend;
  481. *result = ioend;
  482. } else {
  483. ioend->io_buffer_tail->b_private = bh;
  484. ioend->io_buffer_tail = bh;
  485. }
  486. bh->b_private = NULL;
  487. ioend->io_size += bh->b_size;
  488. }
  489. STATIC void
  490. xfs_map_buffer(
  491. struct inode *inode,
  492. struct buffer_head *bh,
  493. xfs_iomap_t *mp,
  494. xfs_off_t offset)
  495. {
  496. sector_t bn;
  497. ASSERT(mp->iomap_bn != IOMAP_DADDR_NULL);
  498. bn = (mp->iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
  499. ((offset - mp->iomap_offset) >> inode->i_blkbits);
  500. ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
  501. bh->b_blocknr = bn;
  502. set_buffer_mapped(bh);
  503. }
  504. STATIC void
  505. xfs_map_at_offset(
  506. struct inode *inode,
  507. struct buffer_head *bh,
  508. xfs_iomap_t *iomapp,
  509. xfs_off_t offset)
  510. {
  511. ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE));
  512. ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY));
  513. lock_buffer(bh);
  514. xfs_map_buffer(inode, bh, iomapp, offset);
  515. bh->b_bdev = xfs_find_bdev_for_inode(inode);
  516. set_buffer_mapped(bh);
  517. clear_buffer_delay(bh);
  518. clear_buffer_unwritten(bh);
  519. }
  520. /*
  521. * Look for a page at index that is suitable for clustering.
  522. */
  523. STATIC unsigned int
  524. xfs_probe_page(
  525. struct page *page,
  526. unsigned int pg_offset,
  527. int mapped)
  528. {
  529. int ret = 0;
  530. if (PageWriteback(page))
  531. return 0;
  532. if (page->mapping && PageDirty(page)) {
  533. if (page_has_buffers(page)) {
  534. struct buffer_head *bh, *head;
  535. bh = head = page_buffers(page);
  536. do {
  537. if (!buffer_uptodate(bh))
  538. break;
  539. if (mapped != buffer_mapped(bh))
  540. break;
  541. ret += bh->b_size;
  542. if (ret >= pg_offset)
  543. break;
  544. } while ((bh = bh->b_this_page) != head);
  545. } else
  546. ret = mapped ? 0 : PAGE_CACHE_SIZE;
  547. }
  548. return ret;
  549. }
  550. STATIC size_t
  551. xfs_probe_cluster(
  552. struct inode *inode,
  553. struct page *startpage,
  554. struct buffer_head *bh,
  555. struct buffer_head *head,
  556. int mapped)
  557. {
  558. struct pagevec pvec;
  559. pgoff_t tindex, tlast, tloff;
  560. size_t total = 0;
  561. int done = 0, i;
  562. /* First sum forwards in this page */
  563. do {
  564. if (!buffer_uptodate(bh) || (mapped != buffer_mapped(bh)))
  565. return total;
  566. total += bh->b_size;
  567. } while ((bh = bh->b_this_page) != head);
  568. /* if we reached the end of the page, sum forwards in following pages */
  569. tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
  570. tindex = startpage->index + 1;
  571. /* Prune this back to avoid pathological behavior */
  572. tloff = min(tlast, startpage->index + 64);
  573. pagevec_init(&pvec, 0);
  574. while (!done && tindex <= tloff) {
  575. unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
  576. if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
  577. break;
  578. for (i = 0; i < pagevec_count(&pvec); i++) {
  579. struct page *page = pvec.pages[i];
  580. size_t pg_offset, pg_len = 0;
  581. if (tindex == tlast) {
  582. pg_offset =
  583. i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
  584. if (!pg_offset) {
  585. done = 1;
  586. break;
  587. }
  588. } else
  589. pg_offset = PAGE_CACHE_SIZE;
  590. if (page->index == tindex && trylock_page(page)) {
  591. pg_len = xfs_probe_page(page, pg_offset, mapped);
  592. unlock_page(page);
  593. }
  594. if (!pg_len) {
  595. done = 1;
  596. break;
  597. }
  598. total += pg_len;
  599. tindex++;
  600. }
  601. pagevec_release(&pvec);
  602. cond_resched();
  603. }
  604. return total;
  605. }
  606. /*
  607. * Test if a given page is suitable for writing as part of an unwritten
  608. * or delayed allocate extent.
  609. */
  610. STATIC int
  611. xfs_is_delayed_page(
  612. struct page *page,
  613. unsigned int type)
  614. {
  615. if (PageWriteback(page))
  616. return 0;
  617. if (page->mapping && page_has_buffers(page)) {
  618. struct buffer_head *bh, *head;
  619. int acceptable = 0;
  620. bh = head = page_buffers(page);
  621. do {
  622. if (buffer_unwritten(bh))
  623. acceptable = (type == IOMAP_UNWRITTEN);
  624. else if (buffer_delay(bh))
  625. acceptable = (type == IOMAP_DELAY);
  626. else if (buffer_dirty(bh) && buffer_mapped(bh))
  627. acceptable = (type == IOMAP_NEW);
  628. else
  629. break;
  630. } while ((bh = bh->b_this_page) != head);
  631. if (acceptable)
  632. return 1;
  633. }
  634. return 0;
  635. }
  636. /*
  637. * Allocate & map buffers for page given the extent map. Write it out.
  638. * except for the original page of a writepage, this is called on
  639. * delalloc/unwritten pages only, for the original page it is possible
  640. * that the page has no mapping at all.
  641. */
  642. STATIC int
  643. xfs_convert_page(
  644. struct inode *inode,
  645. struct page *page,
  646. loff_t tindex,
  647. xfs_iomap_t *mp,
  648. xfs_ioend_t **ioendp,
  649. struct writeback_control *wbc,
  650. int startio,
  651. int all_bh)
  652. {
  653. struct buffer_head *bh, *head;
  654. xfs_off_t end_offset;
  655. unsigned long p_offset;
  656. unsigned int type;
  657. int len, page_dirty;
  658. int count = 0, done = 0, uptodate = 1;
  659. xfs_off_t offset = page_offset(page);
  660. if (page->index != tindex)
  661. goto fail;
  662. if (!trylock_page(page))
  663. goto fail;
  664. if (PageWriteback(page))
  665. goto fail_unlock_page;
  666. if (page->mapping != inode->i_mapping)
  667. goto fail_unlock_page;
  668. if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
  669. goto fail_unlock_page;
  670. /*
  671. * page_dirty is initially a count of buffers on the page before
  672. * EOF and is decremented as we move each into a cleanable state.
  673. *
  674. * Derivation:
  675. *
  676. * End offset is the highest offset that this page should represent.
  677. * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
  678. * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
  679. * hence give us the correct page_dirty count. On any other page,
  680. * it will be zero and in that case we need page_dirty to be the
  681. * count of buffers on the page.
  682. */
  683. end_offset = min_t(unsigned long long,
  684. (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
  685. i_size_read(inode));
  686. len = 1 << inode->i_blkbits;
  687. p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
  688. PAGE_CACHE_SIZE);
  689. p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
  690. page_dirty = p_offset / len;
  691. bh = head = page_buffers(page);
  692. do {
  693. if (offset >= end_offset)
  694. break;
  695. if (!buffer_uptodate(bh))
  696. uptodate = 0;
  697. if (!(PageUptodate(page) || buffer_uptodate(bh))) {
  698. done = 1;
  699. continue;
  700. }
  701. if (buffer_unwritten(bh) || buffer_delay(bh)) {
  702. if (buffer_unwritten(bh))
  703. type = IOMAP_UNWRITTEN;
  704. else
  705. type = IOMAP_DELAY;
  706. if (!xfs_iomap_valid(mp, offset)) {
  707. done = 1;
  708. continue;
  709. }
  710. ASSERT(!(mp->iomap_flags & IOMAP_HOLE));
  711. ASSERT(!(mp->iomap_flags & IOMAP_DELAY));
  712. xfs_map_at_offset(inode, bh, mp, offset);
  713. if (startio) {
  714. xfs_add_to_ioend(inode, bh, offset,
  715. type, ioendp, done);
  716. } else {
  717. set_buffer_dirty(bh);
  718. unlock_buffer(bh);
  719. mark_buffer_dirty(bh);
  720. }
  721. page_dirty--;
  722. count++;
  723. } else {
  724. type = IOMAP_NEW;
  725. if (buffer_mapped(bh) && all_bh && startio) {
  726. lock_buffer(bh);
  727. xfs_add_to_ioend(inode, bh, offset,
  728. type, ioendp, done);
  729. count++;
  730. page_dirty--;
  731. } else {
  732. done = 1;
  733. }
  734. }
  735. } while (offset += len, (bh = bh->b_this_page) != head);
  736. if (uptodate && bh == head)
  737. SetPageUptodate(page);
  738. if (startio) {
  739. if (count) {
  740. wbc->nr_to_write--;
  741. if (wbc->nr_to_write <= 0)
  742. done = 1;
  743. }
  744. xfs_start_page_writeback(page, !page_dirty, count);
  745. }
  746. return done;
  747. fail_unlock_page:
  748. unlock_page(page);
  749. fail:
  750. return 1;
  751. }
  752. /*
  753. * Convert & write out a cluster of pages in the same extent as defined
  754. * by mp and following the start page.
  755. */
  756. STATIC void
  757. xfs_cluster_write(
  758. struct inode *inode,
  759. pgoff_t tindex,
  760. xfs_iomap_t *iomapp,
  761. xfs_ioend_t **ioendp,
  762. struct writeback_control *wbc,
  763. int startio,
  764. int all_bh,
  765. pgoff_t tlast)
  766. {
  767. struct pagevec pvec;
  768. int done = 0, i;
  769. pagevec_init(&pvec, 0);
  770. while (!done && tindex <= tlast) {
  771. unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
  772. if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
  773. break;
  774. for (i = 0; i < pagevec_count(&pvec); i++) {
  775. done = xfs_convert_page(inode, pvec.pages[i], tindex++,
  776. iomapp, ioendp, wbc, startio, all_bh);
  777. if (done)
  778. break;
  779. }
  780. pagevec_release(&pvec);
  781. cond_resched();
  782. }
  783. }
  784. STATIC void
  785. xfs_vm_invalidatepage(
  786. struct page *page,
  787. unsigned long offset)
  788. {
  789. trace_xfs_invalidatepage(page->mapping->host, page, offset);
  790. block_invalidatepage(page, offset);
  791. }
  792. /*
  793. * If the page has delalloc buffers on it, we need to punch them out before we
  794. * invalidate the page. If we don't, we leave a stale delalloc mapping on the
  795. * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
  796. * is done on that same region - the delalloc extent is returned when none is
  797. * supposed to be there.
  798. *
  799. * We prevent this by truncating away the delalloc regions on the page before
  800. * invalidating it. Because they are delalloc, we can do this without needing a
  801. * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
  802. * truncation without a transaction as there is no space left for block
  803. * reservation (typically why we see a ENOSPC in writeback).
  804. *
  805. * This is not a performance critical path, so for now just do the punching a
  806. * buffer head at a time.
  807. */
  808. STATIC void
  809. xfs_aops_discard_page(
  810. struct page *page)
  811. {
  812. struct inode *inode = page->mapping->host;
  813. struct xfs_inode *ip = XFS_I(inode);
  814. struct buffer_head *bh, *head;
  815. loff_t offset = page_offset(page);
  816. ssize_t len = 1 << inode->i_blkbits;
  817. if (!xfs_is_delayed_page(page, IOMAP_DELAY))
  818. goto out_invalidate;
  819. if (XFS_FORCED_SHUTDOWN(ip->i_mount))
  820. goto out_invalidate;
  821. xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
  822. "page discard on page %p, inode 0x%llx, offset %llu.",
  823. page, ip->i_ino, offset);
  824. xfs_ilock(ip, XFS_ILOCK_EXCL);
  825. bh = head = page_buffers(page);
  826. do {
  827. int done;
  828. xfs_fileoff_t offset_fsb;
  829. xfs_bmbt_irec_t imap;
  830. int nimaps = 1;
  831. int error;
  832. xfs_fsblock_t firstblock;
  833. xfs_bmap_free_t flist;
  834. if (!buffer_delay(bh))
  835. goto next_buffer;
  836. offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
  837. /*
  838. * Map the range first and check that it is a delalloc extent
  839. * before trying to unmap the range. Otherwise we will be
  840. * trying to remove a real extent (which requires a
  841. * transaction) or a hole, which is probably a bad idea...
  842. */
  843. error = xfs_bmapi(NULL, ip, offset_fsb, 1,
  844. XFS_BMAPI_ENTIRE, NULL, 0, &imap,
  845. &nimaps, NULL, NULL);
  846. if (error) {
  847. /* something screwed, just bail */
  848. if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
  849. xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
  850. "page discard failed delalloc mapping lookup.");
  851. }
  852. break;
  853. }
  854. if (!nimaps) {
  855. /* nothing there */
  856. goto next_buffer;
  857. }
  858. if (imap.br_startblock != DELAYSTARTBLOCK) {
  859. /* been converted, ignore */
  860. goto next_buffer;
  861. }
  862. WARN_ON(imap.br_blockcount == 0);
  863. /*
  864. * Note: while we initialise the firstblock/flist pair, they
  865. * should never be used because blocks should never be
  866. * allocated or freed for a delalloc extent and hence we need
  867. * don't cancel or finish them after the xfs_bunmapi() call.
  868. */
  869. xfs_bmap_init(&flist, &firstblock);
  870. error = xfs_bunmapi(NULL, ip, offset_fsb, 1, 0, 1, &firstblock,
  871. &flist, NULL, &done);
  872. ASSERT(!flist.xbf_count && !flist.xbf_first);
  873. if (error) {
  874. /* something screwed, just bail */
  875. if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
  876. xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
  877. "page discard unable to remove delalloc mapping.");
  878. }
  879. break;
  880. }
  881. next_buffer:
  882. offset += len;
  883. } while ((bh = bh->b_this_page) != head);
  884. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  885. out_invalidate:
  886. xfs_vm_invalidatepage(page, 0);
  887. return;
  888. }
  889. /*
  890. * Calling this without startio set means we are being asked to make a dirty
  891. * page ready for freeing it's buffers. When called with startio set then
  892. * we are coming from writepage.
  893. *
  894. * When called with startio set it is important that we write the WHOLE
  895. * page if possible.
  896. * The bh->b_state's cannot know if any of the blocks or which block for
  897. * that matter are dirty due to mmap writes, and therefore bh uptodate is
  898. * only valid if the page itself isn't completely uptodate. Some layers
  899. * may clear the page dirty flag prior to calling write page, under the
  900. * assumption the entire page will be written out; by not writing out the
  901. * whole page the page can be reused before all valid dirty data is
  902. * written out. Note: in the case of a page that has been dirty'd by
  903. * mapwrite and but partially setup by block_prepare_write the
  904. * bh->b_states's will not agree and only ones setup by BPW/BCW will have
  905. * valid state, thus the whole page must be written out thing.
  906. */
  907. STATIC int
  908. xfs_page_state_convert(
  909. struct inode *inode,
  910. struct page *page,
  911. struct writeback_control *wbc,
  912. int startio,
  913. int unmapped) /* also implies page uptodate */
  914. {
  915. struct buffer_head *bh, *head;
  916. xfs_iomap_t iomap;
  917. xfs_ioend_t *ioend = NULL, *iohead = NULL;
  918. loff_t offset;
  919. unsigned long p_offset = 0;
  920. unsigned int type;
  921. __uint64_t end_offset;
  922. pgoff_t end_index, last_index, tlast;
  923. ssize_t size, len;
  924. int flags, err, iomap_valid = 0, uptodate = 1;
  925. int page_dirty, count = 0;
  926. int trylock = 0;
  927. int all_bh = unmapped;
  928. if (startio) {
  929. if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking)
  930. trylock |= BMAPI_TRYLOCK;
  931. }
  932. /* Is this page beyond the end of the file? */
  933. offset = i_size_read(inode);
  934. end_index = offset >> PAGE_CACHE_SHIFT;
  935. last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
  936. if (page->index >= end_index) {
  937. if ((page->index >= end_index + 1) ||
  938. !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
  939. if (startio)
  940. unlock_page(page);
  941. return 0;
  942. }
  943. }
  944. /*
  945. * page_dirty is initially a count of buffers on the page before
  946. * EOF and is decremented as we move each into a cleanable state.
  947. *
  948. * Derivation:
  949. *
  950. * End offset is the highest offset that this page should represent.
  951. * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
  952. * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
  953. * hence give us the correct page_dirty count. On any other page,
  954. * it will be zero and in that case we need page_dirty to be the
  955. * count of buffers on the page.
  956. */
  957. end_offset = min_t(unsigned long long,
  958. (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
  959. len = 1 << inode->i_blkbits;
  960. p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
  961. PAGE_CACHE_SIZE);
  962. p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
  963. page_dirty = p_offset / len;
  964. bh = head = page_buffers(page);
  965. offset = page_offset(page);
  966. flags = BMAPI_READ;
  967. type = IOMAP_NEW;
  968. /* TODO: cleanup count and page_dirty */
  969. do {
  970. if (offset >= end_offset)
  971. break;
  972. if (!buffer_uptodate(bh))
  973. uptodate = 0;
  974. if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) {
  975. /*
  976. * the iomap is actually still valid, but the ioend
  977. * isn't. shouldn't happen too often.
  978. */
  979. iomap_valid = 0;
  980. continue;
  981. }
  982. if (iomap_valid)
  983. iomap_valid = xfs_iomap_valid(&iomap, offset);
  984. /*
  985. * First case, map an unwritten extent and prepare for
  986. * extent state conversion transaction on completion.
  987. *
  988. * Second case, allocate space for a delalloc buffer.
  989. * We can return EAGAIN here in the release page case.
  990. *
  991. * Third case, an unmapped buffer was found, and we are
  992. * in a path where we need to write the whole page out.
  993. */
  994. if (buffer_unwritten(bh) || buffer_delay(bh) ||
  995. ((buffer_uptodate(bh) || PageUptodate(page)) &&
  996. !buffer_mapped(bh) && (unmapped || startio))) {
  997. int new_ioend = 0;
  998. /*
  999. * Make sure we don't use a read-only iomap
  1000. */
  1001. if (flags == BMAPI_READ)
  1002. iomap_valid = 0;
  1003. if (buffer_unwritten(bh)) {
  1004. type = IOMAP_UNWRITTEN;
  1005. flags = BMAPI_WRITE | BMAPI_IGNSTATE;
  1006. } else if (buffer_delay(bh)) {
  1007. type = IOMAP_DELAY;
  1008. flags = BMAPI_ALLOCATE | trylock;
  1009. } else {
  1010. type = IOMAP_NEW;
  1011. flags = BMAPI_WRITE | BMAPI_MMAP;
  1012. }
  1013. if (!iomap_valid) {
  1014. /*
  1015. * if we didn't have a valid mapping then we
  1016. * need to ensure that we put the new mapping
  1017. * in a new ioend structure. This needs to be
  1018. * done to ensure that the ioends correctly
  1019. * reflect the block mappings at io completion
  1020. * for unwritten extent conversion.
  1021. */
  1022. new_ioend = 1;
  1023. if (type == IOMAP_NEW) {
  1024. size = xfs_probe_cluster(inode,
  1025. page, bh, head, 0);
  1026. } else {
  1027. size = len;
  1028. }
  1029. err = xfs_map_blocks(inode, offset, size,
  1030. &iomap, flags);
  1031. if (err)
  1032. goto error;
  1033. iomap_valid = xfs_iomap_valid(&iomap, offset);
  1034. }
  1035. if (iomap_valid) {
  1036. xfs_map_at_offset(inode, bh, &iomap, offset);
  1037. if (startio) {
  1038. xfs_add_to_ioend(inode, bh, offset,
  1039. type, &ioend,
  1040. new_ioend);
  1041. } else {
  1042. set_buffer_dirty(bh);
  1043. unlock_buffer(bh);
  1044. mark_buffer_dirty(bh);
  1045. }
  1046. page_dirty--;
  1047. count++;
  1048. }
  1049. } else if (buffer_uptodate(bh) && startio) {
  1050. /*
  1051. * we got here because the buffer is already mapped.
  1052. * That means it must already have extents allocated
  1053. * underneath it. Map the extent by reading it.
  1054. */
  1055. if (!iomap_valid || flags != BMAPI_READ) {
  1056. flags = BMAPI_READ;
  1057. size = xfs_probe_cluster(inode, page, bh,
  1058. head, 1);
  1059. err = xfs_map_blocks(inode, offset, size,
  1060. &iomap, flags);
  1061. if (err)
  1062. goto error;
  1063. iomap_valid = xfs_iomap_valid(&iomap, offset);
  1064. }
  1065. /*
  1066. * We set the type to IOMAP_NEW in case we are doing a
  1067. * small write at EOF that is extending the file but
  1068. * without needing an allocation. We need to update the
  1069. * file size on I/O completion in this case so it is
  1070. * the same case as having just allocated a new extent
  1071. * that we are writing into for the first time.
  1072. */
  1073. type = IOMAP_NEW;
  1074. if (trylock_buffer(bh)) {
  1075. ASSERT(buffer_mapped(bh));
  1076. if (iomap_valid)
  1077. all_bh = 1;
  1078. xfs_add_to_ioend(inode, bh, offset, type,
  1079. &ioend, !iomap_valid);
  1080. page_dirty--;
  1081. count++;
  1082. } else {
  1083. iomap_valid = 0;
  1084. }
  1085. } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
  1086. (unmapped || startio)) {
  1087. iomap_valid = 0;
  1088. }
  1089. if (!iohead)
  1090. iohead = ioend;
  1091. } while (offset += len, ((bh = bh->b_this_page) != head));
  1092. if (uptodate && bh == head)
  1093. SetPageUptodate(page);
  1094. if (startio)
  1095. xfs_start_page_writeback(page, 1, count);
  1096. if (ioend && iomap_valid) {
  1097. offset = (iomap.iomap_offset + iomap.iomap_bsize - 1) >>
  1098. PAGE_CACHE_SHIFT;
  1099. tlast = min_t(pgoff_t, offset, last_index);
  1100. xfs_cluster_write(inode, page->index + 1, &iomap, &ioend,
  1101. wbc, startio, all_bh, tlast);
  1102. }
  1103. if (iohead)
  1104. xfs_submit_ioend(wbc, iohead);
  1105. return page_dirty;
  1106. error:
  1107. if (iohead)
  1108. xfs_cancel_ioend(iohead);
  1109. /*
  1110. * If it's delalloc and we have nowhere to put it,
  1111. * throw it away, unless the lower layers told
  1112. * us to try again.
  1113. */
  1114. if (err != -EAGAIN) {
  1115. if (!unmapped)
  1116. xfs_aops_discard_page(page);
  1117. ClearPageUptodate(page);
  1118. }
  1119. return err;
  1120. }
  1121. /*
  1122. * writepage: Called from one of two places:
  1123. *
  1124. * 1. we are flushing a delalloc buffer head.
  1125. *
  1126. * 2. we are writing out a dirty page. Typically the page dirty
  1127. * state is cleared before we get here. In this case is it
  1128. * conceivable we have no buffer heads.
  1129. *
  1130. * For delalloc space on the page we need to allocate space and
  1131. * flush it. For unmapped buffer heads on the page we should
  1132. * allocate space if the page is uptodate. For any other dirty
  1133. * buffer heads on the page we should flush them.
  1134. *
  1135. * If we detect that a transaction would be required to flush
  1136. * the page, we have to check the process flags first, if we
  1137. * are already in a transaction or disk I/O during allocations
  1138. * is off, we need to fail the writepage and redirty the page.
  1139. */
  1140. STATIC int
  1141. xfs_vm_writepage(
  1142. struct page *page,
  1143. struct writeback_control *wbc)
  1144. {
  1145. int error;
  1146. int need_trans;
  1147. int delalloc, unmapped, unwritten;
  1148. struct inode *inode = page->mapping->host;
  1149. trace_xfs_writepage(inode, page, 0);
  1150. /*
  1151. * We need a transaction if:
  1152. * 1. There are delalloc buffers on the page
  1153. * 2. The page is uptodate and we have unmapped buffers
  1154. * 3. The page is uptodate and we have no buffers
  1155. * 4. There are unwritten buffers on the page
  1156. */
  1157. if (!page_has_buffers(page)) {
  1158. unmapped = 1;
  1159. need_trans = 1;
  1160. } else {
  1161. xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
  1162. if (!PageUptodate(page))
  1163. unmapped = 0;
  1164. need_trans = delalloc + unmapped + unwritten;
  1165. }
  1166. /*
  1167. * If we need a transaction and the process flags say
  1168. * we are already in a transaction, or no IO is allowed
  1169. * then mark the page dirty again and leave the page
  1170. * as is.
  1171. */
  1172. if (current_test_flags(PF_FSTRANS) && need_trans)
  1173. goto out_fail;
  1174. /*
  1175. * Delay hooking up buffer heads until we have
  1176. * made our go/no-go decision.
  1177. */
  1178. if (!page_has_buffers(page))
  1179. create_empty_buffers(page, 1 << inode->i_blkbits, 0);
  1180. /*
  1181. * VM calculation for nr_to_write seems off. Bump it way
  1182. * up, this gets simple streaming writes zippy again.
  1183. * To be reviewed again after Jens' writeback changes.
  1184. */
  1185. wbc->nr_to_write *= 4;
  1186. /*
  1187. * Convert delayed allocate, unwritten or unmapped space
  1188. * to real space and flush out to disk.
  1189. */
  1190. error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
  1191. if (error == -EAGAIN)
  1192. goto out_fail;
  1193. if (unlikely(error < 0))
  1194. goto out_unlock;
  1195. return 0;
  1196. out_fail:
  1197. redirty_page_for_writepage(wbc, page);
  1198. unlock_page(page);
  1199. return 0;
  1200. out_unlock:
  1201. unlock_page(page);
  1202. return error;
  1203. }
  1204. STATIC int
  1205. xfs_vm_writepages(
  1206. struct address_space *mapping,
  1207. struct writeback_control *wbc)
  1208. {
  1209. xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
  1210. return generic_writepages(mapping, wbc);
  1211. }
  1212. /*
  1213. * Called to move a page into cleanable state - and from there
  1214. * to be released. Possibly the page is already clean. We always
  1215. * have buffer heads in this call.
  1216. *
  1217. * Returns 0 if the page is ok to release, 1 otherwise.
  1218. *
  1219. * Possible scenarios are:
  1220. *
  1221. * 1. We are being called to release a page which has been written
  1222. * to via regular I/O. buffer heads will be dirty and possibly
  1223. * delalloc. If no delalloc buffer heads in this case then we
  1224. * can just return zero.
  1225. *
  1226. * 2. We are called to release a page which has been written via
  1227. * mmap, all we need to do is ensure there is no delalloc
  1228. * state in the buffer heads, if not we can let the caller
  1229. * free them and we should come back later via writepage.
  1230. */
  1231. STATIC int
  1232. xfs_vm_releasepage(
  1233. struct page *page,
  1234. gfp_t gfp_mask)
  1235. {
  1236. struct inode *inode = page->mapping->host;
  1237. int dirty, delalloc, unmapped, unwritten;
  1238. struct writeback_control wbc = {
  1239. .sync_mode = WB_SYNC_ALL,
  1240. .nr_to_write = 1,
  1241. };
  1242. trace_xfs_releasepage(inode, page, 0);
  1243. if (!page_has_buffers(page))
  1244. return 0;
  1245. xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
  1246. if (!delalloc && !unwritten)
  1247. goto free_buffers;
  1248. if (!(gfp_mask & __GFP_FS))
  1249. return 0;
  1250. /* If we are already inside a transaction or the thread cannot
  1251. * do I/O, we cannot release this page.
  1252. */
  1253. if (current_test_flags(PF_FSTRANS))
  1254. return 0;
  1255. /*
  1256. * Convert delalloc space to real space, do not flush the
  1257. * data out to disk, that will be done by the caller.
  1258. * Never need to allocate space here - we will always
  1259. * come back to writepage in that case.
  1260. */
  1261. dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
  1262. if (dirty == 0 && !unwritten)
  1263. goto free_buffers;
  1264. return 0;
  1265. free_buffers:
  1266. return try_to_free_buffers(page);
  1267. }
  1268. STATIC int
  1269. __xfs_get_blocks(
  1270. struct inode *inode,
  1271. sector_t iblock,
  1272. struct buffer_head *bh_result,
  1273. int create,
  1274. int direct,
  1275. bmapi_flags_t flags)
  1276. {
  1277. xfs_iomap_t iomap;
  1278. xfs_off_t offset;
  1279. ssize_t size;
  1280. int niomap = 1;
  1281. int error;
  1282. offset = (xfs_off_t)iblock << inode->i_blkbits;
  1283. ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
  1284. size = bh_result->b_size;
  1285. if (!create && direct && offset >= i_size_read(inode))
  1286. return 0;
  1287. error = xfs_iomap(XFS_I(inode), offset, size,
  1288. create ? flags : BMAPI_READ, &iomap, &niomap);
  1289. if (error)
  1290. return -error;
  1291. if (niomap == 0)
  1292. return 0;
  1293. if (iomap.iomap_bn != IOMAP_DADDR_NULL) {
  1294. /*
  1295. * For unwritten extents do not report a disk address on
  1296. * the read case (treat as if we're reading into a hole).
  1297. */
  1298. if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN))
  1299. xfs_map_buffer(inode, bh_result, &iomap, offset);
  1300. if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) {
  1301. if (direct)
  1302. bh_result->b_private = inode;
  1303. set_buffer_unwritten(bh_result);
  1304. }
  1305. }
  1306. /*
  1307. * If this is a realtime file, data may be on a different device.
  1308. * to that pointed to from the buffer_head b_bdev currently.
  1309. */
  1310. bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
  1311. /*
  1312. * If we previously allocated a block out beyond eof and we are now
  1313. * coming back to use it then we will need to flag it as new even if it
  1314. * has a disk address.
  1315. *
  1316. * With sub-block writes into unwritten extents we also need to mark
  1317. * the buffer as new so that the unwritten parts of the buffer gets
  1318. * correctly zeroed.
  1319. */
  1320. if (create &&
  1321. ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
  1322. (offset >= i_size_read(inode)) ||
  1323. (iomap.iomap_flags & (IOMAP_NEW|IOMAP_UNWRITTEN))))
  1324. set_buffer_new(bh_result);
  1325. if (iomap.iomap_flags & IOMAP_DELAY) {
  1326. BUG_ON(direct);
  1327. if (create) {
  1328. set_buffer_uptodate(bh_result);
  1329. set_buffer_mapped(bh_result);
  1330. set_buffer_delay(bh_result);
  1331. }
  1332. }
  1333. if (direct || size > (1 << inode->i_blkbits)) {
  1334. ASSERT(iomap.iomap_bsize - iomap.iomap_delta > 0);
  1335. offset = min_t(xfs_off_t,
  1336. iomap.iomap_bsize - iomap.iomap_delta, size);
  1337. bh_result->b_size = (ssize_t)min_t(xfs_off_t, LONG_MAX, offset);
  1338. }
  1339. return 0;
  1340. }
  1341. int
  1342. xfs_get_blocks(
  1343. struct inode *inode,
  1344. sector_t iblock,
  1345. struct buffer_head *bh_result,
  1346. int create)
  1347. {
  1348. return __xfs_get_blocks(inode, iblock,
  1349. bh_result, create, 0, BMAPI_WRITE);
  1350. }
  1351. STATIC int
  1352. xfs_get_blocks_direct(
  1353. struct inode *inode,
  1354. sector_t iblock,
  1355. struct buffer_head *bh_result,
  1356. int create)
  1357. {
  1358. return __xfs_get_blocks(inode, iblock,
  1359. bh_result, create, 1, BMAPI_WRITE|BMAPI_DIRECT);
  1360. }
  1361. STATIC void
  1362. xfs_end_io_direct(
  1363. struct kiocb *iocb,
  1364. loff_t offset,
  1365. ssize_t size,
  1366. void *private)
  1367. {
  1368. xfs_ioend_t *ioend = iocb->private;
  1369. /*
  1370. * Non-NULL private data means we need to issue a transaction to
  1371. * convert a range from unwritten to written extents. This needs
  1372. * to happen from process context but aio+dio I/O completion
  1373. * happens from irq context so we need to defer it to a workqueue.
  1374. * This is not necessary for synchronous direct I/O, but we do
  1375. * it anyway to keep the code uniform and simpler.
  1376. *
  1377. * Well, if only it were that simple. Because synchronous direct I/O
  1378. * requires extent conversion to occur *before* we return to userspace,
  1379. * we have to wait for extent conversion to complete. Look at the
  1380. * iocb that has been passed to us to determine if this is AIO or
  1381. * not. If it is synchronous, tell xfs_finish_ioend() to kick the
  1382. * workqueue and wait for it to complete.
  1383. *
  1384. * The core direct I/O code might be changed to always call the
  1385. * completion handler in the future, in which case all this can
  1386. * go away.
  1387. */
  1388. ioend->io_offset = offset;
  1389. ioend->io_size = size;
  1390. if (ioend->io_type == IOMAP_READ) {
  1391. xfs_finish_ioend(ioend, 0);
  1392. } else if (private && size > 0) {
  1393. xfs_finish_ioend(ioend, is_sync_kiocb(iocb));
  1394. } else {
  1395. /*
  1396. * A direct I/O write ioend starts it's life in unwritten
  1397. * state in case they map an unwritten extent. This write
  1398. * didn't map an unwritten extent so switch it's completion
  1399. * handler.
  1400. */
  1401. ioend->io_type = IOMAP_NEW;
  1402. xfs_finish_ioend(ioend, 0);
  1403. }
  1404. /*
  1405. * blockdev_direct_IO can return an error even after the I/O
  1406. * completion handler was called. Thus we need to protect
  1407. * against double-freeing.
  1408. */
  1409. iocb->private = NULL;
  1410. }
  1411. STATIC ssize_t
  1412. xfs_vm_direct_IO(
  1413. int rw,
  1414. struct kiocb *iocb,
  1415. const struct iovec *iov,
  1416. loff_t offset,
  1417. unsigned long nr_segs)
  1418. {
  1419. struct file *file = iocb->ki_filp;
  1420. struct inode *inode = file->f_mapping->host;
  1421. struct block_device *bdev;
  1422. ssize_t ret;
  1423. bdev = xfs_find_bdev_for_inode(inode);
  1424. iocb->private = xfs_alloc_ioend(inode, rw == WRITE ?
  1425. IOMAP_UNWRITTEN : IOMAP_READ);
  1426. ret = blockdev_direct_IO_no_locking(rw, iocb, inode, bdev, iov,
  1427. offset, nr_segs,
  1428. xfs_get_blocks_direct,
  1429. xfs_end_io_direct);
  1430. if (unlikely(ret != -EIOCBQUEUED && iocb->private))
  1431. xfs_destroy_ioend(iocb->private);
  1432. return ret;
  1433. }
  1434. STATIC int
  1435. xfs_vm_write_begin(
  1436. struct file *file,
  1437. struct address_space *mapping,
  1438. loff_t pos,
  1439. unsigned len,
  1440. unsigned flags,
  1441. struct page **pagep,
  1442. void **fsdata)
  1443. {
  1444. *pagep = NULL;
  1445. return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
  1446. xfs_get_blocks);
  1447. }
  1448. STATIC sector_t
  1449. xfs_vm_bmap(
  1450. struct address_space *mapping,
  1451. sector_t block)
  1452. {
  1453. struct inode *inode = (struct inode *)mapping->host;
  1454. struct xfs_inode *ip = XFS_I(inode);
  1455. xfs_itrace_entry(XFS_I(inode));
  1456. xfs_ilock(ip, XFS_IOLOCK_SHARED);
  1457. xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
  1458. xfs_iunlock(ip, XFS_IOLOCK_SHARED);
  1459. return generic_block_bmap(mapping, block, xfs_get_blocks);
  1460. }
  1461. STATIC int
  1462. xfs_vm_readpage(
  1463. struct file *unused,
  1464. struct page *page)
  1465. {
  1466. return mpage_readpage(page, xfs_get_blocks);
  1467. }
  1468. STATIC int
  1469. xfs_vm_readpages(
  1470. struct file *unused,
  1471. struct address_space *mapping,
  1472. struct list_head *pages,
  1473. unsigned nr_pages)
  1474. {
  1475. return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
  1476. }
  1477. const struct address_space_operations xfs_address_space_operations = {
  1478. .readpage = xfs_vm_readpage,
  1479. .readpages = xfs_vm_readpages,
  1480. .writepage = xfs_vm_writepage,
  1481. .writepages = xfs_vm_writepages,
  1482. .sync_page = block_sync_page,
  1483. .releasepage = xfs_vm_releasepage,
  1484. .invalidatepage = xfs_vm_invalidatepage,
  1485. .write_begin = xfs_vm_write_begin,
  1486. .write_end = generic_write_end,
  1487. .bmap = xfs_vm_bmap,
  1488. .direct_IO = xfs_vm_direct_IO,
  1489. .migratepage = buffer_migrate_page,
  1490. .is_partially_uptodate = block_is_partially_uptodate,
  1491. .error_remove_page = generic_error_remove_page,
  1492. };