forcedeth.c 184 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey.
  7. *
  8. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  9. * trademarks of NVIDIA Corporation in the United States and other
  10. * countries.
  11. *
  12. * Copyright (C) 2003,4,5 Manfred Spraul
  13. * Copyright (C) 2004 Andrew de Quincey (wol support)
  14. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  15. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  16. * Copyright (c) 2004,2005,2006,2007,2008 NVIDIA Corporation
  17. *
  18. * This program is free software; you can redistribute it and/or modify
  19. * it under the terms of the GNU General Public License as published by
  20. * the Free Software Foundation; either version 2 of the License, or
  21. * (at your option) any later version.
  22. *
  23. * This program is distributed in the hope that it will be useful,
  24. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  25. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  26. * GNU General Public License for more details.
  27. *
  28. * You should have received a copy of the GNU General Public License
  29. * along with this program; if not, write to the Free Software
  30. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  31. *
  32. * Known bugs:
  33. * We suspect that on some hardware no TX done interrupts are generated.
  34. * This means recovery from netif_stop_queue only happens if the hw timer
  35. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  36. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  37. * If your hardware reliably generates tx done interrupts, then you can remove
  38. * DEV_NEED_TIMERIRQ from the driver_data flags.
  39. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  40. * superfluous timer interrupts from the nic.
  41. */
  42. #define FORCEDETH_VERSION "0.61"
  43. #define DRV_NAME "forcedeth"
  44. #include <linux/module.h>
  45. #include <linux/types.h>
  46. #include <linux/pci.h>
  47. #include <linux/interrupt.h>
  48. #include <linux/netdevice.h>
  49. #include <linux/etherdevice.h>
  50. #include <linux/delay.h>
  51. #include <linux/spinlock.h>
  52. #include <linux/ethtool.h>
  53. #include <linux/timer.h>
  54. #include <linux/skbuff.h>
  55. #include <linux/mii.h>
  56. #include <linux/random.h>
  57. #include <linux/init.h>
  58. #include <linux/if_vlan.h>
  59. #include <linux/dma-mapping.h>
  60. #include <asm/irq.h>
  61. #include <asm/io.h>
  62. #include <asm/uaccess.h>
  63. #include <asm/system.h>
  64. #if 0
  65. #define dprintk printk
  66. #else
  67. #define dprintk(x...) do { } while (0)
  68. #endif
  69. #define TX_WORK_PER_LOOP 64
  70. #define RX_WORK_PER_LOOP 64
  71. /*
  72. * Hardware access:
  73. */
  74. #define DEV_NEED_TIMERIRQ 0x00001 /* set the timer irq flag in the irq mask */
  75. #define DEV_NEED_LINKTIMER 0x00002 /* poll link settings. Relies on the timer irq */
  76. #define DEV_HAS_LARGEDESC 0x00004 /* device supports jumbo frames and needs packet format 2 */
  77. #define DEV_HAS_HIGH_DMA 0x00008 /* device supports 64bit dma */
  78. #define DEV_HAS_CHECKSUM 0x00010 /* device supports tx and rx checksum offloads */
  79. #define DEV_HAS_VLAN 0x00020 /* device supports vlan tagging and striping */
  80. #define DEV_HAS_MSI 0x00040 /* device supports MSI */
  81. #define DEV_HAS_MSI_X 0x00080 /* device supports MSI-X */
  82. #define DEV_HAS_POWER_CNTRL 0x00100 /* device supports power savings */
  83. #define DEV_HAS_STATISTICS_V1 0x00200 /* device supports hw statistics version 1 */
  84. #define DEV_HAS_STATISTICS_V2 0x00400 /* device supports hw statistics version 2 */
  85. #define DEV_HAS_TEST_EXTENDED 0x00800 /* device supports extended diagnostic test */
  86. #define DEV_HAS_MGMT_UNIT 0x01000 /* device supports management unit */
  87. #define DEV_HAS_CORRECT_MACADDR 0x02000 /* device supports correct mac address order */
  88. #define DEV_HAS_COLLISION_FIX 0x04000 /* device supports tx collision fix */
  89. #define DEV_HAS_PAUSEFRAME_TX_V1 0x08000 /* device supports tx pause frames version 1 */
  90. #define DEV_HAS_PAUSEFRAME_TX_V2 0x10000 /* device supports tx pause frames version 2 */
  91. #define DEV_HAS_PAUSEFRAME_TX_V3 0x20000 /* device supports tx pause frames version 3 */
  92. #define DEV_NEED_TX_LIMIT 0x40000 /* device needs to limit tx */
  93. #define DEV_HAS_GEAR_MODE 0x80000 /* device supports gear mode */
  94. enum {
  95. NvRegIrqStatus = 0x000,
  96. #define NVREG_IRQSTAT_MIIEVENT 0x040
  97. #define NVREG_IRQSTAT_MASK 0x81ff
  98. NvRegIrqMask = 0x004,
  99. #define NVREG_IRQ_RX_ERROR 0x0001
  100. #define NVREG_IRQ_RX 0x0002
  101. #define NVREG_IRQ_RX_NOBUF 0x0004
  102. #define NVREG_IRQ_TX_ERR 0x0008
  103. #define NVREG_IRQ_TX_OK 0x0010
  104. #define NVREG_IRQ_TIMER 0x0020
  105. #define NVREG_IRQ_LINK 0x0040
  106. #define NVREG_IRQ_RX_FORCED 0x0080
  107. #define NVREG_IRQ_TX_FORCED 0x0100
  108. #define NVREG_IRQ_RECOVER_ERROR 0x8000
  109. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  110. #define NVREG_IRQMASK_CPU 0x0060
  111. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  112. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  113. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
  114. #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
  115. NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
  116. NVREG_IRQ_TX_FORCED|NVREG_IRQ_RECOVER_ERROR))
  117. NvRegUnknownSetupReg6 = 0x008,
  118. #define NVREG_UNKSETUP6_VAL 3
  119. /*
  120. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  121. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  122. */
  123. NvRegPollingInterval = 0x00c,
  124. #define NVREG_POLL_DEFAULT_THROUGHPUT 970 /* backup tx cleanup if loop max reached */
  125. #define NVREG_POLL_DEFAULT_CPU 13
  126. NvRegMSIMap0 = 0x020,
  127. NvRegMSIMap1 = 0x024,
  128. NvRegMSIIrqMask = 0x030,
  129. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  130. NvRegMisc1 = 0x080,
  131. #define NVREG_MISC1_PAUSE_TX 0x01
  132. #define NVREG_MISC1_HD 0x02
  133. #define NVREG_MISC1_FORCE 0x3b0f3c
  134. NvRegMacReset = 0x34,
  135. #define NVREG_MAC_RESET_ASSERT 0x0F3
  136. NvRegTransmitterControl = 0x084,
  137. #define NVREG_XMITCTL_START 0x01
  138. #define NVREG_XMITCTL_MGMT_ST 0x40000000
  139. #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
  140. #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
  141. #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
  142. #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
  143. #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
  144. #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
  145. #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
  146. #define NVREG_XMITCTL_HOST_LOADED 0x00004000
  147. #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
  148. NvRegTransmitterStatus = 0x088,
  149. #define NVREG_XMITSTAT_BUSY 0x01
  150. NvRegPacketFilterFlags = 0x8c,
  151. #define NVREG_PFF_PAUSE_RX 0x08
  152. #define NVREG_PFF_ALWAYS 0x7F0000
  153. #define NVREG_PFF_PROMISC 0x80
  154. #define NVREG_PFF_MYADDR 0x20
  155. #define NVREG_PFF_LOOPBACK 0x10
  156. NvRegOffloadConfig = 0x90,
  157. #define NVREG_OFFLOAD_HOMEPHY 0x601
  158. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  159. NvRegReceiverControl = 0x094,
  160. #define NVREG_RCVCTL_START 0x01
  161. #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
  162. NvRegReceiverStatus = 0x98,
  163. #define NVREG_RCVSTAT_BUSY 0x01
  164. NvRegSlotTime = 0x9c,
  165. #define NVREG_SLOTTIME_LEGBF_ENABLED 0x80000000
  166. #define NVREG_SLOTTIME_10_100_FULL 0x00007f00
  167. #define NVREG_SLOTTIME_1000_FULL 0x0003ff00
  168. #define NVREG_SLOTTIME_HALF 0x0000ff00
  169. #define NVREG_SLOTTIME_DEFAULT 0x00007f00
  170. #define NVREG_SLOTTIME_MASK 0x000000ff
  171. NvRegTxDeferral = 0xA0,
  172. #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
  173. #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
  174. #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
  175. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f
  176. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f
  177. #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000
  178. NvRegRxDeferral = 0xA4,
  179. #define NVREG_RX_DEFERRAL_DEFAULT 0x16
  180. NvRegMacAddrA = 0xA8,
  181. NvRegMacAddrB = 0xAC,
  182. NvRegMulticastAddrA = 0xB0,
  183. #define NVREG_MCASTADDRA_FORCE 0x01
  184. NvRegMulticastAddrB = 0xB4,
  185. NvRegMulticastMaskA = 0xB8,
  186. #define NVREG_MCASTMASKA_NONE 0xffffffff
  187. NvRegMulticastMaskB = 0xBC,
  188. #define NVREG_MCASTMASKB_NONE 0xffff
  189. NvRegPhyInterface = 0xC0,
  190. #define PHY_RGMII 0x10000000
  191. NvRegBackOffControl = 0xC4,
  192. #define NVREG_BKOFFCTRL_DEFAULT 0x70000000
  193. #define NVREG_BKOFFCTRL_SEED_MASK 0x000003ff
  194. #define NVREG_BKOFFCTRL_SELECT 24
  195. #define NVREG_BKOFFCTRL_GEAR 12
  196. NvRegTxRingPhysAddr = 0x100,
  197. NvRegRxRingPhysAddr = 0x104,
  198. NvRegRingSizes = 0x108,
  199. #define NVREG_RINGSZ_TXSHIFT 0
  200. #define NVREG_RINGSZ_RXSHIFT 16
  201. NvRegTransmitPoll = 0x10c,
  202. #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
  203. NvRegLinkSpeed = 0x110,
  204. #define NVREG_LINKSPEED_FORCE 0x10000
  205. #define NVREG_LINKSPEED_10 1000
  206. #define NVREG_LINKSPEED_100 100
  207. #define NVREG_LINKSPEED_1000 50
  208. #define NVREG_LINKSPEED_MASK (0xFFF)
  209. NvRegUnknownSetupReg5 = 0x130,
  210. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  211. NvRegTxWatermark = 0x13c,
  212. #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
  213. #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
  214. #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
  215. NvRegTxRxControl = 0x144,
  216. #define NVREG_TXRXCTL_KICK 0x0001
  217. #define NVREG_TXRXCTL_BIT1 0x0002
  218. #define NVREG_TXRXCTL_BIT2 0x0004
  219. #define NVREG_TXRXCTL_IDLE 0x0008
  220. #define NVREG_TXRXCTL_RESET 0x0010
  221. #define NVREG_TXRXCTL_RXCHECK 0x0400
  222. #define NVREG_TXRXCTL_DESC_1 0
  223. #define NVREG_TXRXCTL_DESC_2 0x002100
  224. #define NVREG_TXRXCTL_DESC_3 0xc02200
  225. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  226. #define NVREG_TXRXCTL_VLANINS 0x00080
  227. NvRegTxRingPhysAddrHigh = 0x148,
  228. NvRegRxRingPhysAddrHigh = 0x14C,
  229. NvRegTxPauseFrame = 0x170,
  230. #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080
  231. #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010
  232. #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0
  233. #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880
  234. NvRegMIIStatus = 0x180,
  235. #define NVREG_MIISTAT_ERROR 0x0001
  236. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  237. #define NVREG_MIISTAT_MASK_RW 0x0007
  238. #define NVREG_MIISTAT_MASK_ALL 0x000f
  239. NvRegMIIMask = 0x184,
  240. #define NVREG_MII_LINKCHANGE 0x0008
  241. NvRegAdapterControl = 0x188,
  242. #define NVREG_ADAPTCTL_START 0x02
  243. #define NVREG_ADAPTCTL_LINKUP 0x04
  244. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  245. #define NVREG_ADAPTCTL_RUNNING 0x100000
  246. #define NVREG_ADAPTCTL_PHYSHIFT 24
  247. NvRegMIISpeed = 0x18c,
  248. #define NVREG_MIISPEED_BIT8 (1<<8)
  249. #define NVREG_MIIDELAY 5
  250. NvRegMIIControl = 0x190,
  251. #define NVREG_MIICTL_INUSE 0x08000
  252. #define NVREG_MIICTL_WRITE 0x00400
  253. #define NVREG_MIICTL_ADDRSHIFT 5
  254. NvRegMIIData = 0x194,
  255. NvRegWakeUpFlags = 0x200,
  256. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  257. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  258. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  259. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  260. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  261. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  262. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  263. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  264. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  265. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  266. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  267. NvRegPatternCRC = 0x204,
  268. NvRegPatternMask = 0x208,
  269. NvRegPowerCap = 0x268,
  270. #define NVREG_POWERCAP_D3SUPP (1<<30)
  271. #define NVREG_POWERCAP_D2SUPP (1<<26)
  272. #define NVREG_POWERCAP_D1SUPP (1<<25)
  273. NvRegPowerState = 0x26c,
  274. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  275. #define NVREG_POWERSTATE_VALID 0x0100
  276. #define NVREG_POWERSTATE_MASK 0x0003
  277. #define NVREG_POWERSTATE_D0 0x0000
  278. #define NVREG_POWERSTATE_D1 0x0001
  279. #define NVREG_POWERSTATE_D2 0x0002
  280. #define NVREG_POWERSTATE_D3 0x0003
  281. NvRegTxCnt = 0x280,
  282. NvRegTxZeroReXmt = 0x284,
  283. NvRegTxOneReXmt = 0x288,
  284. NvRegTxManyReXmt = 0x28c,
  285. NvRegTxLateCol = 0x290,
  286. NvRegTxUnderflow = 0x294,
  287. NvRegTxLossCarrier = 0x298,
  288. NvRegTxExcessDef = 0x29c,
  289. NvRegTxRetryErr = 0x2a0,
  290. NvRegRxFrameErr = 0x2a4,
  291. NvRegRxExtraByte = 0x2a8,
  292. NvRegRxLateCol = 0x2ac,
  293. NvRegRxRunt = 0x2b0,
  294. NvRegRxFrameTooLong = 0x2b4,
  295. NvRegRxOverflow = 0x2b8,
  296. NvRegRxFCSErr = 0x2bc,
  297. NvRegRxFrameAlignErr = 0x2c0,
  298. NvRegRxLenErr = 0x2c4,
  299. NvRegRxUnicast = 0x2c8,
  300. NvRegRxMulticast = 0x2cc,
  301. NvRegRxBroadcast = 0x2d0,
  302. NvRegTxDef = 0x2d4,
  303. NvRegTxFrame = 0x2d8,
  304. NvRegRxCnt = 0x2dc,
  305. NvRegTxPause = 0x2e0,
  306. NvRegRxPause = 0x2e4,
  307. NvRegRxDropFrame = 0x2e8,
  308. NvRegVlanControl = 0x300,
  309. #define NVREG_VLANCONTROL_ENABLE 0x2000
  310. NvRegMSIXMap0 = 0x3e0,
  311. NvRegMSIXMap1 = 0x3e4,
  312. NvRegMSIXIrqStatus = 0x3f0,
  313. NvRegPowerState2 = 0x600,
  314. #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F11
  315. #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
  316. };
  317. /* Big endian: should work, but is untested */
  318. struct ring_desc {
  319. __le32 buf;
  320. __le32 flaglen;
  321. };
  322. struct ring_desc_ex {
  323. __le32 bufhigh;
  324. __le32 buflow;
  325. __le32 txvlan;
  326. __le32 flaglen;
  327. };
  328. union ring_type {
  329. struct ring_desc* orig;
  330. struct ring_desc_ex* ex;
  331. };
  332. #define FLAG_MASK_V1 0xffff0000
  333. #define FLAG_MASK_V2 0xffffc000
  334. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  335. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  336. #define NV_TX_LASTPACKET (1<<16)
  337. #define NV_TX_RETRYERROR (1<<19)
  338. #define NV_TX_RETRYCOUNT_MASK (0xF<<20)
  339. #define NV_TX_FORCED_INTERRUPT (1<<24)
  340. #define NV_TX_DEFERRED (1<<26)
  341. #define NV_TX_CARRIERLOST (1<<27)
  342. #define NV_TX_LATECOLLISION (1<<28)
  343. #define NV_TX_UNDERFLOW (1<<29)
  344. #define NV_TX_ERROR (1<<30)
  345. #define NV_TX_VALID (1<<31)
  346. #define NV_TX2_LASTPACKET (1<<29)
  347. #define NV_TX2_RETRYERROR (1<<18)
  348. #define NV_TX2_RETRYCOUNT_MASK (0xF<<19)
  349. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  350. #define NV_TX2_DEFERRED (1<<25)
  351. #define NV_TX2_CARRIERLOST (1<<26)
  352. #define NV_TX2_LATECOLLISION (1<<27)
  353. #define NV_TX2_UNDERFLOW (1<<28)
  354. /* error and valid are the same for both */
  355. #define NV_TX2_ERROR (1<<30)
  356. #define NV_TX2_VALID (1<<31)
  357. #define NV_TX2_TSO (1<<28)
  358. #define NV_TX2_TSO_SHIFT 14
  359. #define NV_TX2_TSO_MAX_SHIFT 14
  360. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  361. #define NV_TX2_CHECKSUM_L3 (1<<27)
  362. #define NV_TX2_CHECKSUM_L4 (1<<26)
  363. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  364. #define NV_RX_DESCRIPTORVALID (1<<16)
  365. #define NV_RX_MISSEDFRAME (1<<17)
  366. #define NV_RX_SUBSTRACT1 (1<<18)
  367. #define NV_RX_ERROR1 (1<<23)
  368. #define NV_RX_ERROR2 (1<<24)
  369. #define NV_RX_ERROR3 (1<<25)
  370. #define NV_RX_ERROR4 (1<<26)
  371. #define NV_RX_CRCERR (1<<27)
  372. #define NV_RX_OVERFLOW (1<<28)
  373. #define NV_RX_FRAMINGERR (1<<29)
  374. #define NV_RX_ERROR (1<<30)
  375. #define NV_RX_AVAIL (1<<31)
  376. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  377. #define NV_RX2_CHECKSUM_IP (0x10000000)
  378. #define NV_RX2_CHECKSUM_IP_TCP (0x14000000)
  379. #define NV_RX2_CHECKSUM_IP_UDP (0x18000000)
  380. #define NV_RX2_DESCRIPTORVALID (1<<29)
  381. #define NV_RX2_SUBSTRACT1 (1<<25)
  382. #define NV_RX2_ERROR1 (1<<18)
  383. #define NV_RX2_ERROR2 (1<<19)
  384. #define NV_RX2_ERROR3 (1<<20)
  385. #define NV_RX2_ERROR4 (1<<21)
  386. #define NV_RX2_CRCERR (1<<22)
  387. #define NV_RX2_OVERFLOW (1<<23)
  388. #define NV_RX2_FRAMINGERR (1<<24)
  389. /* error and avail are the same for both */
  390. #define NV_RX2_ERROR (1<<30)
  391. #define NV_RX2_AVAIL (1<<31)
  392. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  393. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  394. /* Miscelaneous hardware related defines: */
  395. #define NV_PCI_REGSZ_VER1 0x270
  396. #define NV_PCI_REGSZ_VER2 0x2d4
  397. #define NV_PCI_REGSZ_VER3 0x604
  398. /* various timeout delays: all in usec */
  399. #define NV_TXRX_RESET_DELAY 4
  400. #define NV_TXSTOP_DELAY1 10
  401. #define NV_TXSTOP_DELAY1MAX 500000
  402. #define NV_TXSTOP_DELAY2 100
  403. #define NV_RXSTOP_DELAY1 10
  404. #define NV_RXSTOP_DELAY1MAX 500000
  405. #define NV_RXSTOP_DELAY2 100
  406. #define NV_SETUP5_DELAY 5
  407. #define NV_SETUP5_DELAYMAX 50000
  408. #define NV_POWERUP_DELAY 5
  409. #define NV_POWERUP_DELAYMAX 5000
  410. #define NV_MIIBUSY_DELAY 50
  411. #define NV_MIIPHY_DELAY 10
  412. #define NV_MIIPHY_DELAYMAX 10000
  413. #define NV_MAC_RESET_DELAY 64
  414. #define NV_WAKEUPPATTERNS 5
  415. #define NV_WAKEUPMASKENTRIES 4
  416. /* General driver defaults */
  417. #define NV_WATCHDOG_TIMEO (5*HZ)
  418. #define RX_RING_DEFAULT 128
  419. #define TX_RING_DEFAULT 256
  420. #define RX_RING_MIN 128
  421. #define TX_RING_MIN 64
  422. #define RING_MAX_DESC_VER_1 1024
  423. #define RING_MAX_DESC_VER_2_3 16384
  424. /* rx/tx mac addr + type + vlan + align + slack*/
  425. #define NV_RX_HEADERS (64)
  426. /* even more slack. */
  427. #define NV_RX_ALLOC_PAD (64)
  428. /* maximum mtu size */
  429. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  430. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  431. #define OOM_REFILL (1+HZ/20)
  432. #define POLL_WAIT (1+HZ/100)
  433. #define LINK_TIMEOUT (3*HZ)
  434. #define STATS_INTERVAL (10*HZ)
  435. /*
  436. * desc_ver values:
  437. * The nic supports three different descriptor types:
  438. * - DESC_VER_1: Original
  439. * - DESC_VER_2: support for jumbo frames.
  440. * - DESC_VER_3: 64-bit format.
  441. */
  442. #define DESC_VER_1 1
  443. #define DESC_VER_2 2
  444. #define DESC_VER_3 3
  445. /* PHY defines */
  446. #define PHY_OUI_MARVELL 0x5043
  447. #define PHY_OUI_CICADA 0x03f1
  448. #define PHY_OUI_VITESSE 0x01c1
  449. #define PHY_OUI_REALTEK 0x0732
  450. #define PHY_OUI_REALTEK2 0x0020
  451. #define PHYID1_OUI_MASK 0x03ff
  452. #define PHYID1_OUI_SHFT 6
  453. #define PHYID2_OUI_MASK 0xfc00
  454. #define PHYID2_OUI_SHFT 10
  455. #define PHYID2_MODEL_MASK 0x03f0
  456. #define PHY_MODEL_REALTEK_8211 0x0110
  457. #define PHY_REV_MASK 0x0001
  458. #define PHY_REV_REALTEK_8211B 0x0000
  459. #define PHY_REV_REALTEK_8211C 0x0001
  460. #define PHY_MODEL_REALTEK_8201 0x0200
  461. #define PHY_MODEL_MARVELL_E3016 0x0220
  462. #define PHY_MARVELL_E3016_INITMASK 0x0300
  463. #define PHY_CICADA_INIT1 0x0f000
  464. #define PHY_CICADA_INIT2 0x0e00
  465. #define PHY_CICADA_INIT3 0x01000
  466. #define PHY_CICADA_INIT4 0x0200
  467. #define PHY_CICADA_INIT5 0x0004
  468. #define PHY_CICADA_INIT6 0x02000
  469. #define PHY_VITESSE_INIT_REG1 0x1f
  470. #define PHY_VITESSE_INIT_REG2 0x10
  471. #define PHY_VITESSE_INIT_REG3 0x11
  472. #define PHY_VITESSE_INIT_REG4 0x12
  473. #define PHY_VITESSE_INIT_MSK1 0xc
  474. #define PHY_VITESSE_INIT_MSK2 0x0180
  475. #define PHY_VITESSE_INIT1 0x52b5
  476. #define PHY_VITESSE_INIT2 0xaf8a
  477. #define PHY_VITESSE_INIT3 0x8
  478. #define PHY_VITESSE_INIT4 0x8f8a
  479. #define PHY_VITESSE_INIT5 0xaf86
  480. #define PHY_VITESSE_INIT6 0x8f86
  481. #define PHY_VITESSE_INIT7 0xaf82
  482. #define PHY_VITESSE_INIT8 0x0100
  483. #define PHY_VITESSE_INIT9 0x8f82
  484. #define PHY_VITESSE_INIT10 0x0
  485. #define PHY_REALTEK_INIT_REG1 0x1f
  486. #define PHY_REALTEK_INIT_REG2 0x19
  487. #define PHY_REALTEK_INIT_REG3 0x13
  488. #define PHY_REALTEK_INIT_REG4 0x14
  489. #define PHY_REALTEK_INIT_REG5 0x18
  490. #define PHY_REALTEK_INIT_REG6 0x11
  491. #define PHY_REALTEK_INIT1 0x0000
  492. #define PHY_REALTEK_INIT2 0x8e00
  493. #define PHY_REALTEK_INIT3 0x0001
  494. #define PHY_REALTEK_INIT4 0xad17
  495. #define PHY_REALTEK_INIT5 0xfb54
  496. #define PHY_REALTEK_INIT6 0xf5c7
  497. #define PHY_REALTEK_INIT7 0x1000
  498. #define PHY_REALTEK_INIT8 0x0003
  499. #define PHY_REALTEK_INIT_MSK1 0x0003
  500. #define PHY_GIGABIT 0x0100
  501. #define PHY_TIMEOUT 0x1
  502. #define PHY_ERROR 0x2
  503. #define PHY_100 0x1
  504. #define PHY_1000 0x2
  505. #define PHY_HALF 0x100
  506. #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
  507. #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
  508. #define NV_PAUSEFRAME_RX_ENABLE 0x0004
  509. #define NV_PAUSEFRAME_TX_ENABLE 0x0008
  510. #define NV_PAUSEFRAME_RX_REQ 0x0010
  511. #define NV_PAUSEFRAME_TX_REQ 0x0020
  512. #define NV_PAUSEFRAME_AUTONEG 0x0040
  513. /* MSI/MSI-X defines */
  514. #define NV_MSI_X_MAX_VECTORS 8
  515. #define NV_MSI_X_VECTORS_MASK 0x000f
  516. #define NV_MSI_CAPABLE 0x0010
  517. #define NV_MSI_X_CAPABLE 0x0020
  518. #define NV_MSI_ENABLED 0x0040
  519. #define NV_MSI_X_ENABLED 0x0080
  520. #define NV_MSI_X_VECTOR_ALL 0x0
  521. #define NV_MSI_X_VECTOR_RX 0x0
  522. #define NV_MSI_X_VECTOR_TX 0x1
  523. #define NV_MSI_X_VECTOR_OTHER 0x2
  524. #define NV_RESTART_TX 0x1
  525. #define NV_RESTART_RX 0x2
  526. #define NV_TX_LIMIT_COUNT 16
  527. /* statistics */
  528. struct nv_ethtool_str {
  529. char name[ETH_GSTRING_LEN];
  530. };
  531. static const struct nv_ethtool_str nv_estats_str[] = {
  532. { "tx_bytes" },
  533. { "tx_zero_rexmt" },
  534. { "tx_one_rexmt" },
  535. { "tx_many_rexmt" },
  536. { "tx_late_collision" },
  537. { "tx_fifo_errors" },
  538. { "tx_carrier_errors" },
  539. { "tx_excess_deferral" },
  540. { "tx_retry_error" },
  541. { "rx_frame_error" },
  542. { "rx_extra_byte" },
  543. { "rx_late_collision" },
  544. { "rx_runt" },
  545. { "rx_frame_too_long" },
  546. { "rx_over_errors" },
  547. { "rx_crc_errors" },
  548. { "rx_frame_align_error" },
  549. { "rx_length_error" },
  550. { "rx_unicast" },
  551. { "rx_multicast" },
  552. { "rx_broadcast" },
  553. { "rx_packets" },
  554. { "rx_errors_total" },
  555. { "tx_errors_total" },
  556. /* version 2 stats */
  557. { "tx_deferral" },
  558. { "tx_packets" },
  559. { "rx_bytes" },
  560. { "tx_pause" },
  561. { "rx_pause" },
  562. { "rx_drop_frame" }
  563. };
  564. struct nv_ethtool_stats {
  565. u64 tx_bytes;
  566. u64 tx_zero_rexmt;
  567. u64 tx_one_rexmt;
  568. u64 tx_many_rexmt;
  569. u64 tx_late_collision;
  570. u64 tx_fifo_errors;
  571. u64 tx_carrier_errors;
  572. u64 tx_excess_deferral;
  573. u64 tx_retry_error;
  574. u64 rx_frame_error;
  575. u64 rx_extra_byte;
  576. u64 rx_late_collision;
  577. u64 rx_runt;
  578. u64 rx_frame_too_long;
  579. u64 rx_over_errors;
  580. u64 rx_crc_errors;
  581. u64 rx_frame_align_error;
  582. u64 rx_length_error;
  583. u64 rx_unicast;
  584. u64 rx_multicast;
  585. u64 rx_broadcast;
  586. u64 rx_packets;
  587. u64 rx_errors_total;
  588. u64 tx_errors_total;
  589. /* version 2 stats */
  590. u64 tx_deferral;
  591. u64 tx_packets;
  592. u64 rx_bytes;
  593. u64 tx_pause;
  594. u64 rx_pause;
  595. u64 rx_drop_frame;
  596. };
  597. #define NV_DEV_STATISTICS_V2_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
  598. #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
  599. /* diagnostics */
  600. #define NV_TEST_COUNT_BASE 3
  601. #define NV_TEST_COUNT_EXTENDED 4
  602. static const struct nv_ethtool_str nv_etests_str[] = {
  603. { "link (online/offline)" },
  604. { "register (offline) " },
  605. { "interrupt (offline) " },
  606. { "loopback (offline) " }
  607. };
  608. struct register_test {
  609. __u32 reg;
  610. __u32 mask;
  611. };
  612. static const struct register_test nv_registers_test[] = {
  613. { NvRegUnknownSetupReg6, 0x01 },
  614. { NvRegMisc1, 0x03c },
  615. { NvRegOffloadConfig, 0x03ff },
  616. { NvRegMulticastAddrA, 0xffffffff },
  617. { NvRegTxWatermark, 0x0ff },
  618. { NvRegWakeUpFlags, 0x07777 },
  619. { 0,0 }
  620. };
  621. struct nv_skb_map {
  622. struct sk_buff *skb;
  623. dma_addr_t dma;
  624. unsigned int dma_len;
  625. struct ring_desc_ex *first_tx_desc;
  626. struct nv_skb_map *next_tx_ctx;
  627. };
  628. /*
  629. * SMP locking:
  630. * All hardware access under dev->priv->lock, except the performance
  631. * critical parts:
  632. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  633. * by the arch code for interrupts.
  634. * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
  635. * needs dev->priv->lock :-(
  636. * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
  637. */
  638. /* in dev: base, irq */
  639. struct fe_priv {
  640. spinlock_t lock;
  641. struct net_device *dev;
  642. struct napi_struct napi;
  643. /* General data:
  644. * Locking: spin_lock(&np->lock); */
  645. struct nv_ethtool_stats estats;
  646. int in_shutdown;
  647. u32 linkspeed;
  648. int duplex;
  649. int autoneg;
  650. int fixed_mode;
  651. int phyaddr;
  652. int wolenabled;
  653. unsigned int phy_oui;
  654. unsigned int phy_model;
  655. unsigned int phy_rev;
  656. u16 gigabit;
  657. int intr_test;
  658. int recover_error;
  659. /* General data: RO fields */
  660. dma_addr_t ring_addr;
  661. struct pci_dev *pci_dev;
  662. u32 orig_mac[2];
  663. u32 irqmask;
  664. u32 desc_ver;
  665. u32 txrxctl_bits;
  666. u32 vlanctl_bits;
  667. u32 driver_data;
  668. u32 device_id;
  669. u32 register_size;
  670. int rx_csum;
  671. u32 mac_in_use;
  672. void __iomem *base;
  673. /* rx specific fields.
  674. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  675. */
  676. union ring_type get_rx, put_rx, first_rx, last_rx;
  677. struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
  678. struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
  679. struct nv_skb_map *rx_skb;
  680. union ring_type rx_ring;
  681. unsigned int rx_buf_sz;
  682. unsigned int pkt_limit;
  683. struct timer_list oom_kick;
  684. struct timer_list nic_poll;
  685. struct timer_list stats_poll;
  686. u32 nic_poll_irq;
  687. int rx_ring_size;
  688. /* media detection workaround.
  689. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  690. */
  691. int need_linktimer;
  692. unsigned long link_timeout;
  693. /*
  694. * tx specific fields.
  695. */
  696. union ring_type get_tx, put_tx, first_tx, last_tx;
  697. struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
  698. struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
  699. struct nv_skb_map *tx_skb;
  700. union ring_type tx_ring;
  701. u32 tx_flags;
  702. int tx_ring_size;
  703. int tx_limit;
  704. u32 tx_pkts_in_progress;
  705. struct nv_skb_map *tx_change_owner;
  706. struct nv_skb_map *tx_end_flip;
  707. int tx_stop;
  708. /* vlan fields */
  709. struct vlan_group *vlangrp;
  710. /* msi/msi-x fields */
  711. u32 msi_flags;
  712. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  713. /* flow control */
  714. u32 pause_flags;
  715. };
  716. /*
  717. * Maximum number of loops until we assume that a bit in the irq mask
  718. * is stuck. Overridable with module param.
  719. */
  720. static int max_interrupt_work = 5;
  721. /*
  722. * Optimization can be either throuput mode or cpu mode
  723. *
  724. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  725. * CPU Mode: Interrupts are controlled by a timer.
  726. */
  727. enum {
  728. NV_OPTIMIZATION_MODE_THROUGHPUT,
  729. NV_OPTIMIZATION_MODE_CPU
  730. };
  731. static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  732. /*
  733. * Poll interval for timer irq
  734. *
  735. * This interval determines how frequent an interrupt is generated.
  736. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  737. * Min = 0, and Max = 65535
  738. */
  739. static int poll_interval = -1;
  740. /*
  741. * MSI interrupts
  742. */
  743. enum {
  744. NV_MSI_INT_DISABLED,
  745. NV_MSI_INT_ENABLED
  746. };
  747. static int msi = NV_MSI_INT_ENABLED;
  748. /*
  749. * MSIX interrupts
  750. */
  751. enum {
  752. NV_MSIX_INT_DISABLED,
  753. NV_MSIX_INT_ENABLED
  754. };
  755. static int msix = NV_MSIX_INT_DISABLED;
  756. /*
  757. * DMA 64bit
  758. */
  759. enum {
  760. NV_DMA_64BIT_DISABLED,
  761. NV_DMA_64BIT_ENABLED
  762. };
  763. static int dma_64bit = NV_DMA_64BIT_ENABLED;
  764. /*
  765. * Crossover Detection
  766. * Realtek 8201 phy + some OEM boards do not work properly.
  767. */
  768. enum {
  769. NV_CROSSOVER_DETECTION_DISABLED,
  770. NV_CROSSOVER_DETECTION_ENABLED
  771. };
  772. static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED;
  773. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  774. {
  775. return netdev_priv(dev);
  776. }
  777. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  778. {
  779. return ((struct fe_priv *)netdev_priv(dev))->base;
  780. }
  781. static inline void pci_push(u8 __iomem *base)
  782. {
  783. /* force out pending posted writes */
  784. readl(base);
  785. }
  786. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  787. {
  788. return le32_to_cpu(prd->flaglen)
  789. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  790. }
  791. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  792. {
  793. return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
  794. }
  795. static bool nv_optimized(struct fe_priv *np)
  796. {
  797. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  798. return false;
  799. return true;
  800. }
  801. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  802. int delay, int delaymax, const char *msg)
  803. {
  804. u8 __iomem *base = get_hwbase(dev);
  805. pci_push(base);
  806. do {
  807. udelay(delay);
  808. delaymax -= delay;
  809. if (delaymax < 0) {
  810. if (msg)
  811. printk(msg);
  812. return 1;
  813. }
  814. } while ((readl(base + offset) & mask) != target);
  815. return 0;
  816. }
  817. #define NV_SETUP_RX_RING 0x01
  818. #define NV_SETUP_TX_RING 0x02
  819. static inline u32 dma_low(dma_addr_t addr)
  820. {
  821. return addr;
  822. }
  823. static inline u32 dma_high(dma_addr_t addr)
  824. {
  825. return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */
  826. }
  827. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  828. {
  829. struct fe_priv *np = get_nvpriv(dev);
  830. u8 __iomem *base = get_hwbase(dev);
  831. if (!nv_optimized(np)) {
  832. if (rxtx_flags & NV_SETUP_RX_RING) {
  833. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  834. }
  835. if (rxtx_flags & NV_SETUP_TX_RING) {
  836. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  837. }
  838. } else {
  839. if (rxtx_flags & NV_SETUP_RX_RING) {
  840. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  841. writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
  842. }
  843. if (rxtx_flags & NV_SETUP_TX_RING) {
  844. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  845. writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
  846. }
  847. }
  848. }
  849. static void free_rings(struct net_device *dev)
  850. {
  851. struct fe_priv *np = get_nvpriv(dev);
  852. if (!nv_optimized(np)) {
  853. if (np->rx_ring.orig)
  854. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  855. np->rx_ring.orig, np->ring_addr);
  856. } else {
  857. if (np->rx_ring.ex)
  858. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  859. np->rx_ring.ex, np->ring_addr);
  860. }
  861. if (np->rx_skb)
  862. kfree(np->rx_skb);
  863. if (np->tx_skb)
  864. kfree(np->tx_skb);
  865. }
  866. static int using_multi_irqs(struct net_device *dev)
  867. {
  868. struct fe_priv *np = get_nvpriv(dev);
  869. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  870. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  871. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
  872. return 0;
  873. else
  874. return 1;
  875. }
  876. static void nv_enable_irq(struct net_device *dev)
  877. {
  878. struct fe_priv *np = get_nvpriv(dev);
  879. if (!using_multi_irqs(dev)) {
  880. if (np->msi_flags & NV_MSI_X_ENABLED)
  881. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  882. else
  883. enable_irq(np->pci_dev->irq);
  884. } else {
  885. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  886. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  887. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  888. }
  889. }
  890. static void nv_disable_irq(struct net_device *dev)
  891. {
  892. struct fe_priv *np = get_nvpriv(dev);
  893. if (!using_multi_irqs(dev)) {
  894. if (np->msi_flags & NV_MSI_X_ENABLED)
  895. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  896. else
  897. disable_irq(np->pci_dev->irq);
  898. } else {
  899. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  900. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  901. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  902. }
  903. }
  904. /* In MSIX mode, a write to irqmask behaves as XOR */
  905. static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
  906. {
  907. u8 __iomem *base = get_hwbase(dev);
  908. writel(mask, base + NvRegIrqMask);
  909. }
  910. static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
  911. {
  912. struct fe_priv *np = get_nvpriv(dev);
  913. u8 __iomem *base = get_hwbase(dev);
  914. if (np->msi_flags & NV_MSI_X_ENABLED) {
  915. writel(mask, base + NvRegIrqMask);
  916. } else {
  917. if (np->msi_flags & NV_MSI_ENABLED)
  918. writel(0, base + NvRegMSIIrqMask);
  919. writel(0, base + NvRegIrqMask);
  920. }
  921. }
  922. #define MII_READ (-1)
  923. /* mii_rw: read/write a register on the PHY.
  924. *
  925. * Caller must guarantee serialization
  926. */
  927. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  928. {
  929. u8 __iomem *base = get_hwbase(dev);
  930. u32 reg;
  931. int retval;
  932. writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus);
  933. reg = readl(base + NvRegMIIControl);
  934. if (reg & NVREG_MIICTL_INUSE) {
  935. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  936. udelay(NV_MIIBUSY_DELAY);
  937. }
  938. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  939. if (value != MII_READ) {
  940. writel(value, base + NvRegMIIData);
  941. reg |= NVREG_MIICTL_WRITE;
  942. }
  943. writel(reg, base + NvRegMIIControl);
  944. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  945. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
  946. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
  947. dev->name, miireg, addr);
  948. retval = -1;
  949. } else if (value != MII_READ) {
  950. /* it was a write operation - fewer failures are detectable */
  951. dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
  952. dev->name, value, miireg, addr);
  953. retval = 0;
  954. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  955. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
  956. dev->name, miireg, addr);
  957. retval = -1;
  958. } else {
  959. retval = readl(base + NvRegMIIData);
  960. dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
  961. dev->name, miireg, addr, retval);
  962. }
  963. return retval;
  964. }
  965. static int phy_reset(struct net_device *dev, u32 bmcr_setup)
  966. {
  967. struct fe_priv *np = netdev_priv(dev);
  968. u32 miicontrol;
  969. unsigned int tries = 0;
  970. miicontrol = BMCR_RESET | bmcr_setup;
  971. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
  972. return -1;
  973. }
  974. /* wait for 500ms */
  975. msleep(500);
  976. /* must wait till reset is deasserted */
  977. while (miicontrol & BMCR_RESET) {
  978. msleep(10);
  979. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  980. /* FIXME: 100 tries seem excessive */
  981. if (tries++ > 100)
  982. return -1;
  983. }
  984. return 0;
  985. }
  986. static int phy_init(struct net_device *dev)
  987. {
  988. struct fe_priv *np = get_nvpriv(dev);
  989. u8 __iomem *base = get_hwbase(dev);
  990. u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
  991. /* phy errata for E3016 phy */
  992. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  993. reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  994. reg &= ~PHY_MARVELL_E3016_INITMASK;
  995. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
  996. printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
  997. return PHY_ERROR;
  998. }
  999. }
  1000. if (np->phy_oui == PHY_OUI_REALTEK) {
  1001. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1002. np->phy_rev == PHY_REV_REALTEK_8211B) {
  1003. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1004. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1005. return PHY_ERROR;
  1006. }
  1007. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1008. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1009. return PHY_ERROR;
  1010. }
  1011. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1012. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1013. return PHY_ERROR;
  1014. }
  1015. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1016. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1017. return PHY_ERROR;
  1018. }
  1019. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
  1020. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1021. return PHY_ERROR;
  1022. }
  1023. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
  1024. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1025. return PHY_ERROR;
  1026. }
  1027. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1028. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1029. return PHY_ERROR;
  1030. }
  1031. }
  1032. if (np->phy_model == PHY_MODEL_REALTEK_8201) {
  1033. if (np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
  1034. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
  1035. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
  1036. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
  1037. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
  1038. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
  1039. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
  1040. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_39) {
  1041. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1042. phy_reserved |= PHY_REALTEK_INIT7;
  1043. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
  1044. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1045. return PHY_ERROR;
  1046. }
  1047. }
  1048. }
  1049. }
  1050. /* set advertise register */
  1051. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1052. reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
  1053. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  1054. printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
  1055. return PHY_ERROR;
  1056. }
  1057. /* get phy interface type */
  1058. phyinterface = readl(base + NvRegPhyInterface);
  1059. /* see if gigabit phy */
  1060. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1061. if (mii_status & PHY_GIGABIT) {
  1062. np->gigabit = PHY_GIGABIT;
  1063. mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  1064. mii_control_1000 &= ~ADVERTISE_1000HALF;
  1065. if (phyinterface & PHY_RGMII)
  1066. mii_control_1000 |= ADVERTISE_1000FULL;
  1067. else
  1068. mii_control_1000 &= ~ADVERTISE_1000FULL;
  1069. if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
  1070. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1071. return PHY_ERROR;
  1072. }
  1073. }
  1074. else
  1075. np->gigabit = 0;
  1076. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1077. mii_control |= BMCR_ANENABLE;
  1078. /* reset the phy
  1079. * (certain phys need bmcr to be setup with reset)
  1080. */
  1081. if (phy_reset(dev, mii_control)) {
  1082. printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
  1083. return PHY_ERROR;
  1084. }
  1085. /* phy vendor specific configuration */
  1086. if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
  1087. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  1088. phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
  1089. phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
  1090. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
  1091. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1092. return PHY_ERROR;
  1093. }
  1094. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1095. phy_reserved |= PHY_CICADA_INIT5;
  1096. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
  1097. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1098. return PHY_ERROR;
  1099. }
  1100. }
  1101. if (np->phy_oui == PHY_OUI_CICADA) {
  1102. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  1103. phy_reserved |= PHY_CICADA_INIT6;
  1104. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
  1105. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1106. return PHY_ERROR;
  1107. }
  1108. }
  1109. if (np->phy_oui == PHY_OUI_VITESSE) {
  1110. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) {
  1111. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1112. return PHY_ERROR;
  1113. }
  1114. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) {
  1115. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1116. return PHY_ERROR;
  1117. }
  1118. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1119. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1120. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1121. return PHY_ERROR;
  1122. }
  1123. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1124. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1125. phy_reserved |= PHY_VITESSE_INIT3;
  1126. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1127. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1128. return PHY_ERROR;
  1129. }
  1130. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) {
  1131. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1132. return PHY_ERROR;
  1133. }
  1134. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) {
  1135. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1136. return PHY_ERROR;
  1137. }
  1138. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1139. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1140. phy_reserved |= PHY_VITESSE_INIT3;
  1141. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1142. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1143. return PHY_ERROR;
  1144. }
  1145. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1146. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1147. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1148. return PHY_ERROR;
  1149. }
  1150. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) {
  1151. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1152. return PHY_ERROR;
  1153. }
  1154. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) {
  1155. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1156. return PHY_ERROR;
  1157. }
  1158. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1159. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1160. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1161. return PHY_ERROR;
  1162. }
  1163. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1164. phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
  1165. phy_reserved |= PHY_VITESSE_INIT8;
  1166. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1167. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1168. return PHY_ERROR;
  1169. }
  1170. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) {
  1171. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1172. return PHY_ERROR;
  1173. }
  1174. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) {
  1175. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1176. return PHY_ERROR;
  1177. }
  1178. }
  1179. if (np->phy_oui == PHY_OUI_REALTEK) {
  1180. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1181. np->phy_rev == PHY_REV_REALTEK_8211B) {
  1182. /* reset could have cleared these out, set them back */
  1183. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1184. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1185. return PHY_ERROR;
  1186. }
  1187. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1188. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1189. return PHY_ERROR;
  1190. }
  1191. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1192. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1193. return PHY_ERROR;
  1194. }
  1195. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1196. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1197. return PHY_ERROR;
  1198. }
  1199. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
  1200. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1201. return PHY_ERROR;
  1202. }
  1203. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
  1204. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1205. return PHY_ERROR;
  1206. }
  1207. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1208. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1209. return PHY_ERROR;
  1210. }
  1211. }
  1212. if (np->phy_model == PHY_MODEL_REALTEK_8201) {
  1213. if (np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
  1214. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
  1215. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
  1216. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
  1217. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
  1218. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
  1219. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
  1220. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_39) {
  1221. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1222. phy_reserved |= PHY_REALTEK_INIT7;
  1223. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
  1224. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1225. return PHY_ERROR;
  1226. }
  1227. }
  1228. if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
  1229. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1230. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1231. return PHY_ERROR;
  1232. }
  1233. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
  1234. phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
  1235. phy_reserved |= PHY_REALTEK_INIT3;
  1236. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved)) {
  1237. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1238. return PHY_ERROR;
  1239. }
  1240. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1241. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1242. return PHY_ERROR;
  1243. }
  1244. }
  1245. }
  1246. }
  1247. /* some phys clear out pause advertisment on reset, set it back */
  1248. mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
  1249. /* restart auto negotiation */
  1250. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1251. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  1252. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1253. return PHY_ERROR;
  1254. }
  1255. return 0;
  1256. }
  1257. static void nv_start_rx(struct net_device *dev)
  1258. {
  1259. struct fe_priv *np = netdev_priv(dev);
  1260. u8 __iomem *base = get_hwbase(dev);
  1261. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1262. dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
  1263. /* Already running? Stop it. */
  1264. if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
  1265. rx_ctrl &= ~NVREG_RCVCTL_START;
  1266. writel(rx_ctrl, base + NvRegReceiverControl);
  1267. pci_push(base);
  1268. }
  1269. writel(np->linkspeed, base + NvRegLinkSpeed);
  1270. pci_push(base);
  1271. rx_ctrl |= NVREG_RCVCTL_START;
  1272. if (np->mac_in_use)
  1273. rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
  1274. writel(rx_ctrl, base + NvRegReceiverControl);
  1275. dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
  1276. dev->name, np->duplex, np->linkspeed);
  1277. pci_push(base);
  1278. }
  1279. static void nv_stop_rx(struct net_device *dev)
  1280. {
  1281. struct fe_priv *np = netdev_priv(dev);
  1282. u8 __iomem *base = get_hwbase(dev);
  1283. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1284. dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
  1285. if (!np->mac_in_use)
  1286. rx_ctrl &= ~NVREG_RCVCTL_START;
  1287. else
  1288. rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
  1289. writel(rx_ctrl, base + NvRegReceiverControl);
  1290. reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  1291. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
  1292. KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
  1293. udelay(NV_RXSTOP_DELAY2);
  1294. if (!np->mac_in_use)
  1295. writel(0, base + NvRegLinkSpeed);
  1296. }
  1297. static void nv_start_tx(struct net_device *dev)
  1298. {
  1299. struct fe_priv *np = netdev_priv(dev);
  1300. u8 __iomem *base = get_hwbase(dev);
  1301. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1302. dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
  1303. tx_ctrl |= NVREG_XMITCTL_START;
  1304. if (np->mac_in_use)
  1305. tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
  1306. writel(tx_ctrl, base + NvRegTransmitterControl);
  1307. pci_push(base);
  1308. }
  1309. static void nv_stop_tx(struct net_device *dev)
  1310. {
  1311. struct fe_priv *np = netdev_priv(dev);
  1312. u8 __iomem *base = get_hwbase(dev);
  1313. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1314. dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
  1315. if (!np->mac_in_use)
  1316. tx_ctrl &= ~NVREG_XMITCTL_START;
  1317. else
  1318. tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
  1319. writel(tx_ctrl, base + NvRegTransmitterControl);
  1320. reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  1321. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
  1322. KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
  1323. udelay(NV_TXSTOP_DELAY2);
  1324. if (!np->mac_in_use)
  1325. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  1326. base + NvRegTransmitPoll);
  1327. }
  1328. static void nv_start_rxtx(struct net_device *dev)
  1329. {
  1330. nv_start_rx(dev);
  1331. nv_start_tx(dev);
  1332. }
  1333. static void nv_stop_rxtx(struct net_device *dev)
  1334. {
  1335. nv_stop_rx(dev);
  1336. nv_stop_tx(dev);
  1337. }
  1338. static void nv_txrx_reset(struct net_device *dev)
  1339. {
  1340. struct fe_priv *np = netdev_priv(dev);
  1341. u8 __iomem *base = get_hwbase(dev);
  1342. dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
  1343. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1344. pci_push(base);
  1345. udelay(NV_TXRX_RESET_DELAY);
  1346. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1347. pci_push(base);
  1348. }
  1349. static void nv_mac_reset(struct net_device *dev)
  1350. {
  1351. struct fe_priv *np = netdev_priv(dev);
  1352. u8 __iomem *base = get_hwbase(dev);
  1353. u32 temp1, temp2, temp3;
  1354. dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
  1355. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1356. pci_push(base);
  1357. /* save registers since they will be cleared on reset */
  1358. temp1 = readl(base + NvRegMacAddrA);
  1359. temp2 = readl(base + NvRegMacAddrB);
  1360. temp3 = readl(base + NvRegTransmitPoll);
  1361. writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
  1362. pci_push(base);
  1363. udelay(NV_MAC_RESET_DELAY);
  1364. writel(0, base + NvRegMacReset);
  1365. pci_push(base);
  1366. udelay(NV_MAC_RESET_DELAY);
  1367. /* restore saved registers */
  1368. writel(temp1, base + NvRegMacAddrA);
  1369. writel(temp2, base + NvRegMacAddrB);
  1370. writel(temp3, base + NvRegTransmitPoll);
  1371. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1372. pci_push(base);
  1373. }
  1374. static void nv_get_hw_stats(struct net_device *dev)
  1375. {
  1376. struct fe_priv *np = netdev_priv(dev);
  1377. u8 __iomem *base = get_hwbase(dev);
  1378. np->estats.tx_bytes += readl(base + NvRegTxCnt);
  1379. np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
  1380. np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
  1381. np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
  1382. np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
  1383. np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
  1384. np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
  1385. np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
  1386. np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
  1387. np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
  1388. np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
  1389. np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
  1390. np->estats.rx_runt += readl(base + NvRegRxRunt);
  1391. np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
  1392. np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
  1393. np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
  1394. np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
  1395. np->estats.rx_length_error += readl(base + NvRegRxLenErr);
  1396. np->estats.rx_unicast += readl(base + NvRegRxUnicast);
  1397. np->estats.rx_multicast += readl(base + NvRegRxMulticast);
  1398. np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
  1399. np->estats.rx_packets =
  1400. np->estats.rx_unicast +
  1401. np->estats.rx_multicast +
  1402. np->estats.rx_broadcast;
  1403. np->estats.rx_errors_total =
  1404. np->estats.rx_crc_errors +
  1405. np->estats.rx_over_errors +
  1406. np->estats.rx_frame_error +
  1407. (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
  1408. np->estats.rx_late_collision +
  1409. np->estats.rx_runt +
  1410. np->estats.rx_frame_too_long;
  1411. np->estats.tx_errors_total =
  1412. np->estats.tx_late_collision +
  1413. np->estats.tx_fifo_errors +
  1414. np->estats.tx_carrier_errors +
  1415. np->estats.tx_excess_deferral +
  1416. np->estats.tx_retry_error;
  1417. if (np->driver_data & DEV_HAS_STATISTICS_V2) {
  1418. np->estats.tx_deferral += readl(base + NvRegTxDef);
  1419. np->estats.tx_packets += readl(base + NvRegTxFrame);
  1420. np->estats.rx_bytes += readl(base + NvRegRxCnt);
  1421. np->estats.tx_pause += readl(base + NvRegTxPause);
  1422. np->estats.rx_pause += readl(base + NvRegRxPause);
  1423. np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
  1424. }
  1425. }
  1426. /*
  1427. * nv_get_stats: dev->get_stats function
  1428. * Get latest stats value from the nic.
  1429. * Called with read_lock(&dev_base_lock) held for read -
  1430. * only synchronized against unregister_netdevice.
  1431. */
  1432. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  1433. {
  1434. struct fe_priv *np = netdev_priv(dev);
  1435. /* If the nic supports hw counters then retrieve latest values */
  1436. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2)) {
  1437. nv_get_hw_stats(dev);
  1438. /* copy to net_device stats */
  1439. dev->stats.tx_bytes = np->estats.tx_bytes;
  1440. dev->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
  1441. dev->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
  1442. dev->stats.rx_crc_errors = np->estats.rx_crc_errors;
  1443. dev->stats.rx_over_errors = np->estats.rx_over_errors;
  1444. dev->stats.rx_errors = np->estats.rx_errors_total;
  1445. dev->stats.tx_errors = np->estats.tx_errors_total;
  1446. }
  1447. return &dev->stats;
  1448. }
  1449. /*
  1450. * nv_alloc_rx: fill rx ring entries.
  1451. * Return 1 if the allocations for the skbs failed and the
  1452. * rx engine is without Available descriptors
  1453. */
  1454. static int nv_alloc_rx(struct net_device *dev)
  1455. {
  1456. struct fe_priv *np = netdev_priv(dev);
  1457. struct ring_desc* less_rx;
  1458. less_rx = np->get_rx.orig;
  1459. if (less_rx-- == np->first_rx.orig)
  1460. less_rx = np->last_rx.orig;
  1461. while (np->put_rx.orig != less_rx) {
  1462. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1463. if (skb) {
  1464. np->put_rx_ctx->skb = skb;
  1465. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1466. skb->data,
  1467. skb_tailroom(skb),
  1468. PCI_DMA_FROMDEVICE);
  1469. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1470. np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
  1471. wmb();
  1472. np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  1473. if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
  1474. np->put_rx.orig = np->first_rx.orig;
  1475. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1476. np->put_rx_ctx = np->first_rx_ctx;
  1477. } else {
  1478. return 1;
  1479. }
  1480. }
  1481. return 0;
  1482. }
  1483. static int nv_alloc_rx_optimized(struct net_device *dev)
  1484. {
  1485. struct fe_priv *np = netdev_priv(dev);
  1486. struct ring_desc_ex* less_rx;
  1487. less_rx = np->get_rx.ex;
  1488. if (less_rx-- == np->first_rx.ex)
  1489. less_rx = np->last_rx.ex;
  1490. while (np->put_rx.ex != less_rx) {
  1491. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1492. if (skb) {
  1493. np->put_rx_ctx->skb = skb;
  1494. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1495. skb->data,
  1496. skb_tailroom(skb),
  1497. PCI_DMA_FROMDEVICE);
  1498. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1499. np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
  1500. np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
  1501. wmb();
  1502. np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  1503. if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
  1504. np->put_rx.ex = np->first_rx.ex;
  1505. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1506. np->put_rx_ctx = np->first_rx_ctx;
  1507. } else {
  1508. return 1;
  1509. }
  1510. }
  1511. return 0;
  1512. }
  1513. /* If rx bufs are exhausted called after 50ms to attempt to refresh */
  1514. #ifdef CONFIG_FORCEDETH_NAPI
  1515. static void nv_do_rx_refill(unsigned long data)
  1516. {
  1517. struct net_device *dev = (struct net_device *) data;
  1518. struct fe_priv *np = netdev_priv(dev);
  1519. /* Just reschedule NAPI rx processing */
  1520. netif_rx_schedule(dev, &np->napi);
  1521. }
  1522. #else
  1523. static void nv_do_rx_refill(unsigned long data)
  1524. {
  1525. struct net_device *dev = (struct net_device *) data;
  1526. struct fe_priv *np = netdev_priv(dev);
  1527. int retcode;
  1528. if (!using_multi_irqs(dev)) {
  1529. if (np->msi_flags & NV_MSI_X_ENABLED)
  1530. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1531. else
  1532. disable_irq(np->pci_dev->irq);
  1533. } else {
  1534. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1535. }
  1536. if (!nv_optimized(np))
  1537. retcode = nv_alloc_rx(dev);
  1538. else
  1539. retcode = nv_alloc_rx_optimized(dev);
  1540. if (retcode) {
  1541. spin_lock_irq(&np->lock);
  1542. if (!np->in_shutdown)
  1543. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1544. spin_unlock_irq(&np->lock);
  1545. }
  1546. if (!using_multi_irqs(dev)) {
  1547. if (np->msi_flags & NV_MSI_X_ENABLED)
  1548. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1549. else
  1550. enable_irq(np->pci_dev->irq);
  1551. } else {
  1552. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1553. }
  1554. }
  1555. #endif
  1556. static void nv_init_rx(struct net_device *dev)
  1557. {
  1558. struct fe_priv *np = netdev_priv(dev);
  1559. int i;
  1560. np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
  1561. if (!nv_optimized(np))
  1562. np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
  1563. else
  1564. np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
  1565. np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
  1566. np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
  1567. for (i = 0; i < np->rx_ring_size; i++) {
  1568. if (!nv_optimized(np)) {
  1569. np->rx_ring.orig[i].flaglen = 0;
  1570. np->rx_ring.orig[i].buf = 0;
  1571. } else {
  1572. np->rx_ring.ex[i].flaglen = 0;
  1573. np->rx_ring.ex[i].txvlan = 0;
  1574. np->rx_ring.ex[i].bufhigh = 0;
  1575. np->rx_ring.ex[i].buflow = 0;
  1576. }
  1577. np->rx_skb[i].skb = NULL;
  1578. np->rx_skb[i].dma = 0;
  1579. }
  1580. }
  1581. static void nv_init_tx(struct net_device *dev)
  1582. {
  1583. struct fe_priv *np = netdev_priv(dev);
  1584. int i;
  1585. np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
  1586. if (!nv_optimized(np))
  1587. np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
  1588. else
  1589. np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
  1590. np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
  1591. np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
  1592. np->tx_pkts_in_progress = 0;
  1593. np->tx_change_owner = NULL;
  1594. np->tx_end_flip = NULL;
  1595. for (i = 0; i < np->tx_ring_size; i++) {
  1596. if (!nv_optimized(np)) {
  1597. np->tx_ring.orig[i].flaglen = 0;
  1598. np->tx_ring.orig[i].buf = 0;
  1599. } else {
  1600. np->tx_ring.ex[i].flaglen = 0;
  1601. np->tx_ring.ex[i].txvlan = 0;
  1602. np->tx_ring.ex[i].bufhigh = 0;
  1603. np->tx_ring.ex[i].buflow = 0;
  1604. }
  1605. np->tx_skb[i].skb = NULL;
  1606. np->tx_skb[i].dma = 0;
  1607. np->tx_skb[i].dma_len = 0;
  1608. np->tx_skb[i].first_tx_desc = NULL;
  1609. np->tx_skb[i].next_tx_ctx = NULL;
  1610. }
  1611. }
  1612. static int nv_init_ring(struct net_device *dev)
  1613. {
  1614. struct fe_priv *np = netdev_priv(dev);
  1615. nv_init_tx(dev);
  1616. nv_init_rx(dev);
  1617. if (!nv_optimized(np))
  1618. return nv_alloc_rx(dev);
  1619. else
  1620. return nv_alloc_rx_optimized(dev);
  1621. }
  1622. static int nv_release_txskb(struct net_device *dev, struct nv_skb_map* tx_skb)
  1623. {
  1624. struct fe_priv *np = netdev_priv(dev);
  1625. if (tx_skb->dma) {
  1626. pci_unmap_page(np->pci_dev, tx_skb->dma,
  1627. tx_skb->dma_len,
  1628. PCI_DMA_TODEVICE);
  1629. tx_skb->dma = 0;
  1630. }
  1631. if (tx_skb->skb) {
  1632. dev_kfree_skb_any(tx_skb->skb);
  1633. tx_skb->skb = NULL;
  1634. return 1;
  1635. } else {
  1636. return 0;
  1637. }
  1638. }
  1639. static void nv_drain_tx(struct net_device *dev)
  1640. {
  1641. struct fe_priv *np = netdev_priv(dev);
  1642. unsigned int i;
  1643. for (i = 0; i < np->tx_ring_size; i++) {
  1644. if (!nv_optimized(np)) {
  1645. np->tx_ring.orig[i].flaglen = 0;
  1646. np->tx_ring.orig[i].buf = 0;
  1647. } else {
  1648. np->tx_ring.ex[i].flaglen = 0;
  1649. np->tx_ring.ex[i].txvlan = 0;
  1650. np->tx_ring.ex[i].bufhigh = 0;
  1651. np->tx_ring.ex[i].buflow = 0;
  1652. }
  1653. if (nv_release_txskb(dev, &np->tx_skb[i]))
  1654. dev->stats.tx_dropped++;
  1655. np->tx_skb[i].dma = 0;
  1656. np->tx_skb[i].dma_len = 0;
  1657. np->tx_skb[i].first_tx_desc = NULL;
  1658. np->tx_skb[i].next_tx_ctx = NULL;
  1659. }
  1660. np->tx_pkts_in_progress = 0;
  1661. np->tx_change_owner = NULL;
  1662. np->tx_end_flip = NULL;
  1663. }
  1664. static void nv_drain_rx(struct net_device *dev)
  1665. {
  1666. struct fe_priv *np = netdev_priv(dev);
  1667. int i;
  1668. for (i = 0; i < np->rx_ring_size; i++) {
  1669. if (!nv_optimized(np)) {
  1670. np->rx_ring.orig[i].flaglen = 0;
  1671. np->rx_ring.orig[i].buf = 0;
  1672. } else {
  1673. np->rx_ring.ex[i].flaglen = 0;
  1674. np->rx_ring.ex[i].txvlan = 0;
  1675. np->rx_ring.ex[i].bufhigh = 0;
  1676. np->rx_ring.ex[i].buflow = 0;
  1677. }
  1678. wmb();
  1679. if (np->rx_skb[i].skb) {
  1680. pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
  1681. (skb_end_pointer(np->rx_skb[i].skb) -
  1682. np->rx_skb[i].skb->data),
  1683. PCI_DMA_FROMDEVICE);
  1684. dev_kfree_skb(np->rx_skb[i].skb);
  1685. np->rx_skb[i].skb = NULL;
  1686. }
  1687. }
  1688. }
  1689. static void nv_drain_rxtx(struct net_device *dev)
  1690. {
  1691. nv_drain_tx(dev);
  1692. nv_drain_rx(dev);
  1693. }
  1694. static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
  1695. {
  1696. return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
  1697. }
  1698. static void nv_legacybackoff_reseed(struct net_device *dev)
  1699. {
  1700. u8 __iomem *base = get_hwbase(dev);
  1701. u32 reg;
  1702. u32 low;
  1703. int tx_status = 0;
  1704. reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK;
  1705. get_random_bytes(&low, sizeof(low));
  1706. reg |= low & NVREG_SLOTTIME_MASK;
  1707. /* Need to stop tx before change takes effect.
  1708. * Caller has already gained np->lock.
  1709. */
  1710. tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START;
  1711. if (tx_status)
  1712. nv_stop_tx(dev);
  1713. nv_stop_rx(dev);
  1714. writel(reg, base + NvRegSlotTime);
  1715. if (tx_status)
  1716. nv_start_tx(dev);
  1717. nv_start_rx(dev);
  1718. }
  1719. /* Gear Backoff Seeds */
  1720. #define BACKOFF_SEEDSET_ROWS 8
  1721. #define BACKOFF_SEEDSET_LFSRS 15
  1722. /* Known Good seed sets */
  1723. static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
  1724. {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
  1725. {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974},
  1726. {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
  1727. {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974},
  1728. {266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984},
  1729. {266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984},
  1730. {366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800, 84},
  1731. {466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184}};
  1732. static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
  1733. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1734. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1735. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397},
  1736. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1737. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1738. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1739. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1740. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}};
  1741. static void nv_gear_backoff_reseed(struct net_device *dev)
  1742. {
  1743. u8 __iomem *base = get_hwbase(dev);
  1744. u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed;
  1745. u32 temp, seedset, combinedSeed;
  1746. int i;
  1747. /* Setup seed for free running LFSR */
  1748. /* We are going to read the time stamp counter 3 times
  1749. and swizzle bits around to increase randomness */
  1750. get_random_bytes(&miniseed1, sizeof(miniseed1));
  1751. miniseed1 &= 0x0fff;
  1752. if (miniseed1 == 0)
  1753. miniseed1 = 0xabc;
  1754. get_random_bytes(&miniseed2, sizeof(miniseed2));
  1755. miniseed2 &= 0x0fff;
  1756. if (miniseed2 == 0)
  1757. miniseed2 = 0xabc;
  1758. miniseed2_reversed =
  1759. ((miniseed2 & 0xF00) >> 8) |
  1760. (miniseed2 & 0x0F0) |
  1761. ((miniseed2 & 0x00F) << 8);
  1762. get_random_bytes(&miniseed3, sizeof(miniseed3));
  1763. miniseed3 &= 0x0fff;
  1764. if (miniseed3 == 0)
  1765. miniseed3 = 0xabc;
  1766. miniseed3_reversed =
  1767. ((miniseed3 & 0xF00) >> 8) |
  1768. (miniseed3 & 0x0F0) |
  1769. ((miniseed3 & 0x00F) << 8);
  1770. combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) |
  1771. (miniseed2 ^ miniseed3_reversed);
  1772. /* Seeds can not be zero */
  1773. if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0)
  1774. combinedSeed |= 0x08;
  1775. if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0)
  1776. combinedSeed |= 0x8000;
  1777. /* No need to disable tx here */
  1778. temp = NVREG_BKOFFCTRL_DEFAULT | (0 << NVREG_BKOFFCTRL_SELECT);
  1779. temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK;
  1780. temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR;
  1781. writel(temp,base + NvRegBackOffControl);
  1782. /* Setup seeds for all gear LFSRs. */
  1783. get_random_bytes(&seedset, sizeof(seedset));
  1784. seedset = seedset % BACKOFF_SEEDSET_ROWS;
  1785. for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++)
  1786. {
  1787. temp = NVREG_BKOFFCTRL_DEFAULT | (i << NVREG_BKOFFCTRL_SELECT);
  1788. temp |= main_seedset[seedset][i-1] & 0x3ff;
  1789. temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR);
  1790. writel(temp, base + NvRegBackOffControl);
  1791. }
  1792. }
  1793. /*
  1794. * nv_start_xmit: dev->hard_start_xmit function
  1795. * Called with netif_tx_lock held.
  1796. */
  1797. static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1798. {
  1799. struct fe_priv *np = netdev_priv(dev);
  1800. u32 tx_flags = 0;
  1801. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1802. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1803. unsigned int i;
  1804. u32 offset = 0;
  1805. u32 bcnt;
  1806. u32 size = skb->len-skb->data_len;
  1807. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1808. u32 empty_slots;
  1809. struct ring_desc* put_tx;
  1810. struct ring_desc* start_tx;
  1811. struct ring_desc* prev_tx;
  1812. struct nv_skb_map* prev_tx_ctx;
  1813. unsigned long flags;
  1814. /* add fragments to entries count */
  1815. for (i = 0; i < fragments; i++) {
  1816. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1817. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1818. }
  1819. empty_slots = nv_get_empty_tx_slots(np);
  1820. if (unlikely(empty_slots <= entries)) {
  1821. spin_lock_irqsave(&np->lock, flags);
  1822. netif_stop_queue(dev);
  1823. np->tx_stop = 1;
  1824. spin_unlock_irqrestore(&np->lock, flags);
  1825. return NETDEV_TX_BUSY;
  1826. }
  1827. start_tx = put_tx = np->put_tx.orig;
  1828. /* setup the header buffer */
  1829. do {
  1830. prev_tx = put_tx;
  1831. prev_tx_ctx = np->put_tx_ctx;
  1832. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1833. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1834. PCI_DMA_TODEVICE);
  1835. np->put_tx_ctx->dma_len = bcnt;
  1836. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1837. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1838. tx_flags = np->tx_flags;
  1839. offset += bcnt;
  1840. size -= bcnt;
  1841. if (unlikely(put_tx++ == np->last_tx.orig))
  1842. put_tx = np->first_tx.orig;
  1843. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1844. np->put_tx_ctx = np->first_tx_ctx;
  1845. } while (size);
  1846. /* setup the fragments */
  1847. for (i = 0; i < fragments; i++) {
  1848. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1849. u32 size = frag->size;
  1850. offset = 0;
  1851. do {
  1852. prev_tx = put_tx;
  1853. prev_tx_ctx = np->put_tx_ctx;
  1854. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1855. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1856. PCI_DMA_TODEVICE);
  1857. np->put_tx_ctx->dma_len = bcnt;
  1858. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1859. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1860. offset += bcnt;
  1861. size -= bcnt;
  1862. if (unlikely(put_tx++ == np->last_tx.orig))
  1863. put_tx = np->first_tx.orig;
  1864. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1865. np->put_tx_ctx = np->first_tx_ctx;
  1866. } while (size);
  1867. }
  1868. /* set last fragment flag */
  1869. prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
  1870. /* save skb in this slot's context area */
  1871. prev_tx_ctx->skb = skb;
  1872. if (skb_is_gso(skb))
  1873. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  1874. else
  1875. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  1876. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  1877. spin_lock_irqsave(&np->lock, flags);
  1878. /* set tx flags */
  1879. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1880. np->put_tx.orig = put_tx;
  1881. spin_unlock_irqrestore(&np->lock, flags);
  1882. dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
  1883. dev->name, entries, tx_flags_extra);
  1884. {
  1885. int j;
  1886. for (j=0; j<64; j++) {
  1887. if ((j%16) == 0)
  1888. dprintk("\n%03x:", j);
  1889. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1890. }
  1891. dprintk("\n");
  1892. }
  1893. dev->trans_start = jiffies;
  1894. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1895. return NETDEV_TX_OK;
  1896. }
  1897. static int nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev)
  1898. {
  1899. struct fe_priv *np = netdev_priv(dev);
  1900. u32 tx_flags = 0;
  1901. u32 tx_flags_extra;
  1902. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1903. unsigned int i;
  1904. u32 offset = 0;
  1905. u32 bcnt;
  1906. u32 size = skb->len-skb->data_len;
  1907. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1908. u32 empty_slots;
  1909. struct ring_desc_ex* put_tx;
  1910. struct ring_desc_ex* start_tx;
  1911. struct ring_desc_ex* prev_tx;
  1912. struct nv_skb_map* prev_tx_ctx;
  1913. struct nv_skb_map* start_tx_ctx;
  1914. unsigned long flags;
  1915. /* add fragments to entries count */
  1916. for (i = 0; i < fragments; i++) {
  1917. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1918. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1919. }
  1920. empty_slots = nv_get_empty_tx_slots(np);
  1921. if (unlikely(empty_slots <= entries)) {
  1922. spin_lock_irqsave(&np->lock, flags);
  1923. netif_stop_queue(dev);
  1924. np->tx_stop = 1;
  1925. spin_unlock_irqrestore(&np->lock, flags);
  1926. return NETDEV_TX_BUSY;
  1927. }
  1928. start_tx = put_tx = np->put_tx.ex;
  1929. start_tx_ctx = np->put_tx_ctx;
  1930. /* setup the header buffer */
  1931. do {
  1932. prev_tx = put_tx;
  1933. prev_tx_ctx = np->put_tx_ctx;
  1934. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1935. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1936. PCI_DMA_TODEVICE);
  1937. np->put_tx_ctx->dma_len = bcnt;
  1938. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  1939. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  1940. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1941. tx_flags = NV_TX2_VALID;
  1942. offset += bcnt;
  1943. size -= bcnt;
  1944. if (unlikely(put_tx++ == np->last_tx.ex))
  1945. put_tx = np->first_tx.ex;
  1946. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1947. np->put_tx_ctx = np->first_tx_ctx;
  1948. } while (size);
  1949. /* setup the fragments */
  1950. for (i = 0; i < fragments; i++) {
  1951. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1952. u32 size = frag->size;
  1953. offset = 0;
  1954. do {
  1955. prev_tx = put_tx;
  1956. prev_tx_ctx = np->put_tx_ctx;
  1957. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1958. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1959. PCI_DMA_TODEVICE);
  1960. np->put_tx_ctx->dma_len = bcnt;
  1961. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  1962. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  1963. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1964. offset += bcnt;
  1965. size -= bcnt;
  1966. if (unlikely(put_tx++ == np->last_tx.ex))
  1967. put_tx = np->first_tx.ex;
  1968. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1969. np->put_tx_ctx = np->first_tx_ctx;
  1970. } while (size);
  1971. }
  1972. /* set last fragment flag */
  1973. prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
  1974. /* save skb in this slot's context area */
  1975. prev_tx_ctx->skb = skb;
  1976. if (skb_is_gso(skb))
  1977. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  1978. else
  1979. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  1980. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  1981. /* vlan tag */
  1982. if (likely(!np->vlangrp)) {
  1983. start_tx->txvlan = 0;
  1984. } else {
  1985. if (vlan_tx_tag_present(skb))
  1986. start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
  1987. else
  1988. start_tx->txvlan = 0;
  1989. }
  1990. spin_lock_irqsave(&np->lock, flags);
  1991. if (np->tx_limit) {
  1992. /* Limit the number of outstanding tx. Setup all fragments, but
  1993. * do not set the VALID bit on the first descriptor. Save a pointer
  1994. * to that descriptor and also for next skb_map element.
  1995. */
  1996. if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) {
  1997. if (!np->tx_change_owner)
  1998. np->tx_change_owner = start_tx_ctx;
  1999. /* remove VALID bit */
  2000. tx_flags &= ~NV_TX2_VALID;
  2001. start_tx_ctx->first_tx_desc = start_tx;
  2002. start_tx_ctx->next_tx_ctx = np->put_tx_ctx;
  2003. np->tx_end_flip = np->put_tx_ctx;
  2004. } else {
  2005. np->tx_pkts_in_progress++;
  2006. }
  2007. }
  2008. /* set tx flags */
  2009. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  2010. np->put_tx.ex = put_tx;
  2011. spin_unlock_irqrestore(&np->lock, flags);
  2012. dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
  2013. dev->name, entries, tx_flags_extra);
  2014. {
  2015. int j;
  2016. for (j=0; j<64; j++) {
  2017. if ((j%16) == 0)
  2018. dprintk("\n%03x:", j);
  2019. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2020. }
  2021. dprintk("\n");
  2022. }
  2023. dev->trans_start = jiffies;
  2024. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2025. return NETDEV_TX_OK;
  2026. }
  2027. static inline void nv_tx_flip_ownership(struct net_device *dev)
  2028. {
  2029. struct fe_priv *np = netdev_priv(dev);
  2030. np->tx_pkts_in_progress--;
  2031. if (np->tx_change_owner) {
  2032. np->tx_change_owner->first_tx_desc->flaglen |=
  2033. cpu_to_le32(NV_TX2_VALID);
  2034. np->tx_pkts_in_progress++;
  2035. np->tx_change_owner = np->tx_change_owner->next_tx_ctx;
  2036. if (np->tx_change_owner == np->tx_end_flip)
  2037. np->tx_change_owner = NULL;
  2038. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2039. }
  2040. }
  2041. /*
  2042. * nv_tx_done: check for completed packets, release the skbs.
  2043. *
  2044. * Caller must own np->lock.
  2045. */
  2046. static void nv_tx_done(struct net_device *dev)
  2047. {
  2048. struct fe_priv *np = netdev_priv(dev);
  2049. u32 flags;
  2050. struct ring_desc* orig_get_tx = np->get_tx.orig;
  2051. while ((np->get_tx.orig != np->put_tx.orig) &&
  2052. !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID)) {
  2053. dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
  2054. dev->name, flags);
  2055. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  2056. np->get_tx_ctx->dma_len,
  2057. PCI_DMA_TODEVICE);
  2058. np->get_tx_ctx->dma = 0;
  2059. if (np->desc_ver == DESC_VER_1) {
  2060. if (flags & NV_TX_LASTPACKET) {
  2061. if (flags & NV_TX_ERROR) {
  2062. if (flags & NV_TX_UNDERFLOW)
  2063. dev->stats.tx_fifo_errors++;
  2064. if (flags & NV_TX_CARRIERLOST)
  2065. dev->stats.tx_carrier_errors++;
  2066. if ((flags & NV_TX_RETRYERROR) && !(flags & NV_TX_RETRYCOUNT_MASK))
  2067. nv_legacybackoff_reseed(dev);
  2068. dev->stats.tx_errors++;
  2069. } else {
  2070. dev->stats.tx_packets++;
  2071. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  2072. }
  2073. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2074. np->get_tx_ctx->skb = NULL;
  2075. }
  2076. } else {
  2077. if (flags & NV_TX2_LASTPACKET) {
  2078. if (flags & NV_TX2_ERROR) {
  2079. if (flags & NV_TX2_UNDERFLOW)
  2080. dev->stats.tx_fifo_errors++;
  2081. if (flags & NV_TX2_CARRIERLOST)
  2082. dev->stats.tx_carrier_errors++;
  2083. if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK))
  2084. nv_legacybackoff_reseed(dev);
  2085. dev->stats.tx_errors++;
  2086. } else {
  2087. dev->stats.tx_packets++;
  2088. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  2089. }
  2090. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2091. np->get_tx_ctx->skb = NULL;
  2092. }
  2093. }
  2094. if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
  2095. np->get_tx.orig = np->first_tx.orig;
  2096. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  2097. np->get_tx_ctx = np->first_tx_ctx;
  2098. }
  2099. if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
  2100. np->tx_stop = 0;
  2101. netif_wake_queue(dev);
  2102. }
  2103. }
  2104. static void nv_tx_done_optimized(struct net_device *dev, int limit)
  2105. {
  2106. struct fe_priv *np = netdev_priv(dev);
  2107. u32 flags;
  2108. struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
  2109. while ((np->get_tx.ex != np->put_tx.ex) &&
  2110. !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX_VALID) &&
  2111. (limit-- > 0)) {
  2112. dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
  2113. dev->name, flags);
  2114. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  2115. np->get_tx_ctx->dma_len,
  2116. PCI_DMA_TODEVICE);
  2117. np->get_tx_ctx->dma = 0;
  2118. if (flags & NV_TX2_LASTPACKET) {
  2119. if (!(flags & NV_TX2_ERROR))
  2120. dev->stats.tx_packets++;
  2121. else {
  2122. if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK)) {
  2123. if (np->driver_data & DEV_HAS_GEAR_MODE)
  2124. nv_gear_backoff_reseed(dev);
  2125. else
  2126. nv_legacybackoff_reseed(dev);
  2127. }
  2128. }
  2129. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2130. np->get_tx_ctx->skb = NULL;
  2131. if (np->tx_limit) {
  2132. nv_tx_flip_ownership(dev);
  2133. }
  2134. }
  2135. if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
  2136. np->get_tx.ex = np->first_tx.ex;
  2137. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  2138. np->get_tx_ctx = np->first_tx_ctx;
  2139. }
  2140. if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
  2141. np->tx_stop = 0;
  2142. netif_wake_queue(dev);
  2143. }
  2144. }
  2145. /*
  2146. * nv_tx_timeout: dev->tx_timeout function
  2147. * Called with netif_tx_lock held.
  2148. */
  2149. static void nv_tx_timeout(struct net_device *dev)
  2150. {
  2151. struct fe_priv *np = netdev_priv(dev);
  2152. u8 __iomem *base = get_hwbase(dev);
  2153. u32 status;
  2154. if (np->msi_flags & NV_MSI_X_ENABLED)
  2155. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2156. else
  2157. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2158. printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
  2159. {
  2160. int i;
  2161. printk(KERN_INFO "%s: Ring at %lx\n",
  2162. dev->name, (unsigned long)np->ring_addr);
  2163. printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
  2164. for (i=0;i<=np->register_size;i+= 32) {
  2165. printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
  2166. i,
  2167. readl(base + i + 0), readl(base + i + 4),
  2168. readl(base + i + 8), readl(base + i + 12),
  2169. readl(base + i + 16), readl(base + i + 20),
  2170. readl(base + i + 24), readl(base + i + 28));
  2171. }
  2172. printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
  2173. for (i=0;i<np->tx_ring_size;i+= 4) {
  2174. if (!nv_optimized(np)) {
  2175. printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
  2176. i,
  2177. le32_to_cpu(np->tx_ring.orig[i].buf),
  2178. le32_to_cpu(np->tx_ring.orig[i].flaglen),
  2179. le32_to_cpu(np->tx_ring.orig[i+1].buf),
  2180. le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
  2181. le32_to_cpu(np->tx_ring.orig[i+2].buf),
  2182. le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
  2183. le32_to_cpu(np->tx_ring.orig[i+3].buf),
  2184. le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
  2185. } else {
  2186. printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
  2187. i,
  2188. le32_to_cpu(np->tx_ring.ex[i].bufhigh),
  2189. le32_to_cpu(np->tx_ring.ex[i].buflow),
  2190. le32_to_cpu(np->tx_ring.ex[i].flaglen),
  2191. le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
  2192. le32_to_cpu(np->tx_ring.ex[i+1].buflow),
  2193. le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
  2194. le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
  2195. le32_to_cpu(np->tx_ring.ex[i+2].buflow),
  2196. le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
  2197. le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
  2198. le32_to_cpu(np->tx_ring.ex[i+3].buflow),
  2199. le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
  2200. }
  2201. }
  2202. }
  2203. spin_lock_irq(&np->lock);
  2204. /* 1) stop tx engine */
  2205. nv_stop_tx(dev);
  2206. /* 2) check that the packets were not sent already: */
  2207. if (!nv_optimized(np))
  2208. nv_tx_done(dev);
  2209. else
  2210. nv_tx_done_optimized(dev, np->tx_ring_size);
  2211. /* 3) if there are dead entries: clear everything */
  2212. if (np->get_tx_ctx != np->put_tx_ctx) {
  2213. printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
  2214. nv_drain_tx(dev);
  2215. nv_init_tx(dev);
  2216. setup_hw_rings(dev, NV_SETUP_TX_RING);
  2217. }
  2218. netif_wake_queue(dev);
  2219. /* 4) restart tx engine */
  2220. nv_start_tx(dev);
  2221. spin_unlock_irq(&np->lock);
  2222. }
  2223. /*
  2224. * Called when the nic notices a mismatch between the actual data len on the
  2225. * wire and the len indicated in the 802 header
  2226. */
  2227. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  2228. {
  2229. int hdrlen; /* length of the 802 header */
  2230. int protolen; /* length as stored in the proto field */
  2231. /* 1) calculate len according to header */
  2232. if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
  2233. protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
  2234. hdrlen = VLAN_HLEN;
  2235. } else {
  2236. protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
  2237. hdrlen = ETH_HLEN;
  2238. }
  2239. dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
  2240. dev->name, datalen, protolen, hdrlen);
  2241. if (protolen > ETH_DATA_LEN)
  2242. return datalen; /* Value in proto field not a len, no checks possible */
  2243. protolen += hdrlen;
  2244. /* consistency checks: */
  2245. if (datalen > ETH_ZLEN) {
  2246. if (datalen >= protolen) {
  2247. /* more data on wire than in 802 header, trim of
  2248. * additional data.
  2249. */
  2250. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2251. dev->name, protolen);
  2252. return protolen;
  2253. } else {
  2254. /* less data on wire than mentioned in header.
  2255. * Discard the packet.
  2256. */
  2257. dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
  2258. dev->name);
  2259. return -1;
  2260. }
  2261. } else {
  2262. /* short packet. Accept only if 802 values are also short */
  2263. if (protolen > ETH_ZLEN) {
  2264. dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
  2265. dev->name);
  2266. return -1;
  2267. }
  2268. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2269. dev->name, datalen);
  2270. return datalen;
  2271. }
  2272. }
  2273. static int nv_rx_process(struct net_device *dev, int limit)
  2274. {
  2275. struct fe_priv *np = netdev_priv(dev);
  2276. u32 flags;
  2277. int rx_work = 0;
  2278. struct sk_buff *skb;
  2279. int len;
  2280. while((np->get_rx.orig != np->put_rx.orig) &&
  2281. !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
  2282. (rx_work < limit)) {
  2283. dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
  2284. dev->name, flags);
  2285. /*
  2286. * the packet is for us - immediately tear down the pci mapping.
  2287. * TODO: check if a prefetch of the first cacheline improves
  2288. * the performance.
  2289. */
  2290. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2291. np->get_rx_ctx->dma_len,
  2292. PCI_DMA_FROMDEVICE);
  2293. skb = np->get_rx_ctx->skb;
  2294. np->get_rx_ctx->skb = NULL;
  2295. {
  2296. int j;
  2297. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2298. for (j=0; j<64; j++) {
  2299. if ((j%16) == 0)
  2300. dprintk("\n%03x:", j);
  2301. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2302. }
  2303. dprintk("\n");
  2304. }
  2305. /* look at what we actually got: */
  2306. if (np->desc_ver == DESC_VER_1) {
  2307. if (likely(flags & NV_RX_DESCRIPTORVALID)) {
  2308. len = flags & LEN_MASK_V1;
  2309. if (unlikely(flags & NV_RX_ERROR)) {
  2310. if (flags & NV_RX_ERROR4) {
  2311. len = nv_getlen(dev, skb->data, len);
  2312. if (len < 0) {
  2313. dev->stats.rx_errors++;
  2314. dev_kfree_skb(skb);
  2315. goto next_pkt;
  2316. }
  2317. }
  2318. /* framing errors are soft errors */
  2319. else if (flags & NV_RX_FRAMINGERR) {
  2320. if (flags & NV_RX_SUBSTRACT1) {
  2321. len--;
  2322. }
  2323. }
  2324. /* the rest are hard errors */
  2325. else {
  2326. if (flags & NV_RX_MISSEDFRAME)
  2327. dev->stats.rx_missed_errors++;
  2328. if (flags & NV_RX_CRCERR)
  2329. dev->stats.rx_crc_errors++;
  2330. if (flags & NV_RX_OVERFLOW)
  2331. dev->stats.rx_over_errors++;
  2332. dev->stats.rx_errors++;
  2333. dev_kfree_skb(skb);
  2334. goto next_pkt;
  2335. }
  2336. }
  2337. } else {
  2338. dev_kfree_skb(skb);
  2339. goto next_pkt;
  2340. }
  2341. } else {
  2342. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2343. len = flags & LEN_MASK_V2;
  2344. if (unlikely(flags & NV_RX2_ERROR)) {
  2345. if (flags & NV_RX2_ERROR4) {
  2346. len = nv_getlen(dev, skb->data, len);
  2347. if (len < 0) {
  2348. dev->stats.rx_errors++;
  2349. dev_kfree_skb(skb);
  2350. goto next_pkt;
  2351. }
  2352. }
  2353. /* framing errors are soft errors */
  2354. else if (flags & NV_RX2_FRAMINGERR) {
  2355. if (flags & NV_RX2_SUBSTRACT1) {
  2356. len--;
  2357. }
  2358. }
  2359. /* the rest are hard errors */
  2360. else {
  2361. if (flags & NV_RX2_CRCERR)
  2362. dev->stats.rx_crc_errors++;
  2363. if (flags & NV_RX2_OVERFLOW)
  2364. dev->stats.rx_over_errors++;
  2365. dev->stats.rx_errors++;
  2366. dev_kfree_skb(skb);
  2367. goto next_pkt;
  2368. }
  2369. }
  2370. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2371. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2372. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2373. } else {
  2374. dev_kfree_skb(skb);
  2375. goto next_pkt;
  2376. }
  2377. }
  2378. /* got a valid packet - forward it to the network core */
  2379. skb_put(skb, len);
  2380. skb->protocol = eth_type_trans(skb, dev);
  2381. dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
  2382. dev->name, len, skb->protocol);
  2383. #ifdef CONFIG_FORCEDETH_NAPI
  2384. netif_receive_skb(skb);
  2385. #else
  2386. netif_rx(skb);
  2387. #endif
  2388. dev->last_rx = jiffies;
  2389. dev->stats.rx_packets++;
  2390. dev->stats.rx_bytes += len;
  2391. next_pkt:
  2392. if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
  2393. np->get_rx.orig = np->first_rx.orig;
  2394. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2395. np->get_rx_ctx = np->first_rx_ctx;
  2396. rx_work++;
  2397. }
  2398. return rx_work;
  2399. }
  2400. static int nv_rx_process_optimized(struct net_device *dev, int limit)
  2401. {
  2402. struct fe_priv *np = netdev_priv(dev);
  2403. u32 flags;
  2404. u32 vlanflags = 0;
  2405. int rx_work = 0;
  2406. struct sk_buff *skb;
  2407. int len;
  2408. while((np->get_rx.ex != np->put_rx.ex) &&
  2409. !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
  2410. (rx_work < limit)) {
  2411. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
  2412. dev->name, flags);
  2413. /*
  2414. * the packet is for us - immediately tear down the pci mapping.
  2415. * TODO: check if a prefetch of the first cacheline improves
  2416. * the performance.
  2417. */
  2418. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2419. np->get_rx_ctx->dma_len,
  2420. PCI_DMA_FROMDEVICE);
  2421. skb = np->get_rx_ctx->skb;
  2422. np->get_rx_ctx->skb = NULL;
  2423. {
  2424. int j;
  2425. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2426. for (j=0; j<64; j++) {
  2427. if ((j%16) == 0)
  2428. dprintk("\n%03x:", j);
  2429. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2430. }
  2431. dprintk("\n");
  2432. }
  2433. /* look at what we actually got: */
  2434. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2435. len = flags & LEN_MASK_V2;
  2436. if (unlikely(flags & NV_RX2_ERROR)) {
  2437. if (flags & NV_RX2_ERROR4) {
  2438. len = nv_getlen(dev, skb->data, len);
  2439. if (len < 0) {
  2440. dev_kfree_skb(skb);
  2441. goto next_pkt;
  2442. }
  2443. }
  2444. /* framing errors are soft errors */
  2445. else if (flags & NV_RX2_FRAMINGERR) {
  2446. if (flags & NV_RX2_SUBSTRACT1) {
  2447. len--;
  2448. }
  2449. }
  2450. /* the rest are hard errors */
  2451. else {
  2452. dev_kfree_skb(skb);
  2453. goto next_pkt;
  2454. }
  2455. }
  2456. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2457. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2458. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2459. /* got a valid packet - forward it to the network core */
  2460. skb_put(skb, len);
  2461. skb->protocol = eth_type_trans(skb, dev);
  2462. prefetch(skb->data);
  2463. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
  2464. dev->name, len, skb->protocol);
  2465. if (likely(!np->vlangrp)) {
  2466. #ifdef CONFIG_FORCEDETH_NAPI
  2467. netif_receive_skb(skb);
  2468. #else
  2469. netif_rx(skb);
  2470. #endif
  2471. } else {
  2472. vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
  2473. if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
  2474. #ifdef CONFIG_FORCEDETH_NAPI
  2475. vlan_hwaccel_receive_skb(skb, np->vlangrp,
  2476. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2477. #else
  2478. vlan_hwaccel_rx(skb, np->vlangrp,
  2479. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2480. #endif
  2481. } else {
  2482. #ifdef CONFIG_FORCEDETH_NAPI
  2483. netif_receive_skb(skb);
  2484. #else
  2485. netif_rx(skb);
  2486. #endif
  2487. }
  2488. }
  2489. dev->last_rx = jiffies;
  2490. dev->stats.rx_packets++;
  2491. dev->stats.rx_bytes += len;
  2492. } else {
  2493. dev_kfree_skb(skb);
  2494. }
  2495. next_pkt:
  2496. if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
  2497. np->get_rx.ex = np->first_rx.ex;
  2498. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2499. np->get_rx_ctx = np->first_rx_ctx;
  2500. rx_work++;
  2501. }
  2502. return rx_work;
  2503. }
  2504. static void set_bufsize(struct net_device *dev)
  2505. {
  2506. struct fe_priv *np = netdev_priv(dev);
  2507. if (dev->mtu <= ETH_DATA_LEN)
  2508. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  2509. else
  2510. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  2511. }
  2512. /*
  2513. * nv_change_mtu: dev->change_mtu function
  2514. * Called with dev_base_lock held for read.
  2515. */
  2516. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  2517. {
  2518. struct fe_priv *np = netdev_priv(dev);
  2519. int old_mtu;
  2520. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  2521. return -EINVAL;
  2522. old_mtu = dev->mtu;
  2523. dev->mtu = new_mtu;
  2524. /* return early if the buffer sizes will not change */
  2525. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  2526. return 0;
  2527. if (old_mtu == new_mtu)
  2528. return 0;
  2529. /* synchronized against open : rtnl_lock() held by caller */
  2530. if (netif_running(dev)) {
  2531. u8 __iomem *base = get_hwbase(dev);
  2532. /*
  2533. * It seems that the nic preloads valid ring entries into an
  2534. * internal buffer. The procedure for flushing everything is
  2535. * guessed, there is probably a simpler approach.
  2536. * Changing the MTU is a rare event, it shouldn't matter.
  2537. */
  2538. nv_disable_irq(dev);
  2539. netif_tx_lock_bh(dev);
  2540. spin_lock(&np->lock);
  2541. /* stop engines */
  2542. nv_stop_rxtx(dev);
  2543. nv_txrx_reset(dev);
  2544. /* drain rx queue */
  2545. nv_drain_rxtx(dev);
  2546. /* reinit driver view of the rx queue */
  2547. set_bufsize(dev);
  2548. if (nv_init_ring(dev)) {
  2549. if (!np->in_shutdown)
  2550. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2551. }
  2552. /* reinit nic view of the rx queue */
  2553. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2554. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2555. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  2556. base + NvRegRingSizes);
  2557. pci_push(base);
  2558. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2559. pci_push(base);
  2560. /* restart rx engine */
  2561. nv_start_rxtx(dev);
  2562. spin_unlock(&np->lock);
  2563. netif_tx_unlock_bh(dev);
  2564. nv_enable_irq(dev);
  2565. }
  2566. return 0;
  2567. }
  2568. static void nv_copy_mac_to_hw(struct net_device *dev)
  2569. {
  2570. u8 __iomem *base = get_hwbase(dev);
  2571. u32 mac[2];
  2572. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  2573. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  2574. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  2575. writel(mac[0], base + NvRegMacAddrA);
  2576. writel(mac[1], base + NvRegMacAddrB);
  2577. }
  2578. /*
  2579. * nv_set_mac_address: dev->set_mac_address function
  2580. * Called with rtnl_lock() held.
  2581. */
  2582. static int nv_set_mac_address(struct net_device *dev, void *addr)
  2583. {
  2584. struct fe_priv *np = netdev_priv(dev);
  2585. struct sockaddr *macaddr = (struct sockaddr*)addr;
  2586. if (!is_valid_ether_addr(macaddr->sa_data))
  2587. return -EADDRNOTAVAIL;
  2588. /* synchronized against open : rtnl_lock() held by caller */
  2589. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  2590. if (netif_running(dev)) {
  2591. netif_tx_lock_bh(dev);
  2592. spin_lock_irq(&np->lock);
  2593. /* stop rx engine */
  2594. nv_stop_rx(dev);
  2595. /* set mac address */
  2596. nv_copy_mac_to_hw(dev);
  2597. /* restart rx engine */
  2598. nv_start_rx(dev);
  2599. spin_unlock_irq(&np->lock);
  2600. netif_tx_unlock_bh(dev);
  2601. } else {
  2602. nv_copy_mac_to_hw(dev);
  2603. }
  2604. return 0;
  2605. }
  2606. /*
  2607. * nv_set_multicast: dev->set_multicast function
  2608. * Called with netif_tx_lock held.
  2609. */
  2610. static void nv_set_multicast(struct net_device *dev)
  2611. {
  2612. struct fe_priv *np = netdev_priv(dev);
  2613. u8 __iomem *base = get_hwbase(dev);
  2614. u32 addr[2];
  2615. u32 mask[2];
  2616. u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
  2617. memset(addr, 0, sizeof(addr));
  2618. memset(mask, 0, sizeof(mask));
  2619. if (dev->flags & IFF_PROMISC) {
  2620. pff |= NVREG_PFF_PROMISC;
  2621. } else {
  2622. pff |= NVREG_PFF_MYADDR;
  2623. if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
  2624. u32 alwaysOff[2];
  2625. u32 alwaysOn[2];
  2626. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  2627. if (dev->flags & IFF_ALLMULTI) {
  2628. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  2629. } else {
  2630. struct dev_mc_list *walk;
  2631. walk = dev->mc_list;
  2632. while (walk != NULL) {
  2633. u32 a, b;
  2634. a = le32_to_cpu(*(__le32 *) walk->dmi_addr);
  2635. b = le16_to_cpu(*(__le16 *) (&walk->dmi_addr[4]));
  2636. alwaysOn[0] &= a;
  2637. alwaysOff[0] &= ~a;
  2638. alwaysOn[1] &= b;
  2639. alwaysOff[1] &= ~b;
  2640. walk = walk->next;
  2641. }
  2642. }
  2643. addr[0] = alwaysOn[0];
  2644. addr[1] = alwaysOn[1];
  2645. mask[0] = alwaysOn[0] | alwaysOff[0];
  2646. mask[1] = alwaysOn[1] | alwaysOff[1];
  2647. } else {
  2648. mask[0] = NVREG_MCASTMASKA_NONE;
  2649. mask[1] = NVREG_MCASTMASKB_NONE;
  2650. }
  2651. }
  2652. addr[0] |= NVREG_MCASTADDRA_FORCE;
  2653. pff |= NVREG_PFF_ALWAYS;
  2654. spin_lock_irq(&np->lock);
  2655. nv_stop_rx(dev);
  2656. writel(addr[0], base + NvRegMulticastAddrA);
  2657. writel(addr[1], base + NvRegMulticastAddrB);
  2658. writel(mask[0], base + NvRegMulticastMaskA);
  2659. writel(mask[1], base + NvRegMulticastMaskB);
  2660. writel(pff, base + NvRegPacketFilterFlags);
  2661. dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
  2662. dev->name);
  2663. nv_start_rx(dev);
  2664. spin_unlock_irq(&np->lock);
  2665. }
  2666. static void nv_update_pause(struct net_device *dev, u32 pause_flags)
  2667. {
  2668. struct fe_priv *np = netdev_priv(dev);
  2669. u8 __iomem *base = get_hwbase(dev);
  2670. np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
  2671. if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
  2672. u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
  2673. if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
  2674. writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
  2675. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2676. } else {
  2677. writel(pff, base + NvRegPacketFilterFlags);
  2678. }
  2679. }
  2680. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
  2681. u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
  2682. if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
  2683. u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1;
  2684. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2)
  2685. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2;
  2686. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)
  2687. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3;
  2688. writel(pause_enable, base + NvRegTxPauseFrame);
  2689. writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
  2690. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2691. } else {
  2692. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  2693. writel(regmisc, base + NvRegMisc1);
  2694. }
  2695. }
  2696. }
  2697. /**
  2698. * nv_update_linkspeed: Setup the MAC according to the link partner
  2699. * @dev: Network device to be configured
  2700. *
  2701. * The function queries the PHY and checks if there is a link partner.
  2702. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  2703. * set to 10 MBit HD.
  2704. *
  2705. * The function returns 0 if there is no link partner and 1 if there is
  2706. * a good link partner.
  2707. */
  2708. static int nv_update_linkspeed(struct net_device *dev)
  2709. {
  2710. struct fe_priv *np = netdev_priv(dev);
  2711. u8 __iomem *base = get_hwbase(dev);
  2712. int adv = 0;
  2713. int lpa = 0;
  2714. int adv_lpa, adv_pause, lpa_pause;
  2715. int newls = np->linkspeed;
  2716. int newdup = np->duplex;
  2717. int mii_status;
  2718. int retval = 0;
  2719. u32 control_1000, status_1000, phyreg, pause_flags, txreg;
  2720. u32 txrxFlags = 0;
  2721. u32 phy_exp;
  2722. /* BMSR_LSTATUS is latched, read it twice:
  2723. * we want the current value.
  2724. */
  2725. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2726. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2727. if (!(mii_status & BMSR_LSTATUS)) {
  2728. dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
  2729. dev->name);
  2730. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2731. newdup = 0;
  2732. retval = 0;
  2733. goto set_speed;
  2734. }
  2735. if (np->autoneg == 0) {
  2736. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
  2737. dev->name, np->fixed_mode);
  2738. if (np->fixed_mode & LPA_100FULL) {
  2739. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2740. newdup = 1;
  2741. } else if (np->fixed_mode & LPA_100HALF) {
  2742. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2743. newdup = 0;
  2744. } else if (np->fixed_mode & LPA_10FULL) {
  2745. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2746. newdup = 1;
  2747. } else {
  2748. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2749. newdup = 0;
  2750. }
  2751. retval = 1;
  2752. goto set_speed;
  2753. }
  2754. /* check auto negotiation is complete */
  2755. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  2756. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  2757. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2758. newdup = 0;
  2759. retval = 0;
  2760. dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
  2761. goto set_speed;
  2762. }
  2763. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2764. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  2765. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
  2766. dev->name, adv, lpa);
  2767. retval = 1;
  2768. if (np->gigabit == PHY_GIGABIT) {
  2769. control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2770. status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
  2771. if ((control_1000 & ADVERTISE_1000FULL) &&
  2772. (status_1000 & LPA_1000FULL)) {
  2773. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
  2774. dev->name);
  2775. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  2776. newdup = 1;
  2777. goto set_speed;
  2778. }
  2779. }
  2780. /* FIXME: handle parallel detection properly */
  2781. adv_lpa = lpa & adv;
  2782. if (adv_lpa & LPA_100FULL) {
  2783. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2784. newdup = 1;
  2785. } else if (adv_lpa & LPA_100HALF) {
  2786. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2787. newdup = 0;
  2788. } else if (adv_lpa & LPA_10FULL) {
  2789. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2790. newdup = 1;
  2791. } else if (adv_lpa & LPA_10HALF) {
  2792. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2793. newdup = 0;
  2794. } else {
  2795. dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
  2796. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2797. newdup = 0;
  2798. }
  2799. set_speed:
  2800. if (np->duplex == newdup && np->linkspeed == newls)
  2801. return retval;
  2802. dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
  2803. dev->name, np->linkspeed, np->duplex, newls, newdup);
  2804. np->duplex = newdup;
  2805. np->linkspeed = newls;
  2806. /* The transmitter and receiver must be restarted for safe update */
  2807. if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) {
  2808. txrxFlags |= NV_RESTART_TX;
  2809. nv_stop_tx(dev);
  2810. }
  2811. if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
  2812. txrxFlags |= NV_RESTART_RX;
  2813. nv_stop_rx(dev);
  2814. }
  2815. if (np->gigabit == PHY_GIGABIT) {
  2816. phyreg = readl(base + NvRegSlotTime);
  2817. phyreg &= ~(0x3FF00);
  2818. if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) ||
  2819. ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100))
  2820. phyreg |= NVREG_SLOTTIME_10_100_FULL;
  2821. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  2822. phyreg |= NVREG_SLOTTIME_1000_FULL;
  2823. writel(phyreg, base + NvRegSlotTime);
  2824. }
  2825. phyreg = readl(base + NvRegPhyInterface);
  2826. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  2827. if (np->duplex == 0)
  2828. phyreg |= PHY_HALF;
  2829. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  2830. phyreg |= PHY_100;
  2831. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2832. phyreg |= PHY_1000;
  2833. writel(phyreg, base + NvRegPhyInterface);
  2834. phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */
  2835. if (phyreg & PHY_RGMII) {
  2836. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) {
  2837. txreg = NVREG_TX_DEFERRAL_RGMII_1000;
  2838. } else {
  2839. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) {
  2840. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10)
  2841. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10;
  2842. else
  2843. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100;
  2844. } else {
  2845. txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
  2846. }
  2847. }
  2848. } else {
  2849. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX))
  2850. txreg = NVREG_TX_DEFERRAL_MII_STRETCH;
  2851. else
  2852. txreg = NVREG_TX_DEFERRAL_DEFAULT;
  2853. }
  2854. writel(txreg, base + NvRegTxDeferral);
  2855. if (np->desc_ver == DESC_VER_1) {
  2856. txreg = NVREG_TX_WM_DESC1_DEFAULT;
  2857. } else {
  2858. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2859. txreg = NVREG_TX_WM_DESC2_3_1000;
  2860. else
  2861. txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
  2862. }
  2863. writel(txreg, base + NvRegTxWatermark);
  2864. writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
  2865. base + NvRegMisc1);
  2866. pci_push(base);
  2867. writel(np->linkspeed, base + NvRegLinkSpeed);
  2868. pci_push(base);
  2869. pause_flags = 0;
  2870. /* setup pause frame */
  2871. if (np->duplex != 0) {
  2872. if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
  2873. adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
  2874. lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
  2875. switch (adv_pause) {
  2876. case ADVERTISE_PAUSE_CAP:
  2877. if (lpa_pause & LPA_PAUSE_CAP) {
  2878. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2879. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2880. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2881. }
  2882. break;
  2883. case ADVERTISE_PAUSE_ASYM:
  2884. if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
  2885. {
  2886. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2887. }
  2888. break;
  2889. case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
  2890. if (lpa_pause & LPA_PAUSE_CAP)
  2891. {
  2892. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2893. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2894. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2895. }
  2896. if (lpa_pause == LPA_PAUSE_ASYM)
  2897. {
  2898. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2899. }
  2900. break;
  2901. }
  2902. } else {
  2903. pause_flags = np->pause_flags;
  2904. }
  2905. }
  2906. nv_update_pause(dev, pause_flags);
  2907. if (txrxFlags & NV_RESTART_TX)
  2908. nv_start_tx(dev);
  2909. if (txrxFlags & NV_RESTART_RX)
  2910. nv_start_rx(dev);
  2911. return retval;
  2912. }
  2913. static void nv_linkchange(struct net_device *dev)
  2914. {
  2915. if (nv_update_linkspeed(dev)) {
  2916. if (!netif_carrier_ok(dev)) {
  2917. netif_carrier_on(dev);
  2918. printk(KERN_INFO "%s: link up.\n", dev->name);
  2919. nv_start_rx(dev);
  2920. }
  2921. } else {
  2922. if (netif_carrier_ok(dev)) {
  2923. netif_carrier_off(dev);
  2924. printk(KERN_INFO "%s: link down.\n", dev->name);
  2925. nv_stop_rx(dev);
  2926. }
  2927. }
  2928. }
  2929. static void nv_link_irq(struct net_device *dev)
  2930. {
  2931. u8 __iomem *base = get_hwbase(dev);
  2932. u32 miistat;
  2933. miistat = readl(base + NvRegMIIStatus);
  2934. writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus);
  2935. dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
  2936. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  2937. nv_linkchange(dev);
  2938. dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
  2939. }
  2940. static void nv_msi_workaround(struct fe_priv *np)
  2941. {
  2942. /* Need to toggle the msi irq mask within the ethernet device,
  2943. * otherwise, future interrupts will not be detected.
  2944. */
  2945. if (np->msi_flags & NV_MSI_ENABLED) {
  2946. u8 __iomem *base = np->base;
  2947. writel(0, base + NvRegMSIIrqMask);
  2948. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  2949. }
  2950. }
  2951. static irqreturn_t nv_nic_irq(int foo, void *data)
  2952. {
  2953. struct net_device *dev = (struct net_device *) data;
  2954. struct fe_priv *np = netdev_priv(dev);
  2955. u8 __iomem *base = get_hwbase(dev);
  2956. u32 events;
  2957. int i;
  2958. dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
  2959. for (i=0; ; i++) {
  2960. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  2961. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2962. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2963. } else {
  2964. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2965. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  2966. }
  2967. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2968. if (!(events & np->irqmask))
  2969. break;
  2970. nv_msi_workaround(np);
  2971. spin_lock(&np->lock);
  2972. nv_tx_done(dev);
  2973. spin_unlock(&np->lock);
  2974. #ifdef CONFIG_FORCEDETH_NAPI
  2975. if (events & NVREG_IRQ_RX_ALL) {
  2976. netif_rx_schedule(dev, &np->napi);
  2977. /* Disable furthur receive irq's */
  2978. spin_lock(&np->lock);
  2979. np->irqmask &= ~NVREG_IRQ_RX_ALL;
  2980. if (np->msi_flags & NV_MSI_X_ENABLED)
  2981. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2982. else
  2983. writel(np->irqmask, base + NvRegIrqMask);
  2984. spin_unlock(&np->lock);
  2985. }
  2986. #else
  2987. if (nv_rx_process(dev, RX_WORK_PER_LOOP)) {
  2988. if (unlikely(nv_alloc_rx(dev))) {
  2989. spin_lock(&np->lock);
  2990. if (!np->in_shutdown)
  2991. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2992. spin_unlock(&np->lock);
  2993. }
  2994. }
  2995. #endif
  2996. if (unlikely(events & NVREG_IRQ_LINK)) {
  2997. spin_lock(&np->lock);
  2998. nv_link_irq(dev);
  2999. spin_unlock(&np->lock);
  3000. }
  3001. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  3002. spin_lock(&np->lock);
  3003. nv_linkchange(dev);
  3004. spin_unlock(&np->lock);
  3005. np->link_timeout = jiffies + LINK_TIMEOUT;
  3006. }
  3007. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  3008. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  3009. dev->name, events);
  3010. }
  3011. if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
  3012. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  3013. dev->name, events);
  3014. }
  3015. if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
  3016. spin_lock(&np->lock);
  3017. /* disable interrupts on the nic */
  3018. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3019. writel(0, base + NvRegIrqMask);
  3020. else
  3021. writel(np->irqmask, base + NvRegIrqMask);
  3022. pci_push(base);
  3023. if (!np->in_shutdown) {
  3024. np->nic_poll_irq = np->irqmask;
  3025. np->recover_error = 1;
  3026. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3027. }
  3028. spin_unlock(&np->lock);
  3029. break;
  3030. }
  3031. if (unlikely(i > max_interrupt_work)) {
  3032. spin_lock(&np->lock);
  3033. /* disable interrupts on the nic */
  3034. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3035. writel(0, base + NvRegIrqMask);
  3036. else
  3037. writel(np->irqmask, base + NvRegIrqMask);
  3038. pci_push(base);
  3039. if (!np->in_shutdown) {
  3040. np->nic_poll_irq = np->irqmask;
  3041. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3042. }
  3043. spin_unlock(&np->lock);
  3044. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  3045. break;
  3046. }
  3047. }
  3048. dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
  3049. return IRQ_RETVAL(i);
  3050. }
  3051. /**
  3052. * All _optimized functions are used to help increase performance
  3053. * (reduce CPU and increase throughput). They use descripter version 3,
  3054. * compiler directives, and reduce memory accesses.
  3055. */
  3056. static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
  3057. {
  3058. struct net_device *dev = (struct net_device *) data;
  3059. struct fe_priv *np = netdev_priv(dev);
  3060. u8 __iomem *base = get_hwbase(dev);
  3061. u32 events;
  3062. int i;
  3063. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
  3064. for (i=0; ; i++) {
  3065. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3066. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  3067. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3068. } else {
  3069. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  3070. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3071. }
  3072. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3073. if (!(events & np->irqmask))
  3074. break;
  3075. nv_msi_workaround(np);
  3076. spin_lock(&np->lock);
  3077. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3078. spin_unlock(&np->lock);
  3079. #ifdef CONFIG_FORCEDETH_NAPI
  3080. if (events & NVREG_IRQ_RX_ALL) {
  3081. netif_rx_schedule(dev, &np->napi);
  3082. /* Disable furthur receive irq's */
  3083. spin_lock(&np->lock);
  3084. np->irqmask &= ~NVREG_IRQ_RX_ALL;
  3085. if (np->msi_flags & NV_MSI_X_ENABLED)
  3086. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3087. else
  3088. writel(np->irqmask, base + NvRegIrqMask);
  3089. spin_unlock(&np->lock);
  3090. }
  3091. #else
  3092. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  3093. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3094. spin_lock(&np->lock);
  3095. if (!np->in_shutdown)
  3096. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3097. spin_unlock(&np->lock);
  3098. }
  3099. }
  3100. #endif
  3101. if (unlikely(events & NVREG_IRQ_LINK)) {
  3102. spin_lock(&np->lock);
  3103. nv_link_irq(dev);
  3104. spin_unlock(&np->lock);
  3105. }
  3106. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  3107. spin_lock(&np->lock);
  3108. nv_linkchange(dev);
  3109. spin_unlock(&np->lock);
  3110. np->link_timeout = jiffies + LINK_TIMEOUT;
  3111. }
  3112. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  3113. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  3114. dev->name, events);
  3115. }
  3116. if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
  3117. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  3118. dev->name, events);
  3119. }
  3120. if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
  3121. spin_lock(&np->lock);
  3122. /* disable interrupts on the nic */
  3123. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3124. writel(0, base + NvRegIrqMask);
  3125. else
  3126. writel(np->irqmask, base + NvRegIrqMask);
  3127. pci_push(base);
  3128. if (!np->in_shutdown) {
  3129. np->nic_poll_irq = np->irqmask;
  3130. np->recover_error = 1;
  3131. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3132. }
  3133. spin_unlock(&np->lock);
  3134. break;
  3135. }
  3136. if (unlikely(i > max_interrupt_work)) {
  3137. spin_lock(&np->lock);
  3138. /* disable interrupts on the nic */
  3139. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3140. writel(0, base + NvRegIrqMask);
  3141. else
  3142. writel(np->irqmask, base + NvRegIrqMask);
  3143. pci_push(base);
  3144. if (!np->in_shutdown) {
  3145. np->nic_poll_irq = np->irqmask;
  3146. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3147. }
  3148. spin_unlock(&np->lock);
  3149. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  3150. break;
  3151. }
  3152. }
  3153. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
  3154. return IRQ_RETVAL(i);
  3155. }
  3156. static irqreturn_t nv_nic_irq_tx(int foo, void *data)
  3157. {
  3158. struct net_device *dev = (struct net_device *) data;
  3159. struct fe_priv *np = netdev_priv(dev);
  3160. u8 __iomem *base = get_hwbase(dev);
  3161. u32 events;
  3162. int i;
  3163. unsigned long flags;
  3164. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
  3165. for (i=0; ; i++) {
  3166. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  3167. writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
  3168. dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
  3169. if (!(events & np->irqmask))
  3170. break;
  3171. spin_lock_irqsave(&np->lock, flags);
  3172. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3173. spin_unlock_irqrestore(&np->lock, flags);
  3174. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  3175. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  3176. dev->name, events);
  3177. }
  3178. if (unlikely(i > max_interrupt_work)) {
  3179. spin_lock_irqsave(&np->lock, flags);
  3180. /* disable interrupts on the nic */
  3181. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  3182. pci_push(base);
  3183. if (!np->in_shutdown) {
  3184. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  3185. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3186. }
  3187. spin_unlock_irqrestore(&np->lock, flags);
  3188. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
  3189. break;
  3190. }
  3191. }
  3192. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
  3193. return IRQ_RETVAL(i);
  3194. }
  3195. #ifdef CONFIG_FORCEDETH_NAPI
  3196. static int nv_napi_poll(struct napi_struct *napi, int budget)
  3197. {
  3198. struct fe_priv *np = container_of(napi, struct fe_priv, napi);
  3199. struct net_device *dev = np->dev;
  3200. u8 __iomem *base = get_hwbase(dev);
  3201. unsigned long flags;
  3202. int pkts, retcode;
  3203. if (!nv_optimized(np)) {
  3204. pkts = nv_rx_process(dev, budget);
  3205. retcode = nv_alloc_rx(dev);
  3206. } else {
  3207. pkts = nv_rx_process_optimized(dev, budget);
  3208. retcode = nv_alloc_rx_optimized(dev);
  3209. }
  3210. if (retcode) {
  3211. spin_lock_irqsave(&np->lock, flags);
  3212. if (!np->in_shutdown)
  3213. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3214. spin_unlock_irqrestore(&np->lock, flags);
  3215. }
  3216. if (pkts < budget) {
  3217. /* re-enable receive interrupts */
  3218. spin_lock_irqsave(&np->lock, flags);
  3219. __netif_rx_complete(dev, napi);
  3220. np->irqmask |= NVREG_IRQ_RX_ALL;
  3221. if (np->msi_flags & NV_MSI_X_ENABLED)
  3222. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3223. else
  3224. writel(np->irqmask, base + NvRegIrqMask);
  3225. spin_unlock_irqrestore(&np->lock, flags);
  3226. }
  3227. return pkts;
  3228. }
  3229. #endif
  3230. #ifdef CONFIG_FORCEDETH_NAPI
  3231. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  3232. {
  3233. struct net_device *dev = (struct net_device *) data;
  3234. struct fe_priv *np = netdev_priv(dev);
  3235. u8 __iomem *base = get_hwbase(dev);
  3236. u32 events;
  3237. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  3238. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  3239. if (events) {
  3240. netif_rx_schedule(dev, &np->napi);
  3241. /* disable receive interrupts on the nic */
  3242. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3243. pci_push(base);
  3244. }
  3245. return IRQ_HANDLED;
  3246. }
  3247. #else
  3248. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  3249. {
  3250. struct net_device *dev = (struct net_device *) data;
  3251. struct fe_priv *np = netdev_priv(dev);
  3252. u8 __iomem *base = get_hwbase(dev);
  3253. u32 events;
  3254. int i;
  3255. unsigned long flags;
  3256. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
  3257. for (i=0; ; i++) {
  3258. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  3259. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  3260. dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
  3261. if (!(events & np->irqmask))
  3262. break;
  3263. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  3264. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3265. spin_lock_irqsave(&np->lock, flags);
  3266. if (!np->in_shutdown)
  3267. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3268. spin_unlock_irqrestore(&np->lock, flags);
  3269. }
  3270. }
  3271. if (unlikely(i > max_interrupt_work)) {
  3272. spin_lock_irqsave(&np->lock, flags);
  3273. /* disable interrupts on the nic */
  3274. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3275. pci_push(base);
  3276. if (!np->in_shutdown) {
  3277. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  3278. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3279. }
  3280. spin_unlock_irqrestore(&np->lock, flags);
  3281. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
  3282. break;
  3283. }
  3284. }
  3285. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
  3286. return IRQ_RETVAL(i);
  3287. }
  3288. #endif
  3289. static irqreturn_t nv_nic_irq_other(int foo, void *data)
  3290. {
  3291. struct net_device *dev = (struct net_device *) data;
  3292. struct fe_priv *np = netdev_priv(dev);
  3293. u8 __iomem *base = get_hwbase(dev);
  3294. u32 events;
  3295. int i;
  3296. unsigned long flags;
  3297. dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
  3298. for (i=0; ; i++) {
  3299. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  3300. writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
  3301. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3302. if (!(events & np->irqmask))
  3303. break;
  3304. /* check tx in case we reached max loop limit in tx isr */
  3305. spin_lock_irqsave(&np->lock, flags);
  3306. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3307. spin_unlock_irqrestore(&np->lock, flags);
  3308. if (events & NVREG_IRQ_LINK) {
  3309. spin_lock_irqsave(&np->lock, flags);
  3310. nv_link_irq(dev);
  3311. spin_unlock_irqrestore(&np->lock, flags);
  3312. }
  3313. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  3314. spin_lock_irqsave(&np->lock, flags);
  3315. nv_linkchange(dev);
  3316. spin_unlock_irqrestore(&np->lock, flags);
  3317. np->link_timeout = jiffies + LINK_TIMEOUT;
  3318. }
  3319. if (events & NVREG_IRQ_RECOVER_ERROR) {
  3320. spin_lock_irq(&np->lock);
  3321. /* disable interrupts on the nic */
  3322. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3323. pci_push(base);
  3324. if (!np->in_shutdown) {
  3325. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3326. np->recover_error = 1;
  3327. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3328. }
  3329. spin_unlock_irq(&np->lock);
  3330. break;
  3331. }
  3332. if (events & (NVREG_IRQ_UNKNOWN)) {
  3333. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  3334. dev->name, events);
  3335. }
  3336. if (unlikely(i > max_interrupt_work)) {
  3337. spin_lock_irqsave(&np->lock, flags);
  3338. /* disable interrupts on the nic */
  3339. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3340. pci_push(base);
  3341. if (!np->in_shutdown) {
  3342. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3343. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3344. }
  3345. spin_unlock_irqrestore(&np->lock, flags);
  3346. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
  3347. break;
  3348. }
  3349. }
  3350. dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
  3351. return IRQ_RETVAL(i);
  3352. }
  3353. static irqreturn_t nv_nic_irq_test(int foo, void *data)
  3354. {
  3355. struct net_device *dev = (struct net_device *) data;
  3356. struct fe_priv *np = netdev_priv(dev);
  3357. u8 __iomem *base = get_hwbase(dev);
  3358. u32 events;
  3359. dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
  3360. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3361. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  3362. writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
  3363. } else {
  3364. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  3365. writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
  3366. }
  3367. pci_push(base);
  3368. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3369. if (!(events & NVREG_IRQ_TIMER))
  3370. return IRQ_RETVAL(0);
  3371. nv_msi_workaround(np);
  3372. spin_lock(&np->lock);
  3373. np->intr_test = 1;
  3374. spin_unlock(&np->lock);
  3375. dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
  3376. return IRQ_RETVAL(1);
  3377. }
  3378. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  3379. {
  3380. u8 __iomem *base = get_hwbase(dev);
  3381. int i;
  3382. u32 msixmap = 0;
  3383. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  3384. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  3385. * the remaining 8 interrupts.
  3386. */
  3387. for (i = 0; i < 8; i++) {
  3388. if ((irqmask >> i) & 0x1) {
  3389. msixmap |= vector << (i << 2);
  3390. }
  3391. }
  3392. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  3393. msixmap = 0;
  3394. for (i = 0; i < 8; i++) {
  3395. if ((irqmask >> (i + 8)) & 0x1) {
  3396. msixmap |= vector << (i << 2);
  3397. }
  3398. }
  3399. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  3400. }
  3401. static int nv_request_irq(struct net_device *dev, int intr_test)
  3402. {
  3403. struct fe_priv *np = get_nvpriv(dev);
  3404. u8 __iomem *base = get_hwbase(dev);
  3405. int ret = 1;
  3406. int i;
  3407. irqreturn_t (*handler)(int foo, void *data);
  3408. if (intr_test) {
  3409. handler = nv_nic_irq_test;
  3410. } else {
  3411. if (nv_optimized(np))
  3412. handler = nv_nic_irq_optimized;
  3413. else
  3414. handler = nv_nic_irq;
  3415. }
  3416. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  3417. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3418. np->msi_x_entry[i].entry = i;
  3419. }
  3420. if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
  3421. np->msi_flags |= NV_MSI_X_ENABLED;
  3422. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
  3423. /* Request irq for rx handling */
  3424. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, IRQF_SHARED, dev->name, dev) != 0) {
  3425. printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
  3426. pci_disable_msix(np->pci_dev);
  3427. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3428. goto out_err;
  3429. }
  3430. /* Request irq for tx handling */
  3431. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, IRQF_SHARED, dev->name, dev) != 0) {
  3432. printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
  3433. pci_disable_msix(np->pci_dev);
  3434. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3435. goto out_free_rx;
  3436. }
  3437. /* Request irq for link and timer handling */
  3438. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, IRQF_SHARED, dev->name, dev) != 0) {
  3439. printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
  3440. pci_disable_msix(np->pci_dev);
  3441. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3442. goto out_free_tx;
  3443. }
  3444. /* map interrupts to their respective vector */
  3445. writel(0, base + NvRegMSIXMap0);
  3446. writel(0, base + NvRegMSIXMap1);
  3447. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  3448. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  3449. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  3450. } else {
  3451. /* Request irq for all interrupts */
  3452. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3453. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3454. pci_disable_msix(np->pci_dev);
  3455. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3456. goto out_err;
  3457. }
  3458. /* map interrupts to vector 0 */
  3459. writel(0, base + NvRegMSIXMap0);
  3460. writel(0, base + NvRegMSIXMap1);
  3461. }
  3462. }
  3463. }
  3464. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  3465. if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
  3466. np->msi_flags |= NV_MSI_ENABLED;
  3467. dev->irq = np->pci_dev->irq;
  3468. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3469. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3470. pci_disable_msi(np->pci_dev);
  3471. np->msi_flags &= ~NV_MSI_ENABLED;
  3472. dev->irq = np->pci_dev->irq;
  3473. goto out_err;
  3474. }
  3475. /* map interrupts to vector 0 */
  3476. writel(0, base + NvRegMSIMap0);
  3477. writel(0, base + NvRegMSIMap1);
  3478. /* enable msi vector 0 */
  3479. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3480. }
  3481. }
  3482. if (ret != 0) {
  3483. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
  3484. goto out_err;
  3485. }
  3486. return 0;
  3487. out_free_tx:
  3488. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
  3489. out_free_rx:
  3490. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
  3491. out_err:
  3492. return 1;
  3493. }
  3494. static void nv_free_irq(struct net_device *dev)
  3495. {
  3496. struct fe_priv *np = get_nvpriv(dev);
  3497. int i;
  3498. if (np->msi_flags & NV_MSI_X_ENABLED) {
  3499. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3500. free_irq(np->msi_x_entry[i].vector, dev);
  3501. }
  3502. pci_disable_msix(np->pci_dev);
  3503. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3504. } else {
  3505. free_irq(np->pci_dev->irq, dev);
  3506. if (np->msi_flags & NV_MSI_ENABLED) {
  3507. pci_disable_msi(np->pci_dev);
  3508. np->msi_flags &= ~NV_MSI_ENABLED;
  3509. }
  3510. }
  3511. }
  3512. static void nv_do_nic_poll(unsigned long data)
  3513. {
  3514. struct net_device *dev = (struct net_device *) data;
  3515. struct fe_priv *np = netdev_priv(dev);
  3516. u8 __iomem *base = get_hwbase(dev);
  3517. u32 mask = 0;
  3518. /*
  3519. * First disable irq(s) and then
  3520. * reenable interrupts on the nic, we have to do this before calling
  3521. * nv_nic_irq because that may decide to do otherwise
  3522. */
  3523. if (!using_multi_irqs(dev)) {
  3524. if (np->msi_flags & NV_MSI_X_ENABLED)
  3525. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3526. else
  3527. disable_irq_lockdep(np->pci_dev->irq);
  3528. mask = np->irqmask;
  3529. } else {
  3530. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3531. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3532. mask |= NVREG_IRQ_RX_ALL;
  3533. }
  3534. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3535. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3536. mask |= NVREG_IRQ_TX_ALL;
  3537. }
  3538. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3539. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3540. mask |= NVREG_IRQ_OTHER;
  3541. }
  3542. }
  3543. np->nic_poll_irq = 0;
  3544. /* disable_irq() contains synchronize_irq, thus no irq handler can run now */
  3545. if (np->recover_error) {
  3546. np->recover_error = 0;
  3547. printk(KERN_INFO "forcedeth: MAC in recoverable error state\n");
  3548. if (netif_running(dev)) {
  3549. netif_tx_lock_bh(dev);
  3550. spin_lock(&np->lock);
  3551. /* stop engines */
  3552. nv_stop_rxtx(dev);
  3553. nv_txrx_reset(dev);
  3554. /* drain rx queue */
  3555. nv_drain_rxtx(dev);
  3556. /* reinit driver view of the rx queue */
  3557. set_bufsize(dev);
  3558. if (nv_init_ring(dev)) {
  3559. if (!np->in_shutdown)
  3560. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3561. }
  3562. /* reinit nic view of the rx queue */
  3563. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3564. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3565. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3566. base + NvRegRingSizes);
  3567. pci_push(base);
  3568. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3569. pci_push(base);
  3570. /* restart rx engine */
  3571. nv_start_rxtx(dev);
  3572. spin_unlock(&np->lock);
  3573. netif_tx_unlock_bh(dev);
  3574. }
  3575. }
  3576. writel(mask, base + NvRegIrqMask);
  3577. pci_push(base);
  3578. if (!using_multi_irqs(dev)) {
  3579. if (nv_optimized(np))
  3580. nv_nic_irq_optimized(0, dev);
  3581. else
  3582. nv_nic_irq(0, dev);
  3583. if (np->msi_flags & NV_MSI_X_ENABLED)
  3584. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3585. else
  3586. enable_irq_lockdep(np->pci_dev->irq);
  3587. } else {
  3588. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3589. nv_nic_irq_rx(0, dev);
  3590. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3591. }
  3592. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3593. nv_nic_irq_tx(0, dev);
  3594. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3595. }
  3596. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3597. nv_nic_irq_other(0, dev);
  3598. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3599. }
  3600. }
  3601. }
  3602. #ifdef CONFIG_NET_POLL_CONTROLLER
  3603. static void nv_poll_controller(struct net_device *dev)
  3604. {
  3605. nv_do_nic_poll((unsigned long) dev);
  3606. }
  3607. #endif
  3608. static void nv_do_stats_poll(unsigned long data)
  3609. {
  3610. struct net_device *dev = (struct net_device *) data;
  3611. struct fe_priv *np = netdev_priv(dev);
  3612. nv_get_hw_stats(dev);
  3613. if (!np->in_shutdown)
  3614. mod_timer(&np->stats_poll,
  3615. round_jiffies(jiffies + STATS_INTERVAL));
  3616. }
  3617. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  3618. {
  3619. struct fe_priv *np = netdev_priv(dev);
  3620. strcpy(info->driver, DRV_NAME);
  3621. strcpy(info->version, FORCEDETH_VERSION);
  3622. strcpy(info->bus_info, pci_name(np->pci_dev));
  3623. }
  3624. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3625. {
  3626. struct fe_priv *np = netdev_priv(dev);
  3627. wolinfo->supported = WAKE_MAGIC;
  3628. spin_lock_irq(&np->lock);
  3629. if (np->wolenabled)
  3630. wolinfo->wolopts = WAKE_MAGIC;
  3631. spin_unlock_irq(&np->lock);
  3632. }
  3633. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3634. {
  3635. struct fe_priv *np = netdev_priv(dev);
  3636. u8 __iomem *base = get_hwbase(dev);
  3637. u32 flags = 0;
  3638. if (wolinfo->wolopts == 0) {
  3639. np->wolenabled = 0;
  3640. } else if (wolinfo->wolopts & WAKE_MAGIC) {
  3641. np->wolenabled = 1;
  3642. flags = NVREG_WAKEUPFLAGS_ENABLE;
  3643. }
  3644. if (netif_running(dev)) {
  3645. spin_lock_irq(&np->lock);
  3646. writel(flags, base + NvRegWakeUpFlags);
  3647. spin_unlock_irq(&np->lock);
  3648. }
  3649. return 0;
  3650. }
  3651. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3652. {
  3653. struct fe_priv *np = netdev_priv(dev);
  3654. int adv;
  3655. spin_lock_irq(&np->lock);
  3656. ecmd->port = PORT_MII;
  3657. if (!netif_running(dev)) {
  3658. /* We do not track link speed / duplex setting if the
  3659. * interface is disabled. Force a link check */
  3660. if (nv_update_linkspeed(dev)) {
  3661. if (!netif_carrier_ok(dev))
  3662. netif_carrier_on(dev);
  3663. } else {
  3664. if (netif_carrier_ok(dev))
  3665. netif_carrier_off(dev);
  3666. }
  3667. }
  3668. if (netif_carrier_ok(dev)) {
  3669. switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  3670. case NVREG_LINKSPEED_10:
  3671. ecmd->speed = SPEED_10;
  3672. break;
  3673. case NVREG_LINKSPEED_100:
  3674. ecmd->speed = SPEED_100;
  3675. break;
  3676. case NVREG_LINKSPEED_1000:
  3677. ecmd->speed = SPEED_1000;
  3678. break;
  3679. }
  3680. ecmd->duplex = DUPLEX_HALF;
  3681. if (np->duplex)
  3682. ecmd->duplex = DUPLEX_FULL;
  3683. } else {
  3684. ecmd->speed = -1;
  3685. ecmd->duplex = -1;
  3686. }
  3687. ecmd->autoneg = np->autoneg;
  3688. ecmd->advertising = ADVERTISED_MII;
  3689. if (np->autoneg) {
  3690. ecmd->advertising |= ADVERTISED_Autoneg;
  3691. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3692. if (adv & ADVERTISE_10HALF)
  3693. ecmd->advertising |= ADVERTISED_10baseT_Half;
  3694. if (adv & ADVERTISE_10FULL)
  3695. ecmd->advertising |= ADVERTISED_10baseT_Full;
  3696. if (adv & ADVERTISE_100HALF)
  3697. ecmd->advertising |= ADVERTISED_100baseT_Half;
  3698. if (adv & ADVERTISE_100FULL)
  3699. ecmd->advertising |= ADVERTISED_100baseT_Full;
  3700. if (np->gigabit == PHY_GIGABIT) {
  3701. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3702. if (adv & ADVERTISE_1000FULL)
  3703. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  3704. }
  3705. }
  3706. ecmd->supported = (SUPPORTED_Autoneg |
  3707. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  3708. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  3709. SUPPORTED_MII);
  3710. if (np->gigabit == PHY_GIGABIT)
  3711. ecmd->supported |= SUPPORTED_1000baseT_Full;
  3712. ecmd->phy_address = np->phyaddr;
  3713. ecmd->transceiver = XCVR_EXTERNAL;
  3714. /* ignore maxtxpkt, maxrxpkt for now */
  3715. spin_unlock_irq(&np->lock);
  3716. return 0;
  3717. }
  3718. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3719. {
  3720. struct fe_priv *np = netdev_priv(dev);
  3721. if (ecmd->port != PORT_MII)
  3722. return -EINVAL;
  3723. if (ecmd->transceiver != XCVR_EXTERNAL)
  3724. return -EINVAL;
  3725. if (ecmd->phy_address != np->phyaddr) {
  3726. /* TODO: support switching between multiple phys. Should be
  3727. * trivial, but not enabled due to lack of test hardware. */
  3728. return -EINVAL;
  3729. }
  3730. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3731. u32 mask;
  3732. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  3733. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  3734. if (np->gigabit == PHY_GIGABIT)
  3735. mask |= ADVERTISED_1000baseT_Full;
  3736. if ((ecmd->advertising & mask) == 0)
  3737. return -EINVAL;
  3738. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  3739. /* Note: autonegotiation disable, speed 1000 intentionally
  3740. * forbidden - noone should need that. */
  3741. if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
  3742. return -EINVAL;
  3743. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  3744. return -EINVAL;
  3745. } else {
  3746. return -EINVAL;
  3747. }
  3748. netif_carrier_off(dev);
  3749. if (netif_running(dev)) {
  3750. nv_disable_irq(dev);
  3751. netif_tx_lock_bh(dev);
  3752. spin_lock(&np->lock);
  3753. /* stop engines */
  3754. nv_stop_rxtx(dev);
  3755. spin_unlock(&np->lock);
  3756. netif_tx_unlock_bh(dev);
  3757. }
  3758. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3759. int adv, bmcr;
  3760. np->autoneg = 1;
  3761. /* advertise only what has been requested */
  3762. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3763. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3764. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  3765. adv |= ADVERTISE_10HALF;
  3766. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  3767. adv |= ADVERTISE_10FULL;
  3768. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  3769. adv |= ADVERTISE_100HALF;
  3770. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  3771. adv |= ADVERTISE_100FULL;
  3772. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3773. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3774. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3775. adv |= ADVERTISE_PAUSE_ASYM;
  3776. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3777. if (np->gigabit == PHY_GIGABIT) {
  3778. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3779. adv &= ~ADVERTISE_1000FULL;
  3780. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  3781. adv |= ADVERTISE_1000FULL;
  3782. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3783. }
  3784. if (netif_running(dev))
  3785. printk(KERN_INFO "%s: link down.\n", dev->name);
  3786. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3787. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3788. bmcr |= BMCR_ANENABLE;
  3789. /* reset the phy in order for settings to stick,
  3790. * and cause autoneg to start */
  3791. if (phy_reset(dev, bmcr)) {
  3792. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3793. return -EINVAL;
  3794. }
  3795. } else {
  3796. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3797. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3798. }
  3799. } else {
  3800. int adv, bmcr;
  3801. np->autoneg = 0;
  3802. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3803. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3804. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  3805. adv |= ADVERTISE_10HALF;
  3806. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  3807. adv |= ADVERTISE_10FULL;
  3808. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  3809. adv |= ADVERTISE_100HALF;
  3810. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  3811. adv |= ADVERTISE_100FULL;
  3812. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3813. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
  3814. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3815. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3816. }
  3817. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
  3818. adv |= ADVERTISE_PAUSE_ASYM;
  3819. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3820. }
  3821. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3822. np->fixed_mode = adv;
  3823. if (np->gigabit == PHY_GIGABIT) {
  3824. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3825. adv &= ~ADVERTISE_1000FULL;
  3826. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3827. }
  3828. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3829. bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
  3830. if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  3831. bmcr |= BMCR_FULLDPLX;
  3832. if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  3833. bmcr |= BMCR_SPEED100;
  3834. if (np->phy_oui == PHY_OUI_MARVELL) {
  3835. /* reset the phy in order for forced mode settings to stick */
  3836. if (phy_reset(dev, bmcr)) {
  3837. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3838. return -EINVAL;
  3839. }
  3840. } else {
  3841. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3842. if (netif_running(dev)) {
  3843. /* Wait a bit and then reconfigure the nic. */
  3844. udelay(10);
  3845. nv_linkchange(dev);
  3846. }
  3847. }
  3848. }
  3849. if (netif_running(dev)) {
  3850. nv_start_rxtx(dev);
  3851. nv_enable_irq(dev);
  3852. }
  3853. return 0;
  3854. }
  3855. #define FORCEDETH_REGS_VER 1
  3856. static int nv_get_regs_len(struct net_device *dev)
  3857. {
  3858. struct fe_priv *np = netdev_priv(dev);
  3859. return np->register_size;
  3860. }
  3861. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  3862. {
  3863. struct fe_priv *np = netdev_priv(dev);
  3864. u8 __iomem *base = get_hwbase(dev);
  3865. u32 *rbuf = buf;
  3866. int i;
  3867. regs->version = FORCEDETH_REGS_VER;
  3868. spin_lock_irq(&np->lock);
  3869. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  3870. rbuf[i] = readl(base + i*sizeof(u32));
  3871. spin_unlock_irq(&np->lock);
  3872. }
  3873. static int nv_nway_reset(struct net_device *dev)
  3874. {
  3875. struct fe_priv *np = netdev_priv(dev);
  3876. int ret;
  3877. if (np->autoneg) {
  3878. int bmcr;
  3879. netif_carrier_off(dev);
  3880. if (netif_running(dev)) {
  3881. nv_disable_irq(dev);
  3882. netif_tx_lock_bh(dev);
  3883. spin_lock(&np->lock);
  3884. /* stop engines */
  3885. nv_stop_rxtx(dev);
  3886. spin_unlock(&np->lock);
  3887. netif_tx_unlock_bh(dev);
  3888. printk(KERN_INFO "%s: link down.\n", dev->name);
  3889. }
  3890. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3891. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3892. bmcr |= BMCR_ANENABLE;
  3893. /* reset the phy in order for settings to stick*/
  3894. if (phy_reset(dev, bmcr)) {
  3895. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3896. return -EINVAL;
  3897. }
  3898. } else {
  3899. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3900. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3901. }
  3902. if (netif_running(dev)) {
  3903. nv_start_rxtx(dev);
  3904. nv_enable_irq(dev);
  3905. }
  3906. ret = 0;
  3907. } else {
  3908. ret = -EINVAL;
  3909. }
  3910. return ret;
  3911. }
  3912. static int nv_set_tso(struct net_device *dev, u32 value)
  3913. {
  3914. struct fe_priv *np = netdev_priv(dev);
  3915. if ((np->driver_data & DEV_HAS_CHECKSUM))
  3916. return ethtool_op_set_tso(dev, value);
  3917. else
  3918. return -EOPNOTSUPP;
  3919. }
  3920. static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  3921. {
  3922. struct fe_priv *np = netdev_priv(dev);
  3923. ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  3924. ring->rx_mini_max_pending = 0;
  3925. ring->rx_jumbo_max_pending = 0;
  3926. ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  3927. ring->rx_pending = np->rx_ring_size;
  3928. ring->rx_mini_pending = 0;
  3929. ring->rx_jumbo_pending = 0;
  3930. ring->tx_pending = np->tx_ring_size;
  3931. }
  3932. static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  3933. {
  3934. struct fe_priv *np = netdev_priv(dev);
  3935. u8 __iomem *base = get_hwbase(dev);
  3936. u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
  3937. dma_addr_t ring_addr;
  3938. if (ring->rx_pending < RX_RING_MIN ||
  3939. ring->tx_pending < TX_RING_MIN ||
  3940. ring->rx_mini_pending != 0 ||
  3941. ring->rx_jumbo_pending != 0 ||
  3942. (np->desc_ver == DESC_VER_1 &&
  3943. (ring->rx_pending > RING_MAX_DESC_VER_1 ||
  3944. ring->tx_pending > RING_MAX_DESC_VER_1)) ||
  3945. (np->desc_ver != DESC_VER_1 &&
  3946. (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
  3947. ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
  3948. return -EINVAL;
  3949. }
  3950. /* allocate new rings */
  3951. if (!nv_optimized(np)) {
  3952. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  3953. sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  3954. &ring_addr);
  3955. } else {
  3956. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  3957. sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  3958. &ring_addr);
  3959. }
  3960. rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
  3961. tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
  3962. if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
  3963. /* fall back to old rings */
  3964. if (!nv_optimized(np)) {
  3965. if (rxtx_ring)
  3966. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  3967. rxtx_ring, ring_addr);
  3968. } else {
  3969. if (rxtx_ring)
  3970. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  3971. rxtx_ring, ring_addr);
  3972. }
  3973. if (rx_skbuff)
  3974. kfree(rx_skbuff);
  3975. if (tx_skbuff)
  3976. kfree(tx_skbuff);
  3977. goto exit;
  3978. }
  3979. if (netif_running(dev)) {
  3980. nv_disable_irq(dev);
  3981. netif_tx_lock_bh(dev);
  3982. spin_lock(&np->lock);
  3983. /* stop engines */
  3984. nv_stop_rxtx(dev);
  3985. nv_txrx_reset(dev);
  3986. /* drain queues */
  3987. nv_drain_rxtx(dev);
  3988. /* delete queues */
  3989. free_rings(dev);
  3990. }
  3991. /* set new values */
  3992. np->rx_ring_size = ring->rx_pending;
  3993. np->tx_ring_size = ring->tx_pending;
  3994. if (!nv_optimized(np)) {
  3995. np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
  3996. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  3997. } else {
  3998. np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
  3999. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  4000. }
  4001. np->rx_skb = (struct nv_skb_map*)rx_skbuff;
  4002. np->tx_skb = (struct nv_skb_map*)tx_skbuff;
  4003. np->ring_addr = ring_addr;
  4004. memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
  4005. memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
  4006. if (netif_running(dev)) {
  4007. /* reinit driver view of the queues */
  4008. set_bufsize(dev);
  4009. if (nv_init_ring(dev)) {
  4010. if (!np->in_shutdown)
  4011. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4012. }
  4013. /* reinit nic view of the queues */
  4014. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4015. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4016. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4017. base + NvRegRingSizes);
  4018. pci_push(base);
  4019. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4020. pci_push(base);
  4021. /* restart engines */
  4022. nv_start_rxtx(dev);
  4023. spin_unlock(&np->lock);
  4024. netif_tx_unlock_bh(dev);
  4025. nv_enable_irq(dev);
  4026. }
  4027. return 0;
  4028. exit:
  4029. return -ENOMEM;
  4030. }
  4031. static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  4032. {
  4033. struct fe_priv *np = netdev_priv(dev);
  4034. pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
  4035. pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
  4036. pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
  4037. }
  4038. static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  4039. {
  4040. struct fe_priv *np = netdev_priv(dev);
  4041. int adv, bmcr;
  4042. if ((!np->autoneg && np->duplex == 0) ||
  4043. (np->autoneg && !pause->autoneg && np->duplex == 0)) {
  4044. printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
  4045. dev->name);
  4046. return -EINVAL;
  4047. }
  4048. if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
  4049. printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
  4050. return -EINVAL;
  4051. }
  4052. netif_carrier_off(dev);
  4053. if (netif_running(dev)) {
  4054. nv_disable_irq(dev);
  4055. netif_tx_lock_bh(dev);
  4056. spin_lock(&np->lock);
  4057. /* stop engines */
  4058. nv_stop_rxtx(dev);
  4059. spin_unlock(&np->lock);
  4060. netif_tx_unlock_bh(dev);
  4061. }
  4062. np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
  4063. if (pause->rx_pause)
  4064. np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
  4065. if (pause->tx_pause)
  4066. np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
  4067. if (np->autoneg && pause->autoneg) {
  4068. np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
  4069. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  4070. adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  4071. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  4072. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  4073. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  4074. adv |= ADVERTISE_PAUSE_ASYM;
  4075. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  4076. if (netif_running(dev))
  4077. printk(KERN_INFO "%s: link down.\n", dev->name);
  4078. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  4079. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  4080. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  4081. } else {
  4082. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  4083. if (pause->rx_pause)
  4084. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  4085. if (pause->tx_pause)
  4086. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  4087. if (!netif_running(dev))
  4088. nv_update_linkspeed(dev);
  4089. else
  4090. nv_update_pause(dev, np->pause_flags);
  4091. }
  4092. if (netif_running(dev)) {
  4093. nv_start_rxtx(dev);
  4094. nv_enable_irq(dev);
  4095. }
  4096. return 0;
  4097. }
  4098. static u32 nv_get_rx_csum(struct net_device *dev)
  4099. {
  4100. struct fe_priv *np = netdev_priv(dev);
  4101. return (np->rx_csum) != 0;
  4102. }
  4103. static int nv_set_rx_csum(struct net_device *dev, u32 data)
  4104. {
  4105. struct fe_priv *np = netdev_priv(dev);
  4106. u8 __iomem *base = get_hwbase(dev);
  4107. int retcode = 0;
  4108. if (np->driver_data & DEV_HAS_CHECKSUM) {
  4109. if (data) {
  4110. np->rx_csum = 1;
  4111. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  4112. } else {
  4113. np->rx_csum = 0;
  4114. /* vlan is dependent on rx checksum offload */
  4115. if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
  4116. np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
  4117. }
  4118. if (netif_running(dev)) {
  4119. spin_lock_irq(&np->lock);
  4120. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4121. spin_unlock_irq(&np->lock);
  4122. }
  4123. } else {
  4124. return -EINVAL;
  4125. }
  4126. return retcode;
  4127. }
  4128. static int nv_set_tx_csum(struct net_device *dev, u32 data)
  4129. {
  4130. struct fe_priv *np = netdev_priv(dev);
  4131. if (np->driver_data & DEV_HAS_CHECKSUM)
  4132. return ethtool_op_set_tx_hw_csum(dev, data);
  4133. else
  4134. return -EOPNOTSUPP;
  4135. }
  4136. static int nv_set_sg(struct net_device *dev, u32 data)
  4137. {
  4138. struct fe_priv *np = netdev_priv(dev);
  4139. if (np->driver_data & DEV_HAS_CHECKSUM)
  4140. return ethtool_op_set_sg(dev, data);
  4141. else
  4142. return -EOPNOTSUPP;
  4143. }
  4144. static int nv_get_sset_count(struct net_device *dev, int sset)
  4145. {
  4146. struct fe_priv *np = netdev_priv(dev);
  4147. switch (sset) {
  4148. case ETH_SS_TEST:
  4149. if (np->driver_data & DEV_HAS_TEST_EXTENDED)
  4150. return NV_TEST_COUNT_EXTENDED;
  4151. else
  4152. return NV_TEST_COUNT_BASE;
  4153. case ETH_SS_STATS:
  4154. if (np->driver_data & DEV_HAS_STATISTICS_V1)
  4155. return NV_DEV_STATISTICS_V1_COUNT;
  4156. else if (np->driver_data & DEV_HAS_STATISTICS_V2)
  4157. return NV_DEV_STATISTICS_V2_COUNT;
  4158. else
  4159. return 0;
  4160. default:
  4161. return -EOPNOTSUPP;
  4162. }
  4163. }
  4164. static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
  4165. {
  4166. struct fe_priv *np = netdev_priv(dev);
  4167. /* update stats */
  4168. nv_do_stats_poll((unsigned long)dev);
  4169. memcpy(buffer, &np->estats, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
  4170. }
  4171. static int nv_link_test(struct net_device *dev)
  4172. {
  4173. struct fe_priv *np = netdev_priv(dev);
  4174. int mii_status;
  4175. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4176. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4177. /* check phy link status */
  4178. if (!(mii_status & BMSR_LSTATUS))
  4179. return 0;
  4180. else
  4181. return 1;
  4182. }
  4183. static int nv_register_test(struct net_device *dev)
  4184. {
  4185. u8 __iomem *base = get_hwbase(dev);
  4186. int i = 0;
  4187. u32 orig_read, new_read;
  4188. do {
  4189. orig_read = readl(base + nv_registers_test[i].reg);
  4190. /* xor with mask to toggle bits */
  4191. orig_read ^= nv_registers_test[i].mask;
  4192. writel(orig_read, base + nv_registers_test[i].reg);
  4193. new_read = readl(base + nv_registers_test[i].reg);
  4194. if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
  4195. return 0;
  4196. /* restore original value */
  4197. orig_read ^= nv_registers_test[i].mask;
  4198. writel(orig_read, base + nv_registers_test[i].reg);
  4199. } while (nv_registers_test[++i].reg != 0);
  4200. return 1;
  4201. }
  4202. static int nv_interrupt_test(struct net_device *dev)
  4203. {
  4204. struct fe_priv *np = netdev_priv(dev);
  4205. u8 __iomem *base = get_hwbase(dev);
  4206. int ret = 1;
  4207. int testcnt;
  4208. u32 save_msi_flags, save_poll_interval = 0;
  4209. if (netif_running(dev)) {
  4210. /* free current irq */
  4211. nv_free_irq(dev);
  4212. save_poll_interval = readl(base+NvRegPollingInterval);
  4213. }
  4214. /* flag to test interrupt handler */
  4215. np->intr_test = 0;
  4216. /* setup test irq */
  4217. save_msi_flags = np->msi_flags;
  4218. np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
  4219. np->msi_flags |= 0x001; /* setup 1 vector */
  4220. if (nv_request_irq(dev, 1))
  4221. return 0;
  4222. /* setup timer interrupt */
  4223. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4224. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4225. nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4226. /* wait for at least one interrupt */
  4227. msleep(100);
  4228. spin_lock_irq(&np->lock);
  4229. /* flag should be set within ISR */
  4230. testcnt = np->intr_test;
  4231. if (!testcnt)
  4232. ret = 2;
  4233. nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4234. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  4235. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4236. else
  4237. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4238. spin_unlock_irq(&np->lock);
  4239. nv_free_irq(dev);
  4240. np->msi_flags = save_msi_flags;
  4241. if (netif_running(dev)) {
  4242. writel(save_poll_interval, base + NvRegPollingInterval);
  4243. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4244. /* restore original irq */
  4245. if (nv_request_irq(dev, 0))
  4246. return 0;
  4247. }
  4248. return ret;
  4249. }
  4250. static int nv_loopback_test(struct net_device *dev)
  4251. {
  4252. struct fe_priv *np = netdev_priv(dev);
  4253. u8 __iomem *base = get_hwbase(dev);
  4254. struct sk_buff *tx_skb, *rx_skb;
  4255. dma_addr_t test_dma_addr;
  4256. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  4257. u32 flags;
  4258. int len, i, pkt_len;
  4259. u8 *pkt_data;
  4260. u32 filter_flags = 0;
  4261. u32 misc1_flags = 0;
  4262. int ret = 1;
  4263. if (netif_running(dev)) {
  4264. nv_disable_irq(dev);
  4265. filter_flags = readl(base + NvRegPacketFilterFlags);
  4266. misc1_flags = readl(base + NvRegMisc1);
  4267. } else {
  4268. nv_txrx_reset(dev);
  4269. }
  4270. /* reinit driver view of the rx queue */
  4271. set_bufsize(dev);
  4272. nv_init_ring(dev);
  4273. /* setup hardware for loopback */
  4274. writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
  4275. writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
  4276. /* reinit nic view of the rx queue */
  4277. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4278. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4279. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4280. base + NvRegRingSizes);
  4281. pci_push(base);
  4282. /* restart rx engine */
  4283. nv_start_rxtx(dev);
  4284. /* setup packet for tx */
  4285. pkt_len = ETH_DATA_LEN;
  4286. tx_skb = dev_alloc_skb(pkt_len);
  4287. if (!tx_skb) {
  4288. printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
  4289. " of %s\n", dev->name);
  4290. ret = 0;
  4291. goto out;
  4292. }
  4293. test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
  4294. skb_tailroom(tx_skb),
  4295. PCI_DMA_FROMDEVICE);
  4296. pkt_data = skb_put(tx_skb, pkt_len);
  4297. for (i = 0; i < pkt_len; i++)
  4298. pkt_data[i] = (u8)(i & 0xff);
  4299. if (!nv_optimized(np)) {
  4300. np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
  4301. np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4302. } else {
  4303. np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
  4304. np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
  4305. np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4306. }
  4307. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4308. pci_push(get_hwbase(dev));
  4309. msleep(500);
  4310. /* check for rx of the packet */
  4311. if (!nv_optimized(np)) {
  4312. flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
  4313. len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
  4314. } else {
  4315. flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
  4316. len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
  4317. }
  4318. if (flags & NV_RX_AVAIL) {
  4319. ret = 0;
  4320. } else if (np->desc_ver == DESC_VER_1) {
  4321. if (flags & NV_RX_ERROR)
  4322. ret = 0;
  4323. } else {
  4324. if (flags & NV_RX2_ERROR) {
  4325. ret = 0;
  4326. }
  4327. }
  4328. if (ret) {
  4329. if (len != pkt_len) {
  4330. ret = 0;
  4331. dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
  4332. dev->name, len, pkt_len);
  4333. } else {
  4334. rx_skb = np->rx_skb[0].skb;
  4335. for (i = 0; i < pkt_len; i++) {
  4336. if (rx_skb->data[i] != (u8)(i & 0xff)) {
  4337. ret = 0;
  4338. dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
  4339. dev->name, i);
  4340. break;
  4341. }
  4342. }
  4343. }
  4344. } else {
  4345. dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
  4346. }
  4347. pci_unmap_page(np->pci_dev, test_dma_addr,
  4348. (skb_end_pointer(tx_skb) - tx_skb->data),
  4349. PCI_DMA_TODEVICE);
  4350. dev_kfree_skb_any(tx_skb);
  4351. out:
  4352. /* stop engines */
  4353. nv_stop_rxtx(dev);
  4354. nv_txrx_reset(dev);
  4355. /* drain rx queue */
  4356. nv_drain_rxtx(dev);
  4357. if (netif_running(dev)) {
  4358. writel(misc1_flags, base + NvRegMisc1);
  4359. writel(filter_flags, base + NvRegPacketFilterFlags);
  4360. nv_enable_irq(dev);
  4361. }
  4362. return ret;
  4363. }
  4364. static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
  4365. {
  4366. struct fe_priv *np = netdev_priv(dev);
  4367. u8 __iomem *base = get_hwbase(dev);
  4368. int result;
  4369. memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64));
  4370. if (!nv_link_test(dev)) {
  4371. test->flags |= ETH_TEST_FL_FAILED;
  4372. buffer[0] = 1;
  4373. }
  4374. if (test->flags & ETH_TEST_FL_OFFLINE) {
  4375. if (netif_running(dev)) {
  4376. netif_stop_queue(dev);
  4377. #ifdef CONFIG_FORCEDETH_NAPI
  4378. napi_disable(&np->napi);
  4379. #endif
  4380. netif_tx_lock_bh(dev);
  4381. spin_lock_irq(&np->lock);
  4382. nv_disable_hw_interrupts(dev, np->irqmask);
  4383. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  4384. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4385. } else {
  4386. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4387. }
  4388. /* stop engines */
  4389. nv_stop_rxtx(dev);
  4390. nv_txrx_reset(dev);
  4391. /* drain rx queue */
  4392. nv_drain_rxtx(dev);
  4393. spin_unlock_irq(&np->lock);
  4394. netif_tx_unlock_bh(dev);
  4395. }
  4396. if (!nv_register_test(dev)) {
  4397. test->flags |= ETH_TEST_FL_FAILED;
  4398. buffer[1] = 1;
  4399. }
  4400. result = nv_interrupt_test(dev);
  4401. if (result != 1) {
  4402. test->flags |= ETH_TEST_FL_FAILED;
  4403. buffer[2] = 1;
  4404. }
  4405. if (result == 0) {
  4406. /* bail out */
  4407. return;
  4408. }
  4409. if (!nv_loopback_test(dev)) {
  4410. test->flags |= ETH_TEST_FL_FAILED;
  4411. buffer[3] = 1;
  4412. }
  4413. if (netif_running(dev)) {
  4414. /* reinit driver view of the rx queue */
  4415. set_bufsize(dev);
  4416. if (nv_init_ring(dev)) {
  4417. if (!np->in_shutdown)
  4418. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4419. }
  4420. /* reinit nic view of the rx queue */
  4421. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4422. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4423. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4424. base + NvRegRingSizes);
  4425. pci_push(base);
  4426. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4427. pci_push(base);
  4428. /* restart rx engine */
  4429. nv_start_rxtx(dev);
  4430. netif_start_queue(dev);
  4431. #ifdef CONFIG_FORCEDETH_NAPI
  4432. napi_enable(&np->napi);
  4433. #endif
  4434. nv_enable_hw_interrupts(dev, np->irqmask);
  4435. }
  4436. }
  4437. }
  4438. static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
  4439. {
  4440. switch (stringset) {
  4441. case ETH_SS_STATS:
  4442. memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
  4443. break;
  4444. case ETH_SS_TEST:
  4445. memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
  4446. break;
  4447. }
  4448. }
  4449. static const struct ethtool_ops ops = {
  4450. .get_drvinfo = nv_get_drvinfo,
  4451. .get_link = ethtool_op_get_link,
  4452. .get_wol = nv_get_wol,
  4453. .set_wol = nv_set_wol,
  4454. .get_settings = nv_get_settings,
  4455. .set_settings = nv_set_settings,
  4456. .get_regs_len = nv_get_regs_len,
  4457. .get_regs = nv_get_regs,
  4458. .nway_reset = nv_nway_reset,
  4459. .set_tso = nv_set_tso,
  4460. .get_ringparam = nv_get_ringparam,
  4461. .set_ringparam = nv_set_ringparam,
  4462. .get_pauseparam = nv_get_pauseparam,
  4463. .set_pauseparam = nv_set_pauseparam,
  4464. .get_rx_csum = nv_get_rx_csum,
  4465. .set_rx_csum = nv_set_rx_csum,
  4466. .set_tx_csum = nv_set_tx_csum,
  4467. .set_sg = nv_set_sg,
  4468. .get_strings = nv_get_strings,
  4469. .get_ethtool_stats = nv_get_ethtool_stats,
  4470. .get_sset_count = nv_get_sset_count,
  4471. .self_test = nv_self_test,
  4472. };
  4473. static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  4474. {
  4475. struct fe_priv *np = get_nvpriv(dev);
  4476. spin_lock_irq(&np->lock);
  4477. /* save vlan group */
  4478. np->vlangrp = grp;
  4479. if (grp) {
  4480. /* enable vlan on MAC */
  4481. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
  4482. } else {
  4483. /* disable vlan on MAC */
  4484. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  4485. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  4486. }
  4487. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4488. spin_unlock_irq(&np->lock);
  4489. }
  4490. /* The mgmt unit and driver use a semaphore to access the phy during init */
  4491. static int nv_mgmt_acquire_sema(struct net_device *dev)
  4492. {
  4493. u8 __iomem *base = get_hwbase(dev);
  4494. int i;
  4495. u32 tx_ctrl, mgmt_sema;
  4496. for (i = 0; i < 10; i++) {
  4497. mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
  4498. if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
  4499. break;
  4500. msleep(500);
  4501. }
  4502. if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
  4503. return 0;
  4504. for (i = 0; i < 2; i++) {
  4505. tx_ctrl = readl(base + NvRegTransmitterControl);
  4506. tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
  4507. writel(tx_ctrl, base + NvRegTransmitterControl);
  4508. /* verify that semaphore was acquired */
  4509. tx_ctrl = readl(base + NvRegTransmitterControl);
  4510. if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
  4511. ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE))
  4512. return 1;
  4513. else
  4514. udelay(50);
  4515. }
  4516. return 0;
  4517. }
  4518. static int nv_open(struct net_device *dev)
  4519. {
  4520. struct fe_priv *np = netdev_priv(dev);
  4521. u8 __iomem *base = get_hwbase(dev);
  4522. int ret = 1;
  4523. int oom, i;
  4524. u32 low;
  4525. dprintk(KERN_DEBUG "nv_open: begin\n");
  4526. /* erase previous misconfiguration */
  4527. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  4528. nv_mac_reset(dev);
  4529. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4530. writel(0, base + NvRegMulticastAddrB);
  4531. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4532. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4533. writel(0, base + NvRegPacketFilterFlags);
  4534. writel(0, base + NvRegTransmitterControl);
  4535. writel(0, base + NvRegReceiverControl);
  4536. writel(0, base + NvRegAdapterControl);
  4537. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
  4538. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  4539. /* initialize descriptor rings */
  4540. set_bufsize(dev);
  4541. oom = nv_init_ring(dev);
  4542. writel(0, base + NvRegLinkSpeed);
  4543. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4544. nv_txrx_reset(dev);
  4545. writel(0, base + NvRegUnknownSetupReg6);
  4546. np->in_shutdown = 0;
  4547. /* give hw rings */
  4548. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4549. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4550. base + NvRegRingSizes);
  4551. writel(np->linkspeed, base + NvRegLinkSpeed);
  4552. if (np->desc_ver == DESC_VER_1)
  4553. writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
  4554. else
  4555. writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
  4556. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4557. writel(np->vlanctl_bits, base + NvRegVlanControl);
  4558. pci_push(base);
  4559. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  4560. reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  4561. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
  4562. KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
  4563. writel(0, base + NvRegMIIMask);
  4564. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4565. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4566. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  4567. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  4568. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  4569. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4570. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  4571. get_random_bytes(&low, sizeof(low));
  4572. low &= NVREG_SLOTTIME_MASK;
  4573. if (np->desc_ver == DESC_VER_1) {
  4574. writel(low|NVREG_SLOTTIME_DEFAULT, base + NvRegSlotTime);
  4575. } else {
  4576. if (!(np->driver_data & DEV_HAS_GEAR_MODE)) {
  4577. /* setup legacy backoff */
  4578. writel(NVREG_SLOTTIME_LEGBF_ENABLED|NVREG_SLOTTIME_10_100_FULL|low, base + NvRegSlotTime);
  4579. } else {
  4580. writel(NVREG_SLOTTIME_10_100_FULL, base + NvRegSlotTime);
  4581. nv_gear_backoff_reseed(dev);
  4582. }
  4583. }
  4584. writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
  4585. writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
  4586. if (poll_interval == -1) {
  4587. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  4588. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  4589. else
  4590. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4591. }
  4592. else
  4593. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  4594. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4595. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  4596. base + NvRegAdapterControl);
  4597. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  4598. writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
  4599. if (np->wolenabled)
  4600. writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
  4601. i = readl(base + NvRegPowerState);
  4602. if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
  4603. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  4604. pci_push(base);
  4605. udelay(10);
  4606. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  4607. nv_disable_hw_interrupts(dev, np->irqmask);
  4608. pci_push(base);
  4609. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4610. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4611. pci_push(base);
  4612. if (nv_request_irq(dev, 0)) {
  4613. goto out_drain;
  4614. }
  4615. /* ask for interrupts */
  4616. nv_enable_hw_interrupts(dev, np->irqmask);
  4617. spin_lock_irq(&np->lock);
  4618. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4619. writel(0, base + NvRegMulticastAddrB);
  4620. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4621. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4622. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4623. /* One manual link speed update: Interrupts are enabled, future link
  4624. * speed changes cause interrupts and are handled by nv_link_irq().
  4625. */
  4626. {
  4627. u32 miistat;
  4628. miistat = readl(base + NvRegMIIStatus);
  4629. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4630. dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
  4631. }
  4632. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  4633. * to init hw */
  4634. np->linkspeed = 0;
  4635. ret = nv_update_linkspeed(dev);
  4636. nv_start_rxtx(dev);
  4637. netif_start_queue(dev);
  4638. #ifdef CONFIG_FORCEDETH_NAPI
  4639. napi_enable(&np->napi);
  4640. #endif
  4641. if (ret) {
  4642. netif_carrier_on(dev);
  4643. } else {
  4644. printk(KERN_INFO "%s: no link during initialization.\n", dev->name);
  4645. netif_carrier_off(dev);
  4646. }
  4647. if (oom)
  4648. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4649. /* start statistics timer */
  4650. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2))
  4651. mod_timer(&np->stats_poll,
  4652. round_jiffies(jiffies + STATS_INTERVAL));
  4653. spin_unlock_irq(&np->lock);
  4654. return 0;
  4655. out_drain:
  4656. nv_drain_rxtx(dev);
  4657. return ret;
  4658. }
  4659. static int nv_close(struct net_device *dev)
  4660. {
  4661. struct fe_priv *np = netdev_priv(dev);
  4662. u8 __iomem *base;
  4663. spin_lock_irq(&np->lock);
  4664. np->in_shutdown = 1;
  4665. spin_unlock_irq(&np->lock);
  4666. #ifdef CONFIG_FORCEDETH_NAPI
  4667. napi_disable(&np->napi);
  4668. #endif
  4669. synchronize_irq(np->pci_dev->irq);
  4670. del_timer_sync(&np->oom_kick);
  4671. del_timer_sync(&np->nic_poll);
  4672. del_timer_sync(&np->stats_poll);
  4673. netif_stop_queue(dev);
  4674. spin_lock_irq(&np->lock);
  4675. nv_stop_rxtx(dev);
  4676. nv_txrx_reset(dev);
  4677. /* disable interrupts on the nic or we will lock up */
  4678. base = get_hwbase(dev);
  4679. nv_disable_hw_interrupts(dev, np->irqmask);
  4680. pci_push(base);
  4681. dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
  4682. spin_unlock_irq(&np->lock);
  4683. nv_free_irq(dev);
  4684. nv_drain_rxtx(dev);
  4685. if (np->wolenabled) {
  4686. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4687. nv_start_rx(dev);
  4688. }
  4689. /* FIXME: power down nic */
  4690. return 0;
  4691. }
  4692. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  4693. {
  4694. struct net_device *dev;
  4695. struct fe_priv *np;
  4696. unsigned long addr;
  4697. u8 __iomem *base;
  4698. int err, i;
  4699. u32 powerstate, txreg;
  4700. u32 phystate_orig = 0, phystate;
  4701. int phyinitialized = 0;
  4702. DECLARE_MAC_BUF(mac);
  4703. static int printed_version;
  4704. if (!printed_version++)
  4705. printk(KERN_INFO "%s: Reverse Engineered nForce ethernet"
  4706. " driver. Version %s.\n", DRV_NAME, FORCEDETH_VERSION);
  4707. dev = alloc_etherdev(sizeof(struct fe_priv));
  4708. err = -ENOMEM;
  4709. if (!dev)
  4710. goto out;
  4711. np = netdev_priv(dev);
  4712. np->dev = dev;
  4713. np->pci_dev = pci_dev;
  4714. spin_lock_init(&np->lock);
  4715. SET_NETDEV_DEV(dev, &pci_dev->dev);
  4716. init_timer(&np->oom_kick);
  4717. np->oom_kick.data = (unsigned long) dev;
  4718. np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
  4719. init_timer(&np->nic_poll);
  4720. np->nic_poll.data = (unsigned long) dev;
  4721. np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
  4722. init_timer(&np->stats_poll);
  4723. np->stats_poll.data = (unsigned long) dev;
  4724. np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
  4725. err = pci_enable_device(pci_dev);
  4726. if (err)
  4727. goto out_free;
  4728. pci_set_master(pci_dev);
  4729. err = pci_request_regions(pci_dev, DRV_NAME);
  4730. if (err < 0)
  4731. goto out_disable;
  4732. if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2))
  4733. np->register_size = NV_PCI_REGSZ_VER3;
  4734. else if (id->driver_data & DEV_HAS_STATISTICS_V1)
  4735. np->register_size = NV_PCI_REGSZ_VER2;
  4736. else
  4737. np->register_size = NV_PCI_REGSZ_VER1;
  4738. err = -EINVAL;
  4739. addr = 0;
  4740. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  4741. dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
  4742. pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
  4743. pci_resource_len(pci_dev, i),
  4744. pci_resource_flags(pci_dev, i));
  4745. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  4746. pci_resource_len(pci_dev, i) >= np->register_size) {
  4747. addr = pci_resource_start(pci_dev, i);
  4748. break;
  4749. }
  4750. }
  4751. if (i == DEVICE_COUNT_RESOURCE) {
  4752. dev_printk(KERN_INFO, &pci_dev->dev,
  4753. "Couldn't find register window\n");
  4754. goto out_relreg;
  4755. }
  4756. /* copy of driver data */
  4757. np->driver_data = id->driver_data;
  4758. /* copy of device id */
  4759. np->device_id = id->device;
  4760. /* handle different descriptor versions */
  4761. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  4762. /* packet format 3: supports 40-bit addressing */
  4763. np->desc_ver = DESC_VER_3;
  4764. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  4765. if (dma_64bit) {
  4766. if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK))
  4767. dev_printk(KERN_INFO, &pci_dev->dev,
  4768. "64-bit DMA failed, using 32-bit addressing\n");
  4769. else
  4770. dev->features |= NETIF_F_HIGHDMA;
  4771. if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) {
  4772. dev_printk(KERN_INFO, &pci_dev->dev,
  4773. "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
  4774. }
  4775. }
  4776. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  4777. /* packet format 2: supports jumbo frames */
  4778. np->desc_ver = DESC_VER_2;
  4779. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  4780. } else {
  4781. /* original packet format */
  4782. np->desc_ver = DESC_VER_1;
  4783. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  4784. }
  4785. np->pkt_limit = NV_PKTLIMIT_1;
  4786. if (id->driver_data & DEV_HAS_LARGEDESC)
  4787. np->pkt_limit = NV_PKTLIMIT_2;
  4788. if (id->driver_data & DEV_HAS_CHECKSUM) {
  4789. np->rx_csum = 1;
  4790. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  4791. dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
  4792. dev->features |= NETIF_F_TSO;
  4793. }
  4794. np->vlanctl_bits = 0;
  4795. if (id->driver_data & DEV_HAS_VLAN) {
  4796. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  4797. dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  4798. dev->vlan_rx_register = nv_vlan_rx_register;
  4799. }
  4800. np->msi_flags = 0;
  4801. if ((id->driver_data & DEV_HAS_MSI) && msi) {
  4802. np->msi_flags |= NV_MSI_CAPABLE;
  4803. }
  4804. if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
  4805. np->msi_flags |= NV_MSI_X_CAPABLE;
  4806. }
  4807. np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
  4808. if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) ||
  4809. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) ||
  4810. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) {
  4811. np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
  4812. }
  4813. err = -ENOMEM;
  4814. np->base = ioremap(addr, np->register_size);
  4815. if (!np->base)
  4816. goto out_relreg;
  4817. dev->base_addr = (unsigned long)np->base;
  4818. dev->irq = pci_dev->irq;
  4819. np->rx_ring_size = RX_RING_DEFAULT;
  4820. np->tx_ring_size = TX_RING_DEFAULT;
  4821. if (!nv_optimized(np)) {
  4822. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  4823. sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  4824. &np->ring_addr);
  4825. if (!np->rx_ring.orig)
  4826. goto out_unmap;
  4827. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  4828. } else {
  4829. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  4830. sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  4831. &np->ring_addr);
  4832. if (!np->rx_ring.ex)
  4833. goto out_unmap;
  4834. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  4835. }
  4836. np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  4837. np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  4838. if (!np->rx_skb || !np->tx_skb)
  4839. goto out_freering;
  4840. dev->open = nv_open;
  4841. dev->stop = nv_close;
  4842. if (!nv_optimized(np))
  4843. dev->hard_start_xmit = nv_start_xmit;
  4844. else
  4845. dev->hard_start_xmit = nv_start_xmit_optimized;
  4846. dev->get_stats = nv_get_stats;
  4847. dev->change_mtu = nv_change_mtu;
  4848. dev->set_mac_address = nv_set_mac_address;
  4849. dev->set_multicast_list = nv_set_multicast;
  4850. #ifdef CONFIG_NET_POLL_CONTROLLER
  4851. dev->poll_controller = nv_poll_controller;
  4852. #endif
  4853. #ifdef CONFIG_FORCEDETH_NAPI
  4854. netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
  4855. #endif
  4856. SET_ETHTOOL_OPS(dev, &ops);
  4857. dev->tx_timeout = nv_tx_timeout;
  4858. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  4859. pci_set_drvdata(pci_dev, dev);
  4860. /* read the mac address */
  4861. base = get_hwbase(dev);
  4862. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  4863. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  4864. /* check the workaround bit for correct mac address order */
  4865. txreg = readl(base + NvRegTransmitPoll);
  4866. if (id->driver_data & DEV_HAS_CORRECT_MACADDR) {
  4867. /* mac address is already in correct order */
  4868. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  4869. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  4870. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  4871. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  4872. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  4873. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  4874. } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
  4875. /* mac address is already in correct order */
  4876. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  4877. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  4878. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  4879. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  4880. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  4881. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  4882. /*
  4883. * Set orig mac address back to the reversed version.
  4884. * This flag will be cleared during low power transition.
  4885. * Therefore, we should always put back the reversed address.
  4886. */
  4887. np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) +
  4888. (dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24);
  4889. np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8);
  4890. } else {
  4891. /* need to reverse mac address to correct order */
  4892. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  4893. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  4894. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  4895. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  4896. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  4897. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  4898. writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4899. }
  4900. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  4901. if (!is_valid_ether_addr(dev->perm_addr)) {
  4902. /*
  4903. * Bad mac address. At least one bios sets the mac address
  4904. * to 01:23:45:67:89:ab
  4905. */
  4906. dev_printk(KERN_ERR, &pci_dev->dev,
  4907. "Invalid Mac address detected: %s\n",
  4908. print_mac(mac, dev->dev_addr));
  4909. dev_printk(KERN_ERR, &pci_dev->dev,
  4910. "Please complain to your hardware vendor. Switching to a random MAC.\n");
  4911. dev->dev_addr[0] = 0x00;
  4912. dev->dev_addr[1] = 0x00;
  4913. dev->dev_addr[2] = 0x6c;
  4914. get_random_bytes(&dev->dev_addr[3], 3);
  4915. }
  4916. dprintk(KERN_DEBUG "%s: MAC Address %s\n",
  4917. pci_name(pci_dev), print_mac(mac, dev->dev_addr));
  4918. /* set mac address */
  4919. nv_copy_mac_to_hw(dev);
  4920. /* disable WOL */
  4921. writel(0, base + NvRegWakeUpFlags);
  4922. np->wolenabled = 0;
  4923. if (id->driver_data & DEV_HAS_POWER_CNTRL) {
  4924. /* take phy and nic out of low power mode */
  4925. powerstate = readl(base + NvRegPowerState2);
  4926. powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
  4927. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
  4928. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
  4929. pci_dev->revision >= 0xA3)
  4930. powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
  4931. writel(powerstate, base + NvRegPowerState2);
  4932. }
  4933. if (np->desc_ver == DESC_VER_1) {
  4934. np->tx_flags = NV_TX_VALID;
  4935. } else {
  4936. np->tx_flags = NV_TX2_VALID;
  4937. }
  4938. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
  4939. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  4940. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  4941. np->msi_flags |= 0x0003;
  4942. } else {
  4943. np->irqmask = NVREG_IRQMASK_CPU;
  4944. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  4945. np->msi_flags |= 0x0001;
  4946. }
  4947. if (id->driver_data & DEV_NEED_TIMERIRQ)
  4948. np->irqmask |= NVREG_IRQ_TIMER;
  4949. if (id->driver_data & DEV_NEED_LINKTIMER) {
  4950. dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
  4951. np->need_linktimer = 1;
  4952. np->link_timeout = jiffies + LINK_TIMEOUT;
  4953. } else {
  4954. dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
  4955. np->need_linktimer = 0;
  4956. }
  4957. /* Limit the number of tx's outstanding for hw bug */
  4958. if (id->driver_data & DEV_NEED_TX_LIMIT) {
  4959. np->tx_limit = 1;
  4960. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
  4961. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
  4962. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
  4963. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
  4964. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
  4965. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
  4966. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
  4967. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_39) &&
  4968. pci_dev->revision >= 0xA2)
  4969. np->tx_limit = 0;
  4970. }
  4971. /* clear phy state and temporarily halt phy interrupts */
  4972. writel(0, base + NvRegMIIMask);
  4973. phystate = readl(base + NvRegAdapterControl);
  4974. if (phystate & NVREG_ADAPTCTL_RUNNING) {
  4975. phystate_orig = 1;
  4976. phystate &= ~NVREG_ADAPTCTL_RUNNING;
  4977. writel(phystate, base + NvRegAdapterControl);
  4978. }
  4979. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4980. if (id->driver_data & DEV_HAS_MGMT_UNIT) {
  4981. /* management unit running on the mac? */
  4982. if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) {
  4983. np->mac_in_use = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST;
  4984. dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n", pci_name(pci_dev), np->mac_in_use);
  4985. if (nv_mgmt_acquire_sema(dev)) {
  4986. /* management unit setup the phy already? */
  4987. if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
  4988. NVREG_XMITCTL_SYNC_PHY_INIT) {
  4989. /* phy is inited by mgmt unit */
  4990. phyinitialized = 1;
  4991. dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n", pci_name(pci_dev));
  4992. } else {
  4993. /* we need to init the phy */
  4994. }
  4995. }
  4996. }
  4997. }
  4998. /* find a suitable phy */
  4999. for (i = 1; i <= 32; i++) {
  5000. int id1, id2;
  5001. int phyaddr = i & 0x1F;
  5002. spin_lock_irq(&np->lock);
  5003. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  5004. spin_unlock_irq(&np->lock);
  5005. if (id1 < 0 || id1 == 0xffff)
  5006. continue;
  5007. spin_lock_irq(&np->lock);
  5008. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  5009. spin_unlock_irq(&np->lock);
  5010. if (id2 < 0 || id2 == 0xffff)
  5011. continue;
  5012. np->phy_model = id2 & PHYID2_MODEL_MASK;
  5013. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  5014. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  5015. dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
  5016. pci_name(pci_dev), id1, id2, phyaddr);
  5017. np->phyaddr = phyaddr;
  5018. np->phy_oui = id1 | id2;
  5019. /* Realtek hardcoded phy id1 to all zero's on certain phys */
  5020. if (np->phy_oui == PHY_OUI_REALTEK2)
  5021. np->phy_oui = PHY_OUI_REALTEK;
  5022. /* Setup phy revision for Realtek */
  5023. if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211)
  5024. np->phy_rev = mii_rw(dev, phyaddr, MII_RESV1, MII_READ) & PHY_REV_MASK;
  5025. break;
  5026. }
  5027. if (i == 33) {
  5028. dev_printk(KERN_INFO, &pci_dev->dev,
  5029. "open: Could not find a valid PHY.\n");
  5030. goto out_error;
  5031. }
  5032. if (!phyinitialized) {
  5033. /* reset it */
  5034. phy_init(dev);
  5035. } else {
  5036. /* see if it is a gigabit phy */
  5037. u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  5038. if (mii_status & PHY_GIGABIT) {
  5039. np->gigabit = PHY_GIGABIT;
  5040. }
  5041. }
  5042. /* set default link speed settings */
  5043. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  5044. np->duplex = 0;
  5045. np->autoneg = 1;
  5046. err = register_netdev(dev);
  5047. if (err) {
  5048. dev_printk(KERN_INFO, &pci_dev->dev,
  5049. "unable to register netdev: %d\n", err);
  5050. goto out_error;
  5051. }
  5052. dev_printk(KERN_INFO, &pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, "
  5053. "addr %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
  5054. dev->name,
  5055. np->phy_oui,
  5056. np->phyaddr,
  5057. dev->dev_addr[0],
  5058. dev->dev_addr[1],
  5059. dev->dev_addr[2],
  5060. dev->dev_addr[3],
  5061. dev->dev_addr[4],
  5062. dev->dev_addr[5]);
  5063. dev_printk(KERN_INFO, &pci_dev->dev, "%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
  5064. dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
  5065. dev->features & (NETIF_F_HW_CSUM | NETIF_F_SG) ?
  5066. "csum " : "",
  5067. dev->features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX) ?
  5068. "vlan " : "",
  5069. id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
  5070. id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
  5071. id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
  5072. np->gigabit == PHY_GIGABIT ? "gbit " : "",
  5073. np->need_linktimer ? "lnktim " : "",
  5074. np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
  5075. np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
  5076. np->desc_ver);
  5077. return 0;
  5078. out_error:
  5079. if (phystate_orig)
  5080. writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
  5081. pci_set_drvdata(pci_dev, NULL);
  5082. out_freering:
  5083. free_rings(dev);
  5084. out_unmap:
  5085. iounmap(get_hwbase(dev));
  5086. out_relreg:
  5087. pci_release_regions(pci_dev);
  5088. out_disable:
  5089. pci_disable_device(pci_dev);
  5090. out_free:
  5091. free_netdev(dev);
  5092. out:
  5093. return err;
  5094. }
  5095. static void nv_restore_phy(struct net_device *dev)
  5096. {
  5097. struct fe_priv *np = netdev_priv(dev);
  5098. u16 phy_reserved, mii_control;
  5099. if (np->phy_oui == PHY_OUI_REALTEK &&
  5100. np->phy_model == PHY_MODEL_REALTEK_8201 &&
  5101. phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
  5102. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3);
  5103. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
  5104. phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
  5105. phy_reserved |= PHY_REALTEK_INIT8;
  5106. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved);
  5107. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1);
  5108. /* restart auto negotiation */
  5109. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  5110. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  5111. mii_rw(dev, np->phyaddr, MII_BMCR, mii_control);
  5112. }
  5113. }
  5114. static void __devexit nv_remove(struct pci_dev *pci_dev)
  5115. {
  5116. struct net_device *dev = pci_get_drvdata(pci_dev);
  5117. struct fe_priv *np = netdev_priv(dev);
  5118. u8 __iomem *base = get_hwbase(dev);
  5119. unregister_netdev(dev);
  5120. /* special op: write back the misordered MAC address - otherwise
  5121. * the next nv_probe would see a wrong address.
  5122. */
  5123. writel(np->orig_mac[0], base + NvRegMacAddrA);
  5124. writel(np->orig_mac[1], base + NvRegMacAddrB);
  5125. writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  5126. base + NvRegTransmitPoll);
  5127. /* restore any phy related changes */
  5128. nv_restore_phy(dev);
  5129. /* free all structures */
  5130. free_rings(dev);
  5131. iounmap(get_hwbase(dev));
  5132. pci_release_regions(pci_dev);
  5133. pci_disable_device(pci_dev);
  5134. free_netdev(dev);
  5135. pci_set_drvdata(pci_dev, NULL);
  5136. }
  5137. #ifdef CONFIG_PM
  5138. static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
  5139. {
  5140. struct net_device *dev = pci_get_drvdata(pdev);
  5141. struct fe_priv *np = netdev_priv(dev);
  5142. if (!netif_running(dev))
  5143. goto out;
  5144. netif_device_detach(dev);
  5145. // Gross.
  5146. nv_close(dev);
  5147. pci_save_state(pdev);
  5148. pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
  5149. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  5150. out:
  5151. return 0;
  5152. }
  5153. static int nv_resume(struct pci_dev *pdev)
  5154. {
  5155. struct net_device *dev = pci_get_drvdata(pdev);
  5156. u8 __iomem *base = get_hwbase(dev);
  5157. int rc = 0;
  5158. u32 txreg;
  5159. if (!netif_running(dev))
  5160. goto out;
  5161. netif_device_attach(dev);
  5162. pci_set_power_state(pdev, PCI_D0);
  5163. pci_restore_state(pdev);
  5164. pci_enable_wake(pdev, PCI_D0, 0);
  5165. /* restore mac address reverse flag */
  5166. txreg = readl(base + NvRegTransmitPoll);
  5167. txreg |= NVREG_TRANSMITPOLL_MAC_ADDR_REV;
  5168. writel(txreg, base + NvRegTransmitPoll);
  5169. rc = nv_open(dev);
  5170. nv_set_multicast(dev);
  5171. out:
  5172. return rc;
  5173. }
  5174. #else
  5175. #define nv_suspend NULL
  5176. #define nv_resume NULL
  5177. #endif /* CONFIG_PM */
  5178. static struct pci_device_id pci_tbl[] = {
  5179. { /* nForce Ethernet Controller */
  5180. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
  5181. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5182. },
  5183. { /* nForce2 Ethernet Controller */
  5184. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
  5185. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5186. },
  5187. { /* nForce3 Ethernet Controller */
  5188. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
  5189. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5190. },
  5191. { /* nForce3 Ethernet Controller */
  5192. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
  5193. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5194. },
  5195. { /* nForce3 Ethernet Controller */
  5196. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
  5197. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5198. },
  5199. { /* nForce3 Ethernet Controller */
  5200. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
  5201. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5202. },
  5203. { /* nForce3 Ethernet Controller */
  5204. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
  5205. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5206. },
  5207. { /* CK804 Ethernet Controller */
  5208. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
  5209. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5210. },
  5211. { /* CK804 Ethernet Controller */
  5212. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
  5213. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5214. },
  5215. { /* MCP04 Ethernet Controller */
  5216. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
  5217. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5218. },
  5219. { /* MCP04 Ethernet Controller */
  5220. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
  5221. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5222. },
  5223. { /* MCP51 Ethernet Controller */
  5224. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
  5225. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  5226. },
  5227. { /* MCP51 Ethernet Controller */
  5228. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
  5229. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  5230. },
  5231. { /* MCP55 Ethernet Controller */
  5232. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
  5233. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT,
  5234. },
  5235. { /* MCP55 Ethernet Controller */
  5236. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
  5237. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT,
  5238. },
  5239. { /* MCP61 Ethernet Controller */
  5240. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
  5241. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5242. },
  5243. { /* MCP61 Ethernet Controller */
  5244. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
  5245. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5246. },
  5247. { /* MCP61 Ethernet Controller */
  5248. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
  5249. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5250. },
  5251. { /* MCP61 Ethernet Controller */
  5252. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
  5253. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5254. },
  5255. { /* MCP65 Ethernet Controller */
  5256. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
  5257. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5258. },
  5259. { /* MCP65 Ethernet Controller */
  5260. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
  5261. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5262. },
  5263. { /* MCP65 Ethernet Controller */
  5264. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
  5265. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5266. },
  5267. { /* MCP65 Ethernet Controller */
  5268. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
  5269. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5270. },
  5271. { /* MCP67 Ethernet Controller */
  5272. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_24),
  5273. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5274. },
  5275. { /* MCP67 Ethernet Controller */
  5276. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_25),
  5277. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5278. },
  5279. { /* MCP67 Ethernet Controller */
  5280. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_26),
  5281. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5282. },
  5283. { /* MCP67 Ethernet Controller */
  5284. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_27),
  5285. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5286. },
  5287. { /* MCP73 Ethernet Controller */
  5288. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_28),
  5289. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5290. },
  5291. { /* MCP73 Ethernet Controller */
  5292. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_29),
  5293. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5294. },
  5295. { /* MCP73 Ethernet Controller */
  5296. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_30),
  5297. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5298. },
  5299. { /* MCP73 Ethernet Controller */
  5300. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_31),
  5301. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5302. },
  5303. { /* MCP77 Ethernet Controller */
  5304. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_32),
  5305. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5306. },
  5307. { /* MCP77 Ethernet Controller */
  5308. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_33),
  5309. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5310. },
  5311. { /* MCP77 Ethernet Controller */
  5312. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_34),
  5313. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5314. },
  5315. { /* MCP77 Ethernet Controller */
  5316. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_35),
  5317. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5318. },
  5319. { /* MCP79 Ethernet Controller */
  5320. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_36),
  5321. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5322. },
  5323. { /* MCP79 Ethernet Controller */
  5324. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_37),
  5325. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5326. },
  5327. { /* MCP79 Ethernet Controller */
  5328. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_38),
  5329. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5330. },
  5331. { /* MCP79 Ethernet Controller */
  5332. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_39),
  5333. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5334. },
  5335. {0,},
  5336. };
  5337. static struct pci_driver driver = {
  5338. .name = DRV_NAME,
  5339. .id_table = pci_tbl,
  5340. .probe = nv_probe,
  5341. .remove = __devexit_p(nv_remove),
  5342. .suspend = nv_suspend,
  5343. .resume = nv_resume,
  5344. };
  5345. static int __init init_nic(void)
  5346. {
  5347. return pci_register_driver(&driver);
  5348. }
  5349. static void __exit exit_nic(void)
  5350. {
  5351. pci_unregister_driver(&driver);
  5352. }
  5353. module_param(max_interrupt_work, int, 0);
  5354. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  5355. module_param(optimization_mode, int, 0);
  5356. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
  5357. module_param(poll_interval, int, 0);
  5358. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  5359. module_param(msi, int, 0);
  5360. MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5361. module_param(msix, int, 0);
  5362. MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5363. module_param(dma_64bit, int, 0);
  5364. MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
  5365. module_param(phy_cross, int, 0);
  5366. MODULE_PARM_DESC(phy_cross, "Phy crossover detection for Realtek 8201 phy is enabled by setting to 1 and disabled by setting to 0.");
  5367. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  5368. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  5369. MODULE_LICENSE("GPL");
  5370. MODULE_DEVICE_TABLE(pci, pci_tbl);
  5371. module_init(init_nic);
  5372. module_exit(exit_nic);