kvm_main.c 81 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86.h"
  19. #include "x86_emulate.h"
  20. #include "segment_descriptor.h"
  21. #include "irq.h"
  22. #include <linux/kvm.h>
  23. #include <linux/module.h>
  24. #include <linux/errno.h>
  25. #include <linux/percpu.h>
  26. #include <linux/gfp.h>
  27. #include <linux/mm.h>
  28. #include <linux/miscdevice.h>
  29. #include <linux/vmalloc.h>
  30. #include <linux/reboot.h>
  31. #include <linux/debugfs.h>
  32. #include <linux/highmem.h>
  33. #include <linux/file.h>
  34. #include <linux/sysdev.h>
  35. #include <linux/cpu.h>
  36. #include <linux/sched.h>
  37. #include <linux/cpumask.h>
  38. #include <linux/smp.h>
  39. #include <linux/anon_inodes.h>
  40. #include <linux/profile.h>
  41. #include <linux/kvm_para.h>
  42. #include <linux/pagemap.h>
  43. #include <asm/processor.h>
  44. #include <asm/msr.h>
  45. #include <asm/io.h>
  46. #include <asm/uaccess.h>
  47. #include <asm/desc.h>
  48. MODULE_AUTHOR("Qumranet");
  49. MODULE_LICENSE("GPL");
  50. static DEFINE_SPINLOCK(kvm_lock);
  51. static LIST_HEAD(vm_list);
  52. static cpumask_t cpus_hardware_enabled;
  53. struct kvm_x86_ops *kvm_x86_ops;
  54. struct kmem_cache *kvm_vcpu_cache;
  55. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  56. static __read_mostly struct preempt_ops kvm_preempt_ops;
  57. #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
  58. static struct kvm_stats_debugfs_item {
  59. const char *name;
  60. int offset;
  61. struct dentry *dentry;
  62. } debugfs_entries[] = {
  63. { "pf_fixed", STAT_OFFSET(pf_fixed) },
  64. { "pf_guest", STAT_OFFSET(pf_guest) },
  65. { "tlb_flush", STAT_OFFSET(tlb_flush) },
  66. { "invlpg", STAT_OFFSET(invlpg) },
  67. { "exits", STAT_OFFSET(exits) },
  68. { "io_exits", STAT_OFFSET(io_exits) },
  69. { "mmio_exits", STAT_OFFSET(mmio_exits) },
  70. { "signal_exits", STAT_OFFSET(signal_exits) },
  71. { "irq_window", STAT_OFFSET(irq_window_exits) },
  72. { "halt_exits", STAT_OFFSET(halt_exits) },
  73. { "halt_wakeup", STAT_OFFSET(halt_wakeup) },
  74. { "request_irq", STAT_OFFSET(request_irq_exits) },
  75. { "irq_exits", STAT_OFFSET(irq_exits) },
  76. { "light_exits", STAT_OFFSET(light_exits) },
  77. { "efer_reload", STAT_OFFSET(efer_reload) },
  78. { NULL }
  79. };
  80. static struct dentry *debugfs_dir;
  81. #define MAX_IO_MSRS 256
  82. #define CR0_RESERVED_BITS \
  83. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  84. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  85. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  86. #define CR4_RESERVED_BITS \
  87. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  88. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  89. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  90. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  91. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  92. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  93. #ifdef CONFIG_X86_64
  94. /* LDT or TSS descriptor in the GDT. 16 bytes. */
  95. struct segment_descriptor_64 {
  96. struct segment_descriptor s;
  97. u32 base_higher;
  98. u32 pad_zero;
  99. };
  100. #endif
  101. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  102. unsigned long arg);
  103. unsigned long segment_base(u16 selector)
  104. {
  105. struct descriptor_table gdt;
  106. struct segment_descriptor *d;
  107. unsigned long table_base;
  108. unsigned long v;
  109. if (selector == 0)
  110. return 0;
  111. asm("sgdt %0" : "=m"(gdt));
  112. table_base = gdt.base;
  113. if (selector & 4) { /* from ldt */
  114. u16 ldt_selector;
  115. asm("sldt %0" : "=g"(ldt_selector));
  116. table_base = segment_base(ldt_selector);
  117. }
  118. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  119. v = d->base_low | ((unsigned long)d->base_mid << 16) |
  120. ((unsigned long)d->base_high << 24);
  121. #ifdef CONFIG_X86_64
  122. if (d->system == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  123. v |= ((unsigned long) \
  124. ((struct segment_descriptor_64 *)d)->base_higher) << 32;
  125. #endif
  126. return v;
  127. }
  128. EXPORT_SYMBOL_GPL(segment_base);
  129. static inline int valid_vcpu(int n)
  130. {
  131. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  132. }
  133. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  134. {
  135. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  136. return;
  137. vcpu->guest_fpu_loaded = 1;
  138. fx_save(&vcpu->host_fx_image);
  139. fx_restore(&vcpu->guest_fx_image);
  140. }
  141. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  142. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  143. {
  144. if (!vcpu->guest_fpu_loaded)
  145. return;
  146. vcpu->guest_fpu_loaded = 0;
  147. fx_save(&vcpu->guest_fx_image);
  148. fx_restore(&vcpu->host_fx_image);
  149. }
  150. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  151. /*
  152. * Switches to specified vcpu, until a matching vcpu_put()
  153. */
  154. static void vcpu_load(struct kvm_vcpu *vcpu)
  155. {
  156. int cpu;
  157. mutex_lock(&vcpu->mutex);
  158. cpu = get_cpu();
  159. preempt_notifier_register(&vcpu->preempt_notifier);
  160. kvm_x86_ops->vcpu_load(vcpu, cpu);
  161. put_cpu();
  162. }
  163. static void vcpu_put(struct kvm_vcpu *vcpu)
  164. {
  165. preempt_disable();
  166. kvm_x86_ops->vcpu_put(vcpu);
  167. preempt_notifier_unregister(&vcpu->preempt_notifier);
  168. preempt_enable();
  169. mutex_unlock(&vcpu->mutex);
  170. }
  171. static void ack_flush(void *_completed)
  172. {
  173. }
  174. void kvm_flush_remote_tlbs(struct kvm *kvm)
  175. {
  176. int i, cpu;
  177. cpumask_t cpus;
  178. struct kvm_vcpu *vcpu;
  179. cpus_clear(cpus);
  180. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  181. vcpu = kvm->vcpus[i];
  182. if (!vcpu)
  183. continue;
  184. if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
  185. continue;
  186. cpu = vcpu->cpu;
  187. if (cpu != -1 && cpu != raw_smp_processor_id())
  188. cpu_set(cpu, cpus);
  189. }
  190. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  191. }
  192. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  193. {
  194. struct page *page;
  195. int r;
  196. mutex_init(&vcpu->mutex);
  197. vcpu->cpu = -1;
  198. vcpu->mmu.root_hpa = INVALID_PAGE;
  199. vcpu->kvm = kvm;
  200. vcpu->vcpu_id = id;
  201. if (!irqchip_in_kernel(kvm) || id == 0)
  202. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  203. else
  204. vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED;
  205. init_waitqueue_head(&vcpu->wq);
  206. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  207. if (!page) {
  208. r = -ENOMEM;
  209. goto fail;
  210. }
  211. vcpu->run = page_address(page);
  212. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  213. if (!page) {
  214. r = -ENOMEM;
  215. goto fail_free_run;
  216. }
  217. vcpu->pio_data = page_address(page);
  218. r = kvm_mmu_create(vcpu);
  219. if (r < 0)
  220. goto fail_free_pio_data;
  221. if (irqchip_in_kernel(kvm)) {
  222. r = kvm_create_lapic(vcpu);
  223. if (r < 0)
  224. goto fail_mmu_destroy;
  225. }
  226. return 0;
  227. fail_mmu_destroy:
  228. kvm_mmu_destroy(vcpu);
  229. fail_free_pio_data:
  230. free_page((unsigned long)vcpu->pio_data);
  231. fail_free_run:
  232. free_page((unsigned long)vcpu->run);
  233. fail:
  234. return r;
  235. }
  236. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  237. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  238. {
  239. kvm_free_lapic(vcpu);
  240. kvm_mmu_destroy(vcpu);
  241. free_page((unsigned long)vcpu->pio_data);
  242. free_page((unsigned long)vcpu->run);
  243. }
  244. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  245. static struct kvm *kvm_create_vm(void)
  246. {
  247. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  248. if (!kvm)
  249. return ERR_PTR(-ENOMEM);
  250. kvm_io_bus_init(&kvm->pio_bus);
  251. mutex_init(&kvm->lock);
  252. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  253. kvm_io_bus_init(&kvm->mmio_bus);
  254. spin_lock(&kvm_lock);
  255. list_add(&kvm->vm_list, &vm_list);
  256. spin_unlock(&kvm_lock);
  257. return kvm;
  258. }
  259. static void kvm_free_userspace_physmem(struct kvm_memory_slot *free)
  260. {
  261. int i;
  262. for (i = 0; i < free->npages; ++i) {
  263. if (free->phys_mem[i]) {
  264. if (!PageReserved(free->phys_mem[i]))
  265. SetPageDirty(free->phys_mem[i]);
  266. page_cache_release(free->phys_mem[i]);
  267. }
  268. }
  269. }
  270. static void kvm_free_kernel_physmem(struct kvm_memory_slot *free)
  271. {
  272. int i;
  273. for (i = 0; i < free->npages; ++i)
  274. if (free->phys_mem[i])
  275. __free_page(free->phys_mem[i]);
  276. }
  277. /*
  278. * Free any memory in @free but not in @dont.
  279. */
  280. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  281. struct kvm_memory_slot *dont)
  282. {
  283. if (!dont || free->phys_mem != dont->phys_mem)
  284. if (free->phys_mem) {
  285. if (free->user_alloc)
  286. kvm_free_userspace_physmem(free);
  287. else
  288. kvm_free_kernel_physmem(free);
  289. vfree(free->phys_mem);
  290. }
  291. if (!dont || free->rmap != dont->rmap)
  292. vfree(free->rmap);
  293. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  294. vfree(free->dirty_bitmap);
  295. free->phys_mem = NULL;
  296. free->npages = 0;
  297. free->dirty_bitmap = NULL;
  298. }
  299. static void kvm_free_physmem(struct kvm *kvm)
  300. {
  301. int i;
  302. for (i = 0; i < kvm->nmemslots; ++i)
  303. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  304. }
  305. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  306. {
  307. int i;
  308. for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
  309. if (vcpu->pio.guest_pages[i]) {
  310. __free_page(vcpu->pio.guest_pages[i]);
  311. vcpu->pio.guest_pages[i] = NULL;
  312. }
  313. }
  314. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  315. {
  316. vcpu_load(vcpu);
  317. kvm_mmu_unload(vcpu);
  318. vcpu_put(vcpu);
  319. }
  320. static void kvm_free_vcpus(struct kvm *kvm)
  321. {
  322. unsigned int i;
  323. /*
  324. * Unpin any mmu pages first.
  325. */
  326. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  327. if (kvm->vcpus[i])
  328. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  329. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  330. if (kvm->vcpus[i]) {
  331. kvm_x86_ops->vcpu_free(kvm->vcpus[i]);
  332. kvm->vcpus[i] = NULL;
  333. }
  334. }
  335. }
  336. static void kvm_destroy_vm(struct kvm *kvm)
  337. {
  338. spin_lock(&kvm_lock);
  339. list_del(&kvm->vm_list);
  340. spin_unlock(&kvm_lock);
  341. kvm_io_bus_destroy(&kvm->pio_bus);
  342. kvm_io_bus_destroy(&kvm->mmio_bus);
  343. kfree(kvm->vpic);
  344. kfree(kvm->vioapic);
  345. kvm_free_vcpus(kvm);
  346. kvm_free_physmem(kvm);
  347. kfree(kvm);
  348. }
  349. static int kvm_vm_release(struct inode *inode, struct file *filp)
  350. {
  351. struct kvm *kvm = filp->private_data;
  352. kvm_destroy_vm(kvm);
  353. return 0;
  354. }
  355. static void inject_gp(struct kvm_vcpu *vcpu)
  356. {
  357. kvm_x86_ops->inject_gp(vcpu, 0);
  358. }
  359. /*
  360. * Load the pae pdptrs. Return true is they are all valid.
  361. */
  362. static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  363. {
  364. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  365. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  366. int i;
  367. int ret;
  368. u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
  369. mutex_lock(&vcpu->kvm->lock);
  370. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  371. offset * sizeof(u64), sizeof(pdpte));
  372. if (ret < 0) {
  373. ret = 0;
  374. goto out;
  375. }
  376. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  377. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  378. ret = 0;
  379. goto out;
  380. }
  381. }
  382. ret = 1;
  383. memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
  384. out:
  385. mutex_unlock(&vcpu->kvm->lock);
  386. return ret;
  387. }
  388. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  389. {
  390. if (cr0 & CR0_RESERVED_BITS) {
  391. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  392. cr0, vcpu->cr0);
  393. inject_gp(vcpu);
  394. return;
  395. }
  396. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  397. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  398. inject_gp(vcpu);
  399. return;
  400. }
  401. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  402. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  403. "and a clear PE flag\n");
  404. inject_gp(vcpu);
  405. return;
  406. }
  407. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  408. #ifdef CONFIG_X86_64
  409. if ((vcpu->shadow_efer & EFER_LME)) {
  410. int cs_db, cs_l;
  411. if (!is_pae(vcpu)) {
  412. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  413. "in long mode while PAE is disabled\n");
  414. inject_gp(vcpu);
  415. return;
  416. }
  417. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  418. if (cs_l) {
  419. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  420. "in long mode while CS.L == 1\n");
  421. inject_gp(vcpu);
  422. return;
  423. }
  424. } else
  425. #endif
  426. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  427. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  428. "reserved bits\n");
  429. inject_gp(vcpu);
  430. return;
  431. }
  432. }
  433. kvm_x86_ops->set_cr0(vcpu, cr0);
  434. vcpu->cr0 = cr0;
  435. mutex_lock(&vcpu->kvm->lock);
  436. kvm_mmu_reset_context(vcpu);
  437. mutex_unlock(&vcpu->kvm->lock);
  438. return;
  439. }
  440. EXPORT_SYMBOL_GPL(set_cr0);
  441. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  442. {
  443. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  444. }
  445. EXPORT_SYMBOL_GPL(lmsw);
  446. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  447. {
  448. if (cr4 & CR4_RESERVED_BITS) {
  449. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  450. inject_gp(vcpu);
  451. return;
  452. }
  453. if (is_long_mode(vcpu)) {
  454. if (!(cr4 & X86_CR4_PAE)) {
  455. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  456. "in long mode\n");
  457. inject_gp(vcpu);
  458. return;
  459. }
  460. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  461. && !load_pdptrs(vcpu, vcpu->cr3)) {
  462. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  463. inject_gp(vcpu);
  464. return;
  465. }
  466. if (cr4 & X86_CR4_VMXE) {
  467. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  468. inject_gp(vcpu);
  469. return;
  470. }
  471. kvm_x86_ops->set_cr4(vcpu, cr4);
  472. vcpu->cr4 = cr4;
  473. mutex_lock(&vcpu->kvm->lock);
  474. kvm_mmu_reset_context(vcpu);
  475. mutex_unlock(&vcpu->kvm->lock);
  476. }
  477. EXPORT_SYMBOL_GPL(set_cr4);
  478. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  479. {
  480. if (is_long_mode(vcpu)) {
  481. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  482. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  483. inject_gp(vcpu);
  484. return;
  485. }
  486. } else {
  487. if (is_pae(vcpu)) {
  488. if (cr3 & CR3_PAE_RESERVED_BITS) {
  489. printk(KERN_DEBUG
  490. "set_cr3: #GP, reserved bits\n");
  491. inject_gp(vcpu);
  492. return;
  493. }
  494. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  495. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  496. "reserved bits\n");
  497. inject_gp(vcpu);
  498. return;
  499. }
  500. }
  501. /*
  502. * We don't check reserved bits in nonpae mode, because
  503. * this isn't enforced, and VMware depends on this.
  504. */
  505. }
  506. mutex_lock(&vcpu->kvm->lock);
  507. /*
  508. * Does the new cr3 value map to physical memory? (Note, we
  509. * catch an invalid cr3 even in real-mode, because it would
  510. * cause trouble later on when we turn on paging anyway.)
  511. *
  512. * A real CPU would silently accept an invalid cr3 and would
  513. * attempt to use it - with largely undefined (and often hard
  514. * to debug) behavior on the guest side.
  515. */
  516. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  517. inject_gp(vcpu);
  518. else {
  519. vcpu->cr3 = cr3;
  520. vcpu->mmu.new_cr3(vcpu);
  521. }
  522. mutex_unlock(&vcpu->kvm->lock);
  523. }
  524. EXPORT_SYMBOL_GPL(set_cr3);
  525. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  526. {
  527. if (cr8 & CR8_RESERVED_BITS) {
  528. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  529. inject_gp(vcpu);
  530. return;
  531. }
  532. if (irqchip_in_kernel(vcpu->kvm))
  533. kvm_lapic_set_tpr(vcpu, cr8);
  534. else
  535. vcpu->cr8 = cr8;
  536. }
  537. EXPORT_SYMBOL_GPL(set_cr8);
  538. unsigned long get_cr8(struct kvm_vcpu *vcpu)
  539. {
  540. if (irqchip_in_kernel(vcpu->kvm))
  541. return kvm_lapic_get_cr8(vcpu);
  542. else
  543. return vcpu->cr8;
  544. }
  545. EXPORT_SYMBOL_GPL(get_cr8);
  546. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  547. {
  548. if (irqchip_in_kernel(vcpu->kvm))
  549. return vcpu->apic_base;
  550. else
  551. return vcpu->apic_base;
  552. }
  553. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  554. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  555. {
  556. /* TODO: reserve bits check */
  557. if (irqchip_in_kernel(vcpu->kvm))
  558. kvm_lapic_set_base(vcpu, data);
  559. else
  560. vcpu->apic_base = data;
  561. }
  562. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  563. void fx_init(struct kvm_vcpu *vcpu)
  564. {
  565. unsigned after_mxcsr_mask;
  566. /* Initialize guest FPU by resetting ours and saving into guest's */
  567. preempt_disable();
  568. fx_save(&vcpu->host_fx_image);
  569. fpu_init();
  570. fx_save(&vcpu->guest_fx_image);
  571. fx_restore(&vcpu->host_fx_image);
  572. preempt_enable();
  573. vcpu->cr0 |= X86_CR0_ET;
  574. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  575. vcpu->guest_fx_image.mxcsr = 0x1f80;
  576. memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
  577. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  578. }
  579. EXPORT_SYMBOL_GPL(fx_init);
  580. /*
  581. * Allocate some memory and give it an address in the guest physical address
  582. * space.
  583. *
  584. * Discontiguous memory is allowed, mostly for framebuffers.
  585. */
  586. static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  587. struct
  588. kvm_userspace_memory_region *mem,
  589. int user_alloc)
  590. {
  591. int r;
  592. gfn_t base_gfn;
  593. unsigned long npages;
  594. unsigned long i;
  595. struct kvm_memory_slot *memslot;
  596. struct kvm_memory_slot old, new;
  597. r = -EINVAL;
  598. /* General sanity checks */
  599. if (mem->memory_size & (PAGE_SIZE - 1))
  600. goto out;
  601. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  602. goto out;
  603. if (mem->slot >= KVM_MEMORY_SLOTS)
  604. goto out;
  605. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  606. goto out;
  607. memslot = &kvm->memslots[mem->slot];
  608. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  609. npages = mem->memory_size >> PAGE_SHIFT;
  610. if (!npages)
  611. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  612. mutex_lock(&kvm->lock);
  613. new = old = *memslot;
  614. new.base_gfn = base_gfn;
  615. new.npages = npages;
  616. new.flags = mem->flags;
  617. /* Disallow changing a memory slot's size. */
  618. r = -EINVAL;
  619. if (npages && old.npages && npages != old.npages)
  620. goto out_unlock;
  621. /* Check for overlaps */
  622. r = -EEXIST;
  623. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  624. struct kvm_memory_slot *s = &kvm->memslots[i];
  625. if (s == memslot)
  626. continue;
  627. if (!((base_gfn + npages <= s->base_gfn) ||
  628. (base_gfn >= s->base_gfn + s->npages)))
  629. goto out_unlock;
  630. }
  631. /* Deallocate if slot is being removed */
  632. if (!npages)
  633. new.phys_mem = NULL;
  634. /* Free page dirty bitmap if unneeded */
  635. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  636. new.dirty_bitmap = NULL;
  637. r = -ENOMEM;
  638. /* Allocate if a slot is being created */
  639. if (npages && !new.phys_mem) {
  640. new.phys_mem = vmalloc(npages * sizeof(struct page *));
  641. if (!new.phys_mem)
  642. goto out_unlock;
  643. new.rmap = vmalloc(npages * sizeof(struct page *));
  644. if (!new.rmap)
  645. goto out_unlock;
  646. memset(new.phys_mem, 0, npages * sizeof(struct page *));
  647. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  648. if (user_alloc) {
  649. unsigned long pages_num;
  650. new.user_alloc = 1;
  651. down_read(&current->mm->mmap_sem);
  652. pages_num = get_user_pages(current, current->mm,
  653. mem->userspace_addr,
  654. npages, 1, 1, new.phys_mem,
  655. NULL);
  656. up_read(&current->mm->mmap_sem);
  657. if (pages_num != npages)
  658. goto out_unlock;
  659. } else {
  660. for (i = 0; i < npages; ++i) {
  661. new.phys_mem[i] = alloc_page(GFP_HIGHUSER
  662. | __GFP_ZERO);
  663. if (!new.phys_mem[i])
  664. goto out_unlock;
  665. }
  666. }
  667. }
  668. /* Allocate page dirty bitmap if needed */
  669. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  670. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  671. new.dirty_bitmap = vmalloc(dirty_bytes);
  672. if (!new.dirty_bitmap)
  673. goto out_unlock;
  674. memset(new.dirty_bitmap, 0, dirty_bytes);
  675. }
  676. if (mem->slot >= kvm->nmemslots)
  677. kvm->nmemslots = mem->slot + 1;
  678. if (!kvm->n_requested_mmu_pages) {
  679. unsigned int n_pages;
  680. if (npages) {
  681. n_pages = npages * KVM_PERMILLE_MMU_PAGES / 1000;
  682. kvm_mmu_change_mmu_pages(kvm, kvm->n_alloc_mmu_pages +
  683. n_pages);
  684. } else {
  685. unsigned int nr_mmu_pages;
  686. n_pages = old.npages * KVM_PERMILLE_MMU_PAGES / 1000;
  687. nr_mmu_pages = kvm->n_alloc_mmu_pages - n_pages;
  688. nr_mmu_pages = max(nr_mmu_pages,
  689. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  690. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  691. }
  692. }
  693. *memslot = new;
  694. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  695. kvm_flush_remote_tlbs(kvm);
  696. mutex_unlock(&kvm->lock);
  697. kvm_free_physmem_slot(&old, &new);
  698. return 0;
  699. out_unlock:
  700. mutex_unlock(&kvm->lock);
  701. kvm_free_physmem_slot(&new, &old);
  702. out:
  703. return r;
  704. }
  705. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  706. u32 kvm_nr_mmu_pages)
  707. {
  708. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  709. return -EINVAL;
  710. mutex_lock(&kvm->lock);
  711. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  712. kvm->n_requested_mmu_pages = kvm_nr_mmu_pages;
  713. mutex_unlock(&kvm->lock);
  714. return 0;
  715. }
  716. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  717. {
  718. return kvm->n_alloc_mmu_pages;
  719. }
  720. /*
  721. * Get (and clear) the dirty memory log for a memory slot.
  722. */
  723. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  724. struct kvm_dirty_log *log)
  725. {
  726. struct kvm_memory_slot *memslot;
  727. int r, i;
  728. int n;
  729. unsigned long any = 0;
  730. mutex_lock(&kvm->lock);
  731. r = -EINVAL;
  732. if (log->slot >= KVM_MEMORY_SLOTS)
  733. goto out;
  734. memslot = &kvm->memslots[log->slot];
  735. r = -ENOENT;
  736. if (!memslot->dirty_bitmap)
  737. goto out;
  738. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  739. for (i = 0; !any && i < n/sizeof(long); ++i)
  740. any = memslot->dirty_bitmap[i];
  741. r = -EFAULT;
  742. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  743. goto out;
  744. /* If nothing is dirty, don't bother messing with page tables. */
  745. if (any) {
  746. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  747. kvm_flush_remote_tlbs(kvm);
  748. memset(memslot->dirty_bitmap, 0, n);
  749. }
  750. r = 0;
  751. out:
  752. mutex_unlock(&kvm->lock);
  753. return r;
  754. }
  755. /*
  756. * Set a new alias region. Aliases map a portion of physical memory into
  757. * another portion. This is useful for memory windows, for example the PC
  758. * VGA region.
  759. */
  760. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  761. struct kvm_memory_alias *alias)
  762. {
  763. int r, n;
  764. struct kvm_mem_alias *p;
  765. r = -EINVAL;
  766. /* General sanity checks */
  767. if (alias->memory_size & (PAGE_SIZE - 1))
  768. goto out;
  769. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  770. goto out;
  771. if (alias->slot >= KVM_ALIAS_SLOTS)
  772. goto out;
  773. if (alias->guest_phys_addr + alias->memory_size
  774. < alias->guest_phys_addr)
  775. goto out;
  776. if (alias->target_phys_addr + alias->memory_size
  777. < alias->target_phys_addr)
  778. goto out;
  779. mutex_lock(&kvm->lock);
  780. p = &kvm->aliases[alias->slot];
  781. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  782. p->npages = alias->memory_size >> PAGE_SHIFT;
  783. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  784. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  785. if (kvm->aliases[n - 1].npages)
  786. break;
  787. kvm->naliases = n;
  788. kvm_mmu_zap_all(kvm);
  789. mutex_unlock(&kvm->lock);
  790. return 0;
  791. out:
  792. return r;
  793. }
  794. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  795. {
  796. int r;
  797. r = 0;
  798. switch (chip->chip_id) {
  799. case KVM_IRQCHIP_PIC_MASTER:
  800. memcpy(&chip->chip.pic,
  801. &pic_irqchip(kvm)->pics[0],
  802. sizeof(struct kvm_pic_state));
  803. break;
  804. case KVM_IRQCHIP_PIC_SLAVE:
  805. memcpy(&chip->chip.pic,
  806. &pic_irqchip(kvm)->pics[1],
  807. sizeof(struct kvm_pic_state));
  808. break;
  809. case KVM_IRQCHIP_IOAPIC:
  810. memcpy(&chip->chip.ioapic,
  811. ioapic_irqchip(kvm),
  812. sizeof(struct kvm_ioapic_state));
  813. break;
  814. default:
  815. r = -EINVAL;
  816. break;
  817. }
  818. return r;
  819. }
  820. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  821. {
  822. int r;
  823. r = 0;
  824. switch (chip->chip_id) {
  825. case KVM_IRQCHIP_PIC_MASTER:
  826. memcpy(&pic_irqchip(kvm)->pics[0],
  827. &chip->chip.pic,
  828. sizeof(struct kvm_pic_state));
  829. break;
  830. case KVM_IRQCHIP_PIC_SLAVE:
  831. memcpy(&pic_irqchip(kvm)->pics[1],
  832. &chip->chip.pic,
  833. sizeof(struct kvm_pic_state));
  834. break;
  835. case KVM_IRQCHIP_IOAPIC:
  836. memcpy(ioapic_irqchip(kvm),
  837. &chip->chip.ioapic,
  838. sizeof(struct kvm_ioapic_state));
  839. break;
  840. default:
  841. r = -EINVAL;
  842. break;
  843. }
  844. kvm_pic_update_irq(pic_irqchip(kvm));
  845. return r;
  846. }
  847. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  848. {
  849. int i;
  850. struct kvm_mem_alias *alias;
  851. for (i = 0; i < kvm->naliases; ++i) {
  852. alias = &kvm->aliases[i];
  853. if (gfn >= alias->base_gfn
  854. && gfn < alias->base_gfn + alias->npages)
  855. return alias->target_gfn + gfn - alias->base_gfn;
  856. }
  857. return gfn;
  858. }
  859. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  860. {
  861. int i;
  862. for (i = 0; i < kvm->nmemslots; ++i) {
  863. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  864. if (gfn >= memslot->base_gfn
  865. && gfn < memslot->base_gfn + memslot->npages)
  866. return memslot;
  867. }
  868. return NULL;
  869. }
  870. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  871. {
  872. gfn = unalias_gfn(kvm, gfn);
  873. return __gfn_to_memslot(kvm, gfn);
  874. }
  875. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  876. {
  877. struct kvm_memory_slot *slot;
  878. gfn = unalias_gfn(kvm, gfn);
  879. slot = __gfn_to_memslot(kvm, gfn);
  880. if (!slot)
  881. return NULL;
  882. return slot->phys_mem[gfn - slot->base_gfn];
  883. }
  884. EXPORT_SYMBOL_GPL(gfn_to_page);
  885. static int next_segment(unsigned long len, int offset)
  886. {
  887. if (len > PAGE_SIZE - offset)
  888. return PAGE_SIZE - offset;
  889. else
  890. return len;
  891. }
  892. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  893. int len)
  894. {
  895. void *page_virt;
  896. struct page *page;
  897. page = gfn_to_page(kvm, gfn);
  898. if (!page)
  899. return -EFAULT;
  900. page_virt = kmap_atomic(page, KM_USER0);
  901. memcpy(data, page_virt + offset, len);
  902. kunmap_atomic(page_virt, KM_USER0);
  903. return 0;
  904. }
  905. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  906. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  907. {
  908. gfn_t gfn = gpa >> PAGE_SHIFT;
  909. int seg;
  910. int offset = offset_in_page(gpa);
  911. int ret;
  912. while ((seg = next_segment(len, offset)) != 0) {
  913. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  914. if (ret < 0)
  915. return ret;
  916. offset = 0;
  917. len -= seg;
  918. data += seg;
  919. ++gfn;
  920. }
  921. return 0;
  922. }
  923. EXPORT_SYMBOL_GPL(kvm_read_guest);
  924. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  925. int offset, int len)
  926. {
  927. void *page_virt;
  928. struct page *page;
  929. page = gfn_to_page(kvm, gfn);
  930. if (!page)
  931. return -EFAULT;
  932. page_virt = kmap_atomic(page, KM_USER0);
  933. memcpy(page_virt + offset, data, len);
  934. kunmap_atomic(page_virt, KM_USER0);
  935. mark_page_dirty(kvm, gfn);
  936. return 0;
  937. }
  938. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  939. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  940. unsigned long len)
  941. {
  942. gfn_t gfn = gpa >> PAGE_SHIFT;
  943. int seg;
  944. int offset = offset_in_page(gpa);
  945. int ret;
  946. while ((seg = next_segment(len, offset)) != 0) {
  947. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  948. if (ret < 0)
  949. return ret;
  950. offset = 0;
  951. len -= seg;
  952. data += seg;
  953. ++gfn;
  954. }
  955. return 0;
  956. }
  957. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  958. {
  959. void *page_virt;
  960. struct page *page;
  961. page = gfn_to_page(kvm, gfn);
  962. if (!page)
  963. return -EFAULT;
  964. page_virt = kmap_atomic(page, KM_USER0);
  965. memset(page_virt + offset, 0, len);
  966. kunmap_atomic(page_virt, KM_USER0);
  967. return 0;
  968. }
  969. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  970. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  971. {
  972. gfn_t gfn = gpa >> PAGE_SHIFT;
  973. int seg;
  974. int offset = offset_in_page(gpa);
  975. int ret;
  976. while ((seg = next_segment(len, offset)) != 0) {
  977. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  978. if (ret < 0)
  979. return ret;
  980. offset = 0;
  981. len -= seg;
  982. ++gfn;
  983. }
  984. return 0;
  985. }
  986. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  987. /* WARNING: Does not work on aliased pages. */
  988. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  989. {
  990. struct kvm_memory_slot *memslot;
  991. memslot = __gfn_to_memslot(kvm, gfn);
  992. if (memslot && memslot->dirty_bitmap) {
  993. unsigned long rel_gfn = gfn - memslot->base_gfn;
  994. /* avoid RMW */
  995. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  996. set_bit(rel_gfn, memslot->dirty_bitmap);
  997. }
  998. }
  999. int emulator_read_std(unsigned long addr,
  1000. void *val,
  1001. unsigned int bytes,
  1002. struct kvm_vcpu *vcpu)
  1003. {
  1004. void *data = val;
  1005. while (bytes) {
  1006. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1007. unsigned offset = addr & (PAGE_SIZE-1);
  1008. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  1009. int ret;
  1010. if (gpa == UNMAPPED_GVA)
  1011. return X86EMUL_PROPAGATE_FAULT;
  1012. ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
  1013. if (ret < 0)
  1014. return X86EMUL_UNHANDLEABLE;
  1015. bytes -= tocopy;
  1016. data += tocopy;
  1017. addr += tocopy;
  1018. }
  1019. return X86EMUL_CONTINUE;
  1020. }
  1021. EXPORT_SYMBOL_GPL(emulator_read_std);
  1022. static int emulator_write_std(unsigned long addr,
  1023. const void *val,
  1024. unsigned int bytes,
  1025. struct kvm_vcpu *vcpu)
  1026. {
  1027. pr_unimpl(vcpu, "emulator_write_std: addr %lx n %d\n", addr, bytes);
  1028. return X86EMUL_UNHANDLEABLE;
  1029. }
  1030. /*
  1031. * Only apic need an MMIO device hook, so shortcut now..
  1032. */
  1033. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  1034. gpa_t addr)
  1035. {
  1036. struct kvm_io_device *dev;
  1037. if (vcpu->apic) {
  1038. dev = &vcpu->apic->dev;
  1039. if (dev->in_range(dev, addr))
  1040. return dev;
  1041. }
  1042. return NULL;
  1043. }
  1044. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  1045. gpa_t addr)
  1046. {
  1047. struct kvm_io_device *dev;
  1048. dev = vcpu_find_pervcpu_dev(vcpu, addr);
  1049. if (dev == NULL)
  1050. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  1051. return dev;
  1052. }
  1053. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  1054. gpa_t addr)
  1055. {
  1056. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  1057. }
  1058. static int emulator_read_emulated(unsigned long addr,
  1059. void *val,
  1060. unsigned int bytes,
  1061. struct kvm_vcpu *vcpu)
  1062. {
  1063. struct kvm_io_device *mmio_dev;
  1064. gpa_t gpa;
  1065. if (vcpu->mmio_read_completed) {
  1066. memcpy(val, vcpu->mmio_data, bytes);
  1067. vcpu->mmio_read_completed = 0;
  1068. return X86EMUL_CONTINUE;
  1069. } else if (emulator_read_std(addr, val, bytes, vcpu)
  1070. == X86EMUL_CONTINUE)
  1071. return X86EMUL_CONTINUE;
  1072. gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1073. if (gpa == UNMAPPED_GVA)
  1074. return X86EMUL_PROPAGATE_FAULT;
  1075. /*
  1076. * Is this MMIO handled locally?
  1077. */
  1078. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1079. if (mmio_dev) {
  1080. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  1081. return X86EMUL_CONTINUE;
  1082. }
  1083. vcpu->mmio_needed = 1;
  1084. vcpu->mmio_phys_addr = gpa;
  1085. vcpu->mmio_size = bytes;
  1086. vcpu->mmio_is_write = 0;
  1087. return X86EMUL_UNHANDLEABLE;
  1088. }
  1089. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  1090. const void *val, int bytes)
  1091. {
  1092. int ret;
  1093. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  1094. if (ret < 0)
  1095. return 0;
  1096. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  1097. return 1;
  1098. }
  1099. static int emulator_write_emulated_onepage(unsigned long addr,
  1100. const void *val,
  1101. unsigned int bytes,
  1102. struct kvm_vcpu *vcpu)
  1103. {
  1104. struct kvm_io_device *mmio_dev;
  1105. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1106. if (gpa == UNMAPPED_GVA) {
  1107. kvm_x86_ops->inject_page_fault(vcpu, addr, 2);
  1108. return X86EMUL_PROPAGATE_FAULT;
  1109. }
  1110. if (emulator_write_phys(vcpu, gpa, val, bytes))
  1111. return X86EMUL_CONTINUE;
  1112. /*
  1113. * Is this MMIO handled locally?
  1114. */
  1115. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1116. if (mmio_dev) {
  1117. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  1118. return X86EMUL_CONTINUE;
  1119. }
  1120. vcpu->mmio_needed = 1;
  1121. vcpu->mmio_phys_addr = gpa;
  1122. vcpu->mmio_size = bytes;
  1123. vcpu->mmio_is_write = 1;
  1124. memcpy(vcpu->mmio_data, val, bytes);
  1125. return X86EMUL_CONTINUE;
  1126. }
  1127. int emulator_write_emulated(unsigned long addr,
  1128. const void *val,
  1129. unsigned int bytes,
  1130. struct kvm_vcpu *vcpu)
  1131. {
  1132. /* Crossing a page boundary? */
  1133. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  1134. int rc, now;
  1135. now = -addr & ~PAGE_MASK;
  1136. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  1137. if (rc != X86EMUL_CONTINUE)
  1138. return rc;
  1139. addr += now;
  1140. val += now;
  1141. bytes -= now;
  1142. }
  1143. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  1144. }
  1145. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  1146. static int emulator_cmpxchg_emulated(unsigned long addr,
  1147. const void *old,
  1148. const void *new,
  1149. unsigned int bytes,
  1150. struct kvm_vcpu *vcpu)
  1151. {
  1152. static int reported;
  1153. if (!reported) {
  1154. reported = 1;
  1155. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  1156. }
  1157. return emulator_write_emulated(addr, new, bytes, vcpu);
  1158. }
  1159. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1160. {
  1161. return kvm_x86_ops->get_segment_base(vcpu, seg);
  1162. }
  1163. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  1164. {
  1165. return X86EMUL_CONTINUE;
  1166. }
  1167. int emulate_clts(struct kvm_vcpu *vcpu)
  1168. {
  1169. kvm_x86_ops->set_cr0(vcpu, vcpu->cr0 & ~X86_CR0_TS);
  1170. return X86EMUL_CONTINUE;
  1171. }
  1172. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  1173. {
  1174. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1175. switch (dr) {
  1176. case 0 ... 3:
  1177. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  1178. return X86EMUL_CONTINUE;
  1179. default:
  1180. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
  1181. return X86EMUL_UNHANDLEABLE;
  1182. }
  1183. }
  1184. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1185. {
  1186. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1187. int exception;
  1188. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1189. if (exception) {
  1190. /* FIXME: better handling */
  1191. return X86EMUL_UNHANDLEABLE;
  1192. }
  1193. return X86EMUL_CONTINUE;
  1194. }
  1195. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  1196. {
  1197. static int reported;
  1198. u8 opcodes[4];
  1199. unsigned long rip = vcpu->rip;
  1200. unsigned long rip_linear;
  1201. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  1202. if (reported)
  1203. return;
  1204. emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
  1205. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  1206. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1207. reported = 1;
  1208. }
  1209. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  1210. struct x86_emulate_ops emulate_ops = {
  1211. .read_std = emulator_read_std,
  1212. .write_std = emulator_write_std,
  1213. .read_emulated = emulator_read_emulated,
  1214. .write_emulated = emulator_write_emulated,
  1215. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1216. };
  1217. int emulate_instruction(struct kvm_vcpu *vcpu,
  1218. struct kvm_run *run,
  1219. unsigned long cr2,
  1220. u16 error_code,
  1221. int no_decode)
  1222. {
  1223. int r;
  1224. vcpu->mmio_fault_cr2 = cr2;
  1225. kvm_x86_ops->cache_regs(vcpu);
  1226. vcpu->mmio_is_write = 0;
  1227. vcpu->pio.string = 0;
  1228. if (!no_decode) {
  1229. int cs_db, cs_l;
  1230. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1231. vcpu->emulate_ctxt.vcpu = vcpu;
  1232. vcpu->emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  1233. vcpu->emulate_ctxt.cr2 = cr2;
  1234. vcpu->emulate_ctxt.mode =
  1235. (vcpu->emulate_ctxt.eflags & X86_EFLAGS_VM)
  1236. ? X86EMUL_MODE_REAL : cs_l
  1237. ? X86EMUL_MODE_PROT64 : cs_db
  1238. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1239. if (vcpu->emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1240. vcpu->emulate_ctxt.cs_base = 0;
  1241. vcpu->emulate_ctxt.ds_base = 0;
  1242. vcpu->emulate_ctxt.es_base = 0;
  1243. vcpu->emulate_ctxt.ss_base = 0;
  1244. } else {
  1245. vcpu->emulate_ctxt.cs_base =
  1246. get_segment_base(vcpu, VCPU_SREG_CS);
  1247. vcpu->emulate_ctxt.ds_base =
  1248. get_segment_base(vcpu, VCPU_SREG_DS);
  1249. vcpu->emulate_ctxt.es_base =
  1250. get_segment_base(vcpu, VCPU_SREG_ES);
  1251. vcpu->emulate_ctxt.ss_base =
  1252. get_segment_base(vcpu, VCPU_SREG_SS);
  1253. }
  1254. vcpu->emulate_ctxt.gs_base =
  1255. get_segment_base(vcpu, VCPU_SREG_GS);
  1256. vcpu->emulate_ctxt.fs_base =
  1257. get_segment_base(vcpu, VCPU_SREG_FS);
  1258. r = x86_decode_insn(&vcpu->emulate_ctxt, &emulate_ops);
  1259. if (r) {
  1260. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1261. return EMULATE_DONE;
  1262. return EMULATE_FAIL;
  1263. }
  1264. }
  1265. r = x86_emulate_insn(&vcpu->emulate_ctxt, &emulate_ops);
  1266. if (vcpu->pio.string)
  1267. return EMULATE_DO_MMIO;
  1268. if ((r || vcpu->mmio_is_write) && run) {
  1269. run->exit_reason = KVM_EXIT_MMIO;
  1270. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1271. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1272. run->mmio.len = vcpu->mmio_size;
  1273. run->mmio.is_write = vcpu->mmio_is_write;
  1274. }
  1275. if (r) {
  1276. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1277. return EMULATE_DONE;
  1278. if (!vcpu->mmio_needed) {
  1279. kvm_report_emulation_failure(vcpu, "mmio");
  1280. return EMULATE_FAIL;
  1281. }
  1282. return EMULATE_DO_MMIO;
  1283. }
  1284. kvm_x86_ops->decache_regs(vcpu);
  1285. kvm_x86_ops->set_rflags(vcpu, vcpu->emulate_ctxt.eflags);
  1286. if (vcpu->mmio_is_write) {
  1287. vcpu->mmio_needed = 0;
  1288. return EMULATE_DO_MMIO;
  1289. }
  1290. return EMULATE_DONE;
  1291. }
  1292. EXPORT_SYMBOL_GPL(emulate_instruction);
  1293. /*
  1294. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1295. */
  1296. static void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1297. {
  1298. DECLARE_WAITQUEUE(wait, current);
  1299. add_wait_queue(&vcpu->wq, &wait);
  1300. /*
  1301. * We will block until either an interrupt or a signal wakes us up
  1302. */
  1303. while (!kvm_cpu_has_interrupt(vcpu)
  1304. && !signal_pending(current)
  1305. && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
  1306. && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
  1307. set_current_state(TASK_INTERRUPTIBLE);
  1308. vcpu_put(vcpu);
  1309. schedule();
  1310. vcpu_load(vcpu);
  1311. }
  1312. __set_current_state(TASK_RUNNING);
  1313. remove_wait_queue(&vcpu->wq, &wait);
  1314. }
  1315. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  1316. {
  1317. ++vcpu->stat.halt_exits;
  1318. if (irqchip_in_kernel(vcpu->kvm)) {
  1319. vcpu->mp_state = VCPU_MP_STATE_HALTED;
  1320. kvm_vcpu_block(vcpu);
  1321. if (vcpu->mp_state != VCPU_MP_STATE_RUNNABLE)
  1322. return -EINTR;
  1323. return 1;
  1324. } else {
  1325. vcpu->run->exit_reason = KVM_EXIT_HLT;
  1326. return 0;
  1327. }
  1328. }
  1329. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  1330. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  1331. {
  1332. unsigned long nr, a0, a1, a2, a3, ret;
  1333. kvm_x86_ops->cache_regs(vcpu);
  1334. nr = vcpu->regs[VCPU_REGS_RAX];
  1335. a0 = vcpu->regs[VCPU_REGS_RBX];
  1336. a1 = vcpu->regs[VCPU_REGS_RCX];
  1337. a2 = vcpu->regs[VCPU_REGS_RDX];
  1338. a3 = vcpu->regs[VCPU_REGS_RSI];
  1339. if (!is_long_mode(vcpu)) {
  1340. nr &= 0xFFFFFFFF;
  1341. a0 &= 0xFFFFFFFF;
  1342. a1 &= 0xFFFFFFFF;
  1343. a2 &= 0xFFFFFFFF;
  1344. a3 &= 0xFFFFFFFF;
  1345. }
  1346. switch (nr) {
  1347. default:
  1348. ret = -KVM_ENOSYS;
  1349. break;
  1350. }
  1351. vcpu->regs[VCPU_REGS_RAX] = ret;
  1352. kvm_x86_ops->decache_regs(vcpu);
  1353. return 0;
  1354. }
  1355. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  1356. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  1357. {
  1358. char instruction[3];
  1359. int ret = 0;
  1360. mutex_lock(&vcpu->kvm->lock);
  1361. /*
  1362. * Blow out the MMU to ensure that no other VCPU has an active mapping
  1363. * to ensure that the updated hypercall appears atomically across all
  1364. * VCPUs.
  1365. */
  1366. kvm_mmu_zap_all(vcpu->kvm);
  1367. kvm_x86_ops->cache_regs(vcpu);
  1368. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  1369. if (emulator_write_emulated(vcpu->rip, instruction, 3, vcpu)
  1370. != X86EMUL_CONTINUE)
  1371. ret = -EFAULT;
  1372. mutex_unlock(&vcpu->kvm->lock);
  1373. return ret;
  1374. }
  1375. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1376. {
  1377. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1378. }
  1379. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1380. {
  1381. struct descriptor_table dt = { limit, base };
  1382. kvm_x86_ops->set_gdt(vcpu, &dt);
  1383. }
  1384. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1385. {
  1386. struct descriptor_table dt = { limit, base };
  1387. kvm_x86_ops->set_idt(vcpu, &dt);
  1388. }
  1389. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1390. unsigned long *rflags)
  1391. {
  1392. lmsw(vcpu, msw);
  1393. *rflags = kvm_x86_ops->get_rflags(vcpu);
  1394. }
  1395. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1396. {
  1397. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1398. switch (cr) {
  1399. case 0:
  1400. return vcpu->cr0;
  1401. case 2:
  1402. return vcpu->cr2;
  1403. case 3:
  1404. return vcpu->cr3;
  1405. case 4:
  1406. return vcpu->cr4;
  1407. default:
  1408. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1409. return 0;
  1410. }
  1411. }
  1412. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1413. unsigned long *rflags)
  1414. {
  1415. switch (cr) {
  1416. case 0:
  1417. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1418. *rflags = kvm_x86_ops->get_rflags(vcpu);
  1419. break;
  1420. case 2:
  1421. vcpu->cr2 = val;
  1422. break;
  1423. case 3:
  1424. set_cr3(vcpu, val);
  1425. break;
  1426. case 4:
  1427. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1428. break;
  1429. default:
  1430. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1431. }
  1432. }
  1433. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1434. {
  1435. u64 data;
  1436. switch (msr) {
  1437. case 0xc0010010: /* SYSCFG */
  1438. case 0xc0010015: /* HWCR */
  1439. case MSR_IA32_PLATFORM_ID:
  1440. case MSR_IA32_P5_MC_ADDR:
  1441. case MSR_IA32_P5_MC_TYPE:
  1442. case MSR_IA32_MC0_CTL:
  1443. case MSR_IA32_MCG_STATUS:
  1444. case MSR_IA32_MCG_CAP:
  1445. case MSR_IA32_MC0_MISC:
  1446. case MSR_IA32_MC0_MISC+4:
  1447. case MSR_IA32_MC0_MISC+8:
  1448. case MSR_IA32_MC0_MISC+12:
  1449. case MSR_IA32_MC0_MISC+16:
  1450. case MSR_IA32_UCODE_REV:
  1451. case MSR_IA32_PERF_STATUS:
  1452. case MSR_IA32_EBL_CR_POWERON:
  1453. /* MTRR registers */
  1454. case 0xfe:
  1455. case 0x200 ... 0x2ff:
  1456. data = 0;
  1457. break;
  1458. case 0xcd: /* fsb frequency */
  1459. data = 3;
  1460. break;
  1461. case MSR_IA32_APICBASE:
  1462. data = kvm_get_apic_base(vcpu);
  1463. break;
  1464. case MSR_IA32_MISC_ENABLE:
  1465. data = vcpu->ia32_misc_enable_msr;
  1466. break;
  1467. #ifdef CONFIG_X86_64
  1468. case MSR_EFER:
  1469. data = vcpu->shadow_efer;
  1470. break;
  1471. #endif
  1472. default:
  1473. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1474. return 1;
  1475. }
  1476. *pdata = data;
  1477. return 0;
  1478. }
  1479. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1480. /*
  1481. * Reads an msr value (of 'msr_index') into 'pdata'.
  1482. * Returns 0 on success, non-0 otherwise.
  1483. * Assumes vcpu_load() was already called.
  1484. */
  1485. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1486. {
  1487. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1488. }
  1489. #ifdef CONFIG_X86_64
  1490. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1491. {
  1492. if (efer & EFER_RESERVED_BITS) {
  1493. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1494. efer);
  1495. inject_gp(vcpu);
  1496. return;
  1497. }
  1498. if (is_paging(vcpu)
  1499. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1500. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1501. inject_gp(vcpu);
  1502. return;
  1503. }
  1504. kvm_x86_ops->set_efer(vcpu, efer);
  1505. efer &= ~EFER_LMA;
  1506. efer |= vcpu->shadow_efer & EFER_LMA;
  1507. vcpu->shadow_efer = efer;
  1508. }
  1509. #endif
  1510. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1511. {
  1512. switch (msr) {
  1513. #ifdef CONFIG_X86_64
  1514. case MSR_EFER:
  1515. set_efer(vcpu, data);
  1516. break;
  1517. #endif
  1518. case MSR_IA32_MC0_STATUS:
  1519. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1520. __FUNCTION__, data);
  1521. break;
  1522. case MSR_IA32_MCG_STATUS:
  1523. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  1524. __FUNCTION__, data);
  1525. break;
  1526. case MSR_IA32_UCODE_REV:
  1527. case MSR_IA32_UCODE_WRITE:
  1528. case 0x200 ... 0x2ff: /* MTRRs */
  1529. break;
  1530. case MSR_IA32_APICBASE:
  1531. kvm_set_apic_base(vcpu, data);
  1532. break;
  1533. case MSR_IA32_MISC_ENABLE:
  1534. vcpu->ia32_misc_enable_msr = data;
  1535. break;
  1536. default:
  1537. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
  1538. return 1;
  1539. }
  1540. return 0;
  1541. }
  1542. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1543. /*
  1544. * Writes msr value into into the appropriate "register".
  1545. * Returns 0 on success, non-0 otherwise.
  1546. * Assumes vcpu_load() was already called.
  1547. */
  1548. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1549. {
  1550. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  1551. }
  1552. void kvm_resched(struct kvm_vcpu *vcpu)
  1553. {
  1554. if (!need_resched())
  1555. return;
  1556. cond_resched();
  1557. }
  1558. EXPORT_SYMBOL_GPL(kvm_resched);
  1559. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  1560. {
  1561. int i;
  1562. u32 function;
  1563. struct kvm_cpuid_entry *e, *best;
  1564. kvm_x86_ops->cache_regs(vcpu);
  1565. function = vcpu->regs[VCPU_REGS_RAX];
  1566. vcpu->regs[VCPU_REGS_RAX] = 0;
  1567. vcpu->regs[VCPU_REGS_RBX] = 0;
  1568. vcpu->regs[VCPU_REGS_RCX] = 0;
  1569. vcpu->regs[VCPU_REGS_RDX] = 0;
  1570. best = NULL;
  1571. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  1572. e = &vcpu->cpuid_entries[i];
  1573. if (e->function == function) {
  1574. best = e;
  1575. break;
  1576. }
  1577. /*
  1578. * Both basic or both extended?
  1579. */
  1580. if (((e->function ^ function) & 0x80000000) == 0)
  1581. if (!best || e->function > best->function)
  1582. best = e;
  1583. }
  1584. if (best) {
  1585. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  1586. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  1587. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  1588. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  1589. }
  1590. kvm_x86_ops->decache_regs(vcpu);
  1591. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1592. }
  1593. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  1594. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1595. {
  1596. void *p = vcpu->pio_data;
  1597. void *q;
  1598. unsigned bytes;
  1599. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  1600. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1601. PAGE_KERNEL);
  1602. if (!q) {
  1603. free_pio_guest_pages(vcpu);
  1604. return -ENOMEM;
  1605. }
  1606. q += vcpu->pio.guest_page_offset;
  1607. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  1608. if (vcpu->pio.in)
  1609. memcpy(q, p, bytes);
  1610. else
  1611. memcpy(p, q, bytes);
  1612. q -= vcpu->pio.guest_page_offset;
  1613. vunmap(q);
  1614. free_pio_guest_pages(vcpu);
  1615. return 0;
  1616. }
  1617. static int complete_pio(struct kvm_vcpu *vcpu)
  1618. {
  1619. struct kvm_pio_request *io = &vcpu->pio;
  1620. long delta;
  1621. int r;
  1622. kvm_x86_ops->cache_regs(vcpu);
  1623. if (!io->string) {
  1624. if (io->in)
  1625. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  1626. io->size);
  1627. } else {
  1628. if (io->in) {
  1629. r = pio_copy_data(vcpu);
  1630. if (r) {
  1631. kvm_x86_ops->cache_regs(vcpu);
  1632. return r;
  1633. }
  1634. }
  1635. delta = 1;
  1636. if (io->rep) {
  1637. delta *= io->cur_count;
  1638. /*
  1639. * The size of the register should really depend on
  1640. * current address size.
  1641. */
  1642. vcpu->regs[VCPU_REGS_RCX] -= delta;
  1643. }
  1644. if (io->down)
  1645. delta = -delta;
  1646. delta *= io->size;
  1647. if (io->in)
  1648. vcpu->regs[VCPU_REGS_RDI] += delta;
  1649. else
  1650. vcpu->regs[VCPU_REGS_RSI] += delta;
  1651. }
  1652. kvm_x86_ops->decache_regs(vcpu);
  1653. io->count -= io->cur_count;
  1654. io->cur_count = 0;
  1655. return 0;
  1656. }
  1657. static void kernel_pio(struct kvm_io_device *pio_dev,
  1658. struct kvm_vcpu *vcpu,
  1659. void *pd)
  1660. {
  1661. /* TODO: String I/O for in kernel device */
  1662. mutex_lock(&vcpu->kvm->lock);
  1663. if (vcpu->pio.in)
  1664. kvm_iodevice_read(pio_dev, vcpu->pio.port,
  1665. vcpu->pio.size,
  1666. pd);
  1667. else
  1668. kvm_iodevice_write(pio_dev, vcpu->pio.port,
  1669. vcpu->pio.size,
  1670. pd);
  1671. mutex_unlock(&vcpu->kvm->lock);
  1672. }
  1673. static void pio_string_write(struct kvm_io_device *pio_dev,
  1674. struct kvm_vcpu *vcpu)
  1675. {
  1676. struct kvm_pio_request *io = &vcpu->pio;
  1677. void *pd = vcpu->pio_data;
  1678. int i;
  1679. mutex_lock(&vcpu->kvm->lock);
  1680. for (i = 0; i < io->cur_count; i++) {
  1681. kvm_iodevice_write(pio_dev, io->port,
  1682. io->size,
  1683. pd);
  1684. pd += io->size;
  1685. }
  1686. mutex_unlock(&vcpu->kvm->lock);
  1687. }
  1688. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1689. int size, unsigned port)
  1690. {
  1691. struct kvm_io_device *pio_dev;
  1692. vcpu->run->exit_reason = KVM_EXIT_IO;
  1693. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1694. vcpu->run->io.size = vcpu->pio.size = size;
  1695. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1696. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1;
  1697. vcpu->run->io.port = vcpu->pio.port = port;
  1698. vcpu->pio.in = in;
  1699. vcpu->pio.string = 0;
  1700. vcpu->pio.down = 0;
  1701. vcpu->pio.guest_page_offset = 0;
  1702. vcpu->pio.rep = 0;
  1703. kvm_x86_ops->cache_regs(vcpu);
  1704. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  1705. kvm_x86_ops->decache_regs(vcpu);
  1706. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1707. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1708. if (pio_dev) {
  1709. kernel_pio(pio_dev, vcpu, vcpu->pio_data);
  1710. complete_pio(vcpu);
  1711. return 1;
  1712. }
  1713. return 0;
  1714. }
  1715. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  1716. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1717. int size, unsigned long count, int down,
  1718. gva_t address, int rep, unsigned port)
  1719. {
  1720. unsigned now, in_page;
  1721. int i, ret = 0;
  1722. int nr_pages = 1;
  1723. struct page *page;
  1724. struct kvm_io_device *pio_dev;
  1725. vcpu->run->exit_reason = KVM_EXIT_IO;
  1726. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1727. vcpu->run->io.size = vcpu->pio.size = size;
  1728. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1729. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count;
  1730. vcpu->run->io.port = vcpu->pio.port = port;
  1731. vcpu->pio.in = in;
  1732. vcpu->pio.string = 1;
  1733. vcpu->pio.down = down;
  1734. vcpu->pio.guest_page_offset = offset_in_page(address);
  1735. vcpu->pio.rep = rep;
  1736. if (!count) {
  1737. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1738. return 1;
  1739. }
  1740. if (!down)
  1741. in_page = PAGE_SIZE - offset_in_page(address);
  1742. else
  1743. in_page = offset_in_page(address) + size;
  1744. now = min(count, (unsigned long)in_page / size);
  1745. if (!now) {
  1746. /*
  1747. * String I/O straddles page boundary. Pin two guest pages
  1748. * so that we satisfy atomicity constraints. Do just one
  1749. * transaction to avoid complexity.
  1750. */
  1751. nr_pages = 2;
  1752. now = 1;
  1753. }
  1754. if (down) {
  1755. /*
  1756. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1757. */
  1758. pr_unimpl(vcpu, "guest string pio down\n");
  1759. inject_gp(vcpu);
  1760. return 1;
  1761. }
  1762. vcpu->run->io.count = now;
  1763. vcpu->pio.cur_count = now;
  1764. if (vcpu->pio.cur_count == vcpu->pio.count)
  1765. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1766. for (i = 0; i < nr_pages; ++i) {
  1767. mutex_lock(&vcpu->kvm->lock);
  1768. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1769. if (page)
  1770. get_page(page);
  1771. vcpu->pio.guest_pages[i] = page;
  1772. mutex_unlock(&vcpu->kvm->lock);
  1773. if (!page) {
  1774. inject_gp(vcpu);
  1775. free_pio_guest_pages(vcpu);
  1776. return 1;
  1777. }
  1778. }
  1779. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1780. if (!vcpu->pio.in) {
  1781. /* string PIO write */
  1782. ret = pio_copy_data(vcpu);
  1783. if (ret >= 0 && pio_dev) {
  1784. pio_string_write(pio_dev, vcpu);
  1785. complete_pio(vcpu);
  1786. if (vcpu->pio.count == 0)
  1787. ret = 1;
  1788. }
  1789. } else if (pio_dev)
  1790. pr_unimpl(vcpu, "no string pio read support yet, "
  1791. "port %x size %d count %ld\n",
  1792. port, size, count);
  1793. return ret;
  1794. }
  1795. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  1796. /*
  1797. * Check if userspace requested an interrupt window, and that the
  1798. * interrupt window is open.
  1799. *
  1800. * No need to exit to userspace if we already have an interrupt queued.
  1801. */
  1802. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1803. struct kvm_run *kvm_run)
  1804. {
  1805. return (!vcpu->irq_summary &&
  1806. kvm_run->request_interrupt_window &&
  1807. vcpu->interrupt_window_open &&
  1808. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  1809. }
  1810. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1811. struct kvm_run *kvm_run)
  1812. {
  1813. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  1814. kvm_run->cr8 = get_cr8(vcpu);
  1815. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  1816. if (irqchip_in_kernel(vcpu->kvm))
  1817. kvm_run->ready_for_interrupt_injection = 1;
  1818. else
  1819. kvm_run->ready_for_interrupt_injection =
  1820. (vcpu->interrupt_window_open &&
  1821. vcpu->irq_summary == 0);
  1822. }
  1823. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1824. {
  1825. int r;
  1826. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
  1827. pr_debug("vcpu %d received sipi with vector # %x\n",
  1828. vcpu->vcpu_id, vcpu->sipi_vector);
  1829. kvm_lapic_reset(vcpu);
  1830. kvm_x86_ops->vcpu_reset(vcpu);
  1831. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  1832. }
  1833. preempted:
  1834. if (vcpu->guest_debug.enabled)
  1835. kvm_x86_ops->guest_debug_pre(vcpu);
  1836. again:
  1837. r = kvm_mmu_reload(vcpu);
  1838. if (unlikely(r))
  1839. goto out;
  1840. preempt_disable();
  1841. kvm_x86_ops->prepare_guest_switch(vcpu);
  1842. kvm_load_guest_fpu(vcpu);
  1843. local_irq_disable();
  1844. if (signal_pending(current)) {
  1845. local_irq_enable();
  1846. preempt_enable();
  1847. r = -EINTR;
  1848. kvm_run->exit_reason = KVM_EXIT_INTR;
  1849. ++vcpu->stat.signal_exits;
  1850. goto out;
  1851. }
  1852. if (irqchip_in_kernel(vcpu->kvm))
  1853. kvm_x86_ops->inject_pending_irq(vcpu);
  1854. else if (!vcpu->mmio_read_completed)
  1855. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  1856. vcpu->guest_mode = 1;
  1857. kvm_guest_enter();
  1858. if (vcpu->requests)
  1859. if (test_and_clear_bit(KVM_TLB_FLUSH, &vcpu->requests))
  1860. kvm_x86_ops->tlb_flush(vcpu);
  1861. kvm_x86_ops->run(vcpu, kvm_run);
  1862. vcpu->guest_mode = 0;
  1863. local_irq_enable();
  1864. ++vcpu->stat.exits;
  1865. /*
  1866. * We must have an instruction between local_irq_enable() and
  1867. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  1868. * the interrupt shadow. The stat.exits increment will do nicely.
  1869. * But we need to prevent reordering, hence this barrier():
  1870. */
  1871. barrier();
  1872. kvm_guest_exit();
  1873. preempt_enable();
  1874. /*
  1875. * Profile KVM exit RIPs:
  1876. */
  1877. if (unlikely(prof_on == KVM_PROFILING)) {
  1878. kvm_x86_ops->cache_regs(vcpu);
  1879. profile_hit(KVM_PROFILING, (void *)vcpu->rip);
  1880. }
  1881. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  1882. if (r > 0) {
  1883. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1884. r = -EINTR;
  1885. kvm_run->exit_reason = KVM_EXIT_INTR;
  1886. ++vcpu->stat.request_irq_exits;
  1887. goto out;
  1888. }
  1889. if (!need_resched()) {
  1890. ++vcpu->stat.light_exits;
  1891. goto again;
  1892. }
  1893. }
  1894. out:
  1895. if (r > 0) {
  1896. kvm_resched(vcpu);
  1897. goto preempted;
  1898. }
  1899. post_kvm_run_save(vcpu, kvm_run);
  1900. return r;
  1901. }
  1902. static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1903. {
  1904. int r;
  1905. sigset_t sigsaved;
  1906. vcpu_load(vcpu);
  1907. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
  1908. kvm_vcpu_block(vcpu);
  1909. vcpu_put(vcpu);
  1910. return -EAGAIN;
  1911. }
  1912. if (vcpu->sigset_active)
  1913. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  1914. /* re-sync apic's tpr */
  1915. if (!irqchip_in_kernel(vcpu->kvm))
  1916. set_cr8(vcpu, kvm_run->cr8);
  1917. if (vcpu->pio.cur_count) {
  1918. r = complete_pio(vcpu);
  1919. if (r)
  1920. goto out;
  1921. }
  1922. if (vcpu->mmio_needed) {
  1923. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1924. vcpu->mmio_read_completed = 1;
  1925. vcpu->mmio_needed = 0;
  1926. r = emulate_instruction(vcpu, kvm_run,
  1927. vcpu->mmio_fault_cr2, 0, 1);
  1928. if (r == EMULATE_DO_MMIO) {
  1929. /*
  1930. * Read-modify-write. Back to userspace.
  1931. */
  1932. r = 0;
  1933. goto out;
  1934. }
  1935. }
  1936. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1937. kvm_x86_ops->cache_regs(vcpu);
  1938. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1939. kvm_x86_ops->decache_regs(vcpu);
  1940. }
  1941. r = __vcpu_run(vcpu, kvm_run);
  1942. out:
  1943. if (vcpu->sigset_active)
  1944. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1945. vcpu_put(vcpu);
  1946. return r;
  1947. }
  1948. static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
  1949. struct kvm_regs *regs)
  1950. {
  1951. vcpu_load(vcpu);
  1952. kvm_x86_ops->cache_regs(vcpu);
  1953. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1954. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1955. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1956. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1957. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1958. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1959. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1960. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1961. #ifdef CONFIG_X86_64
  1962. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1963. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1964. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1965. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1966. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1967. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1968. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1969. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1970. #endif
  1971. regs->rip = vcpu->rip;
  1972. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  1973. /*
  1974. * Don't leak debug flags in case they were set for guest debugging
  1975. */
  1976. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1977. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1978. vcpu_put(vcpu);
  1979. return 0;
  1980. }
  1981. static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
  1982. struct kvm_regs *regs)
  1983. {
  1984. vcpu_load(vcpu);
  1985. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1986. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1987. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1988. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1989. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1990. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1991. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1992. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1993. #ifdef CONFIG_X86_64
  1994. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1995. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1996. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1997. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1998. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1999. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  2000. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  2001. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  2002. #endif
  2003. vcpu->rip = regs->rip;
  2004. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  2005. kvm_x86_ops->decache_regs(vcpu);
  2006. vcpu_put(vcpu);
  2007. return 0;
  2008. }
  2009. static void get_segment(struct kvm_vcpu *vcpu,
  2010. struct kvm_segment *var, int seg)
  2011. {
  2012. return kvm_x86_ops->get_segment(vcpu, var, seg);
  2013. }
  2014. static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  2015. struct kvm_sregs *sregs)
  2016. {
  2017. struct descriptor_table dt;
  2018. int pending_vec;
  2019. vcpu_load(vcpu);
  2020. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2021. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2022. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2023. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2024. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2025. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2026. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2027. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2028. kvm_x86_ops->get_idt(vcpu, &dt);
  2029. sregs->idt.limit = dt.limit;
  2030. sregs->idt.base = dt.base;
  2031. kvm_x86_ops->get_gdt(vcpu, &dt);
  2032. sregs->gdt.limit = dt.limit;
  2033. sregs->gdt.base = dt.base;
  2034. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2035. sregs->cr0 = vcpu->cr0;
  2036. sregs->cr2 = vcpu->cr2;
  2037. sregs->cr3 = vcpu->cr3;
  2038. sregs->cr4 = vcpu->cr4;
  2039. sregs->cr8 = get_cr8(vcpu);
  2040. sregs->efer = vcpu->shadow_efer;
  2041. sregs->apic_base = kvm_get_apic_base(vcpu);
  2042. if (irqchip_in_kernel(vcpu->kvm)) {
  2043. memset(sregs->interrupt_bitmap, 0,
  2044. sizeof sregs->interrupt_bitmap);
  2045. pending_vec = kvm_x86_ops->get_irq(vcpu);
  2046. if (pending_vec >= 0)
  2047. set_bit(pending_vec,
  2048. (unsigned long *)sregs->interrupt_bitmap);
  2049. } else
  2050. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  2051. sizeof sregs->interrupt_bitmap);
  2052. vcpu_put(vcpu);
  2053. return 0;
  2054. }
  2055. static void set_segment(struct kvm_vcpu *vcpu,
  2056. struct kvm_segment *var, int seg)
  2057. {
  2058. return kvm_x86_ops->set_segment(vcpu, var, seg);
  2059. }
  2060. static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  2061. struct kvm_sregs *sregs)
  2062. {
  2063. int mmu_reset_needed = 0;
  2064. int i, pending_vec, max_bits;
  2065. struct descriptor_table dt;
  2066. vcpu_load(vcpu);
  2067. dt.limit = sregs->idt.limit;
  2068. dt.base = sregs->idt.base;
  2069. kvm_x86_ops->set_idt(vcpu, &dt);
  2070. dt.limit = sregs->gdt.limit;
  2071. dt.base = sregs->gdt.base;
  2072. kvm_x86_ops->set_gdt(vcpu, &dt);
  2073. vcpu->cr2 = sregs->cr2;
  2074. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  2075. vcpu->cr3 = sregs->cr3;
  2076. set_cr8(vcpu, sregs->cr8);
  2077. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  2078. #ifdef CONFIG_X86_64
  2079. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  2080. #endif
  2081. kvm_set_apic_base(vcpu, sregs->apic_base);
  2082. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2083. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  2084. vcpu->cr0 = sregs->cr0;
  2085. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  2086. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  2087. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  2088. if (!is_long_mode(vcpu) && is_pae(vcpu))
  2089. load_pdptrs(vcpu, vcpu->cr3);
  2090. if (mmu_reset_needed)
  2091. kvm_mmu_reset_context(vcpu);
  2092. if (!irqchip_in_kernel(vcpu->kvm)) {
  2093. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  2094. sizeof vcpu->irq_pending);
  2095. vcpu->irq_summary = 0;
  2096. for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
  2097. if (vcpu->irq_pending[i])
  2098. __set_bit(i, &vcpu->irq_summary);
  2099. } else {
  2100. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  2101. pending_vec = find_first_bit(
  2102. (const unsigned long *)sregs->interrupt_bitmap,
  2103. max_bits);
  2104. /* Only pending external irq is handled here */
  2105. if (pending_vec < max_bits) {
  2106. kvm_x86_ops->set_irq(vcpu, pending_vec);
  2107. pr_debug("Set back pending irq %d\n",
  2108. pending_vec);
  2109. }
  2110. }
  2111. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2112. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2113. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2114. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2115. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2116. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2117. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2118. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2119. vcpu_put(vcpu);
  2120. return 0;
  2121. }
  2122. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2123. {
  2124. struct kvm_segment cs;
  2125. get_segment(vcpu, &cs, VCPU_SREG_CS);
  2126. *db = cs.db;
  2127. *l = cs.l;
  2128. }
  2129. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  2130. /*
  2131. * Adapt set_msr() to msr_io()'s calling convention
  2132. */
  2133. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  2134. {
  2135. return kvm_set_msr(vcpu, index, *data);
  2136. }
  2137. /*
  2138. * Read or write a bunch of msrs. All parameters are kernel addresses.
  2139. *
  2140. * @return number of msrs set successfully.
  2141. */
  2142. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  2143. struct kvm_msr_entry *entries,
  2144. int (*do_msr)(struct kvm_vcpu *vcpu,
  2145. unsigned index, u64 *data))
  2146. {
  2147. int i;
  2148. vcpu_load(vcpu);
  2149. for (i = 0; i < msrs->nmsrs; ++i)
  2150. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  2151. break;
  2152. vcpu_put(vcpu);
  2153. return i;
  2154. }
  2155. /*
  2156. * Read or write a bunch of msrs. Parameters are user addresses.
  2157. *
  2158. * @return number of msrs set successfully.
  2159. */
  2160. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  2161. int (*do_msr)(struct kvm_vcpu *vcpu,
  2162. unsigned index, u64 *data),
  2163. int writeback)
  2164. {
  2165. struct kvm_msrs msrs;
  2166. struct kvm_msr_entry *entries;
  2167. int r, n;
  2168. unsigned size;
  2169. r = -EFAULT;
  2170. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  2171. goto out;
  2172. r = -E2BIG;
  2173. if (msrs.nmsrs >= MAX_IO_MSRS)
  2174. goto out;
  2175. r = -ENOMEM;
  2176. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  2177. entries = vmalloc(size);
  2178. if (!entries)
  2179. goto out;
  2180. r = -EFAULT;
  2181. if (copy_from_user(entries, user_msrs->entries, size))
  2182. goto out_free;
  2183. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  2184. if (r < 0)
  2185. goto out_free;
  2186. r = -EFAULT;
  2187. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  2188. goto out_free;
  2189. r = n;
  2190. out_free:
  2191. vfree(entries);
  2192. out:
  2193. return r;
  2194. }
  2195. /*
  2196. * Translate a guest virtual address to a guest physical address.
  2197. */
  2198. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  2199. struct kvm_translation *tr)
  2200. {
  2201. unsigned long vaddr = tr->linear_address;
  2202. gpa_t gpa;
  2203. vcpu_load(vcpu);
  2204. mutex_lock(&vcpu->kvm->lock);
  2205. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  2206. tr->physical_address = gpa;
  2207. tr->valid = gpa != UNMAPPED_GVA;
  2208. tr->writeable = 1;
  2209. tr->usermode = 0;
  2210. mutex_unlock(&vcpu->kvm->lock);
  2211. vcpu_put(vcpu);
  2212. return 0;
  2213. }
  2214. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  2215. struct kvm_interrupt *irq)
  2216. {
  2217. if (irq->irq < 0 || irq->irq >= 256)
  2218. return -EINVAL;
  2219. if (irqchip_in_kernel(vcpu->kvm))
  2220. return -ENXIO;
  2221. vcpu_load(vcpu);
  2222. set_bit(irq->irq, vcpu->irq_pending);
  2223. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  2224. vcpu_put(vcpu);
  2225. return 0;
  2226. }
  2227. static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  2228. struct kvm_debug_guest *dbg)
  2229. {
  2230. int r;
  2231. vcpu_load(vcpu);
  2232. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  2233. vcpu_put(vcpu);
  2234. return r;
  2235. }
  2236. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  2237. unsigned long address,
  2238. int *type)
  2239. {
  2240. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  2241. unsigned long pgoff;
  2242. struct page *page;
  2243. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2244. if (pgoff == 0)
  2245. page = virt_to_page(vcpu->run);
  2246. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  2247. page = virt_to_page(vcpu->pio_data);
  2248. else
  2249. return NOPAGE_SIGBUS;
  2250. get_page(page);
  2251. if (type != NULL)
  2252. *type = VM_FAULT_MINOR;
  2253. return page;
  2254. }
  2255. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  2256. .nopage = kvm_vcpu_nopage,
  2257. };
  2258. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  2259. {
  2260. vma->vm_ops = &kvm_vcpu_vm_ops;
  2261. return 0;
  2262. }
  2263. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  2264. {
  2265. struct kvm_vcpu *vcpu = filp->private_data;
  2266. fput(vcpu->kvm->filp);
  2267. return 0;
  2268. }
  2269. static struct file_operations kvm_vcpu_fops = {
  2270. .release = kvm_vcpu_release,
  2271. .unlocked_ioctl = kvm_vcpu_ioctl,
  2272. .compat_ioctl = kvm_vcpu_ioctl,
  2273. .mmap = kvm_vcpu_mmap,
  2274. };
  2275. /*
  2276. * Allocates an inode for the vcpu.
  2277. */
  2278. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  2279. {
  2280. int fd, r;
  2281. struct inode *inode;
  2282. struct file *file;
  2283. r = anon_inode_getfd(&fd, &inode, &file,
  2284. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  2285. if (r)
  2286. return r;
  2287. atomic_inc(&vcpu->kvm->filp->f_count);
  2288. return fd;
  2289. }
  2290. /*
  2291. * Creates some virtual cpus. Good luck creating more than one.
  2292. */
  2293. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  2294. {
  2295. int r;
  2296. struct kvm_vcpu *vcpu;
  2297. if (!valid_vcpu(n))
  2298. return -EINVAL;
  2299. vcpu = kvm_x86_ops->vcpu_create(kvm, n);
  2300. if (IS_ERR(vcpu))
  2301. return PTR_ERR(vcpu);
  2302. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  2303. /* We do fxsave: this must be aligned. */
  2304. BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
  2305. vcpu_load(vcpu);
  2306. r = kvm_mmu_setup(vcpu);
  2307. vcpu_put(vcpu);
  2308. if (r < 0)
  2309. goto free_vcpu;
  2310. mutex_lock(&kvm->lock);
  2311. if (kvm->vcpus[n]) {
  2312. r = -EEXIST;
  2313. mutex_unlock(&kvm->lock);
  2314. goto mmu_unload;
  2315. }
  2316. kvm->vcpus[n] = vcpu;
  2317. mutex_unlock(&kvm->lock);
  2318. /* Now it's all set up, let userspace reach it */
  2319. r = create_vcpu_fd(vcpu);
  2320. if (r < 0)
  2321. goto unlink;
  2322. return r;
  2323. unlink:
  2324. mutex_lock(&kvm->lock);
  2325. kvm->vcpus[n] = NULL;
  2326. mutex_unlock(&kvm->lock);
  2327. mmu_unload:
  2328. vcpu_load(vcpu);
  2329. kvm_mmu_unload(vcpu);
  2330. vcpu_put(vcpu);
  2331. free_vcpu:
  2332. kvm_x86_ops->vcpu_free(vcpu);
  2333. return r;
  2334. }
  2335. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  2336. {
  2337. u64 efer;
  2338. int i;
  2339. struct kvm_cpuid_entry *e, *entry;
  2340. rdmsrl(MSR_EFER, efer);
  2341. entry = NULL;
  2342. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  2343. e = &vcpu->cpuid_entries[i];
  2344. if (e->function == 0x80000001) {
  2345. entry = e;
  2346. break;
  2347. }
  2348. }
  2349. if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
  2350. entry->edx &= ~(1 << 20);
  2351. printk(KERN_INFO "kvm: guest NX capability removed\n");
  2352. }
  2353. }
  2354. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  2355. struct kvm_cpuid *cpuid,
  2356. struct kvm_cpuid_entry __user *entries)
  2357. {
  2358. int r;
  2359. r = -E2BIG;
  2360. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  2361. goto out;
  2362. r = -EFAULT;
  2363. if (copy_from_user(&vcpu->cpuid_entries, entries,
  2364. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  2365. goto out;
  2366. vcpu->cpuid_nent = cpuid->nent;
  2367. cpuid_fix_nx_cap(vcpu);
  2368. return 0;
  2369. out:
  2370. return r;
  2371. }
  2372. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  2373. {
  2374. if (sigset) {
  2375. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  2376. vcpu->sigset_active = 1;
  2377. vcpu->sigset = *sigset;
  2378. } else
  2379. vcpu->sigset_active = 0;
  2380. return 0;
  2381. }
  2382. /*
  2383. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2384. * we have asm/x86/processor.h
  2385. */
  2386. struct fxsave {
  2387. u16 cwd;
  2388. u16 swd;
  2389. u16 twd;
  2390. u16 fop;
  2391. u64 rip;
  2392. u64 rdp;
  2393. u32 mxcsr;
  2394. u32 mxcsr_mask;
  2395. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2396. #ifdef CONFIG_X86_64
  2397. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2398. #else
  2399. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2400. #endif
  2401. };
  2402. static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2403. {
  2404. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2405. vcpu_load(vcpu);
  2406. memcpy(fpu->fpr, fxsave->st_space, 128);
  2407. fpu->fcw = fxsave->cwd;
  2408. fpu->fsw = fxsave->swd;
  2409. fpu->ftwx = fxsave->twd;
  2410. fpu->last_opcode = fxsave->fop;
  2411. fpu->last_ip = fxsave->rip;
  2412. fpu->last_dp = fxsave->rdp;
  2413. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2414. vcpu_put(vcpu);
  2415. return 0;
  2416. }
  2417. static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2418. {
  2419. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2420. vcpu_load(vcpu);
  2421. memcpy(fxsave->st_space, fpu->fpr, 128);
  2422. fxsave->cwd = fpu->fcw;
  2423. fxsave->swd = fpu->fsw;
  2424. fxsave->twd = fpu->ftwx;
  2425. fxsave->fop = fpu->last_opcode;
  2426. fxsave->rip = fpu->last_ip;
  2427. fxsave->rdp = fpu->last_dp;
  2428. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2429. vcpu_put(vcpu);
  2430. return 0;
  2431. }
  2432. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  2433. struct kvm_lapic_state *s)
  2434. {
  2435. vcpu_load(vcpu);
  2436. memcpy(s->regs, vcpu->apic->regs, sizeof *s);
  2437. vcpu_put(vcpu);
  2438. return 0;
  2439. }
  2440. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  2441. struct kvm_lapic_state *s)
  2442. {
  2443. vcpu_load(vcpu);
  2444. memcpy(vcpu->apic->regs, s->regs, sizeof *s);
  2445. kvm_apic_post_state_restore(vcpu);
  2446. vcpu_put(vcpu);
  2447. return 0;
  2448. }
  2449. static long kvm_vcpu_ioctl(struct file *filp,
  2450. unsigned int ioctl, unsigned long arg)
  2451. {
  2452. struct kvm_vcpu *vcpu = filp->private_data;
  2453. void __user *argp = (void __user *)arg;
  2454. int r = -EINVAL;
  2455. switch (ioctl) {
  2456. case KVM_RUN:
  2457. r = -EINVAL;
  2458. if (arg)
  2459. goto out;
  2460. r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
  2461. break;
  2462. case KVM_GET_REGS: {
  2463. struct kvm_regs kvm_regs;
  2464. memset(&kvm_regs, 0, sizeof kvm_regs);
  2465. r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  2466. if (r)
  2467. goto out;
  2468. r = -EFAULT;
  2469. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  2470. goto out;
  2471. r = 0;
  2472. break;
  2473. }
  2474. case KVM_SET_REGS: {
  2475. struct kvm_regs kvm_regs;
  2476. r = -EFAULT;
  2477. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  2478. goto out;
  2479. r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  2480. if (r)
  2481. goto out;
  2482. r = 0;
  2483. break;
  2484. }
  2485. case KVM_GET_SREGS: {
  2486. struct kvm_sregs kvm_sregs;
  2487. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  2488. r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  2489. if (r)
  2490. goto out;
  2491. r = -EFAULT;
  2492. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  2493. goto out;
  2494. r = 0;
  2495. break;
  2496. }
  2497. case KVM_SET_SREGS: {
  2498. struct kvm_sregs kvm_sregs;
  2499. r = -EFAULT;
  2500. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  2501. goto out;
  2502. r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  2503. if (r)
  2504. goto out;
  2505. r = 0;
  2506. break;
  2507. }
  2508. case KVM_TRANSLATE: {
  2509. struct kvm_translation tr;
  2510. r = -EFAULT;
  2511. if (copy_from_user(&tr, argp, sizeof tr))
  2512. goto out;
  2513. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  2514. if (r)
  2515. goto out;
  2516. r = -EFAULT;
  2517. if (copy_to_user(argp, &tr, sizeof tr))
  2518. goto out;
  2519. r = 0;
  2520. break;
  2521. }
  2522. case KVM_INTERRUPT: {
  2523. struct kvm_interrupt irq;
  2524. r = -EFAULT;
  2525. if (copy_from_user(&irq, argp, sizeof irq))
  2526. goto out;
  2527. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2528. if (r)
  2529. goto out;
  2530. r = 0;
  2531. break;
  2532. }
  2533. case KVM_DEBUG_GUEST: {
  2534. struct kvm_debug_guest dbg;
  2535. r = -EFAULT;
  2536. if (copy_from_user(&dbg, argp, sizeof dbg))
  2537. goto out;
  2538. r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
  2539. if (r)
  2540. goto out;
  2541. r = 0;
  2542. break;
  2543. }
  2544. case KVM_GET_MSRS:
  2545. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2546. break;
  2547. case KVM_SET_MSRS:
  2548. r = msr_io(vcpu, argp, do_set_msr, 0);
  2549. break;
  2550. case KVM_SET_CPUID: {
  2551. struct kvm_cpuid __user *cpuid_arg = argp;
  2552. struct kvm_cpuid cpuid;
  2553. r = -EFAULT;
  2554. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2555. goto out;
  2556. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2557. if (r)
  2558. goto out;
  2559. break;
  2560. }
  2561. case KVM_SET_SIGNAL_MASK: {
  2562. struct kvm_signal_mask __user *sigmask_arg = argp;
  2563. struct kvm_signal_mask kvm_sigmask;
  2564. sigset_t sigset, *p;
  2565. p = NULL;
  2566. if (argp) {
  2567. r = -EFAULT;
  2568. if (copy_from_user(&kvm_sigmask, argp,
  2569. sizeof kvm_sigmask))
  2570. goto out;
  2571. r = -EINVAL;
  2572. if (kvm_sigmask.len != sizeof sigset)
  2573. goto out;
  2574. r = -EFAULT;
  2575. if (copy_from_user(&sigset, sigmask_arg->sigset,
  2576. sizeof sigset))
  2577. goto out;
  2578. p = &sigset;
  2579. }
  2580. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  2581. break;
  2582. }
  2583. case KVM_GET_FPU: {
  2584. struct kvm_fpu fpu;
  2585. memset(&fpu, 0, sizeof fpu);
  2586. r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
  2587. if (r)
  2588. goto out;
  2589. r = -EFAULT;
  2590. if (copy_to_user(argp, &fpu, sizeof fpu))
  2591. goto out;
  2592. r = 0;
  2593. break;
  2594. }
  2595. case KVM_SET_FPU: {
  2596. struct kvm_fpu fpu;
  2597. r = -EFAULT;
  2598. if (copy_from_user(&fpu, argp, sizeof fpu))
  2599. goto out;
  2600. r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
  2601. if (r)
  2602. goto out;
  2603. r = 0;
  2604. break;
  2605. }
  2606. case KVM_GET_LAPIC: {
  2607. struct kvm_lapic_state lapic;
  2608. memset(&lapic, 0, sizeof lapic);
  2609. r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
  2610. if (r)
  2611. goto out;
  2612. r = -EFAULT;
  2613. if (copy_to_user(argp, &lapic, sizeof lapic))
  2614. goto out;
  2615. r = 0;
  2616. break;
  2617. }
  2618. case KVM_SET_LAPIC: {
  2619. struct kvm_lapic_state lapic;
  2620. r = -EFAULT;
  2621. if (copy_from_user(&lapic, argp, sizeof lapic))
  2622. goto out;
  2623. r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
  2624. if (r)
  2625. goto out;
  2626. r = 0;
  2627. break;
  2628. }
  2629. default:
  2630. ;
  2631. }
  2632. out:
  2633. return r;
  2634. }
  2635. static long kvm_vm_ioctl(struct file *filp,
  2636. unsigned int ioctl, unsigned long arg)
  2637. {
  2638. struct kvm *kvm = filp->private_data;
  2639. void __user *argp = (void __user *)arg;
  2640. int r = -EINVAL;
  2641. switch (ioctl) {
  2642. case KVM_CREATE_VCPU:
  2643. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  2644. if (r < 0)
  2645. goto out;
  2646. break;
  2647. case KVM_SET_MEMORY_REGION: {
  2648. struct kvm_memory_region kvm_mem;
  2649. struct kvm_userspace_memory_region kvm_userspace_mem;
  2650. r = -EFAULT;
  2651. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2652. goto out;
  2653. kvm_userspace_mem.slot = kvm_mem.slot;
  2654. kvm_userspace_mem.flags = kvm_mem.flags;
  2655. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  2656. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  2657. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2658. if (r)
  2659. goto out;
  2660. break;
  2661. }
  2662. case KVM_SET_USER_MEMORY_REGION: {
  2663. struct kvm_userspace_memory_region kvm_userspace_mem;
  2664. r = -EFAULT;
  2665. if (copy_from_user(&kvm_userspace_mem, argp,
  2666. sizeof kvm_userspace_mem))
  2667. goto out;
  2668. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  2669. if (r)
  2670. goto out;
  2671. break;
  2672. }
  2673. case KVM_SET_NR_MMU_PAGES:
  2674. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  2675. if (r)
  2676. goto out;
  2677. break;
  2678. case KVM_GET_NR_MMU_PAGES:
  2679. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2680. break;
  2681. case KVM_GET_DIRTY_LOG: {
  2682. struct kvm_dirty_log log;
  2683. r = -EFAULT;
  2684. if (copy_from_user(&log, argp, sizeof log))
  2685. goto out;
  2686. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  2687. if (r)
  2688. goto out;
  2689. break;
  2690. }
  2691. case KVM_SET_MEMORY_ALIAS: {
  2692. struct kvm_memory_alias alias;
  2693. r = -EFAULT;
  2694. if (copy_from_user(&alias, argp, sizeof alias))
  2695. goto out;
  2696. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  2697. if (r)
  2698. goto out;
  2699. break;
  2700. }
  2701. case KVM_CREATE_IRQCHIP:
  2702. r = -ENOMEM;
  2703. kvm->vpic = kvm_create_pic(kvm);
  2704. if (kvm->vpic) {
  2705. r = kvm_ioapic_init(kvm);
  2706. if (r) {
  2707. kfree(kvm->vpic);
  2708. kvm->vpic = NULL;
  2709. goto out;
  2710. }
  2711. } else
  2712. goto out;
  2713. break;
  2714. case KVM_IRQ_LINE: {
  2715. struct kvm_irq_level irq_event;
  2716. r = -EFAULT;
  2717. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2718. goto out;
  2719. if (irqchip_in_kernel(kvm)) {
  2720. mutex_lock(&kvm->lock);
  2721. if (irq_event.irq < 16)
  2722. kvm_pic_set_irq(pic_irqchip(kvm),
  2723. irq_event.irq,
  2724. irq_event.level);
  2725. kvm_ioapic_set_irq(kvm->vioapic,
  2726. irq_event.irq,
  2727. irq_event.level);
  2728. mutex_unlock(&kvm->lock);
  2729. r = 0;
  2730. }
  2731. break;
  2732. }
  2733. case KVM_GET_IRQCHIP: {
  2734. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2735. struct kvm_irqchip chip;
  2736. r = -EFAULT;
  2737. if (copy_from_user(&chip, argp, sizeof chip))
  2738. goto out;
  2739. r = -ENXIO;
  2740. if (!irqchip_in_kernel(kvm))
  2741. goto out;
  2742. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  2743. if (r)
  2744. goto out;
  2745. r = -EFAULT;
  2746. if (copy_to_user(argp, &chip, sizeof chip))
  2747. goto out;
  2748. r = 0;
  2749. break;
  2750. }
  2751. case KVM_SET_IRQCHIP: {
  2752. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2753. struct kvm_irqchip chip;
  2754. r = -EFAULT;
  2755. if (copy_from_user(&chip, argp, sizeof chip))
  2756. goto out;
  2757. r = -ENXIO;
  2758. if (!irqchip_in_kernel(kvm))
  2759. goto out;
  2760. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  2761. if (r)
  2762. goto out;
  2763. r = 0;
  2764. break;
  2765. }
  2766. default:
  2767. ;
  2768. }
  2769. out:
  2770. return r;
  2771. }
  2772. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  2773. unsigned long address,
  2774. int *type)
  2775. {
  2776. struct kvm *kvm = vma->vm_file->private_data;
  2777. unsigned long pgoff;
  2778. struct page *page;
  2779. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2780. page = gfn_to_page(kvm, pgoff);
  2781. if (!page)
  2782. return NOPAGE_SIGBUS;
  2783. get_page(page);
  2784. if (type != NULL)
  2785. *type = VM_FAULT_MINOR;
  2786. return page;
  2787. }
  2788. static struct vm_operations_struct kvm_vm_vm_ops = {
  2789. .nopage = kvm_vm_nopage,
  2790. };
  2791. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  2792. {
  2793. vma->vm_ops = &kvm_vm_vm_ops;
  2794. return 0;
  2795. }
  2796. static struct file_operations kvm_vm_fops = {
  2797. .release = kvm_vm_release,
  2798. .unlocked_ioctl = kvm_vm_ioctl,
  2799. .compat_ioctl = kvm_vm_ioctl,
  2800. .mmap = kvm_vm_mmap,
  2801. };
  2802. static int kvm_dev_ioctl_create_vm(void)
  2803. {
  2804. int fd, r;
  2805. struct inode *inode;
  2806. struct file *file;
  2807. struct kvm *kvm;
  2808. kvm = kvm_create_vm();
  2809. if (IS_ERR(kvm))
  2810. return PTR_ERR(kvm);
  2811. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  2812. if (r) {
  2813. kvm_destroy_vm(kvm);
  2814. return r;
  2815. }
  2816. kvm->filp = file;
  2817. return fd;
  2818. }
  2819. static long kvm_dev_ioctl(struct file *filp,
  2820. unsigned int ioctl, unsigned long arg)
  2821. {
  2822. void __user *argp = (void __user *)arg;
  2823. long r = -EINVAL;
  2824. switch (ioctl) {
  2825. case KVM_GET_API_VERSION:
  2826. r = -EINVAL;
  2827. if (arg)
  2828. goto out;
  2829. r = KVM_API_VERSION;
  2830. break;
  2831. case KVM_CREATE_VM:
  2832. r = -EINVAL;
  2833. if (arg)
  2834. goto out;
  2835. r = kvm_dev_ioctl_create_vm();
  2836. break;
  2837. case KVM_CHECK_EXTENSION: {
  2838. int ext = (long)argp;
  2839. switch (ext) {
  2840. case KVM_CAP_IRQCHIP:
  2841. case KVM_CAP_HLT:
  2842. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  2843. case KVM_CAP_USER_MEMORY:
  2844. r = 1;
  2845. break;
  2846. default:
  2847. r = 0;
  2848. break;
  2849. }
  2850. break;
  2851. }
  2852. case KVM_GET_VCPU_MMAP_SIZE:
  2853. r = -EINVAL;
  2854. if (arg)
  2855. goto out;
  2856. r = 2 * PAGE_SIZE;
  2857. break;
  2858. default:
  2859. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  2860. }
  2861. out:
  2862. return r;
  2863. }
  2864. static struct file_operations kvm_chardev_ops = {
  2865. .unlocked_ioctl = kvm_dev_ioctl,
  2866. .compat_ioctl = kvm_dev_ioctl,
  2867. };
  2868. static struct miscdevice kvm_dev = {
  2869. KVM_MINOR,
  2870. "kvm",
  2871. &kvm_chardev_ops,
  2872. };
  2873. /*
  2874. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  2875. * cached on it.
  2876. */
  2877. static void decache_vcpus_on_cpu(int cpu)
  2878. {
  2879. struct kvm *vm;
  2880. struct kvm_vcpu *vcpu;
  2881. int i;
  2882. spin_lock(&kvm_lock);
  2883. list_for_each_entry(vm, &vm_list, vm_list)
  2884. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2885. vcpu = vm->vcpus[i];
  2886. if (!vcpu)
  2887. continue;
  2888. /*
  2889. * If the vcpu is locked, then it is running on some
  2890. * other cpu and therefore it is not cached on the
  2891. * cpu in question.
  2892. *
  2893. * If it's not locked, check the last cpu it executed
  2894. * on.
  2895. */
  2896. if (mutex_trylock(&vcpu->mutex)) {
  2897. if (vcpu->cpu == cpu) {
  2898. kvm_x86_ops->vcpu_decache(vcpu);
  2899. vcpu->cpu = -1;
  2900. }
  2901. mutex_unlock(&vcpu->mutex);
  2902. }
  2903. }
  2904. spin_unlock(&kvm_lock);
  2905. }
  2906. static void hardware_enable(void *junk)
  2907. {
  2908. int cpu = raw_smp_processor_id();
  2909. if (cpu_isset(cpu, cpus_hardware_enabled))
  2910. return;
  2911. cpu_set(cpu, cpus_hardware_enabled);
  2912. kvm_x86_ops->hardware_enable(NULL);
  2913. }
  2914. static void hardware_disable(void *junk)
  2915. {
  2916. int cpu = raw_smp_processor_id();
  2917. if (!cpu_isset(cpu, cpus_hardware_enabled))
  2918. return;
  2919. cpu_clear(cpu, cpus_hardware_enabled);
  2920. decache_vcpus_on_cpu(cpu);
  2921. kvm_x86_ops->hardware_disable(NULL);
  2922. }
  2923. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2924. void *v)
  2925. {
  2926. int cpu = (long)v;
  2927. switch (val) {
  2928. case CPU_DYING:
  2929. case CPU_DYING_FROZEN:
  2930. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2931. cpu);
  2932. hardware_disable(NULL);
  2933. break;
  2934. case CPU_UP_CANCELED:
  2935. case CPU_UP_CANCELED_FROZEN:
  2936. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2937. cpu);
  2938. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  2939. break;
  2940. case CPU_ONLINE:
  2941. case CPU_ONLINE_FROZEN:
  2942. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2943. cpu);
  2944. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  2945. break;
  2946. }
  2947. return NOTIFY_OK;
  2948. }
  2949. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2950. void *v)
  2951. {
  2952. if (val == SYS_RESTART) {
  2953. /*
  2954. * Some (well, at least mine) BIOSes hang on reboot if
  2955. * in vmx root mode.
  2956. */
  2957. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2958. on_each_cpu(hardware_disable, NULL, 0, 1);
  2959. }
  2960. return NOTIFY_OK;
  2961. }
  2962. static struct notifier_block kvm_reboot_notifier = {
  2963. .notifier_call = kvm_reboot,
  2964. .priority = 0,
  2965. };
  2966. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2967. {
  2968. memset(bus, 0, sizeof(*bus));
  2969. }
  2970. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2971. {
  2972. int i;
  2973. for (i = 0; i < bus->dev_count; i++) {
  2974. struct kvm_io_device *pos = bus->devs[i];
  2975. kvm_iodevice_destructor(pos);
  2976. }
  2977. }
  2978. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  2979. {
  2980. int i;
  2981. for (i = 0; i < bus->dev_count; i++) {
  2982. struct kvm_io_device *pos = bus->devs[i];
  2983. if (pos->in_range(pos, addr))
  2984. return pos;
  2985. }
  2986. return NULL;
  2987. }
  2988. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  2989. {
  2990. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  2991. bus->devs[bus->dev_count++] = dev;
  2992. }
  2993. static struct notifier_block kvm_cpu_notifier = {
  2994. .notifier_call = kvm_cpu_hotplug,
  2995. .priority = 20, /* must be > scheduler priority */
  2996. };
  2997. static u64 stat_get(void *_offset)
  2998. {
  2999. unsigned offset = (long)_offset;
  3000. u64 total = 0;
  3001. struct kvm *kvm;
  3002. struct kvm_vcpu *vcpu;
  3003. int i;
  3004. spin_lock(&kvm_lock);
  3005. list_for_each_entry(kvm, &vm_list, vm_list)
  3006. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  3007. vcpu = kvm->vcpus[i];
  3008. if (vcpu)
  3009. total += *(u32 *)((void *)vcpu + offset);
  3010. }
  3011. spin_unlock(&kvm_lock);
  3012. return total;
  3013. }
  3014. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
  3015. static __init void kvm_init_debug(void)
  3016. {
  3017. struct kvm_stats_debugfs_item *p;
  3018. debugfs_dir = debugfs_create_dir("kvm", NULL);
  3019. for (p = debugfs_entries; p->name; ++p)
  3020. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  3021. (void *)(long)p->offset,
  3022. &stat_fops);
  3023. }
  3024. static void kvm_exit_debug(void)
  3025. {
  3026. struct kvm_stats_debugfs_item *p;
  3027. for (p = debugfs_entries; p->name; ++p)
  3028. debugfs_remove(p->dentry);
  3029. debugfs_remove(debugfs_dir);
  3030. }
  3031. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  3032. {
  3033. hardware_disable(NULL);
  3034. return 0;
  3035. }
  3036. static int kvm_resume(struct sys_device *dev)
  3037. {
  3038. hardware_enable(NULL);
  3039. return 0;
  3040. }
  3041. static struct sysdev_class kvm_sysdev_class = {
  3042. .name = "kvm",
  3043. .suspend = kvm_suspend,
  3044. .resume = kvm_resume,
  3045. };
  3046. static struct sys_device kvm_sysdev = {
  3047. .id = 0,
  3048. .cls = &kvm_sysdev_class,
  3049. };
  3050. hpa_t bad_page_address;
  3051. static inline
  3052. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  3053. {
  3054. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  3055. }
  3056. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  3057. {
  3058. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  3059. kvm_x86_ops->vcpu_load(vcpu, cpu);
  3060. }
  3061. static void kvm_sched_out(struct preempt_notifier *pn,
  3062. struct task_struct *next)
  3063. {
  3064. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  3065. kvm_x86_ops->vcpu_put(vcpu);
  3066. }
  3067. int kvm_init_x86(struct kvm_x86_ops *ops, unsigned int vcpu_size,
  3068. struct module *module)
  3069. {
  3070. int r;
  3071. int cpu;
  3072. if (kvm_x86_ops) {
  3073. printk(KERN_ERR "kvm: already loaded the other module\n");
  3074. return -EEXIST;
  3075. }
  3076. if (!ops->cpu_has_kvm_support()) {
  3077. printk(KERN_ERR "kvm: no hardware support\n");
  3078. return -EOPNOTSUPP;
  3079. }
  3080. if (ops->disabled_by_bios()) {
  3081. printk(KERN_ERR "kvm: disabled by bios\n");
  3082. return -EOPNOTSUPP;
  3083. }
  3084. kvm_x86_ops = ops;
  3085. r = kvm_x86_ops->hardware_setup();
  3086. if (r < 0)
  3087. goto out;
  3088. for_each_online_cpu(cpu) {
  3089. smp_call_function_single(cpu,
  3090. kvm_x86_ops->check_processor_compatibility,
  3091. &r, 0, 1);
  3092. if (r < 0)
  3093. goto out_free_0;
  3094. }
  3095. on_each_cpu(hardware_enable, NULL, 0, 1);
  3096. r = register_cpu_notifier(&kvm_cpu_notifier);
  3097. if (r)
  3098. goto out_free_1;
  3099. register_reboot_notifier(&kvm_reboot_notifier);
  3100. r = sysdev_class_register(&kvm_sysdev_class);
  3101. if (r)
  3102. goto out_free_2;
  3103. r = sysdev_register(&kvm_sysdev);
  3104. if (r)
  3105. goto out_free_3;
  3106. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  3107. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  3108. __alignof__(struct kvm_vcpu), 0, 0);
  3109. if (!kvm_vcpu_cache) {
  3110. r = -ENOMEM;
  3111. goto out_free_4;
  3112. }
  3113. kvm_chardev_ops.owner = module;
  3114. r = misc_register(&kvm_dev);
  3115. if (r) {
  3116. printk(KERN_ERR "kvm: misc device register failed\n");
  3117. goto out_free;
  3118. }
  3119. kvm_preempt_ops.sched_in = kvm_sched_in;
  3120. kvm_preempt_ops.sched_out = kvm_sched_out;
  3121. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  3122. return 0;
  3123. out_free:
  3124. kmem_cache_destroy(kvm_vcpu_cache);
  3125. out_free_4:
  3126. sysdev_unregister(&kvm_sysdev);
  3127. out_free_3:
  3128. sysdev_class_unregister(&kvm_sysdev_class);
  3129. out_free_2:
  3130. unregister_reboot_notifier(&kvm_reboot_notifier);
  3131. unregister_cpu_notifier(&kvm_cpu_notifier);
  3132. out_free_1:
  3133. on_each_cpu(hardware_disable, NULL, 0, 1);
  3134. out_free_0:
  3135. kvm_x86_ops->hardware_unsetup();
  3136. out:
  3137. kvm_x86_ops = NULL;
  3138. return r;
  3139. }
  3140. EXPORT_SYMBOL_GPL(kvm_init_x86);
  3141. void kvm_exit_x86(void)
  3142. {
  3143. misc_deregister(&kvm_dev);
  3144. kmem_cache_destroy(kvm_vcpu_cache);
  3145. sysdev_unregister(&kvm_sysdev);
  3146. sysdev_class_unregister(&kvm_sysdev_class);
  3147. unregister_reboot_notifier(&kvm_reboot_notifier);
  3148. unregister_cpu_notifier(&kvm_cpu_notifier);
  3149. on_each_cpu(hardware_disable, NULL, 0, 1);
  3150. kvm_x86_ops->hardware_unsetup();
  3151. kvm_x86_ops = NULL;
  3152. }
  3153. EXPORT_SYMBOL_GPL(kvm_exit_x86);
  3154. static __init int kvm_init(void)
  3155. {
  3156. static struct page *bad_page;
  3157. int r;
  3158. r = kvm_mmu_module_init();
  3159. if (r)
  3160. goto out4;
  3161. kvm_init_debug();
  3162. kvm_arch_init();
  3163. bad_page = alloc_page(GFP_KERNEL);
  3164. if (bad_page == NULL) {
  3165. r = -ENOMEM;
  3166. goto out;
  3167. }
  3168. bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
  3169. memset(__va(bad_page_address), 0, PAGE_SIZE);
  3170. return 0;
  3171. out:
  3172. kvm_exit_debug();
  3173. kvm_mmu_module_exit();
  3174. out4:
  3175. return r;
  3176. }
  3177. static __exit void kvm_exit(void)
  3178. {
  3179. kvm_exit_debug();
  3180. __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
  3181. kvm_mmu_module_exit();
  3182. }
  3183. module_init(kvm_init)
  3184. module_exit(kvm_exit)