direct.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980
  1. /*
  2. * linux/fs/nfs/direct.c
  3. *
  4. * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
  5. *
  6. * High-performance uncached I/O for the Linux NFS client
  7. *
  8. * There are important applications whose performance or correctness
  9. * depends on uncached access to file data. Database clusters
  10. * (multiple copies of the same instance running on separate hosts)
  11. * implement their own cache coherency protocol that subsumes file
  12. * system cache protocols. Applications that process datasets
  13. * considerably larger than the client's memory do not always benefit
  14. * from a local cache. A streaming video server, for instance, has no
  15. * need to cache the contents of a file.
  16. *
  17. * When an application requests uncached I/O, all read and write requests
  18. * are made directly to the server; data stored or fetched via these
  19. * requests is not cached in the Linux page cache. The client does not
  20. * correct unaligned requests from applications. All requested bytes are
  21. * held on permanent storage before a direct write system call returns to
  22. * an application.
  23. *
  24. * Solaris implements an uncached I/O facility called directio() that
  25. * is used for backups and sequential I/O to very large files. Solaris
  26. * also supports uncaching whole NFS partitions with "-o forcedirectio,"
  27. * an undocumented mount option.
  28. *
  29. * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
  30. * help from Andrew Morton.
  31. *
  32. * 18 Dec 2001 Initial implementation for 2.4 --cel
  33. * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
  34. * 08 Jun 2003 Port to 2.5 APIs --cel
  35. * 31 Mar 2004 Handle direct I/O without VFS support --cel
  36. * 15 Sep 2004 Parallel async reads --cel
  37. * 04 May 2005 support O_DIRECT with aio --cel
  38. *
  39. */
  40. #include <linux/errno.h>
  41. #include <linux/sched.h>
  42. #include <linux/kernel.h>
  43. #include <linux/file.h>
  44. #include <linux/pagemap.h>
  45. #include <linux/kref.h>
  46. #include <linux/slab.h>
  47. #include <linux/task_io_accounting_ops.h>
  48. #include <linux/nfs_fs.h>
  49. #include <linux/nfs_page.h>
  50. #include <linux/sunrpc/clnt.h>
  51. #include <asm/uaccess.h>
  52. #include <linux/atomic.h>
  53. #include "internal.h"
  54. #include "iostat.h"
  55. #include "pnfs.h"
  56. #define NFSDBG_FACILITY NFSDBG_VFS
  57. static struct kmem_cache *nfs_direct_cachep;
  58. /*
  59. * This represents a set of asynchronous requests that we're waiting on
  60. */
  61. struct nfs_direct_req {
  62. struct kref kref; /* release manager */
  63. /* I/O parameters */
  64. struct nfs_open_context *ctx; /* file open context info */
  65. struct nfs_lock_context *l_ctx; /* Lock context info */
  66. struct kiocb * iocb; /* controlling i/o request */
  67. struct inode * inode; /* target file of i/o */
  68. /* completion state */
  69. atomic_t io_count; /* i/os we're waiting for */
  70. spinlock_t lock; /* protect completion state */
  71. ssize_t count, /* bytes actually processed */
  72. error; /* any reported error */
  73. struct completion completion; /* wait for i/o completion */
  74. /* commit state */
  75. struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */
  76. struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */
  77. struct work_struct work;
  78. int flags;
  79. #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
  80. #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
  81. struct nfs_writeverf verf; /* unstable write verifier */
  82. };
  83. static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
  84. static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
  85. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
  86. static void nfs_direct_write_schedule_work(struct work_struct *work);
  87. static inline void get_dreq(struct nfs_direct_req *dreq)
  88. {
  89. atomic_inc(&dreq->io_count);
  90. }
  91. static inline int put_dreq(struct nfs_direct_req *dreq)
  92. {
  93. return atomic_dec_and_test(&dreq->io_count);
  94. }
  95. /**
  96. * nfs_direct_IO - NFS address space operation for direct I/O
  97. * @rw: direction (read or write)
  98. * @iocb: target I/O control block
  99. * @iov: array of vectors that define I/O buffer
  100. * @pos: offset in file to begin the operation
  101. * @nr_segs: size of iovec array
  102. *
  103. * The presence of this routine in the address space ops vector means
  104. * the NFS client supports direct I/O. However, we shunt off direct
  105. * read and write requests before the VFS gets them, so this method
  106. * should never be called.
  107. */
  108. ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
  109. {
  110. dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
  111. iocb->ki_filp->f_path.dentry->d_name.name,
  112. (long long) pos, nr_segs);
  113. return -EINVAL;
  114. }
  115. static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
  116. {
  117. unsigned int i;
  118. for (i = 0; i < npages; i++)
  119. page_cache_release(pages[i]);
  120. }
  121. void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
  122. struct nfs_direct_req *dreq)
  123. {
  124. cinfo->lock = &dreq->lock;
  125. cinfo->mds = &dreq->mds_cinfo;
  126. cinfo->ds = &dreq->ds_cinfo;
  127. cinfo->dreq = dreq;
  128. cinfo->completion_ops = &nfs_direct_commit_completion_ops;
  129. }
  130. static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
  131. {
  132. struct nfs_direct_req *dreq;
  133. dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
  134. if (!dreq)
  135. return NULL;
  136. kref_init(&dreq->kref);
  137. kref_get(&dreq->kref);
  138. init_completion(&dreq->completion);
  139. INIT_LIST_HEAD(&dreq->mds_cinfo.list);
  140. INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
  141. spin_lock_init(&dreq->lock);
  142. return dreq;
  143. }
  144. static void nfs_direct_req_free(struct kref *kref)
  145. {
  146. struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
  147. if (dreq->l_ctx != NULL)
  148. nfs_put_lock_context(dreq->l_ctx);
  149. if (dreq->ctx != NULL)
  150. put_nfs_open_context(dreq->ctx);
  151. kmem_cache_free(nfs_direct_cachep, dreq);
  152. }
  153. static void nfs_direct_req_release(struct nfs_direct_req *dreq)
  154. {
  155. kref_put(&dreq->kref, nfs_direct_req_free);
  156. }
  157. /*
  158. * Collects and returns the final error value/byte-count.
  159. */
  160. static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
  161. {
  162. ssize_t result = -EIOCBQUEUED;
  163. /* Async requests don't wait here */
  164. if (dreq->iocb)
  165. goto out;
  166. result = wait_for_completion_killable(&dreq->completion);
  167. if (!result)
  168. result = dreq->error;
  169. if (!result)
  170. result = dreq->count;
  171. out:
  172. return (ssize_t) result;
  173. }
  174. /*
  175. * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
  176. * the iocb is still valid here if this is a synchronous request.
  177. */
  178. static void nfs_direct_complete(struct nfs_direct_req *dreq)
  179. {
  180. if (dreq->iocb) {
  181. long res = (long) dreq->error;
  182. if (!res)
  183. res = (long) dreq->count;
  184. aio_complete(dreq->iocb, res, 0);
  185. }
  186. complete_all(&dreq->completion);
  187. nfs_direct_req_release(dreq);
  188. }
  189. static void nfs_direct_readpage_release(struct nfs_page *req)
  190. {
  191. dprintk("NFS: direct read done (%s/%lld %d@%lld)\n",
  192. req->wb_context->dentry->d_inode->i_sb->s_id,
  193. (long long)NFS_FILEID(req->wb_context->dentry->d_inode),
  194. req->wb_bytes,
  195. (long long)req_offset(req));
  196. nfs_release_request(req);
  197. }
  198. static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
  199. {
  200. unsigned long bytes = 0;
  201. struct nfs_direct_req *dreq = hdr->dreq;
  202. if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
  203. goto out_put;
  204. spin_lock(&dreq->lock);
  205. if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
  206. dreq->error = hdr->error;
  207. else
  208. dreq->count += hdr->good_bytes;
  209. spin_unlock(&dreq->lock);
  210. while (!list_empty(&hdr->pages)) {
  211. struct nfs_page *req = nfs_list_entry(hdr->pages.next);
  212. struct page *page = req->wb_page;
  213. if (test_bit(NFS_IOHDR_EOF, &hdr->flags)) {
  214. if (bytes > hdr->good_bytes)
  215. zero_user(page, 0, PAGE_SIZE);
  216. else if (hdr->good_bytes - bytes < PAGE_SIZE)
  217. zero_user_segment(page,
  218. hdr->good_bytes & ~PAGE_MASK,
  219. PAGE_SIZE);
  220. }
  221. if (!PageCompound(page)) {
  222. if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
  223. if (bytes < hdr->good_bytes)
  224. set_page_dirty(page);
  225. } else
  226. set_page_dirty(page);
  227. }
  228. bytes += req->wb_bytes;
  229. nfs_list_remove_request(req);
  230. nfs_direct_readpage_release(req);
  231. }
  232. out_put:
  233. if (put_dreq(dreq))
  234. nfs_direct_complete(dreq);
  235. hdr->release(hdr);
  236. }
  237. static void nfs_read_sync_pgio_error(struct list_head *head)
  238. {
  239. struct nfs_page *req;
  240. while (!list_empty(head)) {
  241. req = nfs_list_entry(head->next);
  242. nfs_list_remove_request(req);
  243. nfs_release_request(req);
  244. }
  245. }
  246. static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
  247. {
  248. get_dreq(hdr->dreq);
  249. }
  250. static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
  251. .error_cleanup = nfs_read_sync_pgio_error,
  252. .init_hdr = nfs_direct_pgio_init,
  253. .completion = nfs_direct_read_completion,
  254. };
  255. /*
  256. * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
  257. * operation. If nfs_readdata_alloc() or get_user_pages() fails,
  258. * bail and stop sending more reads. Read length accounting is
  259. * handled automatically by nfs_direct_read_result(). Otherwise, if
  260. * no requests have been sent, just return an error.
  261. */
  262. static ssize_t nfs_direct_read_schedule_segment(struct nfs_pageio_descriptor *desc,
  263. const struct iovec *iov,
  264. loff_t pos)
  265. {
  266. struct nfs_direct_req *dreq = desc->pg_dreq;
  267. struct nfs_open_context *ctx = dreq->ctx;
  268. struct inode *inode = ctx->dentry->d_inode;
  269. unsigned long user_addr = (unsigned long)iov->iov_base;
  270. size_t count = iov->iov_len;
  271. size_t rsize = NFS_SERVER(inode)->rsize;
  272. unsigned int pgbase;
  273. int result;
  274. ssize_t started = 0;
  275. struct page **pagevec = NULL;
  276. unsigned int npages;
  277. do {
  278. size_t bytes;
  279. int i;
  280. pgbase = user_addr & ~PAGE_MASK;
  281. bytes = min(max_t(size_t, rsize, PAGE_SIZE), count);
  282. result = -ENOMEM;
  283. npages = nfs_page_array_len(pgbase, bytes);
  284. if (!pagevec)
  285. pagevec = kmalloc(npages * sizeof(struct page *),
  286. GFP_KERNEL);
  287. if (!pagevec)
  288. break;
  289. down_read(&current->mm->mmap_sem);
  290. result = get_user_pages(current, current->mm, user_addr,
  291. npages, 1, 0, pagevec, NULL);
  292. up_read(&current->mm->mmap_sem);
  293. if (result < 0)
  294. break;
  295. if ((unsigned)result < npages) {
  296. bytes = result * PAGE_SIZE;
  297. if (bytes <= pgbase) {
  298. nfs_direct_release_pages(pagevec, result);
  299. break;
  300. }
  301. bytes -= pgbase;
  302. npages = result;
  303. }
  304. for (i = 0; i < npages; i++) {
  305. struct nfs_page *req;
  306. unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
  307. /* XXX do we need to do the eof zeroing found in async_filler? */
  308. req = nfs_create_request(dreq->ctx, dreq->inode,
  309. pagevec[i],
  310. pgbase, req_len);
  311. if (IS_ERR(req)) {
  312. result = PTR_ERR(req);
  313. break;
  314. }
  315. req->wb_index = pos >> PAGE_SHIFT;
  316. req->wb_offset = pos & ~PAGE_MASK;
  317. if (!nfs_pageio_add_request(desc, req)) {
  318. result = desc->pg_error;
  319. nfs_release_request(req);
  320. break;
  321. }
  322. pgbase = 0;
  323. bytes -= req_len;
  324. started += req_len;
  325. user_addr += req_len;
  326. pos += req_len;
  327. count -= req_len;
  328. }
  329. /* The nfs_page now hold references to these pages */
  330. nfs_direct_release_pages(pagevec, npages);
  331. } while (count != 0 && result >= 0);
  332. kfree(pagevec);
  333. if (started)
  334. return started;
  335. return result < 0 ? (ssize_t) result : -EFAULT;
  336. }
  337. static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
  338. const struct iovec *iov,
  339. unsigned long nr_segs,
  340. loff_t pos)
  341. {
  342. struct nfs_pageio_descriptor desc;
  343. ssize_t result = -EINVAL;
  344. size_t requested_bytes = 0;
  345. unsigned long seg;
  346. nfs_pageio_init_read(&desc, dreq->inode,
  347. &nfs_direct_read_completion_ops);
  348. get_dreq(dreq);
  349. desc.pg_dreq = dreq;
  350. for (seg = 0; seg < nr_segs; seg++) {
  351. const struct iovec *vec = &iov[seg];
  352. result = nfs_direct_read_schedule_segment(&desc, vec, pos);
  353. if (result < 0)
  354. break;
  355. requested_bytes += result;
  356. if ((size_t)result < vec->iov_len)
  357. break;
  358. pos += vec->iov_len;
  359. }
  360. nfs_pageio_complete(&desc);
  361. /*
  362. * If no bytes were started, return the error, and let the
  363. * generic layer handle the completion.
  364. */
  365. if (requested_bytes == 0) {
  366. nfs_direct_req_release(dreq);
  367. return result < 0 ? result : -EIO;
  368. }
  369. if (put_dreq(dreq))
  370. nfs_direct_complete(dreq);
  371. return 0;
  372. }
  373. static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov,
  374. unsigned long nr_segs, loff_t pos)
  375. {
  376. ssize_t result = -ENOMEM;
  377. struct inode *inode = iocb->ki_filp->f_mapping->host;
  378. struct nfs_direct_req *dreq;
  379. dreq = nfs_direct_req_alloc();
  380. if (dreq == NULL)
  381. goto out;
  382. dreq->inode = inode;
  383. dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
  384. dreq->l_ctx = nfs_get_lock_context(dreq->ctx);
  385. if (dreq->l_ctx == NULL)
  386. goto out_release;
  387. if (!is_sync_kiocb(iocb))
  388. dreq->iocb = iocb;
  389. result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos);
  390. if (!result)
  391. result = nfs_direct_wait(dreq);
  392. out_release:
  393. nfs_direct_req_release(dreq);
  394. out:
  395. return result;
  396. }
  397. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  398. static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
  399. {
  400. struct nfs_pageio_descriptor desc;
  401. struct nfs_page *req, *tmp;
  402. LIST_HEAD(reqs);
  403. struct nfs_commit_info cinfo;
  404. LIST_HEAD(failed);
  405. nfs_init_cinfo_from_dreq(&cinfo, dreq);
  406. pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo);
  407. spin_lock(cinfo.lock);
  408. nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0);
  409. spin_unlock(cinfo.lock);
  410. dreq->count = 0;
  411. get_dreq(dreq);
  412. nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE,
  413. &nfs_direct_write_completion_ops);
  414. desc.pg_dreq = dreq;
  415. list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
  416. if (!nfs_pageio_add_request(&desc, req)) {
  417. nfs_list_add_request(req, &failed);
  418. spin_lock(cinfo.lock);
  419. dreq->flags = 0;
  420. dreq->error = -EIO;
  421. spin_unlock(cinfo.lock);
  422. }
  423. }
  424. nfs_pageio_complete(&desc);
  425. while (!list_empty(&failed))
  426. nfs_unlock_and_release_request(req);
  427. if (put_dreq(dreq))
  428. nfs_direct_write_complete(dreq, dreq->inode);
  429. }
  430. static void nfs_direct_commit_complete(struct nfs_commit_data *data)
  431. {
  432. struct nfs_direct_req *dreq = data->dreq;
  433. struct nfs_commit_info cinfo;
  434. struct nfs_page *req;
  435. int status = data->task.tk_status;
  436. nfs_init_cinfo_from_dreq(&cinfo, dreq);
  437. if (status < 0) {
  438. dprintk("NFS: %5u commit failed with error %d.\n",
  439. data->task.tk_pid, status);
  440. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  441. } else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
  442. dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
  443. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  444. }
  445. dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
  446. while (!list_empty(&data->pages)) {
  447. req = nfs_list_entry(data->pages.next);
  448. nfs_list_remove_request(req);
  449. if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
  450. /* Note the rewrite will go through mds */
  451. kref_get(&req->wb_kref);
  452. nfs_mark_request_commit(req, NULL, &cinfo);
  453. }
  454. nfs_unlock_and_release_request(req);
  455. }
  456. if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
  457. nfs_direct_write_complete(dreq, data->inode);
  458. }
  459. static void nfs_direct_error_cleanup(struct nfs_inode *nfsi)
  460. {
  461. /* There is no lock to clear */
  462. }
  463. static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
  464. .completion = nfs_direct_commit_complete,
  465. .error_cleanup = nfs_direct_error_cleanup,
  466. };
  467. static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
  468. {
  469. int res;
  470. struct nfs_commit_info cinfo;
  471. LIST_HEAD(mds_list);
  472. nfs_init_cinfo_from_dreq(&cinfo, dreq);
  473. nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
  474. res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
  475. if (res < 0) /* res == -ENOMEM */
  476. nfs_direct_write_reschedule(dreq);
  477. }
  478. static void nfs_direct_write_schedule_work(struct work_struct *work)
  479. {
  480. struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
  481. int flags = dreq->flags;
  482. dreq->flags = 0;
  483. switch (flags) {
  484. case NFS_ODIRECT_DO_COMMIT:
  485. nfs_direct_commit_schedule(dreq);
  486. break;
  487. case NFS_ODIRECT_RESCHED_WRITES:
  488. nfs_direct_write_reschedule(dreq);
  489. break;
  490. default:
  491. nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping);
  492. nfs_direct_complete(dreq);
  493. }
  494. }
  495. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
  496. {
  497. schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
  498. }
  499. #else
  500. static void nfs_direct_write_schedule_work(struct work_struct *work)
  501. {
  502. }
  503. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
  504. {
  505. nfs_zap_mapping(inode, inode->i_mapping);
  506. nfs_direct_complete(dreq);
  507. }
  508. #endif
  509. /*
  510. * NB: Return the value of the first error return code. Subsequent
  511. * errors after the first one are ignored.
  512. */
  513. /*
  514. * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
  515. * operation. If nfs_writedata_alloc() or get_user_pages() fails,
  516. * bail and stop sending more writes. Write length accounting is
  517. * handled automatically by nfs_direct_write_result(). Otherwise, if
  518. * no requests have been sent, just return an error.
  519. */
  520. static ssize_t nfs_direct_write_schedule_segment(struct nfs_pageio_descriptor *desc,
  521. const struct iovec *iov,
  522. loff_t pos)
  523. {
  524. struct nfs_direct_req *dreq = desc->pg_dreq;
  525. struct nfs_open_context *ctx = dreq->ctx;
  526. struct inode *inode = ctx->dentry->d_inode;
  527. unsigned long user_addr = (unsigned long)iov->iov_base;
  528. size_t count = iov->iov_len;
  529. size_t wsize = NFS_SERVER(inode)->wsize;
  530. unsigned int pgbase;
  531. int result;
  532. ssize_t started = 0;
  533. struct page **pagevec = NULL;
  534. unsigned int npages;
  535. do {
  536. size_t bytes;
  537. int i;
  538. pgbase = user_addr & ~PAGE_MASK;
  539. bytes = min(max_t(size_t, wsize, PAGE_SIZE), count);
  540. result = -ENOMEM;
  541. npages = nfs_page_array_len(pgbase, bytes);
  542. if (!pagevec)
  543. pagevec = kmalloc(npages * sizeof(struct page *), GFP_KERNEL);
  544. if (!pagevec)
  545. break;
  546. down_read(&current->mm->mmap_sem);
  547. result = get_user_pages(current, current->mm, user_addr,
  548. npages, 0, 0, pagevec, NULL);
  549. up_read(&current->mm->mmap_sem);
  550. if (result < 0)
  551. break;
  552. if ((unsigned)result < npages) {
  553. bytes = result * PAGE_SIZE;
  554. if (bytes <= pgbase) {
  555. nfs_direct_release_pages(pagevec, result);
  556. break;
  557. }
  558. bytes -= pgbase;
  559. npages = result;
  560. }
  561. for (i = 0; i < npages; i++) {
  562. struct nfs_page *req;
  563. unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
  564. req = nfs_create_request(dreq->ctx, dreq->inode,
  565. pagevec[i],
  566. pgbase, req_len);
  567. if (IS_ERR(req)) {
  568. result = PTR_ERR(req);
  569. break;
  570. }
  571. nfs_lock_request(req);
  572. req->wb_index = pos >> PAGE_SHIFT;
  573. req->wb_offset = pos & ~PAGE_MASK;
  574. if (!nfs_pageio_add_request(desc, req)) {
  575. result = desc->pg_error;
  576. nfs_unlock_and_release_request(req);
  577. break;
  578. }
  579. pgbase = 0;
  580. bytes -= req_len;
  581. started += req_len;
  582. user_addr += req_len;
  583. pos += req_len;
  584. count -= req_len;
  585. }
  586. /* The nfs_page now hold references to these pages */
  587. nfs_direct_release_pages(pagevec, npages);
  588. } while (count != 0 && result >= 0);
  589. kfree(pagevec);
  590. if (started)
  591. return started;
  592. return result < 0 ? (ssize_t) result : -EFAULT;
  593. }
  594. static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
  595. {
  596. struct nfs_direct_req *dreq = hdr->dreq;
  597. struct nfs_commit_info cinfo;
  598. int bit = -1;
  599. struct nfs_page *req = nfs_list_entry(hdr->pages.next);
  600. if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
  601. goto out_put;
  602. nfs_init_cinfo_from_dreq(&cinfo, dreq);
  603. spin_lock(&dreq->lock);
  604. if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
  605. dreq->flags = 0;
  606. dreq->error = hdr->error;
  607. }
  608. if (dreq->error != 0)
  609. bit = NFS_IOHDR_ERROR;
  610. else {
  611. dreq->count += hdr->good_bytes;
  612. if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) {
  613. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  614. bit = NFS_IOHDR_NEED_RESCHED;
  615. } else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) {
  616. if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
  617. bit = NFS_IOHDR_NEED_RESCHED;
  618. else if (dreq->flags == 0) {
  619. memcpy(&dreq->verf, &req->wb_verf,
  620. sizeof(dreq->verf));
  621. bit = NFS_IOHDR_NEED_COMMIT;
  622. dreq->flags = NFS_ODIRECT_DO_COMMIT;
  623. } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
  624. if (memcmp(&dreq->verf, &req->wb_verf, sizeof(dreq->verf))) {
  625. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  626. bit = NFS_IOHDR_NEED_RESCHED;
  627. } else
  628. bit = NFS_IOHDR_NEED_COMMIT;
  629. }
  630. }
  631. }
  632. spin_unlock(&dreq->lock);
  633. while (!list_empty(&hdr->pages)) {
  634. req = nfs_list_entry(hdr->pages.next);
  635. nfs_list_remove_request(req);
  636. switch (bit) {
  637. case NFS_IOHDR_NEED_RESCHED:
  638. case NFS_IOHDR_NEED_COMMIT:
  639. kref_get(&req->wb_kref);
  640. nfs_mark_request_commit(req, hdr->lseg, &cinfo);
  641. }
  642. nfs_unlock_and_release_request(req);
  643. }
  644. out_put:
  645. if (put_dreq(dreq))
  646. nfs_direct_write_complete(dreq, hdr->inode);
  647. hdr->release(hdr);
  648. }
  649. static void nfs_write_sync_pgio_error(struct list_head *head)
  650. {
  651. struct nfs_page *req;
  652. while (!list_empty(head)) {
  653. req = nfs_list_entry(head->next);
  654. nfs_list_remove_request(req);
  655. nfs_unlock_and_release_request(req);
  656. }
  657. }
  658. static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
  659. .error_cleanup = nfs_write_sync_pgio_error,
  660. .init_hdr = nfs_direct_pgio_init,
  661. .completion = nfs_direct_write_completion,
  662. };
  663. static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
  664. const struct iovec *iov,
  665. unsigned long nr_segs,
  666. loff_t pos)
  667. {
  668. struct nfs_pageio_descriptor desc;
  669. ssize_t result = 0;
  670. size_t requested_bytes = 0;
  671. unsigned long seg;
  672. nfs_pageio_init_write(&desc, dreq->inode, FLUSH_COND_STABLE,
  673. &nfs_direct_write_completion_ops);
  674. desc.pg_dreq = dreq;
  675. get_dreq(dreq);
  676. for (seg = 0; seg < nr_segs; seg++) {
  677. const struct iovec *vec = &iov[seg];
  678. result = nfs_direct_write_schedule_segment(&desc, vec, pos);
  679. if (result < 0)
  680. break;
  681. requested_bytes += result;
  682. if ((size_t)result < vec->iov_len)
  683. break;
  684. pos += vec->iov_len;
  685. }
  686. nfs_pageio_complete(&desc);
  687. /*
  688. * If no bytes were started, return the error, and let the
  689. * generic layer handle the completion.
  690. */
  691. if (requested_bytes == 0) {
  692. nfs_direct_req_release(dreq);
  693. return result < 0 ? result : -EIO;
  694. }
  695. if (put_dreq(dreq))
  696. nfs_direct_write_complete(dreq, dreq->inode);
  697. return 0;
  698. }
  699. static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov,
  700. unsigned long nr_segs, loff_t pos,
  701. size_t count)
  702. {
  703. ssize_t result = -ENOMEM;
  704. struct inode *inode = iocb->ki_filp->f_mapping->host;
  705. struct nfs_direct_req *dreq;
  706. dreq = nfs_direct_req_alloc();
  707. if (!dreq)
  708. goto out;
  709. dreq->inode = inode;
  710. dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
  711. dreq->l_ctx = nfs_get_lock_context(dreq->ctx);
  712. if (dreq->l_ctx == NULL)
  713. goto out_release;
  714. if (!is_sync_kiocb(iocb))
  715. dreq->iocb = iocb;
  716. result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos);
  717. if (!result)
  718. result = nfs_direct_wait(dreq);
  719. out_release:
  720. nfs_direct_req_release(dreq);
  721. out:
  722. return result;
  723. }
  724. /**
  725. * nfs_file_direct_read - file direct read operation for NFS files
  726. * @iocb: target I/O control block
  727. * @iov: vector of user buffers into which to read data
  728. * @nr_segs: size of iov vector
  729. * @pos: byte offset in file where reading starts
  730. *
  731. * We use this function for direct reads instead of calling
  732. * generic_file_aio_read() in order to avoid gfar's check to see if
  733. * the request starts before the end of the file. For that check
  734. * to work, we must generate a GETATTR before each direct read, and
  735. * even then there is a window between the GETATTR and the subsequent
  736. * READ where the file size could change. Our preference is simply
  737. * to do all reads the application wants, and the server will take
  738. * care of managing the end of file boundary.
  739. *
  740. * This function also eliminates unnecessarily updating the file's
  741. * atime locally, as the NFS server sets the file's atime, and this
  742. * client must read the updated atime from the server back into its
  743. * cache.
  744. */
  745. ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
  746. unsigned long nr_segs, loff_t pos)
  747. {
  748. ssize_t retval = -EINVAL;
  749. struct file *file = iocb->ki_filp;
  750. struct address_space *mapping = file->f_mapping;
  751. size_t count;
  752. count = iov_length(iov, nr_segs);
  753. nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
  754. dfprintk(FILE, "NFS: direct read(%s/%s, %zd@%Ld)\n",
  755. file->f_path.dentry->d_parent->d_name.name,
  756. file->f_path.dentry->d_name.name,
  757. count, (long long) pos);
  758. retval = 0;
  759. if (!count)
  760. goto out;
  761. retval = nfs_sync_mapping(mapping);
  762. if (retval)
  763. goto out;
  764. task_io_account_read(count);
  765. retval = nfs_direct_read(iocb, iov, nr_segs, pos);
  766. if (retval > 0)
  767. iocb->ki_pos = pos + retval;
  768. out:
  769. return retval;
  770. }
  771. /**
  772. * nfs_file_direct_write - file direct write operation for NFS files
  773. * @iocb: target I/O control block
  774. * @iov: vector of user buffers from which to write data
  775. * @nr_segs: size of iov vector
  776. * @pos: byte offset in file where writing starts
  777. *
  778. * We use this function for direct writes instead of calling
  779. * generic_file_aio_write() in order to avoid taking the inode
  780. * semaphore and updating the i_size. The NFS server will set
  781. * the new i_size and this client must read the updated size
  782. * back into its cache. We let the server do generic write
  783. * parameter checking and report problems.
  784. *
  785. * We eliminate local atime updates, see direct read above.
  786. *
  787. * We avoid unnecessary page cache invalidations for normal cached
  788. * readers of this file.
  789. *
  790. * Note that O_APPEND is not supported for NFS direct writes, as there
  791. * is no atomic O_APPEND write facility in the NFS protocol.
  792. */
  793. ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
  794. unsigned long nr_segs, loff_t pos)
  795. {
  796. ssize_t retval = -EINVAL;
  797. struct file *file = iocb->ki_filp;
  798. struct address_space *mapping = file->f_mapping;
  799. size_t count;
  800. count = iov_length(iov, nr_segs);
  801. nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
  802. dfprintk(FILE, "NFS: direct write(%s/%s, %zd@%Ld)\n",
  803. file->f_path.dentry->d_parent->d_name.name,
  804. file->f_path.dentry->d_name.name,
  805. count, (long long) pos);
  806. retval = generic_write_checks(file, &pos, &count, 0);
  807. if (retval)
  808. goto out;
  809. retval = -EINVAL;
  810. if ((ssize_t) count < 0)
  811. goto out;
  812. retval = 0;
  813. if (!count)
  814. goto out;
  815. retval = nfs_sync_mapping(mapping);
  816. if (retval)
  817. goto out;
  818. task_io_account_write(count);
  819. retval = nfs_direct_write(iocb, iov, nr_segs, pos, count);
  820. if (retval > 0) {
  821. struct inode *inode = mapping->host;
  822. iocb->ki_pos = pos + retval;
  823. spin_lock(&inode->i_lock);
  824. if (i_size_read(inode) < iocb->ki_pos)
  825. i_size_write(inode, iocb->ki_pos);
  826. spin_unlock(&inode->i_lock);
  827. }
  828. out:
  829. return retval;
  830. }
  831. /**
  832. * nfs_init_directcache - create a slab cache for nfs_direct_req structures
  833. *
  834. */
  835. int __init nfs_init_directcache(void)
  836. {
  837. nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
  838. sizeof(struct nfs_direct_req),
  839. 0, (SLAB_RECLAIM_ACCOUNT|
  840. SLAB_MEM_SPREAD),
  841. NULL);
  842. if (nfs_direct_cachep == NULL)
  843. return -ENOMEM;
  844. return 0;
  845. }
  846. /**
  847. * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
  848. *
  849. */
  850. void nfs_destroy_directcache(void)
  851. {
  852. kmem_cache_destroy(nfs_direct_cachep);
  853. }