perf_event.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879
  1. #undef DEBUG
  2. /*
  3. * ARM performance counter support.
  4. *
  5. * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
  6. * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
  7. *
  8. * This code is based on the sparc64 perf event code, which is in turn based
  9. * on the x86 code. Callchain code is based on the ARM OProfile backtrace
  10. * code.
  11. */
  12. #define pr_fmt(fmt) "hw perfevents: " fmt
  13. #include <linux/bitmap.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/kernel.h>
  16. #include <linux/export.h>
  17. #include <linux/of.h>
  18. #include <linux/perf_event.h>
  19. #include <linux/platform_device.h>
  20. #include <linux/spinlock.h>
  21. #include <linux/uaccess.h>
  22. #include <linux/pm_runtime.h>
  23. #include <asm/cputype.h>
  24. #include <asm/irq.h>
  25. #include <asm/irq_regs.h>
  26. #include <asm/pmu.h>
  27. #include <asm/stacktrace.h>
  28. /*
  29. * ARMv6 supports a maximum of 3 events, starting from index 0. If we add
  30. * another platform that supports more, we need to increase this to be the
  31. * largest of all platforms.
  32. *
  33. * ARMv7 supports up to 32 events:
  34. * cycle counter CCNT + 31 events counters CNT0..30.
  35. * Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters.
  36. */
  37. #define ARMPMU_MAX_HWEVENTS 32
  38. static DEFINE_PER_CPU(struct perf_event * [ARMPMU_MAX_HWEVENTS], hw_events);
  39. static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)], used_mask);
  40. static DEFINE_PER_CPU(struct pmu_hw_events, cpu_hw_events);
  41. #define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu))
  42. /* Set at runtime when we know what CPU type we are. */
  43. static struct arm_pmu *cpu_pmu;
  44. const char *perf_pmu_name(void)
  45. {
  46. if (!cpu_pmu)
  47. return NULL;
  48. return cpu_pmu->pmu.name;
  49. }
  50. EXPORT_SYMBOL_GPL(perf_pmu_name);
  51. int perf_num_counters(void)
  52. {
  53. int max_events = 0;
  54. if (cpu_pmu != NULL)
  55. max_events = cpu_pmu->num_events;
  56. return max_events;
  57. }
  58. EXPORT_SYMBOL_GPL(perf_num_counters);
  59. #define HW_OP_UNSUPPORTED 0xFFFF
  60. #define C(_x) \
  61. PERF_COUNT_HW_CACHE_##_x
  62. #define CACHE_OP_UNSUPPORTED 0xFFFF
  63. static int
  64. armpmu_map_cache_event(const unsigned (*cache_map)
  65. [PERF_COUNT_HW_CACHE_MAX]
  66. [PERF_COUNT_HW_CACHE_OP_MAX]
  67. [PERF_COUNT_HW_CACHE_RESULT_MAX],
  68. u64 config)
  69. {
  70. unsigned int cache_type, cache_op, cache_result, ret;
  71. cache_type = (config >> 0) & 0xff;
  72. if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
  73. return -EINVAL;
  74. cache_op = (config >> 8) & 0xff;
  75. if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
  76. return -EINVAL;
  77. cache_result = (config >> 16) & 0xff;
  78. if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  79. return -EINVAL;
  80. ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
  81. if (ret == CACHE_OP_UNSUPPORTED)
  82. return -ENOENT;
  83. return ret;
  84. }
  85. static int
  86. armpmu_map_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
  87. {
  88. int mapping = (*event_map)[config];
  89. return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
  90. }
  91. static int
  92. armpmu_map_raw_event(u32 raw_event_mask, u64 config)
  93. {
  94. return (int)(config & raw_event_mask);
  95. }
  96. static int map_cpu_event(struct perf_event *event,
  97. const unsigned (*event_map)[PERF_COUNT_HW_MAX],
  98. const unsigned (*cache_map)
  99. [PERF_COUNT_HW_CACHE_MAX]
  100. [PERF_COUNT_HW_CACHE_OP_MAX]
  101. [PERF_COUNT_HW_CACHE_RESULT_MAX],
  102. u32 raw_event_mask)
  103. {
  104. u64 config = event->attr.config;
  105. switch (event->attr.type) {
  106. case PERF_TYPE_HARDWARE:
  107. return armpmu_map_event(event_map, config);
  108. case PERF_TYPE_HW_CACHE:
  109. return armpmu_map_cache_event(cache_map, config);
  110. case PERF_TYPE_RAW:
  111. return armpmu_map_raw_event(raw_event_mask, config);
  112. }
  113. return -ENOENT;
  114. }
  115. int
  116. armpmu_event_set_period(struct perf_event *event,
  117. struct hw_perf_event *hwc,
  118. int idx)
  119. {
  120. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  121. s64 left = local64_read(&hwc->period_left);
  122. s64 period = hwc->sample_period;
  123. int ret = 0;
  124. if (unlikely(left <= -period)) {
  125. left = period;
  126. local64_set(&hwc->period_left, left);
  127. hwc->last_period = period;
  128. ret = 1;
  129. }
  130. if (unlikely(left <= 0)) {
  131. left += period;
  132. local64_set(&hwc->period_left, left);
  133. hwc->last_period = period;
  134. ret = 1;
  135. }
  136. if (left > (s64)armpmu->max_period)
  137. left = armpmu->max_period;
  138. local64_set(&hwc->prev_count, (u64)-left);
  139. armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
  140. perf_event_update_userpage(event);
  141. return ret;
  142. }
  143. u64
  144. armpmu_event_update(struct perf_event *event,
  145. struct hw_perf_event *hwc,
  146. int idx)
  147. {
  148. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  149. u64 delta, prev_raw_count, new_raw_count;
  150. again:
  151. prev_raw_count = local64_read(&hwc->prev_count);
  152. new_raw_count = armpmu->read_counter(idx);
  153. if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
  154. new_raw_count) != prev_raw_count)
  155. goto again;
  156. delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
  157. local64_add(delta, &event->count);
  158. local64_sub(delta, &hwc->period_left);
  159. return new_raw_count;
  160. }
  161. static void
  162. armpmu_read(struct perf_event *event)
  163. {
  164. struct hw_perf_event *hwc = &event->hw;
  165. /* Don't read disabled counters! */
  166. if (hwc->idx < 0)
  167. return;
  168. armpmu_event_update(event, hwc, hwc->idx);
  169. }
  170. static void
  171. armpmu_stop(struct perf_event *event, int flags)
  172. {
  173. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  174. struct hw_perf_event *hwc = &event->hw;
  175. /*
  176. * ARM pmu always has to update the counter, so ignore
  177. * PERF_EF_UPDATE, see comments in armpmu_start().
  178. */
  179. if (!(hwc->state & PERF_HES_STOPPED)) {
  180. armpmu->disable(hwc, hwc->idx);
  181. armpmu_event_update(event, hwc, hwc->idx);
  182. hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
  183. }
  184. }
  185. static void
  186. armpmu_start(struct perf_event *event, int flags)
  187. {
  188. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  189. struct hw_perf_event *hwc = &event->hw;
  190. /*
  191. * ARM pmu always has to reprogram the period, so ignore
  192. * PERF_EF_RELOAD, see the comment below.
  193. */
  194. if (flags & PERF_EF_RELOAD)
  195. WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
  196. hwc->state = 0;
  197. /*
  198. * Set the period again. Some counters can't be stopped, so when we
  199. * were stopped we simply disabled the IRQ source and the counter
  200. * may have been left counting. If we don't do this step then we may
  201. * get an interrupt too soon or *way* too late if the overflow has
  202. * happened since disabling.
  203. */
  204. armpmu_event_set_period(event, hwc, hwc->idx);
  205. armpmu->enable(hwc, hwc->idx);
  206. }
  207. static void
  208. armpmu_del(struct perf_event *event, int flags)
  209. {
  210. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  211. struct pmu_hw_events *hw_events = armpmu->get_hw_events();
  212. struct hw_perf_event *hwc = &event->hw;
  213. int idx = hwc->idx;
  214. WARN_ON(idx < 0);
  215. armpmu_stop(event, PERF_EF_UPDATE);
  216. hw_events->events[idx] = NULL;
  217. clear_bit(idx, hw_events->used_mask);
  218. perf_event_update_userpage(event);
  219. }
  220. static int
  221. armpmu_add(struct perf_event *event, int flags)
  222. {
  223. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  224. struct pmu_hw_events *hw_events = armpmu->get_hw_events();
  225. struct hw_perf_event *hwc = &event->hw;
  226. int idx;
  227. int err = 0;
  228. perf_pmu_disable(event->pmu);
  229. /* If we don't have a space for the counter then finish early. */
  230. idx = armpmu->get_event_idx(hw_events, hwc);
  231. if (idx < 0) {
  232. err = idx;
  233. goto out;
  234. }
  235. /*
  236. * If there is an event in the counter we are going to use then make
  237. * sure it is disabled.
  238. */
  239. event->hw.idx = idx;
  240. armpmu->disable(hwc, idx);
  241. hw_events->events[idx] = event;
  242. hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
  243. if (flags & PERF_EF_START)
  244. armpmu_start(event, PERF_EF_RELOAD);
  245. /* Propagate our changes to the userspace mapping. */
  246. perf_event_update_userpage(event);
  247. out:
  248. perf_pmu_enable(event->pmu);
  249. return err;
  250. }
  251. static int
  252. validate_event(struct pmu_hw_events *hw_events,
  253. struct perf_event *event)
  254. {
  255. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  256. struct hw_perf_event fake_event = event->hw;
  257. struct pmu *leader_pmu = event->group_leader->pmu;
  258. if (event->pmu != leader_pmu || event->state <= PERF_EVENT_STATE_OFF)
  259. return 1;
  260. return armpmu->get_event_idx(hw_events, &fake_event) >= 0;
  261. }
  262. static int
  263. validate_group(struct perf_event *event)
  264. {
  265. struct perf_event *sibling, *leader = event->group_leader;
  266. struct pmu_hw_events fake_pmu;
  267. DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
  268. /*
  269. * Initialise the fake PMU. We only need to populate the
  270. * used_mask for the purposes of validation.
  271. */
  272. memset(fake_used_mask, 0, sizeof(fake_used_mask));
  273. fake_pmu.used_mask = fake_used_mask;
  274. if (!validate_event(&fake_pmu, leader))
  275. return -EINVAL;
  276. list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
  277. if (!validate_event(&fake_pmu, sibling))
  278. return -EINVAL;
  279. }
  280. if (!validate_event(&fake_pmu, event))
  281. return -EINVAL;
  282. return 0;
  283. }
  284. static irqreturn_t armpmu_platform_irq(int irq, void *dev)
  285. {
  286. struct arm_pmu *armpmu = (struct arm_pmu *) dev;
  287. struct platform_device *plat_device = armpmu->plat_device;
  288. struct arm_pmu_platdata *plat = dev_get_platdata(&plat_device->dev);
  289. return plat->handle_irq(irq, dev, armpmu->handle_irq);
  290. }
  291. static void
  292. armpmu_release_hardware(struct arm_pmu *armpmu)
  293. {
  294. int i, irq, irqs;
  295. struct platform_device *pmu_device = armpmu->plat_device;
  296. irqs = min(pmu_device->num_resources, num_possible_cpus());
  297. for (i = 0; i < irqs; ++i) {
  298. if (!cpumask_test_and_clear_cpu(i, &armpmu->active_irqs))
  299. continue;
  300. irq = platform_get_irq(pmu_device, i);
  301. if (irq >= 0)
  302. free_irq(irq, armpmu);
  303. }
  304. pm_runtime_put_sync(&pmu_device->dev);
  305. }
  306. static int
  307. armpmu_reserve_hardware(struct arm_pmu *armpmu)
  308. {
  309. struct arm_pmu_platdata *plat;
  310. irq_handler_t handle_irq;
  311. int i, err, irq, irqs;
  312. struct platform_device *pmu_device = armpmu->plat_device;
  313. if (!pmu_device)
  314. return -ENODEV;
  315. plat = dev_get_platdata(&pmu_device->dev);
  316. if (plat && plat->handle_irq)
  317. handle_irq = armpmu_platform_irq;
  318. else
  319. handle_irq = armpmu->handle_irq;
  320. irqs = min(pmu_device->num_resources, num_possible_cpus());
  321. if (irqs < 1) {
  322. pr_err("no irqs for PMUs defined\n");
  323. return -ENODEV;
  324. }
  325. pm_runtime_get_sync(&pmu_device->dev);
  326. for (i = 0; i < irqs; ++i) {
  327. err = 0;
  328. irq = platform_get_irq(pmu_device, i);
  329. if (irq < 0)
  330. continue;
  331. /*
  332. * If we have a single PMU interrupt that we can't shift,
  333. * assume that we're running on a uniprocessor machine and
  334. * continue. Otherwise, continue without this interrupt.
  335. */
  336. if (irq_set_affinity(irq, cpumask_of(i)) && irqs > 1) {
  337. pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
  338. irq, i);
  339. continue;
  340. }
  341. err = request_irq(irq, handle_irq,
  342. IRQF_DISABLED | IRQF_NOBALANCING,
  343. "arm-pmu", armpmu);
  344. if (err) {
  345. pr_err("unable to request IRQ%d for ARM PMU counters\n",
  346. irq);
  347. armpmu_release_hardware(armpmu);
  348. return err;
  349. }
  350. cpumask_set_cpu(i, &armpmu->active_irqs);
  351. }
  352. return 0;
  353. }
  354. static void
  355. hw_perf_event_destroy(struct perf_event *event)
  356. {
  357. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  358. atomic_t *active_events = &armpmu->active_events;
  359. struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
  360. if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
  361. armpmu_release_hardware(armpmu);
  362. mutex_unlock(pmu_reserve_mutex);
  363. }
  364. }
  365. static int
  366. event_requires_mode_exclusion(struct perf_event_attr *attr)
  367. {
  368. return attr->exclude_idle || attr->exclude_user ||
  369. attr->exclude_kernel || attr->exclude_hv;
  370. }
  371. static int
  372. __hw_perf_event_init(struct perf_event *event)
  373. {
  374. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  375. struct hw_perf_event *hwc = &event->hw;
  376. int mapping, err;
  377. mapping = armpmu->map_event(event);
  378. if (mapping < 0) {
  379. pr_debug("event %x:%llx not supported\n", event->attr.type,
  380. event->attr.config);
  381. return mapping;
  382. }
  383. /*
  384. * We don't assign an index until we actually place the event onto
  385. * hardware. Use -1 to signify that we haven't decided where to put it
  386. * yet. For SMP systems, each core has it's own PMU so we can't do any
  387. * clever allocation or constraints checking at this point.
  388. */
  389. hwc->idx = -1;
  390. hwc->config_base = 0;
  391. hwc->config = 0;
  392. hwc->event_base = 0;
  393. /*
  394. * Check whether we need to exclude the counter from certain modes.
  395. */
  396. if ((!armpmu->set_event_filter ||
  397. armpmu->set_event_filter(hwc, &event->attr)) &&
  398. event_requires_mode_exclusion(&event->attr)) {
  399. pr_debug("ARM performance counters do not support "
  400. "mode exclusion\n");
  401. return -EOPNOTSUPP;
  402. }
  403. /*
  404. * Store the event encoding into the config_base field.
  405. */
  406. hwc->config_base |= (unsigned long)mapping;
  407. if (!hwc->sample_period) {
  408. /*
  409. * For non-sampling runs, limit the sample_period to half
  410. * of the counter width. That way, the new counter value
  411. * is far less likely to overtake the previous one unless
  412. * you have some serious IRQ latency issues.
  413. */
  414. hwc->sample_period = armpmu->max_period >> 1;
  415. hwc->last_period = hwc->sample_period;
  416. local64_set(&hwc->period_left, hwc->sample_period);
  417. }
  418. err = 0;
  419. if (event->group_leader != event) {
  420. err = validate_group(event);
  421. if (err)
  422. return -EINVAL;
  423. }
  424. return err;
  425. }
  426. static int armpmu_event_init(struct perf_event *event)
  427. {
  428. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  429. int err = 0;
  430. atomic_t *active_events = &armpmu->active_events;
  431. /* does not support taken branch sampling */
  432. if (has_branch_stack(event))
  433. return -EOPNOTSUPP;
  434. if (armpmu->map_event(event) == -ENOENT)
  435. return -ENOENT;
  436. event->destroy = hw_perf_event_destroy;
  437. if (!atomic_inc_not_zero(active_events)) {
  438. mutex_lock(&armpmu->reserve_mutex);
  439. if (atomic_read(active_events) == 0)
  440. err = armpmu_reserve_hardware(armpmu);
  441. if (!err)
  442. atomic_inc(active_events);
  443. mutex_unlock(&armpmu->reserve_mutex);
  444. }
  445. if (err)
  446. return err;
  447. err = __hw_perf_event_init(event);
  448. if (err)
  449. hw_perf_event_destroy(event);
  450. return err;
  451. }
  452. static void armpmu_enable(struct pmu *pmu)
  453. {
  454. struct arm_pmu *armpmu = to_arm_pmu(pmu);
  455. struct pmu_hw_events *hw_events = armpmu->get_hw_events();
  456. int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
  457. if (enabled)
  458. armpmu->start();
  459. }
  460. static void armpmu_disable(struct pmu *pmu)
  461. {
  462. struct arm_pmu *armpmu = to_arm_pmu(pmu);
  463. armpmu->stop();
  464. }
  465. #ifdef CONFIG_PM_RUNTIME
  466. static int armpmu_runtime_resume(struct device *dev)
  467. {
  468. struct arm_pmu_platdata *plat = dev_get_platdata(dev);
  469. if (plat && plat->runtime_resume)
  470. return plat->runtime_resume(dev);
  471. return 0;
  472. }
  473. static int armpmu_runtime_suspend(struct device *dev)
  474. {
  475. struct arm_pmu_platdata *plat = dev_get_platdata(dev);
  476. if (plat && plat->runtime_suspend)
  477. return plat->runtime_suspend(dev);
  478. return 0;
  479. }
  480. #endif
  481. static void __init armpmu_init(struct arm_pmu *armpmu)
  482. {
  483. atomic_set(&armpmu->active_events, 0);
  484. mutex_init(&armpmu->reserve_mutex);
  485. armpmu->pmu = (struct pmu) {
  486. .pmu_enable = armpmu_enable,
  487. .pmu_disable = armpmu_disable,
  488. .event_init = armpmu_event_init,
  489. .add = armpmu_add,
  490. .del = armpmu_del,
  491. .start = armpmu_start,
  492. .stop = armpmu_stop,
  493. .read = armpmu_read,
  494. };
  495. }
  496. int armpmu_register(struct arm_pmu *armpmu, char *name, int type)
  497. {
  498. armpmu_init(armpmu);
  499. pr_info("enabled with %s PMU driver, %d counters available\n",
  500. armpmu->name, armpmu->num_events);
  501. return perf_pmu_register(&armpmu->pmu, name, type);
  502. }
  503. /* Include the PMU-specific implementations. */
  504. #include "perf_event_xscale.c"
  505. #include "perf_event_v6.c"
  506. #include "perf_event_v7.c"
  507. static struct pmu_hw_events *armpmu_get_cpu_events(void)
  508. {
  509. return &__get_cpu_var(cpu_hw_events);
  510. }
  511. static void __devinit cpu_pmu_init(struct arm_pmu *cpu_pmu)
  512. {
  513. int cpu;
  514. for_each_possible_cpu(cpu) {
  515. struct pmu_hw_events *events = &per_cpu(cpu_hw_events, cpu);
  516. events->events = per_cpu(hw_events, cpu);
  517. events->used_mask = per_cpu(used_mask, cpu);
  518. raw_spin_lock_init(&events->pmu_lock);
  519. }
  520. cpu_pmu->get_hw_events = armpmu_get_cpu_events;
  521. /* Ensure the PMU has sane values out of reset. */
  522. if (cpu_pmu && cpu_pmu->reset)
  523. on_each_cpu(cpu_pmu->reset, NULL, 1);
  524. }
  525. /*
  526. * PMU hardware loses all context when a CPU goes offline.
  527. * When a CPU is hotplugged back in, since some hardware registers are
  528. * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
  529. * junk values out of them.
  530. */
  531. static int __cpuinit pmu_cpu_notify(struct notifier_block *b,
  532. unsigned long action, void *hcpu)
  533. {
  534. if ((action & ~CPU_TASKS_FROZEN) != CPU_STARTING)
  535. return NOTIFY_DONE;
  536. if (cpu_pmu && cpu_pmu->reset)
  537. cpu_pmu->reset(NULL);
  538. return NOTIFY_OK;
  539. }
  540. static struct notifier_block __cpuinitdata pmu_cpu_notifier = {
  541. .notifier_call = pmu_cpu_notify,
  542. };
  543. static const struct dev_pm_ops armpmu_dev_pm_ops = {
  544. SET_RUNTIME_PM_OPS(armpmu_runtime_suspend, armpmu_runtime_resume, NULL)
  545. };
  546. /*
  547. * PMU platform driver and devicetree bindings.
  548. */
  549. static struct of_device_id __devinitdata cpu_pmu_of_device_ids[] = {
  550. {.compatible = "arm,cortex-a15-pmu", .data = armv7_a15_pmu_init},
  551. {.compatible = "arm,cortex-a9-pmu", .data = armv7_a9_pmu_init},
  552. {.compatible = "arm,cortex-a8-pmu", .data = armv7_a8_pmu_init},
  553. {.compatible = "arm,cortex-a7-pmu", .data = armv7_a7_pmu_init},
  554. {.compatible = "arm,cortex-a5-pmu", .data = armv7_a5_pmu_init},
  555. {.compatible = "arm,arm11mpcore-pmu", .data = armv6mpcore_pmu_init},
  556. {.compatible = "arm,arm1176-pmu", .data = armv6pmu_init},
  557. {.compatible = "arm,arm1136-pmu", .data = armv6pmu_init},
  558. {},
  559. };
  560. static struct platform_device_id __devinitdata cpu_pmu_plat_device_ids[] = {
  561. {.name = "arm-pmu"},
  562. {},
  563. };
  564. /*
  565. * CPU PMU identification and probing.
  566. */
  567. static struct arm_pmu *__devinit probe_current_pmu(void)
  568. {
  569. struct arm_pmu *pmu = NULL;
  570. int cpu = get_cpu();
  571. unsigned long cpuid = read_cpuid_id();
  572. unsigned long implementor = (cpuid & 0xFF000000) >> 24;
  573. unsigned long part_number = (cpuid & 0xFFF0);
  574. pr_info("probing PMU on CPU %d\n", cpu);
  575. /* ARM Ltd CPUs. */
  576. if (0x41 == implementor) {
  577. switch (part_number) {
  578. case 0xB360: /* ARM1136 */
  579. case 0xB560: /* ARM1156 */
  580. case 0xB760: /* ARM1176 */
  581. pmu = armv6pmu_init();
  582. break;
  583. case 0xB020: /* ARM11mpcore */
  584. pmu = armv6mpcore_pmu_init();
  585. break;
  586. case 0xC080: /* Cortex-A8 */
  587. pmu = armv7_a8_pmu_init();
  588. break;
  589. case 0xC090: /* Cortex-A9 */
  590. pmu = armv7_a9_pmu_init();
  591. break;
  592. case 0xC050: /* Cortex-A5 */
  593. pmu = armv7_a5_pmu_init();
  594. break;
  595. case 0xC0F0: /* Cortex-A15 */
  596. pmu = armv7_a15_pmu_init();
  597. break;
  598. case 0xC070: /* Cortex-A7 */
  599. pmu = armv7_a7_pmu_init();
  600. break;
  601. }
  602. /* Intel CPUs [xscale]. */
  603. } else if (0x69 == implementor) {
  604. part_number = (cpuid >> 13) & 0x7;
  605. switch (part_number) {
  606. case 1:
  607. pmu = xscale1pmu_init();
  608. break;
  609. case 2:
  610. pmu = xscale2pmu_init();
  611. break;
  612. }
  613. }
  614. put_cpu();
  615. return pmu;
  616. }
  617. static int __devinit cpu_pmu_device_probe(struct platform_device *pdev)
  618. {
  619. const struct of_device_id *of_id;
  620. struct arm_pmu *(*init_fn)(void);
  621. struct device_node *node = pdev->dev.of_node;
  622. if (cpu_pmu) {
  623. pr_info("attempt to register multiple PMU devices!");
  624. return -ENOSPC;
  625. }
  626. if (node && (of_id = of_match_node(cpu_pmu_of_device_ids, pdev->dev.of_node))) {
  627. init_fn = of_id->data;
  628. cpu_pmu = init_fn();
  629. } else {
  630. cpu_pmu = probe_current_pmu();
  631. }
  632. if (!cpu_pmu)
  633. return -ENODEV;
  634. cpu_pmu->plat_device = pdev;
  635. cpu_pmu_init(cpu_pmu);
  636. register_cpu_notifier(&pmu_cpu_notifier);
  637. armpmu_register(cpu_pmu, cpu_pmu->name, PERF_TYPE_RAW);
  638. return 0;
  639. }
  640. static struct platform_driver cpu_pmu_driver = {
  641. .driver = {
  642. .name = "arm-pmu",
  643. .pm = &armpmu_dev_pm_ops,
  644. .of_match_table = cpu_pmu_of_device_ids,
  645. },
  646. .probe = cpu_pmu_device_probe,
  647. .id_table = cpu_pmu_plat_device_ids,
  648. };
  649. static int __init register_pmu_driver(void)
  650. {
  651. return platform_driver_register(&cpu_pmu_driver);
  652. }
  653. device_initcall(register_pmu_driver);
  654. /*
  655. * Callchain handling code.
  656. */
  657. /*
  658. * The registers we're interested in are at the end of the variable
  659. * length saved register structure. The fp points at the end of this
  660. * structure so the address of this struct is:
  661. * (struct frame_tail *)(xxx->fp)-1
  662. *
  663. * This code has been adapted from the ARM OProfile support.
  664. */
  665. struct frame_tail {
  666. struct frame_tail __user *fp;
  667. unsigned long sp;
  668. unsigned long lr;
  669. } __attribute__((packed));
  670. /*
  671. * Get the return address for a single stackframe and return a pointer to the
  672. * next frame tail.
  673. */
  674. static struct frame_tail __user *
  675. user_backtrace(struct frame_tail __user *tail,
  676. struct perf_callchain_entry *entry)
  677. {
  678. struct frame_tail buftail;
  679. /* Also check accessibility of one struct frame_tail beyond */
  680. if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
  681. return NULL;
  682. if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
  683. return NULL;
  684. perf_callchain_store(entry, buftail.lr);
  685. /*
  686. * Frame pointers should strictly progress back up the stack
  687. * (towards higher addresses).
  688. */
  689. if (tail + 1 >= buftail.fp)
  690. return NULL;
  691. return buftail.fp - 1;
  692. }
  693. void
  694. perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
  695. {
  696. struct frame_tail __user *tail;
  697. tail = (struct frame_tail __user *)regs->ARM_fp - 1;
  698. while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
  699. tail && !((unsigned long)tail & 0x3))
  700. tail = user_backtrace(tail, entry);
  701. }
  702. /*
  703. * Gets called by walk_stackframe() for every stackframe. This will be called
  704. * whist unwinding the stackframe and is like a subroutine return so we use
  705. * the PC.
  706. */
  707. static int
  708. callchain_trace(struct stackframe *fr,
  709. void *data)
  710. {
  711. struct perf_callchain_entry *entry = data;
  712. perf_callchain_store(entry, fr->pc);
  713. return 0;
  714. }
  715. void
  716. perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
  717. {
  718. struct stackframe fr;
  719. fr.fp = regs->ARM_fp;
  720. fr.sp = regs->ARM_sp;
  721. fr.lr = regs->ARM_lr;
  722. fr.pc = regs->ARM_pc;
  723. walk_stackframe(&fr, callchain_trace, entry);
  724. }