task_mmu.c 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417
  1. #include <linux/mm.h>
  2. #include <linux/hugetlb.h>
  3. #include <linux/huge_mm.h>
  4. #include <linux/mount.h>
  5. #include <linux/seq_file.h>
  6. #include <linux/highmem.h>
  7. #include <linux/ptrace.h>
  8. #include <linux/slab.h>
  9. #include <linux/pagemap.h>
  10. #include <linux/mempolicy.h>
  11. #include <linux/rmap.h>
  12. #include <linux/swap.h>
  13. #include <linux/swapops.h>
  14. #include <asm/elf.h>
  15. #include <asm/uaccess.h>
  16. #include <asm/tlbflush.h>
  17. #include "internal.h"
  18. void task_mem(struct seq_file *m, struct mm_struct *mm)
  19. {
  20. unsigned long data, text, lib, swap;
  21. unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  22. /*
  23. * Note: to minimize their overhead, mm maintains hiwater_vm and
  24. * hiwater_rss only when about to *lower* total_vm or rss. Any
  25. * collector of these hiwater stats must therefore get total_vm
  26. * and rss too, which will usually be the higher. Barriers? not
  27. * worth the effort, such snapshots can always be inconsistent.
  28. */
  29. hiwater_vm = total_vm = mm->total_vm;
  30. if (hiwater_vm < mm->hiwater_vm)
  31. hiwater_vm = mm->hiwater_vm;
  32. hiwater_rss = total_rss = get_mm_rss(mm);
  33. if (hiwater_rss < mm->hiwater_rss)
  34. hiwater_rss = mm->hiwater_rss;
  35. data = mm->total_vm - mm->shared_vm - mm->stack_vm;
  36. text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
  37. lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
  38. swap = get_mm_counter(mm, MM_SWAPENTS);
  39. seq_printf(m,
  40. "VmPeak:\t%8lu kB\n"
  41. "VmSize:\t%8lu kB\n"
  42. "VmLck:\t%8lu kB\n"
  43. "VmPin:\t%8lu kB\n"
  44. "VmHWM:\t%8lu kB\n"
  45. "VmRSS:\t%8lu kB\n"
  46. "VmData:\t%8lu kB\n"
  47. "VmStk:\t%8lu kB\n"
  48. "VmExe:\t%8lu kB\n"
  49. "VmLib:\t%8lu kB\n"
  50. "VmPTE:\t%8lu kB\n"
  51. "VmSwap:\t%8lu kB\n",
  52. hiwater_vm << (PAGE_SHIFT-10),
  53. total_vm << (PAGE_SHIFT-10),
  54. mm->locked_vm << (PAGE_SHIFT-10),
  55. mm->pinned_vm << (PAGE_SHIFT-10),
  56. hiwater_rss << (PAGE_SHIFT-10),
  57. total_rss << (PAGE_SHIFT-10),
  58. data << (PAGE_SHIFT-10),
  59. mm->stack_vm << (PAGE_SHIFT-10), text, lib,
  60. (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10,
  61. swap << (PAGE_SHIFT-10));
  62. }
  63. unsigned long task_vsize(struct mm_struct *mm)
  64. {
  65. return PAGE_SIZE * mm->total_vm;
  66. }
  67. unsigned long task_statm(struct mm_struct *mm,
  68. unsigned long *shared, unsigned long *text,
  69. unsigned long *data, unsigned long *resident)
  70. {
  71. *shared = get_mm_counter(mm, MM_FILEPAGES);
  72. *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  73. >> PAGE_SHIFT;
  74. *data = mm->total_vm - mm->shared_vm;
  75. *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
  76. return mm->total_vm;
  77. }
  78. static void pad_len_spaces(struct seq_file *m, int len)
  79. {
  80. len = 25 + sizeof(void*) * 6 - len;
  81. if (len < 1)
  82. len = 1;
  83. seq_printf(m, "%*c", len, ' ');
  84. }
  85. #ifdef CONFIG_NUMA
  86. /*
  87. * These functions are for numa_maps but called in generic **maps seq_file
  88. * ->start(), ->stop() ops.
  89. *
  90. * numa_maps scans all vmas under mmap_sem and checks their mempolicy.
  91. * Each mempolicy object is controlled by reference counting. The problem here
  92. * is how to avoid accessing dead mempolicy object.
  93. *
  94. * Because we're holding mmap_sem while reading seq_file, it's safe to access
  95. * each vma's mempolicy, no vma objects will never drop refs to mempolicy.
  96. *
  97. * A task's mempolicy (task->mempolicy) has different behavior. task->mempolicy
  98. * is set and replaced under mmap_sem but unrefed and cleared under task_lock().
  99. * So, without task_lock(), we cannot trust get_vma_policy() because we cannot
  100. * gurantee the task never exits under us. But taking task_lock() around
  101. * get_vma_plicy() causes lock order problem.
  102. *
  103. * To access task->mempolicy without lock, we hold a reference count of an
  104. * object pointed by task->mempolicy and remember it. This will guarantee
  105. * that task->mempolicy points to an alive object or NULL in numa_maps accesses.
  106. */
  107. static void hold_task_mempolicy(struct proc_maps_private *priv)
  108. {
  109. struct task_struct *task = priv->task;
  110. task_lock(task);
  111. priv->task_mempolicy = task->mempolicy;
  112. mpol_get(priv->task_mempolicy);
  113. task_unlock(task);
  114. }
  115. static void release_task_mempolicy(struct proc_maps_private *priv)
  116. {
  117. mpol_put(priv->task_mempolicy);
  118. }
  119. #else
  120. static void hold_task_mempolicy(struct proc_maps_private *priv)
  121. {
  122. }
  123. static void release_task_mempolicy(struct proc_maps_private *priv)
  124. {
  125. }
  126. #endif
  127. static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
  128. {
  129. if (vma && vma != priv->tail_vma) {
  130. struct mm_struct *mm = vma->vm_mm;
  131. release_task_mempolicy(priv);
  132. up_read(&mm->mmap_sem);
  133. mmput(mm);
  134. }
  135. }
  136. static void *m_start(struct seq_file *m, loff_t *pos)
  137. {
  138. struct proc_maps_private *priv = m->private;
  139. unsigned long last_addr = m->version;
  140. struct mm_struct *mm;
  141. struct vm_area_struct *vma, *tail_vma = NULL;
  142. loff_t l = *pos;
  143. /* Clear the per syscall fields in priv */
  144. priv->task = NULL;
  145. priv->tail_vma = NULL;
  146. /*
  147. * We remember last_addr rather than next_addr to hit with
  148. * mmap_cache most of the time. We have zero last_addr at
  149. * the beginning and also after lseek. We will have -1 last_addr
  150. * after the end of the vmas.
  151. */
  152. if (last_addr == -1UL)
  153. return NULL;
  154. priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
  155. if (!priv->task)
  156. return ERR_PTR(-ESRCH);
  157. mm = mm_access(priv->task, PTRACE_MODE_READ);
  158. if (!mm || IS_ERR(mm))
  159. return mm;
  160. down_read(&mm->mmap_sem);
  161. tail_vma = get_gate_vma(priv->task->mm);
  162. priv->tail_vma = tail_vma;
  163. hold_task_mempolicy(priv);
  164. /* Start with last addr hint */
  165. vma = find_vma(mm, last_addr);
  166. if (last_addr && vma) {
  167. vma = vma->vm_next;
  168. goto out;
  169. }
  170. /*
  171. * Check the vma index is within the range and do
  172. * sequential scan until m_index.
  173. */
  174. vma = NULL;
  175. if ((unsigned long)l < mm->map_count) {
  176. vma = mm->mmap;
  177. while (l-- && vma)
  178. vma = vma->vm_next;
  179. goto out;
  180. }
  181. if (l != mm->map_count)
  182. tail_vma = NULL; /* After gate vma */
  183. out:
  184. if (vma)
  185. return vma;
  186. release_task_mempolicy(priv);
  187. /* End of vmas has been reached */
  188. m->version = (tail_vma != NULL)? 0: -1UL;
  189. up_read(&mm->mmap_sem);
  190. mmput(mm);
  191. return tail_vma;
  192. }
  193. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  194. {
  195. struct proc_maps_private *priv = m->private;
  196. struct vm_area_struct *vma = v;
  197. struct vm_area_struct *tail_vma = priv->tail_vma;
  198. (*pos)++;
  199. if (vma && (vma != tail_vma) && vma->vm_next)
  200. return vma->vm_next;
  201. vma_stop(priv, vma);
  202. return (vma != tail_vma)? tail_vma: NULL;
  203. }
  204. static void m_stop(struct seq_file *m, void *v)
  205. {
  206. struct proc_maps_private *priv = m->private;
  207. struct vm_area_struct *vma = v;
  208. if (!IS_ERR(vma))
  209. vma_stop(priv, vma);
  210. if (priv->task)
  211. put_task_struct(priv->task);
  212. }
  213. static int do_maps_open(struct inode *inode, struct file *file,
  214. const struct seq_operations *ops)
  215. {
  216. struct proc_maps_private *priv;
  217. int ret = -ENOMEM;
  218. priv = kzalloc(sizeof(*priv), GFP_KERNEL);
  219. if (priv) {
  220. priv->pid = proc_pid(inode);
  221. ret = seq_open(file, ops);
  222. if (!ret) {
  223. struct seq_file *m = file->private_data;
  224. m->private = priv;
  225. } else {
  226. kfree(priv);
  227. }
  228. }
  229. return ret;
  230. }
  231. static void
  232. show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
  233. {
  234. struct mm_struct *mm = vma->vm_mm;
  235. struct file *file = vma->vm_file;
  236. struct proc_maps_private *priv = m->private;
  237. struct task_struct *task = priv->task;
  238. vm_flags_t flags = vma->vm_flags;
  239. unsigned long ino = 0;
  240. unsigned long long pgoff = 0;
  241. unsigned long start, end;
  242. dev_t dev = 0;
  243. int len;
  244. const char *name = NULL;
  245. if (file) {
  246. struct inode *inode = file_inode(vma->vm_file);
  247. dev = inode->i_sb->s_dev;
  248. ino = inode->i_ino;
  249. pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
  250. }
  251. /* We don't show the stack guard page in /proc/maps */
  252. start = vma->vm_start;
  253. if (stack_guard_page_start(vma, start))
  254. start += PAGE_SIZE;
  255. end = vma->vm_end;
  256. if (stack_guard_page_end(vma, end))
  257. end -= PAGE_SIZE;
  258. seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
  259. start,
  260. end,
  261. flags & VM_READ ? 'r' : '-',
  262. flags & VM_WRITE ? 'w' : '-',
  263. flags & VM_EXEC ? 'x' : '-',
  264. flags & VM_MAYSHARE ? 's' : 'p',
  265. pgoff,
  266. MAJOR(dev), MINOR(dev), ino, &len);
  267. /*
  268. * Print the dentry name for named mappings, and a
  269. * special [heap] marker for the heap:
  270. */
  271. if (file) {
  272. pad_len_spaces(m, len);
  273. seq_path(m, &file->f_path, "\n");
  274. goto done;
  275. }
  276. name = arch_vma_name(vma);
  277. if (!name) {
  278. pid_t tid;
  279. if (!mm) {
  280. name = "[vdso]";
  281. goto done;
  282. }
  283. if (vma->vm_start <= mm->brk &&
  284. vma->vm_end >= mm->start_brk) {
  285. name = "[heap]";
  286. goto done;
  287. }
  288. tid = vm_is_stack(task, vma, is_pid);
  289. if (tid != 0) {
  290. /*
  291. * Thread stack in /proc/PID/task/TID/maps or
  292. * the main process stack.
  293. */
  294. if (!is_pid || (vma->vm_start <= mm->start_stack &&
  295. vma->vm_end >= mm->start_stack)) {
  296. name = "[stack]";
  297. } else {
  298. /* Thread stack in /proc/PID/maps */
  299. pad_len_spaces(m, len);
  300. seq_printf(m, "[stack:%d]", tid);
  301. }
  302. }
  303. }
  304. done:
  305. if (name) {
  306. pad_len_spaces(m, len);
  307. seq_puts(m, name);
  308. }
  309. seq_putc(m, '\n');
  310. }
  311. static int show_map(struct seq_file *m, void *v, int is_pid)
  312. {
  313. struct vm_area_struct *vma = v;
  314. struct proc_maps_private *priv = m->private;
  315. struct task_struct *task = priv->task;
  316. show_map_vma(m, vma, is_pid);
  317. if (m->count < m->size) /* vma is copied successfully */
  318. m->version = (vma != get_gate_vma(task->mm))
  319. ? vma->vm_start : 0;
  320. return 0;
  321. }
  322. static int show_pid_map(struct seq_file *m, void *v)
  323. {
  324. return show_map(m, v, 1);
  325. }
  326. static int show_tid_map(struct seq_file *m, void *v)
  327. {
  328. return show_map(m, v, 0);
  329. }
  330. static const struct seq_operations proc_pid_maps_op = {
  331. .start = m_start,
  332. .next = m_next,
  333. .stop = m_stop,
  334. .show = show_pid_map
  335. };
  336. static const struct seq_operations proc_tid_maps_op = {
  337. .start = m_start,
  338. .next = m_next,
  339. .stop = m_stop,
  340. .show = show_tid_map
  341. };
  342. static int pid_maps_open(struct inode *inode, struct file *file)
  343. {
  344. return do_maps_open(inode, file, &proc_pid_maps_op);
  345. }
  346. static int tid_maps_open(struct inode *inode, struct file *file)
  347. {
  348. return do_maps_open(inode, file, &proc_tid_maps_op);
  349. }
  350. const struct file_operations proc_pid_maps_operations = {
  351. .open = pid_maps_open,
  352. .read = seq_read,
  353. .llseek = seq_lseek,
  354. .release = seq_release_private,
  355. };
  356. const struct file_operations proc_tid_maps_operations = {
  357. .open = tid_maps_open,
  358. .read = seq_read,
  359. .llseek = seq_lseek,
  360. .release = seq_release_private,
  361. };
  362. /*
  363. * Proportional Set Size(PSS): my share of RSS.
  364. *
  365. * PSS of a process is the count of pages it has in memory, where each
  366. * page is divided by the number of processes sharing it. So if a
  367. * process has 1000 pages all to itself, and 1000 shared with one other
  368. * process, its PSS will be 1500.
  369. *
  370. * To keep (accumulated) division errors low, we adopt a 64bit
  371. * fixed-point pss counter to minimize division errors. So (pss >>
  372. * PSS_SHIFT) would be the real byte count.
  373. *
  374. * A shift of 12 before division means (assuming 4K page size):
  375. * - 1M 3-user-pages add up to 8KB errors;
  376. * - supports mapcount up to 2^24, or 16M;
  377. * - supports PSS up to 2^52 bytes, or 4PB.
  378. */
  379. #define PSS_SHIFT 12
  380. #ifdef CONFIG_PROC_PAGE_MONITOR
  381. struct mem_size_stats {
  382. struct vm_area_struct *vma;
  383. unsigned long resident;
  384. unsigned long shared_clean;
  385. unsigned long shared_dirty;
  386. unsigned long private_clean;
  387. unsigned long private_dirty;
  388. unsigned long referenced;
  389. unsigned long anonymous;
  390. unsigned long anonymous_thp;
  391. unsigned long swap;
  392. unsigned long nonlinear;
  393. u64 pss;
  394. };
  395. static void smaps_pte_entry(pte_t ptent, unsigned long addr,
  396. unsigned long ptent_size, struct mm_walk *walk)
  397. {
  398. struct mem_size_stats *mss = walk->private;
  399. struct vm_area_struct *vma = mss->vma;
  400. pgoff_t pgoff = linear_page_index(vma, addr);
  401. struct page *page = NULL;
  402. int mapcount;
  403. if (pte_present(ptent)) {
  404. page = vm_normal_page(vma, addr, ptent);
  405. } else if (is_swap_pte(ptent)) {
  406. swp_entry_t swpent = pte_to_swp_entry(ptent);
  407. if (!non_swap_entry(swpent))
  408. mss->swap += ptent_size;
  409. else if (is_migration_entry(swpent))
  410. page = migration_entry_to_page(swpent);
  411. } else if (pte_file(ptent)) {
  412. if (pte_to_pgoff(ptent) != pgoff)
  413. mss->nonlinear += ptent_size;
  414. }
  415. if (!page)
  416. return;
  417. if (PageAnon(page))
  418. mss->anonymous += ptent_size;
  419. if (page->index != pgoff)
  420. mss->nonlinear += ptent_size;
  421. mss->resident += ptent_size;
  422. /* Accumulate the size in pages that have been accessed. */
  423. if (pte_young(ptent) || PageReferenced(page))
  424. mss->referenced += ptent_size;
  425. mapcount = page_mapcount(page);
  426. if (mapcount >= 2) {
  427. if (pte_dirty(ptent) || PageDirty(page))
  428. mss->shared_dirty += ptent_size;
  429. else
  430. mss->shared_clean += ptent_size;
  431. mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
  432. } else {
  433. if (pte_dirty(ptent) || PageDirty(page))
  434. mss->private_dirty += ptent_size;
  435. else
  436. mss->private_clean += ptent_size;
  437. mss->pss += (ptent_size << PSS_SHIFT);
  438. }
  439. }
  440. static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  441. struct mm_walk *walk)
  442. {
  443. struct mem_size_stats *mss = walk->private;
  444. struct vm_area_struct *vma = mss->vma;
  445. pte_t *pte;
  446. spinlock_t *ptl;
  447. if (pmd_trans_huge_lock(pmd, vma) == 1) {
  448. smaps_pte_entry(*(pte_t *)pmd, addr, HPAGE_PMD_SIZE, walk);
  449. spin_unlock(&walk->mm->page_table_lock);
  450. mss->anonymous_thp += HPAGE_PMD_SIZE;
  451. return 0;
  452. }
  453. if (pmd_trans_unstable(pmd))
  454. return 0;
  455. /*
  456. * The mmap_sem held all the way back in m_start() is what
  457. * keeps khugepaged out of here and from collapsing things
  458. * in here.
  459. */
  460. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  461. for (; addr != end; pte++, addr += PAGE_SIZE)
  462. smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
  463. pte_unmap_unlock(pte - 1, ptl);
  464. cond_resched();
  465. return 0;
  466. }
  467. static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
  468. {
  469. /*
  470. * Don't forget to update Documentation/ on changes.
  471. */
  472. static const char mnemonics[BITS_PER_LONG][2] = {
  473. /*
  474. * In case if we meet a flag we don't know about.
  475. */
  476. [0 ... (BITS_PER_LONG-1)] = "??",
  477. [ilog2(VM_READ)] = "rd",
  478. [ilog2(VM_WRITE)] = "wr",
  479. [ilog2(VM_EXEC)] = "ex",
  480. [ilog2(VM_SHARED)] = "sh",
  481. [ilog2(VM_MAYREAD)] = "mr",
  482. [ilog2(VM_MAYWRITE)] = "mw",
  483. [ilog2(VM_MAYEXEC)] = "me",
  484. [ilog2(VM_MAYSHARE)] = "ms",
  485. [ilog2(VM_GROWSDOWN)] = "gd",
  486. [ilog2(VM_PFNMAP)] = "pf",
  487. [ilog2(VM_DENYWRITE)] = "dw",
  488. [ilog2(VM_LOCKED)] = "lo",
  489. [ilog2(VM_IO)] = "io",
  490. [ilog2(VM_SEQ_READ)] = "sr",
  491. [ilog2(VM_RAND_READ)] = "rr",
  492. [ilog2(VM_DONTCOPY)] = "dc",
  493. [ilog2(VM_DONTEXPAND)] = "de",
  494. [ilog2(VM_ACCOUNT)] = "ac",
  495. [ilog2(VM_NORESERVE)] = "nr",
  496. [ilog2(VM_HUGETLB)] = "ht",
  497. [ilog2(VM_NONLINEAR)] = "nl",
  498. [ilog2(VM_ARCH_1)] = "ar",
  499. [ilog2(VM_DONTDUMP)] = "dd",
  500. [ilog2(VM_MIXEDMAP)] = "mm",
  501. [ilog2(VM_HUGEPAGE)] = "hg",
  502. [ilog2(VM_NOHUGEPAGE)] = "nh",
  503. [ilog2(VM_MERGEABLE)] = "mg",
  504. };
  505. size_t i;
  506. seq_puts(m, "VmFlags: ");
  507. for (i = 0; i < BITS_PER_LONG; i++) {
  508. if (vma->vm_flags & (1UL << i)) {
  509. seq_printf(m, "%c%c ",
  510. mnemonics[i][0], mnemonics[i][1]);
  511. }
  512. }
  513. seq_putc(m, '\n');
  514. }
  515. static int show_smap(struct seq_file *m, void *v, int is_pid)
  516. {
  517. struct proc_maps_private *priv = m->private;
  518. struct task_struct *task = priv->task;
  519. struct vm_area_struct *vma = v;
  520. struct mem_size_stats mss;
  521. struct mm_walk smaps_walk = {
  522. .pmd_entry = smaps_pte_range,
  523. .mm = vma->vm_mm,
  524. .private = &mss,
  525. };
  526. memset(&mss, 0, sizeof mss);
  527. mss.vma = vma;
  528. /* mmap_sem is held in m_start */
  529. if (vma->vm_mm && !is_vm_hugetlb_page(vma))
  530. walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
  531. show_map_vma(m, vma, is_pid);
  532. seq_printf(m,
  533. "Size: %8lu kB\n"
  534. "Rss: %8lu kB\n"
  535. "Pss: %8lu kB\n"
  536. "Shared_Clean: %8lu kB\n"
  537. "Shared_Dirty: %8lu kB\n"
  538. "Private_Clean: %8lu kB\n"
  539. "Private_Dirty: %8lu kB\n"
  540. "Referenced: %8lu kB\n"
  541. "Anonymous: %8lu kB\n"
  542. "AnonHugePages: %8lu kB\n"
  543. "Swap: %8lu kB\n"
  544. "KernelPageSize: %8lu kB\n"
  545. "MMUPageSize: %8lu kB\n"
  546. "Locked: %8lu kB\n",
  547. (vma->vm_end - vma->vm_start) >> 10,
  548. mss.resident >> 10,
  549. (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
  550. mss.shared_clean >> 10,
  551. mss.shared_dirty >> 10,
  552. mss.private_clean >> 10,
  553. mss.private_dirty >> 10,
  554. mss.referenced >> 10,
  555. mss.anonymous >> 10,
  556. mss.anonymous_thp >> 10,
  557. mss.swap >> 10,
  558. vma_kernel_pagesize(vma) >> 10,
  559. vma_mmu_pagesize(vma) >> 10,
  560. (vma->vm_flags & VM_LOCKED) ?
  561. (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
  562. if (vma->vm_flags & VM_NONLINEAR)
  563. seq_printf(m, "Nonlinear: %8lu kB\n",
  564. mss.nonlinear >> 10);
  565. show_smap_vma_flags(m, vma);
  566. if (m->count < m->size) /* vma is copied successfully */
  567. m->version = (vma != get_gate_vma(task->mm))
  568. ? vma->vm_start : 0;
  569. return 0;
  570. }
  571. static int show_pid_smap(struct seq_file *m, void *v)
  572. {
  573. return show_smap(m, v, 1);
  574. }
  575. static int show_tid_smap(struct seq_file *m, void *v)
  576. {
  577. return show_smap(m, v, 0);
  578. }
  579. static const struct seq_operations proc_pid_smaps_op = {
  580. .start = m_start,
  581. .next = m_next,
  582. .stop = m_stop,
  583. .show = show_pid_smap
  584. };
  585. static const struct seq_operations proc_tid_smaps_op = {
  586. .start = m_start,
  587. .next = m_next,
  588. .stop = m_stop,
  589. .show = show_tid_smap
  590. };
  591. static int pid_smaps_open(struct inode *inode, struct file *file)
  592. {
  593. return do_maps_open(inode, file, &proc_pid_smaps_op);
  594. }
  595. static int tid_smaps_open(struct inode *inode, struct file *file)
  596. {
  597. return do_maps_open(inode, file, &proc_tid_smaps_op);
  598. }
  599. const struct file_operations proc_pid_smaps_operations = {
  600. .open = pid_smaps_open,
  601. .read = seq_read,
  602. .llseek = seq_lseek,
  603. .release = seq_release_private,
  604. };
  605. const struct file_operations proc_tid_smaps_operations = {
  606. .open = tid_smaps_open,
  607. .read = seq_read,
  608. .llseek = seq_lseek,
  609. .release = seq_release_private,
  610. };
  611. enum clear_refs_types {
  612. CLEAR_REFS_ALL = 1,
  613. CLEAR_REFS_ANON,
  614. CLEAR_REFS_MAPPED,
  615. CLEAR_REFS_LAST,
  616. };
  617. static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
  618. unsigned long end, struct mm_walk *walk)
  619. {
  620. struct vm_area_struct *vma = walk->private;
  621. pte_t *pte, ptent;
  622. spinlock_t *ptl;
  623. struct page *page;
  624. split_huge_page_pmd(vma, addr, pmd);
  625. if (pmd_trans_unstable(pmd))
  626. return 0;
  627. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  628. for (; addr != end; pte++, addr += PAGE_SIZE) {
  629. ptent = *pte;
  630. if (!pte_present(ptent))
  631. continue;
  632. page = vm_normal_page(vma, addr, ptent);
  633. if (!page)
  634. continue;
  635. /* Clear accessed and referenced bits. */
  636. ptep_test_and_clear_young(vma, addr, pte);
  637. ClearPageReferenced(page);
  638. }
  639. pte_unmap_unlock(pte - 1, ptl);
  640. cond_resched();
  641. return 0;
  642. }
  643. static ssize_t clear_refs_write(struct file *file, const char __user *buf,
  644. size_t count, loff_t *ppos)
  645. {
  646. struct task_struct *task;
  647. char buffer[PROC_NUMBUF];
  648. struct mm_struct *mm;
  649. struct vm_area_struct *vma;
  650. enum clear_refs_types type;
  651. int itype;
  652. int rv;
  653. memset(buffer, 0, sizeof(buffer));
  654. if (count > sizeof(buffer) - 1)
  655. count = sizeof(buffer) - 1;
  656. if (copy_from_user(buffer, buf, count))
  657. return -EFAULT;
  658. rv = kstrtoint(strstrip(buffer), 10, &itype);
  659. if (rv < 0)
  660. return rv;
  661. type = (enum clear_refs_types)itype;
  662. if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
  663. return -EINVAL;
  664. task = get_proc_task(file_inode(file));
  665. if (!task)
  666. return -ESRCH;
  667. mm = get_task_mm(task);
  668. if (mm) {
  669. struct mm_walk clear_refs_walk = {
  670. .pmd_entry = clear_refs_pte_range,
  671. .mm = mm,
  672. };
  673. down_read(&mm->mmap_sem);
  674. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  675. clear_refs_walk.private = vma;
  676. if (is_vm_hugetlb_page(vma))
  677. continue;
  678. /*
  679. * Writing 1 to /proc/pid/clear_refs affects all pages.
  680. *
  681. * Writing 2 to /proc/pid/clear_refs only affects
  682. * Anonymous pages.
  683. *
  684. * Writing 3 to /proc/pid/clear_refs only affects file
  685. * mapped pages.
  686. */
  687. if (type == CLEAR_REFS_ANON && vma->vm_file)
  688. continue;
  689. if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
  690. continue;
  691. walk_page_range(vma->vm_start, vma->vm_end,
  692. &clear_refs_walk);
  693. }
  694. flush_tlb_mm(mm);
  695. up_read(&mm->mmap_sem);
  696. mmput(mm);
  697. }
  698. put_task_struct(task);
  699. return count;
  700. }
  701. const struct file_operations proc_clear_refs_operations = {
  702. .write = clear_refs_write,
  703. .llseek = noop_llseek,
  704. };
  705. typedef struct {
  706. u64 pme;
  707. } pagemap_entry_t;
  708. struct pagemapread {
  709. int pos, len;
  710. pagemap_entry_t *buffer;
  711. };
  712. #define PAGEMAP_WALK_SIZE (PMD_SIZE)
  713. #define PAGEMAP_WALK_MASK (PMD_MASK)
  714. #define PM_ENTRY_BYTES sizeof(u64)
  715. #define PM_STATUS_BITS 3
  716. #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
  717. #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
  718. #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
  719. #define PM_PSHIFT_BITS 6
  720. #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
  721. #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
  722. #define PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
  723. #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
  724. #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
  725. #define PM_PRESENT PM_STATUS(4LL)
  726. #define PM_SWAP PM_STATUS(2LL)
  727. #define PM_FILE PM_STATUS(1LL)
  728. #define PM_NOT_PRESENT PM_PSHIFT(PAGE_SHIFT)
  729. #define PM_END_OF_BUFFER 1
  730. static inline pagemap_entry_t make_pme(u64 val)
  731. {
  732. return (pagemap_entry_t) { .pme = val };
  733. }
  734. static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
  735. struct pagemapread *pm)
  736. {
  737. pm->buffer[pm->pos++] = *pme;
  738. if (pm->pos >= pm->len)
  739. return PM_END_OF_BUFFER;
  740. return 0;
  741. }
  742. static int pagemap_pte_hole(unsigned long start, unsigned long end,
  743. struct mm_walk *walk)
  744. {
  745. struct pagemapread *pm = walk->private;
  746. unsigned long addr;
  747. int err = 0;
  748. pagemap_entry_t pme = make_pme(PM_NOT_PRESENT);
  749. for (addr = start; addr < end; addr += PAGE_SIZE) {
  750. err = add_to_pagemap(addr, &pme, pm);
  751. if (err)
  752. break;
  753. }
  754. return err;
  755. }
  756. static void pte_to_pagemap_entry(pagemap_entry_t *pme,
  757. struct vm_area_struct *vma, unsigned long addr, pte_t pte)
  758. {
  759. u64 frame, flags;
  760. struct page *page = NULL;
  761. if (pte_present(pte)) {
  762. frame = pte_pfn(pte);
  763. flags = PM_PRESENT;
  764. page = vm_normal_page(vma, addr, pte);
  765. } else if (is_swap_pte(pte)) {
  766. swp_entry_t entry = pte_to_swp_entry(pte);
  767. frame = swp_type(entry) |
  768. (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
  769. flags = PM_SWAP;
  770. if (is_migration_entry(entry))
  771. page = migration_entry_to_page(entry);
  772. } else {
  773. *pme = make_pme(PM_NOT_PRESENT);
  774. return;
  775. }
  776. if (page && !PageAnon(page))
  777. flags |= PM_FILE;
  778. *pme = make_pme(PM_PFRAME(frame) | PM_PSHIFT(PAGE_SHIFT) | flags);
  779. }
  780. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  781. static void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme,
  782. pmd_t pmd, int offset)
  783. {
  784. /*
  785. * Currently pmd for thp is always present because thp can not be
  786. * swapped-out, migrated, or HWPOISONed (split in such cases instead.)
  787. * This if-check is just to prepare for future implementation.
  788. */
  789. if (pmd_present(pmd))
  790. *pme = make_pme(PM_PFRAME(pmd_pfn(pmd) + offset)
  791. | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT);
  792. else
  793. *pme = make_pme(PM_NOT_PRESENT);
  794. }
  795. #else
  796. static inline void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme,
  797. pmd_t pmd, int offset)
  798. {
  799. }
  800. #endif
  801. static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  802. struct mm_walk *walk)
  803. {
  804. struct vm_area_struct *vma;
  805. struct pagemapread *pm = walk->private;
  806. pte_t *pte;
  807. int err = 0;
  808. pagemap_entry_t pme = make_pme(PM_NOT_PRESENT);
  809. /* find the first VMA at or above 'addr' */
  810. vma = find_vma(walk->mm, addr);
  811. if (vma && pmd_trans_huge_lock(pmd, vma) == 1) {
  812. for (; addr != end; addr += PAGE_SIZE) {
  813. unsigned long offset;
  814. offset = (addr & ~PAGEMAP_WALK_MASK) >>
  815. PAGE_SHIFT;
  816. thp_pmd_to_pagemap_entry(&pme, *pmd, offset);
  817. err = add_to_pagemap(addr, &pme, pm);
  818. if (err)
  819. break;
  820. }
  821. spin_unlock(&walk->mm->page_table_lock);
  822. return err;
  823. }
  824. if (pmd_trans_unstable(pmd))
  825. return 0;
  826. for (; addr != end; addr += PAGE_SIZE) {
  827. /* check to see if we've left 'vma' behind
  828. * and need a new, higher one */
  829. if (vma && (addr >= vma->vm_end)) {
  830. vma = find_vma(walk->mm, addr);
  831. pme = make_pme(PM_NOT_PRESENT);
  832. }
  833. /* check that 'vma' actually covers this address,
  834. * and that it isn't a huge page vma */
  835. if (vma && (vma->vm_start <= addr) &&
  836. !is_vm_hugetlb_page(vma)) {
  837. pte = pte_offset_map(pmd, addr);
  838. pte_to_pagemap_entry(&pme, vma, addr, *pte);
  839. /* unmap before userspace copy */
  840. pte_unmap(pte);
  841. }
  842. err = add_to_pagemap(addr, &pme, pm);
  843. if (err)
  844. return err;
  845. }
  846. cond_resched();
  847. return err;
  848. }
  849. #ifdef CONFIG_HUGETLB_PAGE
  850. static void huge_pte_to_pagemap_entry(pagemap_entry_t *pme,
  851. pte_t pte, int offset)
  852. {
  853. if (pte_present(pte))
  854. *pme = make_pme(PM_PFRAME(pte_pfn(pte) + offset)
  855. | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT);
  856. else
  857. *pme = make_pme(PM_NOT_PRESENT);
  858. }
  859. /* This function walks within one hugetlb entry in the single call */
  860. static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
  861. unsigned long addr, unsigned long end,
  862. struct mm_walk *walk)
  863. {
  864. struct pagemapread *pm = walk->private;
  865. int err = 0;
  866. pagemap_entry_t pme;
  867. for (; addr != end; addr += PAGE_SIZE) {
  868. int offset = (addr & ~hmask) >> PAGE_SHIFT;
  869. huge_pte_to_pagemap_entry(&pme, *pte, offset);
  870. err = add_to_pagemap(addr, &pme, pm);
  871. if (err)
  872. return err;
  873. }
  874. cond_resched();
  875. return err;
  876. }
  877. #endif /* HUGETLB_PAGE */
  878. /*
  879. * /proc/pid/pagemap - an array mapping virtual pages to pfns
  880. *
  881. * For each page in the address space, this file contains one 64-bit entry
  882. * consisting of the following:
  883. *
  884. * Bits 0-54 page frame number (PFN) if present
  885. * Bits 0-4 swap type if swapped
  886. * Bits 5-54 swap offset if swapped
  887. * Bits 55-60 page shift (page size = 1<<page shift)
  888. * Bit 61 page is file-page or shared-anon
  889. * Bit 62 page swapped
  890. * Bit 63 page present
  891. *
  892. * If the page is not present but in swap, then the PFN contains an
  893. * encoding of the swap file number and the page's offset into the
  894. * swap. Unmapped pages return a null PFN. This allows determining
  895. * precisely which pages are mapped (or in swap) and comparing mapped
  896. * pages between processes.
  897. *
  898. * Efficient users of this interface will use /proc/pid/maps to
  899. * determine which areas of memory are actually mapped and llseek to
  900. * skip over unmapped regions.
  901. */
  902. static ssize_t pagemap_read(struct file *file, char __user *buf,
  903. size_t count, loff_t *ppos)
  904. {
  905. struct task_struct *task = get_proc_task(file_inode(file));
  906. struct mm_struct *mm;
  907. struct pagemapread pm;
  908. int ret = -ESRCH;
  909. struct mm_walk pagemap_walk = {};
  910. unsigned long src;
  911. unsigned long svpfn;
  912. unsigned long start_vaddr;
  913. unsigned long end_vaddr;
  914. int copied = 0;
  915. if (!task)
  916. goto out;
  917. ret = -EINVAL;
  918. /* file position must be aligned */
  919. if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
  920. goto out_task;
  921. ret = 0;
  922. if (!count)
  923. goto out_task;
  924. pm.len = PM_ENTRY_BYTES * (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
  925. pm.buffer = kmalloc(pm.len, GFP_TEMPORARY);
  926. ret = -ENOMEM;
  927. if (!pm.buffer)
  928. goto out_task;
  929. mm = mm_access(task, PTRACE_MODE_READ);
  930. ret = PTR_ERR(mm);
  931. if (!mm || IS_ERR(mm))
  932. goto out_free;
  933. pagemap_walk.pmd_entry = pagemap_pte_range;
  934. pagemap_walk.pte_hole = pagemap_pte_hole;
  935. #ifdef CONFIG_HUGETLB_PAGE
  936. pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
  937. #endif
  938. pagemap_walk.mm = mm;
  939. pagemap_walk.private = &pm;
  940. src = *ppos;
  941. svpfn = src / PM_ENTRY_BYTES;
  942. start_vaddr = svpfn << PAGE_SHIFT;
  943. end_vaddr = TASK_SIZE_OF(task);
  944. /* watch out for wraparound */
  945. if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
  946. start_vaddr = end_vaddr;
  947. /*
  948. * The odds are that this will stop walking way
  949. * before end_vaddr, because the length of the
  950. * user buffer is tracked in "pm", and the walk
  951. * will stop when we hit the end of the buffer.
  952. */
  953. ret = 0;
  954. while (count && (start_vaddr < end_vaddr)) {
  955. int len;
  956. unsigned long end;
  957. pm.pos = 0;
  958. end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
  959. /* overflow ? */
  960. if (end < start_vaddr || end > end_vaddr)
  961. end = end_vaddr;
  962. down_read(&mm->mmap_sem);
  963. ret = walk_page_range(start_vaddr, end, &pagemap_walk);
  964. up_read(&mm->mmap_sem);
  965. start_vaddr = end;
  966. len = min(count, PM_ENTRY_BYTES * pm.pos);
  967. if (copy_to_user(buf, pm.buffer, len)) {
  968. ret = -EFAULT;
  969. goto out_mm;
  970. }
  971. copied += len;
  972. buf += len;
  973. count -= len;
  974. }
  975. *ppos += copied;
  976. if (!ret || ret == PM_END_OF_BUFFER)
  977. ret = copied;
  978. out_mm:
  979. mmput(mm);
  980. out_free:
  981. kfree(pm.buffer);
  982. out_task:
  983. put_task_struct(task);
  984. out:
  985. return ret;
  986. }
  987. const struct file_operations proc_pagemap_operations = {
  988. .llseek = mem_lseek, /* borrow this */
  989. .read = pagemap_read,
  990. };
  991. #endif /* CONFIG_PROC_PAGE_MONITOR */
  992. #ifdef CONFIG_NUMA
  993. struct numa_maps {
  994. struct vm_area_struct *vma;
  995. unsigned long pages;
  996. unsigned long anon;
  997. unsigned long active;
  998. unsigned long writeback;
  999. unsigned long mapcount_max;
  1000. unsigned long dirty;
  1001. unsigned long swapcache;
  1002. unsigned long node[MAX_NUMNODES];
  1003. };
  1004. struct numa_maps_private {
  1005. struct proc_maps_private proc_maps;
  1006. struct numa_maps md;
  1007. };
  1008. static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
  1009. unsigned long nr_pages)
  1010. {
  1011. int count = page_mapcount(page);
  1012. md->pages += nr_pages;
  1013. if (pte_dirty || PageDirty(page))
  1014. md->dirty += nr_pages;
  1015. if (PageSwapCache(page))
  1016. md->swapcache += nr_pages;
  1017. if (PageActive(page) || PageUnevictable(page))
  1018. md->active += nr_pages;
  1019. if (PageWriteback(page))
  1020. md->writeback += nr_pages;
  1021. if (PageAnon(page))
  1022. md->anon += nr_pages;
  1023. if (count > md->mapcount_max)
  1024. md->mapcount_max = count;
  1025. md->node[page_to_nid(page)] += nr_pages;
  1026. }
  1027. static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
  1028. unsigned long addr)
  1029. {
  1030. struct page *page;
  1031. int nid;
  1032. if (!pte_present(pte))
  1033. return NULL;
  1034. page = vm_normal_page(vma, addr, pte);
  1035. if (!page)
  1036. return NULL;
  1037. if (PageReserved(page))
  1038. return NULL;
  1039. nid = page_to_nid(page);
  1040. if (!node_isset(nid, node_states[N_MEMORY]))
  1041. return NULL;
  1042. return page;
  1043. }
  1044. static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
  1045. unsigned long end, struct mm_walk *walk)
  1046. {
  1047. struct numa_maps *md;
  1048. spinlock_t *ptl;
  1049. pte_t *orig_pte;
  1050. pte_t *pte;
  1051. md = walk->private;
  1052. if (pmd_trans_huge_lock(pmd, md->vma) == 1) {
  1053. pte_t huge_pte = *(pte_t *)pmd;
  1054. struct page *page;
  1055. page = can_gather_numa_stats(huge_pte, md->vma, addr);
  1056. if (page)
  1057. gather_stats(page, md, pte_dirty(huge_pte),
  1058. HPAGE_PMD_SIZE/PAGE_SIZE);
  1059. spin_unlock(&walk->mm->page_table_lock);
  1060. return 0;
  1061. }
  1062. if (pmd_trans_unstable(pmd))
  1063. return 0;
  1064. orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
  1065. do {
  1066. struct page *page = can_gather_numa_stats(*pte, md->vma, addr);
  1067. if (!page)
  1068. continue;
  1069. gather_stats(page, md, pte_dirty(*pte), 1);
  1070. } while (pte++, addr += PAGE_SIZE, addr != end);
  1071. pte_unmap_unlock(orig_pte, ptl);
  1072. return 0;
  1073. }
  1074. #ifdef CONFIG_HUGETLB_PAGE
  1075. static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
  1076. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1077. {
  1078. struct numa_maps *md;
  1079. struct page *page;
  1080. if (pte_none(*pte))
  1081. return 0;
  1082. page = pte_page(*pte);
  1083. if (!page)
  1084. return 0;
  1085. md = walk->private;
  1086. gather_stats(page, md, pte_dirty(*pte), 1);
  1087. return 0;
  1088. }
  1089. #else
  1090. static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
  1091. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1092. {
  1093. return 0;
  1094. }
  1095. #endif
  1096. /*
  1097. * Display pages allocated per node and memory policy via /proc.
  1098. */
  1099. static int show_numa_map(struct seq_file *m, void *v, int is_pid)
  1100. {
  1101. struct numa_maps_private *numa_priv = m->private;
  1102. struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
  1103. struct vm_area_struct *vma = v;
  1104. struct numa_maps *md = &numa_priv->md;
  1105. struct file *file = vma->vm_file;
  1106. struct task_struct *task = proc_priv->task;
  1107. struct mm_struct *mm = vma->vm_mm;
  1108. struct mm_walk walk = {};
  1109. struct mempolicy *pol;
  1110. int n;
  1111. char buffer[50];
  1112. if (!mm)
  1113. return 0;
  1114. /* Ensure we start with an empty set of numa_maps statistics. */
  1115. memset(md, 0, sizeof(*md));
  1116. md->vma = vma;
  1117. walk.hugetlb_entry = gather_hugetbl_stats;
  1118. walk.pmd_entry = gather_pte_stats;
  1119. walk.private = md;
  1120. walk.mm = mm;
  1121. pol = get_vma_policy(task, vma, vma->vm_start);
  1122. mpol_to_str(buffer, sizeof(buffer), pol);
  1123. mpol_cond_put(pol);
  1124. seq_printf(m, "%08lx %s", vma->vm_start, buffer);
  1125. if (file) {
  1126. seq_printf(m, " file=");
  1127. seq_path(m, &file->f_path, "\n\t= ");
  1128. } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
  1129. seq_printf(m, " heap");
  1130. } else {
  1131. pid_t tid = vm_is_stack(task, vma, is_pid);
  1132. if (tid != 0) {
  1133. /*
  1134. * Thread stack in /proc/PID/task/TID/maps or
  1135. * the main process stack.
  1136. */
  1137. if (!is_pid || (vma->vm_start <= mm->start_stack &&
  1138. vma->vm_end >= mm->start_stack))
  1139. seq_printf(m, " stack");
  1140. else
  1141. seq_printf(m, " stack:%d", tid);
  1142. }
  1143. }
  1144. if (is_vm_hugetlb_page(vma))
  1145. seq_printf(m, " huge");
  1146. walk_page_range(vma->vm_start, vma->vm_end, &walk);
  1147. if (!md->pages)
  1148. goto out;
  1149. if (md->anon)
  1150. seq_printf(m, " anon=%lu", md->anon);
  1151. if (md->dirty)
  1152. seq_printf(m, " dirty=%lu", md->dirty);
  1153. if (md->pages != md->anon && md->pages != md->dirty)
  1154. seq_printf(m, " mapped=%lu", md->pages);
  1155. if (md->mapcount_max > 1)
  1156. seq_printf(m, " mapmax=%lu", md->mapcount_max);
  1157. if (md->swapcache)
  1158. seq_printf(m, " swapcache=%lu", md->swapcache);
  1159. if (md->active < md->pages && !is_vm_hugetlb_page(vma))
  1160. seq_printf(m, " active=%lu", md->active);
  1161. if (md->writeback)
  1162. seq_printf(m, " writeback=%lu", md->writeback);
  1163. for_each_node_state(n, N_MEMORY)
  1164. if (md->node[n])
  1165. seq_printf(m, " N%d=%lu", n, md->node[n]);
  1166. out:
  1167. seq_putc(m, '\n');
  1168. if (m->count < m->size)
  1169. m->version = (vma != proc_priv->tail_vma) ? vma->vm_start : 0;
  1170. return 0;
  1171. }
  1172. static int show_pid_numa_map(struct seq_file *m, void *v)
  1173. {
  1174. return show_numa_map(m, v, 1);
  1175. }
  1176. static int show_tid_numa_map(struct seq_file *m, void *v)
  1177. {
  1178. return show_numa_map(m, v, 0);
  1179. }
  1180. static const struct seq_operations proc_pid_numa_maps_op = {
  1181. .start = m_start,
  1182. .next = m_next,
  1183. .stop = m_stop,
  1184. .show = show_pid_numa_map,
  1185. };
  1186. static const struct seq_operations proc_tid_numa_maps_op = {
  1187. .start = m_start,
  1188. .next = m_next,
  1189. .stop = m_stop,
  1190. .show = show_tid_numa_map,
  1191. };
  1192. static int numa_maps_open(struct inode *inode, struct file *file,
  1193. const struct seq_operations *ops)
  1194. {
  1195. struct numa_maps_private *priv;
  1196. int ret = -ENOMEM;
  1197. priv = kzalloc(sizeof(*priv), GFP_KERNEL);
  1198. if (priv) {
  1199. priv->proc_maps.pid = proc_pid(inode);
  1200. ret = seq_open(file, ops);
  1201. if (!ret) {
  1202. struct seq_file *m = file->private_data;
  1203. m->private = priv;
  1204. } else {
  1205. kfree(priv);
  1206. }
  1207. }
  1208. return ret;
  1209. }
  1210. static int pid_numa_maps_open(struct inode *inode, struct file *file)
  1211. {
  1212. return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
  1213. }
  1214. static int tid_numa_maps_open(struct inode *inode, struct file *file)
  1215. {
  1216. return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
  1217. }
  1218. const struct file_operations proc_pid_numa_maps_operations = {
  1219. .open = pid_numa_maps_open,
  1220. .read = seq_read,
  1221. .llseek = seq_lseek,
  1222. .release = seq_release_private,
  1223. };
  1224. const struct file_operations proc_tid_numa_maps_operations = {
  1225. .open = tid_numa_maps_open,
  1226. .read = seq_read,
  1227. .llseek = seq_lseek,
  1228. .release = seq_release_private,
  1229. };
  1230. #endif /* CONFIG_NUMA */