sb_edac.c 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839
  1. /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
  2. *
  3. * This driver supports the memory controllers found on the Intel
  4. * processor family Sandy Bridge.
  5. *
  6. * This file may be distributed under the terms of the
  7. * GNU General Public License version 2 only.
  8. *
  9. * Copyright (c) 2011 by:
  10. * Mauro Carvalho Chehab <mchehab@redhat.com>
  11. */
  12. #include <linux/module.h>
  13. #include <linux/init.h>
  14. #include <linux/pci.h>
  15. #include <linux/pci_ids.h>
  16. #include <linux/slab.h>
  17. #include <linux/delay.h>
  18. #include <linux/edac.h>
  19. #include <linux/mmzone.h>
  20. #include <linux/smp.h>
  21. #include <linux/bitmap.h>
  22. #include <linux/math64.h>
  23. #include <asm/processor.h>
  24. #include <asm/mce.h>
  25. #include "edac_core.h"
  26. /* Static vars */
  27. static LIST_HEAD(sbridge_edac_list);
  28. static DEFINE_MUTEX(sbridge_edac_lock);
  29. static int probed;
  30. /*
  31. * Alter this version for the module when modifications are made
  32. */
  33. #define SBRIDGE_REVISION " Ver: 1.0.0 "
  34. #define EDAC_MOD_STR "sbridge_edac"
  35. /*
  36. * Debug macros
  37. */
  38. #define sbridge_printk(level, fmt, arg...) \
  39. edac_printk(level, "sbridge", fmt, ##arg)
  40. #define sbridge_mc_printk(mci, level, fmt, arg...) \
  41. edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
  42. /*
  43. * Get a bit field at register value <v>, from bit <lo> to bit <hi>
  44. */
  45. #define GET_BITFIELD(v, lo, hi) \
  46. (((v) & ((1ULL << ((hi) - (lo) + 1)) - 1) << (lo)) >> (lo))
  47. /*
  48. * sbridge Memory Controller Registers
  49. */
  50. /*
  51. * FIXME: For now, let's order by device function, as it makes
  52. * easier for driver's development proccess. This table should be
  53. * moved to pci_id.h when submitted upstream
  54. */
  55. #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0 0x3cf4 /* 12.6 */
  56. #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1 0x3cf6 /* 12.7 */
  57. #define PCI_DEVICE_ID_INTEL_SBRIDGE_BR 0x3cf5 /* 13.6 */
  58. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0 0x3ca0 /* 14.0 */
  59. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA 0x3ca8 /* 15.0 */
  60. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS 0x3c71 /* 15.1 */
  61. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0 0x3caa /* 15.2 */
  62. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1 0x3cab /* 15.3 */
  63. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2 0x3cac /* 15.4 */
  64. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3 0x3cad /* 15.5 */
  65. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO 0x3cb8 /* 17.0 */
  66. /*
  67. * Currently, unused, but will be needed in the future
  68. * implementations, as they hold the error counters
  69. */
  70. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR0 0x3c72 /* 16.2 */
  71. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR1 0x3c73 /* 16.3 */
  72. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR2 0x3c76 /* 16.6 */
  73. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR3 0x3c77 /* 16.7 */
  74. /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
  75. static const u32 dram_rule[] = {
  76. 0x80, 0x88, 0x90, 0x98, 0xa0,
  77. 0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
  78. };
  79. #define MAX_SAD ARRAY_SIZE(dram_rule)
  80. #define SAD_LIMIT(reg) ((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
  81. #define DRAM_ATTR(reg) GET_BITFIELD(reg, 2, 3)
  82. #define INTERLEAVE_MODE(reg) GET_BITFIELD(reg, 1, 1)
  83. #define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
  84. static char *get_dram_attr(u32 reg)
  85. {
  86. switch(DRAM_ATTR(reg)) {
  87. case 0:
  88. return "DRAM";
  89. case 1:
  90. return "MMCFG";
  91. case 2:
  92. return "NXM";
  93. default:
  94. return "unknown";
  95. }
  96. }
  97. static const u32 interleave_list[] = {
  98. 0x84, 0x8c, 0x94, 0x9c, 0xa4,
  99. 0xac, 0xb4, 0xbc, 0xc4, 0xcc,
  100. };
  101. #define MAX_INTERLEAVE ARRAY_SIZE(interleave_list)
  102. #define SAD_PKG0(reg) GET_BITFIELD(reg, 0, 2)
  103. #define SAD_PKG1(reg) GET_BITFIELD(reg, 3, 5)
  104. #define SAD_PKG2(reg) GET_BITFIELD(reg, 8, 10)
  105. #define SAD_PKG3(reg) GET_BITFIELD(reg, 11, 13)
  106. #define SAD_PKG4(reg) GET_BITFIELD(reg, 16, 18)
  107. #define SAD_PKG5(reg) GET_BITFIELD(reg, 19, 21)
  108. #define SAD_PKG6(reg) GET_BITFIELD(reg, 24, 26)
  109. #define SAD_PKG7(reg) GET_BITFIELD(reg, 27, 29)
  110. static inline int sad_pkg(u32 reg, int interleave)
  111. {
  112. switch (interleave) {
  113. case 0:
  114. return SAD_PKG0(reg);
  115. case 1:
  116. return SAD_PKG1(reg);
  117. case 2:
  118. return SAD_PKG2(reg);
  119. case 3:
  120. return SAD_PKG3(reg);
  121. case 4:
  122. return SAD_PKG4(reg);
  123. case 5:
  124. return SAD_PKG5(reg);
  125. case 6:
  126. return SAD_PKG6(reg);
  127. case 7:
  128. return SAD_PKG7(reg);
  129. default:
  130. return -EINVAL;
  131. }
  132. }
  133. /* Devices 12 Function 7 */
  134. #define TOLM 0x80
  135. #define TOHM 0x84
  136. #define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff)
  137. #define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
  138. /* Device 13 Function 6 */
  139. #define SAD_TARGET 0xf0
  140. #define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11)
  141. #define SAD_CONTROL 0xf4
  142. #define NODE_ID(reg) GET_BITFIELD(reg, 0, 2)
  143. /* Device 14 function 0 */
  144. static const u32 tad_dram_rule[] = {
  145. 0x40, 0x44, 0x48, 0x4c,
  146. 0x50, 0x54, 0x58, 0x5c,
  147. 0x60, 0x64, 0x68, 0x6c,
  148. };
  149. #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
  150. #define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
  151. #define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11)
  152. #define TAD_CH(reg) GET_BITFIELD(reg, 8, 9)
  153. #define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7)
  154. #define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5)
  155. #define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3)
  156. #define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1)
  157. /* Device 15, function 0 */
  158. #define MCMTR 0x7c
  159. #define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2)
  160. #define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1)
  161. #define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0)
  162. /* Device 15, function 1 */
  163. #define RASENABLES 0xac
  164. #define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0)
  165. /* Device 15, functions 2-5 */
  166. static const int mtr_regs[] = {
  167. 0x80, 0x84, 0x88,
  168. };
  169. #define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19)
  170. #define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14)
  171. #define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13)
  172. #define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4)
  173. #define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1)
  174. static const u32 tad_ch_nilv_offset[] = {
  175. 0x90, 0x94, 0x98, 0x9c,
  176. 0xa0, 0xa4, 0xa8, 0xac,
  177. 0xb0, 0xb4, 0xb8, 0xbc,
  178. };
  179. #define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29)
  180. #define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26)
  181. static const u32 rir_way_limit[] = {
  182. 0x108, 0x10c, 0x110, 0x114, 0x118,
  183. };
  184. #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
  185. #define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31)
  186. #define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29)
  187. #define RIR_LIMIT(reg) ((GET_BITFIELD(reg, 1, 10) << 29)| 0x1fffffff)
  188. #define MAX_RIR_WAY 8
  189. static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
  190. { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
  191. { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
  192. { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
  193. { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
  194. { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
  195. };
  196. #define RIR_RNK_TGT(reg) GET_BITFIELD(reg, 16, 19)
  197. #define RIR_OFFSET(reg) GET_BITFIELD(reg, 2, 14)
  198. /* Device 16, functions 2-7 */
  199. /*
  200. * FIXME: Implement the error count reads directly
  201. */
  202. static const u32 correrrcnt[] = {
  203. 0x104, 0x108, 0x10c, 0x110,
  204. };
  205. #define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31)
  206. #define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30)
  207. #define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15)
  208. #define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14)
  209. static const u32 correrrthrsld[] = {
  210. 0x11c, 0x120, 0x124, 0x128,
  211. };
  212. #define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30)
  213. #define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14)
  214. /* Device 17, function 0 */
  215. #define RANK_CFG_A 0x0328
  216. #define IS_RDIMM_ENABLED(reg) GET_BITFIELD(reg, 11, 11)
  217. /*
  218. * sbridge structs
  219. */
  220. #define NUM_CHANNELS 4
  221. #define MAX_DIMMS 3 /* Max DIMMS per channel */
  222. struct sbridge_info {
  223. u32 mcmtr;
  224. };
  225. struct sbridge_channel {
  226. u32 ranks;
  227. u32 dimms;
  228. };
  229. struct pci_id_descr {
  230. int dev;
  231. int func;
  232. int dev_id;
  233. int optional;
  234. };
  235. struct pci_id_table {
  236. const struct pci_id_descr *descr;
  237. int n_devs;
  238. };
  239. struct sbridge_dev {
  240. struct list_head list;
  241. u8 bus, mc;
  242. u8 node_id, source_id;
  243. struct pci_dev **pdev;
  244. int n_devs;
  245. struct mem_ctl_info *mci;
  246. };
  247. struct sbridge_pvt {
  248. struct pci_dev *pci_ta, *pci_ddrio, *pci_ras;
  249. struct pci_dev *pci_sad0, *pci_sad1, *pci_ha0;
  250. struct pci_dev *pci_br;
  251. struct pci_dev *pci_tad[NUM_CHANNELS];
  252. struct sbridge_dev *sbridge_dev;
  253. struct sbridge_info info;
  254. struct sbridge_channel channel[NUM_CHANNELS];
  255. /* Memory type detection */
  256. bool is_mirrored, is_lockstep, is_close_pg;
  257. /* Fifo double buffers */
  258. struct mce mce_entry[MCE_LOG_LEN];
  259. struct mce mce_outentry[MCE_LOG_LEN];
  260. /* Fifo in/out counters */
  261. unsigned mce_in, mce_out;
  262. /* Count indicator to show errors not got */
  263. unsigned mce_overrun;
  264. /* Memory description */
  265. u64 tolm, tohm;
  266. };
  267. #define PCI_DESCR(device, function, device_id) \
  268. .dev = (device), \
  269. .func = (function), \
  270. .dev_id = (device_id)
  271. static const struct pci_id_descr pci_dev_descr_sbridge[] = {
  272. /* Processor Home Agent */
  273. { PCI_DESCR(14, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0) },
  274. /* Memory controller */
  275. { PCI_DESCR(15, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA) },
  276. { PCI_DESCR(15, 1, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS) },
  277. { PCI_DESCR(15, 2, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0) },
  278. { PCI_DESCR(15, 3, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1) },
  279. { PCI_DESCR(15, 4, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2) },
  280. { PCI_DESCR(15, 5, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3) },
  281. { PCI_DESCR(17, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO) },
  282. /* System Address Decoder */
  283. { PCI_DESCR(12, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0) },
  284. { PCI_DESCR(12, 7, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1) },
  285. /* Broadcast Registers */
  286. { PCI_DESCR(13, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_BR) },
  287. };
  288. #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
  289. static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
  290. PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
  291. {0,} /* 0 terminated list. */
  292. };
  293. /*
  294. * pci_device_id table for which devices we are looking for
  295. */
  296. static DEFINE_PCI_DEVICE_TABLE(sbridge_pci_tbl) = {
  297. {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA)},
  298. {0,} /* 0 terminated list. */
  299. };
  300. /****************************************************************************
  301. Anciliary status routines
  302. ****************************************************************************/
  303. static inline int numrank(u32 mtr)
  304. {
  305. int ranks = (1 << RANK_CNT_BITS(mtr));
  306. if (ranks > 4) {
  307. edac_dbg(0, "Invalid number of ranks: %d (max = 4) raw value = %x (%04x)\n",
  308. ranks, (unsigned int)RANK_CNT_BITS(mtr), mtr);
  309. return -EINVAL;
  310. }
  311. return ranks;
  312. }
  313. static inline int numrow(u32 mtr)
  314. {
  315. int rows = (RANK_WIDTH_BITS(mtr) + 12);
  316. if (rows < 13 || rows > 18) {
  317. edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
  318. rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
  319. return -EINVAL;
  320. }
  321. return 1 << rows;
  322. }
  323. static inline int numcol(u32 mtr)
  324. {
  325. int cols = (COL_WIDTH_BITS(mtr) + 10);
  326. if (cols > 12) {
  327. edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
  328. cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
  329. return -EINVAL;
  330. }
  331. return 1 << cols;
  332. }
  333. static struct sbridge_dev *get_sbridge_dev(u8 bus)
  334. {
  335. struct sbridge_dev *sbridge_dev;
  336. list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
  337. if (sbridge_dev->bus == bus)
  338. return sbridge_dev;
  339. }
  340. return NULL;
  341. }
  342. static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
  343. const struct pci_id_table *table)
  344. {
  345. struct sbridge_dev *sbridge_dev;
  346. sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
  347. if (!sbridge_dev)
  348. return NULL;
  349. sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
  350. GFP_KERNEL);
  351. if (!sbridge_dev->pdev) {
  352. kfree(sbridge_dev);
  353. return NULL;
  354. }
  355. sbridge_dev->bus = bus;
  356. sbridge_dev->n_devs = table->n_devs;
  357. list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
  358. return sbridge_dev;
  359. }
  360. static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
  361. {
  362. list_del(&sbridge_dev->list);
  363. kfree(sbridge_dev->pdev);
  364. kfree(sbridge_dev);
  365. }
  366. /****************************************************************************
  367. Memory check routines
  368. ****************************************************************************/
  369. static struct pci_dev *get_pdev_slot_func(u8 bus, unsigned slot,
  370. unsigned func)
  371. {
  372. struct sbridge_dev *sbridge_dev = get_sbridge_dev(bus);
  373. int i;
  374. if (!sbridge_dev)
  375. return NULL;
  376. for (i = 0; i < sbridge_dev->n_devs; i++) {
  377. if (!sbridge_dev->pdev[i])
  378. continue;
  379. if (PCI_SLOT(sbridge_dev->pdev[i]->devfn) == slot &&
  380. PCI_FUNC(sbridge_dev->pdev[i]->devfn) == func) {
  381. edac_dbg(1, "Associated %02x.%02x.%d with %p\n",
  382. bus, slot, func, sbridge_dev->pdev[i]);
  383. return sbridge_dev->pdev[i];
  384. }
  385. }
  386. return NULL;
  387. }
  388. /**
  389. * check_if_ecc_is_active() - Checks if ECC is active
  390. * bus: Device bus
  391. */
  392. static int check_if_ecc_is_active(const u8 bus)
  393. {
  394. struct pci_dev *pdev = NULL;
  395. u32 mcmtr;
  396. pdev = get_pdev_slot_func(bus, 15, 0);
  397. if (!pdev) {
  398. sbridge_printk(KERN_ERR, "Couldn't find PCI device "
  399. "%2x.%02d.%d!!!\n",
  400. bus, 15, 0);
  401. return -ENODEV;
  402. }
  403. pci_read_config_dword(pdev, MCMTR, &mcmtr);
  404. if (!IS_ECC_ENABLED(mcmtr)) {
  405. sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
  406. return -ENODEV;
  407. }
  408. return 0;
  409. }
  410. static int get_dimm_config(struct mem_ctl_info *mci)
  411. {
  412. struct sbridge_pvt *pvt = mci->pvt_info;
  413. struct dimm_info *dimm;
  414. int i, j, banks, ranks, rows, cols, size, npages;
  415. u32 reg;
  416. enum edac_type mode;
  417. enum mem_type mtype;
  418. pci_read_config_dword(pvt->pci_br, SAD_TARGET, &reg);
  419. pvt->sbridge_dev->source_id = SOURCE_ID(reg);
  420. pci_read_config_dword(pvt->pci_br, SAD_CONTROL, &reg);
  421. pvt->sbridge_dev->node_id = NODE_ID(reg);
  422. edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
  423. pvt->sbridge_dev->mc,
  424. pvt->sbridge_dev->node_id,
  425. pvt->sbridge_dev->source_id);
  426. pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
  427. if (IS_MIRROR_ENABLED(reg)) {
  428. edac_dbg(0, "Memory mirror is enabled\n");
  429. pvt->is_mirrored = true;
  430. } else {
  431. edac_dbg(0, "Memory mirror is disabled\n");
  432. pvt->is_mirrored = false;
  433. }
  434. pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
  435. if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
  436. edac_dbg(0, "Lockstep is enabled\n");
  437. mode = EDAC_S8ECD8ED;
  438. pvt->is_lockstep = true;
  439. } else {
  440. edac_dbg(0, "Lockstep is disabled\n");
  441. mode = EDAC_S4ECD4ED;
  442. pvt->is_lockstep = false;
  443. }
  444. if (IS_CLOSE_PG(pvt->info.mcmtr)) {
  445. edac_dbg(0, "address map is on closed page mode\n");
  446. pvt->is_close_pg = true;
  447. } else {
  448. edac_dbg(0, "address map is on open page mode\n");
  449. pvt->is_close_pg = false;
  450. }
  451. pci_read_config_dword(pvt->pci_ta, RANK_CFG_A, &reg);
  452. if (IS_RDIMM_ENABLED(reg)) {
  453. /* FIXME: Can also be LRDIMM */
  454. edac_dbg(0, "Memory is registered\n");
  455. mtype = MEM_RDDR3;
  456. } else {
  457. edac_dbg(0, "Memory is unregistered\n");
  458. mtype = MEM_DDR3;
  459. }
  460. /* On all supported DDR3 DIMM types, there are 8 banks available */
  461. banks = 8;
  462. for (i = 0; i < NUM_CHANNELS; i++) {
  463. u32 mtr;
  464. for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
  465. dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
  466. i, j, 0);
  467. pci_read_config_dword(pvt->pci_tad[i],
  468. mtr_regs[j], &mtr);
  469. edac_dbg(4, "Channel #%d MTR%d = %x\n", i, j, mtr);
  470. if (IS_DIMM_PRESENT(mtr)) {
  471. pvt->channel[i].dimms++;
  472. ranks = numrank(mtr);
  473. rows = numrow(mtr);
  474. cols = numcol(mtr);
  475. /* DDR3 has 8 I/O banks */
  476. size = (rows * cols * banks * ranks) >> (20 - 3);
  477. npages = MiB_TO_PAGES(size);
  478. edac_dbg(0, "mc#%d: channel %d, dimm %d, %d Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
  479. pvt->sbridge_dev->mc, i, j,
  480. size, npages,
  481. banks, ranks, rows, cols);
  482. dimm->nr_pages = npages;
  483. dimm->grain = 32;
  484. dimm->dtype = (banks == 8) ? DEV_X8 : DEV_X4;
  485. dimm->mtype = mtype;
  486. dimm->edac_mode = mode;
  487. snprintf(dimm->label, sizeof(dimm->label),
  488. "CPU_SrcID#%u_Channel#%u_DIMM#%u",
  489. pvt->sbridge_dev->source_id, i, j);
  490. }
  491. }
  492. }
  493. return 0;
  494. }
  495. static void get_memory_layout(const struct mem_ctl_info *mci)
  496. {
  497. struct sbridge_pvt *pvt = mci->pvt_info;
  498. int i, j, k, n_sads, n_tads, sad_interl;
  499. u32 reg;
  500. u64 limit, prv = 0;
  501. u64 tmp_mb;
  502. u32 mb, kb;
  503. u32 rir_way;
  504. /*
  505. * Step 1) Get TOLM/TOHM ranges
  506. */
  507. /* Address range is 32:28 */
  508. pci_read_config_dword(pvt->pci_sad1, TOLM,
  509. &reg);
  510. pvt->tolm = GET_TOLM(reg);
  511. tmp_mb = (1 + pvt->tolm) >> 20;
  512. mb = div_u64_rem(tmp_mb, 1000, &kb);
  513. edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n", mb, kb, (u64)pvt->tolm);
  514. /* Address range is already 45:25 */
  515. pci_read_config_dword(pvt->pci_sad1, TOHM,
  516. &reg);
  517. pvt->tohm = GET_TOHM(reg);
  518. tmp_mb = (1 + pvt->tohm) >> 20;
  519. mb = div_u64_rem(tmp_mb, 1000, &kb);
  520. edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)", mb, kb, (u64)pvt->tohm);
  521. /*
  522. * Step 2) Get SAD range and SAD Interleave list
  523. * TAD registers contain the interleave wayness. However, it
  524. * seems simpler to just discover it indirectly, with the
  525. * algorithm bellow.
  526. */
  527. prv = 0;
  528. for (n_sads = 0; n_sads < MAX_SAD; n_sads++) {
  529. /* SAD_LIMIT Address range is 45:26 */
  530. pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads],
  531. &reg);
  532. limit = SAD_LIMIT(reg);
  533. if (!DRAM_RULE_ENABLE(reg))
  534. continue;
  535. if (limit <= prv)
  536. break;
  537. tmp_mb = (limit + 1) >> 20;
  538. mb = div_u64_rem(tmp_mb, 1000, &kb);
  539. edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
  540. n_sads,
  541. get_dram_attr(reg),
  542. mb, kb,
  543. ((u64)tmp_mb) << 20L,
  544. INTERLEAVE_MODE(reg) ? "8:6" : "[8:6]XOR[18:16]",
  545. reg);
  546. prv = limit;
  547. pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads],
  548. &reg);
  549. sad_interl = sad_pkg(reg, 0);
  550. for (j = 0; j < 8; j++) {
  551. if (j > 0 && sad_interl == sad_pkg(reg, j))
  552. break;
  553. edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
  554. n_sads, j, sad_pkg(reg, j));
  555. }
  556. }
  557. /*
  558. * Step 3) Get TAD range
  559. */
  560. prv = 0;
  561. for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
  562. pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
  563. &reg);
  564. limit = TAD_LIMIT(reg);
  565. if (limit <= prv)
  566. break;
  567. tmp_mb = (limit + 1) >> 20;
  568. mb = div_u64_rem(tmp_mb, 1000, &kb);
  569. edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
  570. n_tads, mb, kb,
  571. ((u64)tmp_mb) << 20L,
  572. (u32)TAD_SOCK(reg),
  573. (u32)TAD_CH(reg),
  574. (u32)TAD_TGT0(reg),
  575. (u32)TAD_TGT1(reg),
  576. (u32)TAD_TGT2(reg),
  577. (u32)TAD_TGT3(reg),
  578. reg);
  579. prv = limit;
  580. }
  581. /*
  582. * Step 4) Get TAD offsets, per each channel
  583. */
  584. for (i = 0; i < NUM_CHANNELS; i++) {
  585. if (!pvt->channel[i].dimms)
  586. continue;
  587. for (j = 0; j < n_tads; j++) {
  588. pci_read_config_dword(pvt->pci_tad[i],
  589. tad_ch_nilv_offset[j],
  590. &reg);
  591. tmp_mb = TAD_OFFSET(reg) >> 20;
  592. mb = div_u64_rem(tmp_mb, 1000, &kb);
  593. edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
  594. i, j,
  595. mb, kb,
  596. ((u64)tmp_mb) << 20L,
  597. reg);
  598. }
  599. }
  600. /*
  601. * Step 6) Get RIR Wayness/Limit, per each channel
  602. */
  603. for (i = 0; i < NUM_CHANNELS; i++) {
  604. if (!pvt->channel[i].dimms)
  605. continue;
  606. for (j = 0; j < MAX_RIR_RANGES; j++) {
  607. pci_read_config_dword(pvt->pci_tad[i],
  608. rir_way_limit[j],
  609. &reg);
  610. if (!IS_RIR_VALID(reg))
  611. continue;
  612. tmp_mb = RIR_LIMIT(reg) >> 20;
  613. rir_way = 1 << RIR_WAY(reg);
  614. mb = div_u64_rem(tmp_mb, 1000, &kb);
  615. edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
  616. i, j,
  617. mb, kb,
  618. ((u64)tmp_mb) << 20L,
  619. rir_way,
  620. reg);
  621. for (k = 0; k < rir_way; k++) {
  622. pci_read_config_dword(pvt->pci_tad[i],
  623. rir_offset[j][k],
  624. &reg);
  625. tmp_mb = RIR_OFFSET(reg) << 6;
  626. mb = div_u64_rem(tmp_mb, 1000, &kb);
  627. edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
  628. i, j, k,
  629. mb, kb,
  630. ((u64)tmp_mb) << 20L,
  631. (u32)RIR_RNK_TGT(reg),
  632. reg);
  633. }
  634. }
  635. }
  636. }
  637. struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
  638. {
  639. struct sbridge_dev *sbridge_dev;
  640. list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
  641. if (sbridge_dev->node_id == node_id)
  642. return sbridge_dev->mci;
  643. }
  644. return NULL;
  645. }
  646. static int get_memory_error_data(struct mem_ctl_info *mci,
  647. u64 addr,
  648. u8 *socket,
  649. long *channel_mask,
  650. u8 *rank,
  651. char **area_type, char *msg)
  652. {
  653. struct mem_ctl_info *new_mci;
  654. struct sbridge_pvt *pvt = mci->pvt_info;
  655. int n_rir, n_sads, n_tads, sad_way, sck_xch;
  656. int sad_interl, idx, base_ch;
  657. int interleave_mode;
  658. unsigned sad_interleave[MAX_INTERLEAVE];
  659. u32 reg;
  660. u8 ch_way,sck_way;
  661. u32 tad_offset;
  662. u32 rir_way;
  663. u32 mb, kb;
  664. u64 ch_addr, offset, limit, prv = 0;
  665. /*
  666. * Step 0) Check if the address is at special memory ranges
  667. * The check bellow is probably enough to fill all cases where
  668. * the error is not inside a memory, except for the legacy
  669. * range (e. g. VGA addresses). It is unlikely, however, that the
  670. * memory controller would generate an error on that range.
  671. */
  672. if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
  673. sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
  674. return -EINVAL;
  675. }
  676. if (addr >= (u64)pvt->tohm) {
  677. sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
  678. return -EINVAL;
  679. }
  680. /*
  681. * Step 1) Get socket
  682. */
  683. for (n_sads = 0; n_sads < MAX_SAD; n_sads++) {
  684. pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads],
  685. &reg);
  686. if (!DRAM_RULE_ENABLE(reg))
  687. continue;
  688. limit = SAD_LIMIT(reg);
  689. if (limit <= prv) {
  690. sprintf(msg, "Can't discover the memory socket");
  691. return -EINVAL;
  692. }
  693. if (addr <= limit)
  694. break;
  695. prv = limit;
  696. }
  697. if (n_sads == MAX_SAD) {
  698. sprintf(msg, "Can't discover the memory socket");
  699. return -EINVAL;
  700. }
  701. *area_type = get_dram_attr(reg);
  702. interleave_mode = INTERLEAVE_MODE(reg);
  703. pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads],
  704. &reg);
  705. sad_interl = sad_pkg(reg, 0);
  706. for (sad_way = 0; sad_way < 8; sad_way++) {
  707. if (sad_way > 0 && sad_interl == sad_pkg(reg, sad_way))
  708. break;
  709. sad_interleave[sad_way] = sad_pkg(reg, sad_way);
  710. edac_dbg(0, "SAD interleave #%d: %d\n",
  711. sad_way, sad_interleave[sad_way]);
  712. }
  713. edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
  714. pvt->sbridge_dev->mc,
  715. n_sads,
  716. addr,
  717. limit,
  718. sad_way + 7,
  719. interleave_mode ? "" : "XOR[18:16]");
  720. if (interleave_mode)
  721. idx = ((addr >> 6) ^ (addr >> 16)) & 7;
  722. else
  723. idx = (addr >> 6) & 7;
  724. switch (sad_way) {
  725. case 1:
  726. idx = 0;
  727. break;
  728. case 2:
  729. idx = idx & 1;
  730. break;
  731. case 4:
  732. idx = idx & 3;
  733. break;
  734. case 8:
  735. break;
  736. default:
  737. sprintf(msg, "Can't discover socket interleave");
  738. return -EINVAL;
  739. }
  740. *socket = sad_interleave[idx];
  741. edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
  742. idx, sad_way, *socket);
  743. /*
  744. * Move to the proper node structure, in order to access the
  745. * right PCI registers
  746. */
  747. new_mci = get_mci_for_node_id(*socket);
  748. if (!new_mci) {
  749. sprintf(msg, "Struct for socket #%u wasn't initialized",
  750. *socket);
  751. return -EINVAL;
  752. }
  753. mci = new_mci;
  754. pvt = mci->pvt_info;
  755. /*
  756. * Step 2) Get memory channel
  757. */
  758. prv = 0;
  759. for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
  760. pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
  761. &reg);
  762. limit = TAD_LIMIT(reg);
  763. if (limit <= prv) {
  764. sprintf(msg, "Can't discover the memory channel");
  765. return -EINVAL;
  766. }
  767. if (addr <= limit)
  768. break;
  769. prv = limit;
  770. }
  771. ch_way = TAD_CH(reg) + 1;
  772. sck_way = TAD_SOCK(reg) + 1;
  773. /*
  774. * FIXME: Is it right to always use channel 0 for offsets?
  775. */
  776. pci_read_config_dword(pvt->pci_tad[0],
  777. tad_ch_nilv_offset[n_tads],
  778. &tad_offset);
  779. if (ch_way == 3)
  780. idx = addr >> 6;
  781. else
  782. idx = addr >> (6 + sck_way);
  783. idx = idx % ch_way;
  784. /*
  785. * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
  786. */
  787. switch (idx) {
  788. case 0:
  789. base_ch = TAD_TGT0(reg);
  790. break;
  791. case 1:
  792. base_ch = TAD_TGT1(reg);
  793. break;
  794. case 2:
  795. base_ch = TAD_TGT2(reg);
  796. break;
  797. case 3:
  798. base_ch = TAD_TGT3(reg);
  799. break;
  800. default:
  801. sprintf(msg, "Can't discover the TAD target");
  802. return -EINVAL;
  803. }
  804. *channel_mask = 1 << base_ch;
  805. if (pvt->is_mirrored) {
  806. *channel_mask |= 1 << ((base_ch + 2) % 4);
  807. switch(ch_way) {
  808. case 2:
  809. case 4:
  810. sck_xch = 1 << sck_way * (ch_way >> 1);
  811. break;
  812. default:
  813. sprintf(msg, "Invalid mirror set. Can't decode addr");
  814. return -EINVAL;
  815. }
  816. } else
  817. sck_xch = (1 << sck_way) * ch_way;
  818. if (pvt->is_lockstep)
  819. *channel_mask |= 1 << ((base_ch + 1) % 4);
  820. offset = TAD_OFFSET(tad_offset);
  821. edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
  822. n_tads,
  823. addr,
  824. limit,
  825. (u32)TAD_SOCK(reg),
  826. ch_way,
  827. offset,
  828. idx,
  829. base_ch,
  830. *channel_mask);
  831. /* Calculate channel address */
  832. /* Remove the TAD offset */
  833. if (offset > addr) {
  834. sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
  835. offset, addr);
  836. return -EINVAL;
  837. }
  838. addr -= offset;
  839. /* Store the low bits [0:6] of the addr */
  840. ch_addr = addr & 0x7f;
  841. /* Remove socket wayness and remove 6 bits */
  842. addr >>= 6;
  843. addr = div_u64(addr, sck_xch);
  844. #if 0
  845. /* Divide by channel way */
  846. addr = addr / ch_way;
  847. #endif
  848. /* Recover the last 6 bits */
  849. ch_addr |= addr << 6;
  850. /*
  851. * Step 3) Decode rank
  852. */
  853. for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
  854. pci_read_config_dword(pvt->pci_tad[base_ch],
  855. rir_way_limit[n_rir],
  856. &reg);
  857. if (!IS_RIR_VALID(reg))
  858. continue;
  859. limit = RIR_LIMIT(reg);
  860. mb = div_u64_rem(limit >> 20, 1000, &kb);
  861. edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
  862. n_rir,
  863. mb, kb,
  864. limit,
  865. 1 << RIR_WAY(reg));
  866. if (ch_addr <= limit)
  867. break;
  868. }
  869. if (n_rir == MAX_RIR_RANGES) {
  870. sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
  871. ch_addr);
  872. return -EINVAL;
  873. }
  874. rir_way = RIR_WAY(reg);
  875. if (pvt->is_close_pg)
  876. idx = (ch_addr >> 6);
  877. else
  878. idx = (ch_addr >> 13); /* FIXME: Datasheet says to shift by 15 */
  879. idx %= 1 << rir_way;
  880. pci_read_config_dword(pvt->pci_tad[base_ch],
  881. rir_offset[n_rir][idx],
  882. &reg);
  883. *rank = RIR_RNK_TGT(reg);
  884. edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
  885. n_rir,
  886. ch_addr,
  887. limit,
  888. rir_way,
  889. idx);
  890. return 0;
  891. }
  892. /****************************************************************************
  893. Device initialization routines: put/get, init/exit
  894. ****************************************************************************/
  895. /*
  896. * sbridge_put_all_devices 'put' all the devices that we have
  897. * reserved via 'get'
  898. */
  899. static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
  900. {
  901. int i;
  902. edac_dbg(0, "\n");
  903. for (i = 0; i < sbridge_dev->n_devs; i++) {
  904. struct pci_dev *pdev = sbridge_dev->pdev[i];
  905. if (!pdev)
  906. continue;
  907. edac_dbg(0, "Removing dev %02x:%02x.%d\n",
  908. pdev->bus->number,
  909. PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
  910. pci_dev_put(pdev);
  911. }
  912. }
  913. static void sbridge_put_all_devices(void)
  914. {
  915. struct sbridge_dev *sbridge_dev, *tmp;
  916. list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
  917. sbridge_put_devices(sbridge_dev);
  918. free_sbridge_dev(sbridge_dev);
  919. }
  920. }
  921. /*
  922. * sbridge_get_all_devices Find and perform 'get' operation on the MCH's
  923. * device/functions we want to reference for this driver
  924. *
  925. * Need to 'get' device 16 func 1 and func 2
  926. */
  927. static int sbridge_get_onedevice(struct pci_dev **prev,
  928. u8 *num_mc,
  929. const struct pci_id_table *table,
  930. const unsigned devno)
  931. {
  932. struct sbridge_dev *sbridge_dev;
  933. const struct pci_id_descr *dev_descr = &table->descr[devno];
  934. struct pci_dev *pdev = NULL;
  935. u8 bus = 0;
  936. sbridge_printk(KERN_INFO,
  937. "Seeking for: dev %02x.%d PCI ID %04x:%04x\n",
  938. dev_descr->dev, dev_descr->func,
  939. PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
  940. pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
  941. dev_descr->dev_id, *prev);
  942. if (!pdev) {
  943. if (*prev) {
  944. *prev = pdev;
  945. return 0;
  946. }
  947. if (dev_descr->optional)
  948. return 0;
  949. if (devno == 0)
  950. return -ENODEV;
  951. sbridge_printk(KERN_INFO,
  952. "Device not found: dev %02x.%d PCI ID %04x:%04x\n",
  953. dev_descr->dev, dev_descr->func,
  954. PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
  955. /* End of list, leave */
  956. return -ENODEV;
  957. }
  958. bus = pdev->bus->number;
  959. sbridge_dev = get_sbridge_dev(bus);
  960. if (!sbridge_dev) {
  961. sbridge_dev = alloc_sbridge_dev(bus, table);
  962. if (!sbridge_dev) {
  963. pci_dev_put(pdev);
  964. return -ENOMEM;
  965. }
  966. (*num_mc)++;
  967. }
  968. if (sbridge_dev->pdev[devno]) {
  969. sbridge_printk(KERN_ERR,
  970. "Duplicated device for "
  971. "dev %02x:%d.%d PCI ID %04x:%04x\n",
  972. bus, dev_descr->dev, dev_descr->func,
  973. PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
  974. pci_dev_put(pdev);
  975. return -ENODEV;
  976. }
  977. sbridge_dev->pdev[devno] = pdev;
  978. /* Sanity check */
  979. if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
  980. PCI_FUNC(pdev->devfn) != dev_descr->func)) {
  981. sbridge_printk(KERN_ERR,
  982. "Device PCI ID %04x:%04x "
  983. "has dev %02x:%d.%d instead of dev %02x:%02x.%d\n",
  984. PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
  985. bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
  986. bus, dev_descr->dev, dev_descr->func);
  987. return -ENODEV;
  988. }
  989. /* Be sure that the device is enabled */
  990. if (unlikely(pci_enable_device(pdev) < 0)) {
  991. sbridge_printk(KERN_ERR,
  992. "Couldn't enable "
  993. "dev %02x:%d.%d PCI ID %04x:%04x\n",
  994. bus, dev_descr->dev, dev_descr->func,
  995. PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
  996. return -ENODEV;
  997. }
  998. edac_dbg(0, "Detected dev %02x:%d.%d PCI ID %04x:%04x\n",
  999. bus, dev_descr->dev, dev_descr->func,
  1000. PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
  1001. /*
  1002. * As stated on drivers/pci/search.c, the reference count for
  1003. * @from is always decremented if it is not %NULL. So, as we need
  1004. * to get all devices up to null, we need to do a get for the device
  1005. */
  1006. pci_dev_get(pdev);
  1007. *prev = pdev;
  1008. return 0;
  1009. }
  1010. static int sbridge_get_all_devices(u8 *num_mc)
  1011. {
  1012. int i, rc;
  1013. struct pci_dev *pdev = NULL;
  1014. const struct pci_id_table *table = pci_dev_descr_sbridge_table;
  1015. while (table && table->descr) {
  1016. for (i = 0; i < table->n_devs; i++) {
  1017. pdev = NULL;
  1018. do {
  1019. rc = sbridge_get_onedevice(&pdev, num_mc,
  1020. table, i);
  1021. if (rc < 0) {
  1022. if (i == 0) {
  1023. i = table->n_devs;
  1024. break;
  1025. }
  1026. sbridge_put_all_devices();
  1027. return -ENODEV;
  1028. }
  1029. } while (pdev);
  1030. }
  1031. table++;
  1032. }
  1033. return 0;
  1034. }
  1035. static int mci_bind_devs(struct mem_ctl_info *mci,
  1036. struct sbridge_dev *sbridge_dev)
  1037. {
  1038. struct sbridge_pvt *pvt = mci->pvt_info;
  1039. struct pci_dev *pdev;
  1040. int i, func, slot;
  1041. for (i = 0; i < sbridge_dev->n_devs; i++) {
  1042. pdev = sbridge_dev->pdev[i];
  1043. if (!pdev)
  1044. continue;
  1045. slot = PCI_SLOT(pdev->devfn);
  1046. func = PCI_FUNC(pdev->devfn);
  1047. switch (slot) {
  1048. case 12:
  1049. switch (func) {
  1050. case 6:
  1051. pvt->pci_sad0 = pdev;
  1052. break;
  1053. case 7:
  1054. pvt->pci_sad1 = pdev;
  1055. break;
  1056. default:
  1057. goto error;
  1058. }
  1059. break;
  1060. case 13:
  1061. switch (func) {
  1062. case 6:
  1063. pvt->pci_br = pdev;
  1064. break;
  1065. default:
  1066. goto error;
  1067. }
  1068. break;
  1069. case 14:
  1070. switch (func) {
  1071. case 0:
  1072. pvt->pci_ha0 = pdev;
  1073. break;
  1074. default:
  1075. goto error;
  1076. }
  1077. break;
  1078. case 15:
  1079. switch (func) {
  1080. case 0:
  1081. pvt->pci_ta = pdev;
  1082. break;
  1083. case 1:
  1084. pvt->pci_ras = pdev;
  1085. break;
  1086. case 2:
  1087. case 3:
  1088. case 4:
  1089. case 5:
  1090. pvt->pci_tad[func - 2] = pdev;
  1091. break;
  1092. default:
  1093. goto error;
  1094. }
  1095. break;
  1096. case 17:
  1097. switch (func) {
  1098. case 0:
  1099. pvt->pci_ddrio = pdev;
  1100. break;
  1101. default:
  1102. goto error;
  1103. }
  1104. break;
  1105. default:
  1106. goto error;
  1107. }
  1108. edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
  1109. sbridge_dev->bus,
  1110. PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
  1111. pdev);
  1112. }
  1113. /* Check if everything were registered */
  1114. if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
  1115. !pvt-> pci_tad || !pvt->pci_ras || !pvt->pci_ta ||
  1116. !pvt->pci_ddrio)
  1117. goto enodev;
  1118. for (i = 0; i < NUM_CHANNELS; i++) {
  1119. if (!pvt->pci_tad[i])
  1120. goto enodev;
  1121. }
  1122. return 0;
  1123. enodev:
  1124. sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
  1125. return -ENODEV;
  1126. error:
  1127. sbridge_printk(KERN_ERR, "Device %d, function %d "
  1128. "is out of the expected range\n",
  1129. slot, func);
  1130. return -EINVAL;
  1131. }
  1132. /****************************************************************************
  1133. Error check routines
  1134. ****************************************************************************/
  1135. /*
  1136. * While Sandy Bridge has error count registers, SMI BIOS read values from
  1137. * and resets the counters. So, they are not reliable for the OS to read
  1138. * from them. So, we have no option but to just trust on whatever MCE is
  1139. * telling us about the errors.
  1140. */
  1141. static void sbridge_mce_output_error(struct mem_ctl_info *mci,
  1142. const struct mce *m)
  1143. {
  1144. struct mem_ctl_info *new_mci;
  1145. struct sbridge_pvt *pvt = mci->pvt_info;
  1146. enum hw_event_mc_err_type tp_event;
  1147. char *type, *optype, msg[256];
  1148. bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
  1149. bool overflow = GET_BITFIELD(m->status, 62, 62);
  1150. bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
  1151. bool recoverable = GET_BITFIELD(m->status, 56, 56);
  1152. u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
  1153. u32 mscod = GET_BITFIELD(m->status, 16, 31);
  1154. u32 errcode = GET_BITFIELD(m->status, 0, 15);
  1155. u32 channel = GET_BITFIELD(m->status, 0, 3);
  1156. u32 optypenum = GET_BITFIELD(m->status, 4, 6);
  1157. long channel_mask, first_channel;
  1158. u8 rank, socket;
  1159. int rc, dimm;
  1160. char *area_type = NULL;
  1161. if (uncorrected_error) {
  1162. if (ripv) {
  1163. type = "FATAL";
  1164. tp_event = HW_EVENT_ERR_FATAL;
  1165. } else {
  1166. type = "NON_FATAL";
  1167. tp_event = HW_EVENT_ERR_UNCORRECTED;
  1168. }
  1169. } else {
  1170. type = "CORRECTED";
  1171. tp_event = HW_EVENT_ERR_CORRECTED;
  1172. }
  1173. /*
  1174. * According with Table 15-9 of the Intel Archictecture spec vol 3A,
  1175. * memory errors should fit in this mask:
  1176. * 000f 0000 1mmm cccc (binary)
  1177. * where:
  1178. * f = Correction Report Filtering Bit. If 1, subsequent errors
  1179. * won't be shown
  1180. * mmm = error type
  1181. * cccc = channel
  1182. * If the mask doesn't match, report an error to the parsing logic
  1183. */
  1184. if (! ((errcode & 0xef80) == 0x80)) {
  1185. optype = "Can't parse: it is not a mem";
  1186. } else {
  1187. switch (optypenum) {
  1188. case 0:
  1189. optype = "generic undef request error";
  1190. break;
  1191. case 1:
  1192. optype = "memory read error";
  1193. break;
  1194. case 2:
  1195. optype = "memory write error";
  1196. break;
  1197. case 3:
  1198. optype = "addr/cmd error";
  1199. break;
  1200. case 4:
  1201. optype = "memory scrubbing error";
  1202. break;
  1203. default:
  1204. optype = "reserved";
  1205. break;
  1206. }
  1207. }
  1208. rc = get_memory_error_data(mci, m->addr, &socket,
  1209. &channel_mask, &rank, &area_type, msg);
  1210. if (rc < 0)
  1211. goto err_parsing;
  1212. new_mci = get_mci_for_node_id(socket);
  1213. if (!new_mci) {
  1214. strcpy(msg, "Error: socket got corrupted!");
  1215. goto err_parsing;
  1216. }
  1217. mci = new_mci;
  1218. pvt = mci->pvt_info;
  1219. first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
  1220. if (rank < 4)
  1221. dimm = 0;
  1222. else if (rank < 8)
  1223. dimm = 1;
  1224. else
  1225. dimm = 2;
  1226. /*
  1227. * FIXME: On some memory configurations (mirror, lockstep), the
  1228. * Memory Controller can't point the error to a single DIMM. The
  1229. * EDAC core should be handling the channel mask, in order to point
  1230. * to the group of dimm's where the error may be happening.
  1231. */
  1232. snprintf(msg, sizeof(msg),
  1233. "count:%d%s%s area:%s err_code:%04x:%04x socket:%d channel_mask:%ld rank:%d",
  1234. core_err_cnt,
  1235. overflow ? " OVERFLOW" : "",
  1236. (uncorrected_error && recoverable) ? " recoverable" : "",
  1237. area_type,
  1238. mscod, errcode,
  1239. socket,
  1240. channel_mask,
  1241. rank);
  1242. edac_dbg(0, "%s\n", msg);
  1243. /* FIXME: need support for channel mask */
  1244. /* Call the helper to output message */
  1245. edac_mc_handle_error(tp_event, mci,
  1246. m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
  1247. channel, dimm, -1,
  1248. optype, msg);
  1249. return;
  1250. err_parsing:
  1251. edac_mc_handle_error(tp_event, mci, 0, 0, 0,
  1252. -1, -1, -1,
  1253. msg, "");
  1254. }
  1255. /*
  1256. * sbridge_check_error Retrieve and process errors reported by the
  1257. * hardware. Called by the Core module.
  1258. */
  1259. static void sbridge_check_error(struct mem_ctl_info *mci)
  1260. {
  1261. struct sbridge_pvt *pvt = mci->pvt_info;
  1262. int i;
  1263. unsigned count = 0;
  1264. struct mce *m;
  1265. /*
  1266. * MCE first step: Copy all mce errors into a temporary buffer
  1267. * We use a double buffering here, to reduce the risk of
  1268. * loosing an error.
  1269. */
  1270. smp_rmb();
  1271. count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
  1272. % MCE_LOG_LEN;
  1273. if (!count)
  1274. return;
  1275. m = pvt->mce_outentry;
  1276. if (pvt->mce_in + count > MCE_LOG_LEN) {
  1277. unsigned l = MCE_LOG_LEN - pvt->mce_in;
  1278. memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
  1279. smp_wmb();
  1280. pvt->mce_in = 0;
  1281. count -= l;
  1282. m += l;
  1283. }
  1284. memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
  1285. smp_wmb();
  1286. pvt->mce_in += count;
  1287. smp_rmb();
  1288. if (pvt->mce_overrun) {
  1289. sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
  1290. pvt->mce_overrun);
  1291. smp_wmb();
  1292. pvt->mce_overrun = 0;
  1293. }
  1294. /*
  1295. * MCE second step: parse errors and display
  1296. */
  1297. for (i = 0; i < count; i++)
  1298. sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
  1299. }
  1300. /*
  1301. * sbridge_mce_check_error Replicates mcelog routine to get errors
  1302. * This routine simply queues mcelog errors, and
  1303. * return. The error itself should be handled later
  1304. * by sbridge_check_error.
  1305. * WARNING: As this routine should be called at NMI time, extra care should
  1306. * be taken to avoid deadlocks, and to be as fast as possible.
  1307. */
  1308. static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
  1309. void *data)
  1310. {
  1311. struct mce *mce = (struct mce *)data;
  1312. struct mem_ctl_info *mci;
  1313. struct sbridge_pvt *pvt;
  1314. mci = get_mci_for_node_id(mce->socketid);
  1315. if (!mci)
  1316. return NOTIFY_BAD;
  1317. pvt = mci->pvt_info;
  1318. /*
  1319. * Just let mcelog handle it if the error is
  1320. * outside the memory controller. A memory error
  1321. * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
  1322. * bit 12 has an special meaning.
  1323. */
  1324. if ((mce->status & 0xefff) >> 7 != 1)
  1325. return NOTIFY_DONE;
  1326. printk("sbridge: HANDLING MCE MEMORY ERROR\n");
  1327. printk("CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
  1328. mce->extcpu, mce->mcgstatus, mce->bank, mce->status);
  1329. printk("TSC %llx ", mce->tsc);
  1330. printk("ADDR %llx ", mce->addr);
  1331. printk("MISC %llx ", mce->misc);
  1332. printk("PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
  1333. mce->cpuvendor, mce->cpuid, mce->time,
  1334. mce->socketid, mce->apicid);
  1335. /* Only handle if it is the right mc controller */
  1336. if (cpu_data(mce->cpu).phys_proc_id != pvt->sbridge_dev->mc)
  1337. return NOTIFY_DONE;
  1338. smp_rmb();
  1339. if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
  1340. smp_wmb();
  1341. pvt->mce_overrun++;
  1342. return NOTIFY_DONE;
  1343. }
  1344. /* Copy memory error at the ringbuffer */
  1345. memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
  1346. smp_wmb();
  1347. pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
  1348. /* Handle fatal errors immediately */
  1349. if (mce->mcgstatus & 1)
  1350. sbridge_check_error(mci);
  1351. /* Advice mcelog that the error were handled */
  1352. return NOTIFY_STOP;
  1353. }
  1354. static struct notifier_block sbridge_mce_dec = {
  1355. .notifier_call = sbridge_mce_check_error,
  1356. };
  1357. /****************************************************************************
  1358. EDAC register/unregister logic
  1359. ****************************************************************************/
  1360. static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
  1361. {
  1362. struct mem_ctl_info *mci = sbridge_dev->mci;
  1363. struct sbridge_pvt *pvt;
  1364. if (unlikely(!mci || !mci->pvt_info)) {
  1365. edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
  1366. sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
  1367. return;
  1368. }
  1369. pvt = mci->pvt_info;
  1370. edac_dbg(0, "MC: mci = %p, dev = %p\n",
  1371. mci, &sbridge_dev->pdev[0]->dev);
  1372. mce_unregister_decode_chain(&sbridge_mce_dec);
  1373. /* Remove MC sysfs nodes */
  1374. edac_mc_del_mc(mci->pdev);
  1375. edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
  1376. kfree(mci->ctl_name);
  1377. edac_mc_free(mci);
  1378. sbridge_dev->mci = NULL;
  1379. }
  1380. static int sbridge_register_mci(struct sbridge_dev *sbridge_dev)
  1381. {
  1382. struct mem_ctl_info *mci;
  1383. struct edac_mc_layer layers[2];
  1384. struct sbridge_pvt *pvt;
  1385. int rc;
  1386. /* Check the number of active and not disabled channels */
  1387. rc = check_if_ecc_is_active(sbridge_dev->bus);
  1388. if (unlikely(rc < 0))
  1389. return rc;
  1390. /* allocate a new MC control structure */
  1391. layers[0].type = EDAC_MC_LAYER_CHANNEL;
  1392. layers[0].size = NUM_CHANNELS;
  1393. layers[0].is_virt_csrow = false;
  1394. layers[1].type = EDAC_MC_LAYER_SLOT;
  1395. layers[1].size = MAX_DIMMS;
  1396. layers[1].is_virt_csrow = true;
  1397. mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
  1398. sizeof(*pvt));
  1399. if (unlikely(!mci))
  1400. return -ENOMEM;
  1401. edac_dbg(0, "MC: mci = %p, dev = %p\n",
  1402. mci, &sbridge_dev->pdev[0]->dev);
  1403. pvt = mci->pvt_info;
  1404. memset(pvt, 0, sizeof(*pvt));
  1405. /* Associate sbridge_dev and mci for future usage */
  1406. pvt->sbridge_dev = sbridge_dev;
  1407. sbridge_dev->mci = mci;
  1408. mci->mtype_cap = MEM_FLAG_DDR3;
  1409. mci->edac_ctl_cap = EDAC_FLAG_NONE;
  1410. mci->edac_cap = EDAC_FLAG_NONE;
  1411. mci->mod_name = "sbridge_edac.c";
  1412. mci->mod_ver = SBRIDGE_REVISION;
  1413. mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
  1414. mci->dev_name = pci_name(sbridge_dev->pdev[0]);
  1415. mci->ctl_page_to_phys = NULL;
  1416. /* Set the function pointer to an actual operation function */
  1417. mci->edac_check = sbridge_check_error;
  1418. /* Store pci devices at mci for faster access */
  1419. rc = mci_bind_devs(mci, sbridge_dev);
  1420. if (unlikely(rc < 0))
  1421. goto fail0;
  1422. /* Get dimm basic config and the memory layout */
  1423. get_dimm_config(mci);
  1424. get_memory_layout(mci);
  1425. /* record ptr to the generic device */
  1426. mci->pdev = &sbridge_dev->pdev[0]->dev;
  1427. /* add this new MC control structure to EDAC's list of MCs */
  1428. if (unlikely(edac_mc_add_mc(mci))) {
  1429. edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
  1430. rc = -EINVAL;
  1431. goto fail0;
  1432. }
  1433. mce_register_decode_chain(&sbridge_mce_dec);
  1434. return 0;
  1435. fail0:
  1436. kfree(mci->ctl_name);
  1437. edac_mc_free(mci);
  1438. sbridge_dev->mci = NULL;
  1439. return rc;
  1440. }
  1441. /*
  1442. * sbridge_probe Probe for ONE instance of device to see if it is
  1443. * present.
  1444. * return:
  1445. * 0 for FOUND a device
  1446. * < 0 for error code
  1447. */
  1448. static int __devinit sbridge_probe(struct pci_dev *pdev,
  1449. const struct pci_device_id *id)
  1450. {
  1451. int rc;
  1452. u8 mc, num_mc = 0;
  1453. struct sbridge_dev *sbridge_dev;
  1454. /* get the pci devices we want to reserve for our use */
  1455. mutex_lock(&sbridge_edac_lock);
  1456. /*
  1457. * All memory controllers are allocated at the first pass.
  1458. */
  1459. if (unlikely(probed >= 1)) {
  1460. mutex_unlock(&sbridge_edac_lock);
  1461. return -ENODEV;
  1462. }
  1463. probed++;
  1464. rc = sbridge_get_all_devices(&num_mc);
  1465. if (unlikely(rc < 0))
  1466. goto fail0;
  1467. mc = 0;
  1468. list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
  1469. edac_dbg(0, "Registering MC#%d (%d of %d)\n",
  1470. mc, mc + 1, num_mc);
  1471. sbridge_dev->mc = mc++;
  1472. rc = sbridge_register_mci(sbridge_dev);
  1473. if (unlikely(rc < 0))
  1474. goto fail1;
  1475. }
  1476. sbridge_printk(KERN_INFO, "Driver loaded.\n");
  1477. mutex_unlock(&sbridge_edac_lock);
  1478. return 0;
  1479. fail1:
  1480. list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
  1481. sbridge_unregister_mci(sbridge_dev);
  1482. sbridge_put_all_devices();
  1483. fail0:
  1484. mutex_unlock(&sbridge_edac_lock);
  1485. return rc;
  1486. }
  1487. /*
  1488. * sbridge_remove destructor for one instance of device
  1489. *
  1490. */
  1491. static void __devexit sbridge_remove(struct pci_dev *pdev)
  1492. {
  1493. struct sbridge_dev *sbridge_dev;
  1494. edac_dbg(0, "\n");
  1495. /*
  1496. * we have a trouble here: pdev value for removal will be wrong, since
  1497. * it will point to the X58 register used to detect that the machine
  1498. * is a Nehalem or upper design. However, due to the way several PCI
  1499. * devices are grouped together to provide MC functionality, we need
  1500. * to use a different method for releasing the devices
  1501. */
  1502. mutex_lock(&sbridge_edac_lock);
  1503. if (unlikely(!probed)) {
  1504. mutex_unlock(&sbridge_edac_lock);
  1505. return;
  1506. }
  1507. list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
  1508. sbridge_unregister_mci(sbridge_dev);
  1509. /* Release PCI resources */
  1510. sbridge_put_all_devices();
  1511. probed--;
  1512. mutex_unlock(&sbridge_edac_lock);
  1513. }
  1514. MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);
  1515. /*
  1516. * sbridge_driver pci_driver structure for this module
  1517. *
  1518. */
  1519. static struct pci_driver sbridge_driver = {
  1520. .name = "sbridge_edac",
  1521. .probe = sbridge_probe,
  1522. .remove = __devexit_p(sbridge_remove),
  1523. .id_table = sbridge_pci_tbl,
  1524. };
  1525. /*
  1526. * sbridge_init Module entry function
  1527. * Try to initialize this module for its devices
  1528. */
  1529. static int __init sbridge_init(void)
  1530. {
  1531. int pci_rc;
  1532. edac_dbg(2, "\n");
  1533. /* Ensure that the OPSTATE is set correctly for POLL or NMI */
  1534. opstate_init();
  1535. pci_rc = pci_register_driver(&sbridge_driver);
  1536. if (pci_rc >= 0)
  1537. return 0;
  1538. sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
  1539. pci_rc);
  1540. return pci_rc;
  1541. }
  1542. /*
  1543. * sbridge_exit() Module exit function
  1544. * Unregister the driver
  1545. */
  1546. static void __exit sbridge_exit(void)
  1547. {
  1548. edac_dbg(2, "\n");
  1549. pci_unregister_driver(&sbridge_driver);
  1550. }
  1551. module_init(sbridge_init);
  1552. module_exit(sbridge_exit);
  1553. module_param(edac_op_state, int, 0444);
  1554. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
  1555. MODULE_LICENSE("GPL");
  1556. MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
  1557. MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
  1558. MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge memory controllers - "
  1559. SBRIDGE_REVISION);