compaction.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837
  1. /*
  2. * linux/mm/compaction.c
  3. *
  4. * Memory compaction for the reduction of external fragmentation. Note that
  5. * this heavily depends upon page migration to do all the real heavy
  6. * lifting
  7. *
  8. * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
  9. */
  10. #include <linux/swap.h>
  11. #include <linux/migrate.h>
  12. #include <linux/compaction.h>
  13. #include <linux/mm_inline.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/sysctl.h>
  16. #include <linux/sysfs.h>
  17. #include "internal.h"
  18. #define CREATE_TRACE_POINTS
  19. #include <trace/events/compaction.h>
  20. /*
  21. * compact_control is used to track pages being migrated and the free pages
  22. * they are being migrated to during memory compaction. The free_pfn starts
  23. * at the end of a zone and migrate_pfn begins at the start. Movable pages
  24. * are moved to the end of a zone during a compaction run and the run
  25. * completes when free_pfn <= migrate_pfn
  26. */
  27. struct compact_control {
  28. struct list_head freepages; /* List of free pages to migrate to */
  29. struct list_head migratepages; /* List of pages being migrated */
  30. unsigned long nr_freepages; /* Number of isolated free pages */
  31. unsigned long nr_migratepages; /* Number of pages to migrate */
  32. unsigned long free_pfn; /* isolate_freepages search base */
  33. unsigned long migrate_pfn; /* isolate_migratepages search base */
  34. bool sync; /* Synchronous migration */
  35. int order; /* order a direct compactor needs */
  36. int migratetype; /* MOVABLE, RECLAIMABLE etc */
  37. struct zone *zone;
  38. };
  39. static unsigned long release_freepages(struct list_head *freelist)
  40. {
  41. struct page *page, *next;
  42. unsigned long count = 0;
  43. list_for_each_entry_safe(page, next, freelist, lru) {
  44. list_del(&page->lru);
  45. __free_page(page);
  46. count++;
  47. }
  48. return count;
  49. }
  50. /* Isolate free pages onto a private freelist. Must hold zone->lock */
  51. static unsigned long isolate_freepages_block(struct zone *zone,
  52. unsigned long blockpfn,
  53. struct list_head *freelist)
  54. {
  55. unsigned long zone_end_pfn, end_pfn;
  56. int nr_scanned = 0, total_isolated = 0;
  57. struct page *cursor;
  58. /* Get the last PFN we should scan for free pages at */
  59. zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
  60. end_pfn = min(blockpfn + pageblock_nr_pages, zone_end_pfn);
  61. /* Find the first usable PFN in the block to initialse page cursor */
  62. for (; blockpfn < end_pfn; blockpfn++) {
  63. if (pfn_valid_within(blockpfn))
  64. break;
  65. }
  66. cursor = pfn_to_page(blockpfn);
  67. /* Isolate free pages. This assumes the block is valid */
  68. for (; blockpfn < end_pfn; blockpfn++, cursor++) {
  69. int isolated, i;
  70. struct page *page = cursor;
  71. if (!pfn_valid_within(blockpfn))
  72. continue;
  73. nr_scanned++;
  74. if (!PageBuddy(page))
  75. continue;
  76. /* Found a free page, break it into order-0 pages */
  77. isolated = split_free_page(page);
  78. total_isolated += isolated;
  79. for (i = 0; i < isolated; i++) {
  80. list_add(&page->lru, freelist);
  81. page++;
  82. }
  83. /* If a page was split, advance to the end of it */
  84. if (isolated) {
  85. blockpfn += isolated - 1;
  86. cursor += isolated - 1;
  87. }
  88. }
  89. trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
  90. return total_isolated;
  91. }
  92. /* Returns true if the page is within a block suitable for migration to */
  93. static bool suitable_migration_target(struct page *page)
  94. {
  95. int migratetype = get_pageblock_migratetype(page);
  96. /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
  97. if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
  98. return false;
  99. /* If the page is a large free page, then allow migration */
  100. if (PageBuddy(page) && page_order(page) >= pageblock_order)
  101. return true;
  102. /* If the block is MIGRATE_MOVABLE, allow migration */
  103. if (migratetype == MIGRATE_MOVABLE)
  104. return true;
  105. /* Otherwise skip the block */
  106. return false;
  107. }
  108. static void map_pages(struct list_head *list)
  109. {
  110. struct page *page;
  111. list_for_each_entry(page, list, lru) {
  112. arch_alloc_page(page, 0);
  113. kernel_map_pages(page, 1, 1);
  114. }
  115. }
  116. /*
  117. * Based on information in the current compact_control, find blocks
  118. * suitable for isolating free pages from and then isolate them.
  119. */
  120. static void isolate_freepages(struct zone *zone,
  121. struct compact_control *cc)
  122. {
  123. struct page *page;
  124. unsigned long high_pfn, low_pfn, pfn;
  125. unsigned long flags;
  126. int nr_freepages = cc->nr_freepages;
  127. struct list_head *freelist = &cc->freepages;
  128. /*
  129. * Initialise the free scanner. The starting point is where we last
  130. * scanned from (or the end of the zone if starting). The low point
  131. * is the end of the pageblock the migration scanner is using.
  132. */
  133. pfn = cc->free_pfn;
  134. low_pfn = cc->migrate_pfn + pageblock_nr_pages;
  135. /*
  136. * Take care that if the migration scanner is at the end of the zone
  137. * that the free scanner does not accidentally move to the next zone
  138. * in the next isolation cycle.
  139. */
  140. high_pfn = min(low_pfn, pfn);
  141. /*
  142. * Isolate free pages until enough are available to migrate the
  143. * pages on cc->migratepages. We stop searching if the migrate
  144. * and free page scanners meet or enough free pages are isolated.
  145. */
  146. for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
  147. pfn -= pageblock_nr_pages) {
  148. unsigned long isolated;
  149. if (!pfn_valid(pfn))
  150. continue;
  151. /*
  152. * Check for overlapping nodes/zones. It's possible on some
  153. * configurations to have a setup like
  154. * node0 node1 node0
  155. * i.e. it's possible that all pages within a zones range of
  156. * pages do not belong to a single zone.
  157. */
  158. page = pfn_to_page(pfn);
  159. if (page_zone(page) != zone)
  160. continue;
  161. /* Check the block is suitable for migration */
  162. if (!suitable_migration_target(page))
  163. continue;
  164. /*
  165. * Found a block suitable for isolating free pages from. Now
  166. * we disabled interrupts, double check things are ok and
  167. * isolate the pages. This is to minimise the time IRQs
  168. * are disabled
  169. */
  170. isolated = 0;
  171. spin_lock_irqsave(&zone->lock, flags);
  172. if (suitable_migration_target(page)) {
  173. isolated = isolate_freepages_block(zone, pfn, freelist);
  174. nr_freepages += isolated;
  175. }
  176. spin_unlock_irqrestore(&zone->lock, flags);
  177. /*
  178. * Record the highest PFN we isolated pages from. When next
  179. * looking for free pages, the search will restart here as
  180. * page migration may have returned some pages to the allocator
  181. */
  182. if (isolated)
  183. high_pfn = max(high_pfn, pfn);
  184. }
  185. /* split_free_page does not map the pages */
  186. map_pages(freelist);
  187. cc->free_pfn = high_pfn;
  188. cc->nr_freepages = nr_freepages;
  189. }
  190. /* Update the number of anon and file isolated pages in the zone */
  191. static void acct_isolated(struct zone *zone, struct compact_control *cc)
  192. {
  193. struct page *page;
  194. unsigned int count[2] = { 0, };
  195. list_for_each_entry(page, &cc->migratepages, lru)
  196. count[!!page_is_file_cache(page)]++;
  197. __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
  198. __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
  199. }
  200. /* Similar to reclaim, but different enough that they don't share logic */
  201. static bool too_many_isolated(struct zone *zone)
  202. {
  203. unsigned long active, inactive, isolated;
  204. inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
  205. zone_page_state(zone, NR_INACTIVE_ANON);
  206. active = zone_page_state(zone, NR_ACTIVE_FILE) +
  207. zone_page_state(zone, NR_ACTIVE_ANON);
  208. isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
  209. zone_page_state(zone, NR_ISOLATED_ANON);
  210. return isolated > (inactive + active) / 2;
  211. }
  212. /* possible outcome of isolate_migratepages */
  213. typedef enum {
  214. ISOLATE_ABORT, /* Abort compaction now */
  215. ISOLATE_NONE, /* No pages isolated, continue scanning */
  216. ISOLATE_SUCCESS, /* Pages isolated, migrate */
  217. } isolate_migrate_t;
  218. /**
  219. * isolate_migratepages_range() - isolate all migrate-able pages in range.
  220. * @zone: Zone pages are in.
  221. * @cc: Compaction control structure.
  222. * @low_pfn: The first PFN of the range.
  223. * @end_pfn: The one-past-the-last PFN of the range.
  224. *
  225. * Isolate all pages that can be migrated from the range specified by
  226. * [low_pfn, end_pfn). Returns zero if there is a fatal signal
  227. * pending), otherwise PFN of the first page that was not scanned
  228. * (which may be both less, equal to or more then end_pfn).
  229. *
  230. * Assumes that cc->migratepages is empty and cc->nr_migratepages is
  231. * zero.
  232. *
  233. * Apart from cc->migratepages and cc->nr_migratetypes this function
  234. * does not modify any cc's fields, in particular it does not modify
  235. * (or read for that matter) cc->migrate_pfn.
  236. */
  237. static unsigned long
  238. isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
  239. unsigned long low_pfn, unsigned long end_pfn)
  240. {
  241. unsigned long last_pageblock_nr = 0, pageblock_nr;
  242. unsigned long nr_scanned = 0, nr_isolated = 0;
  243. struct list_head *migratelist = &cc->migratepages;
  244. isolate_mode_t mode = ISOLATE_ACTIVE|ISOLATE_INACTIVE;
  245. /*
  246. * Ensure that there are not too many pages isolated from the LRU
  247. * list by either parallel reclaimers or compaction. If there are,
  248. * delay for some time until fewer pages are isolated
  249. */
  250. while (unlikely(too_many_isolated(zone))) {
  251. /* async migration should just abort */
  252. if (!cc->sync)
  253. return 0;
  254. congestion_wait(BLK_RW_ASYNC, HZ/10);
  255. if (fatal_signal_pending(current))
  256. return 0;
  257. }
  258. /* Time to isolate some pages for migration */
  259. cond_resched();
  260. spin_lock_irq(&zone->lru_lock);
  261. for (; low_pfn < end_pfn; low_pfn++) {
  262. struct page *page;
  263. bool locked = true;
  264. /* give a chance to irqs before checking need_resched() */
  265. if (!((low_pfn+1) % SWAP_CLUSTER_MAX)) {
  266. spin_unlock_irq(&zone->lru_lock);
  267. locked = false;
  268. }
  269. if (need_resched() || spin_is_contended(&zone->lru_lock)) {
  270. if (locked)
  271. spin_unlock_irq(&zone->lru_lock);
  272. cond_resched();
  273. spin_lock_irq(&zone->lru_lock);
  274. if (fatal_signal_pending(current))
  275. break;
  276. } else if (!locked)
  277. spin_lock_irq(&zone->lru_lock);
  278. /*
  279. * migrate_pfn does not necessarily start aligned to a
  280. * pageblock. Ensure that pfn_valid is called when moving
  281. * into a new MAX_ORDER_NR_PAGES range in case of large
  282. * memory holes within the zone
  283. */
  284. if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
  285. if (!pfn_valid(low_pfn)) {
  286. low_pfn += MAX_ORDER_NR_PAGES - 1;
  287. continue;
  288. }
  289. }
  290. if (!pfn_valid_within(low_pfn))
  291. continue;
  292. nr_scanned++;
  293. /*
  294. * Get the page and ensure the page is within the same zone.
  295. * See the comment in isolate_freepages about overlapping
  296. * nodes. It is deliberate that the new zone lock is not taken
  297. * as memory compaction should not move pages between nodes.
  298. */
  299. page = pfn_to_page(low_pfn);
  300. if (page_zone(page) != zone)
  301. continue;
  302. /* Skip if free */
  303. if (PageBuddy(page))
  304. continue;
  305. /*
  306. * For async migration, also only scan in MOVABLE blocks. Async
  307. * migration is optimistic to see if the minimum amount of work
  308. * satisfies the allocation
  309. */
  310. pageblock_nr = low_pfn >> pageblock_order;
  311. if (!cc->sync && last_pageblock_nr != pageblock_nr &&
  312. get_pageblock_migratetype(page) != MIGRATE_MOVABLE) {
  313. low_pfn += pageblock_nr_pages;
  314. low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
  315. last_pageblock_nr = pageblock_nr;
  316. continue;
  317. }
  318. if (!PageLRU(page))
  319. continue;
  320. /*
  321. * PageLRU is set, and lru_lock excludes isolation,
  322. * splitting and collapsing (collapsing has already
  323. * happened if PageLRU is set).
  324. */
  325. if (PageTransHuge(page)) {
  326. low_pfn += (1 << compound_order(page)) - 1;
  327. continue;
  328. }
  329. if (!cc->sync)
  330. mode |= ISOLATE_ASYNC_MIGRATE;
  331. /* Try isolate the page */
  332. if (__isolate_lru_page(page, mode, 0) != 0)
  333. continue;
  334. VM_BUG_ON(PageTransCompound(page));
  335. /* Successfully isolated */
  336. del_page_from_lru_list(zone, page, page_lru(page));
  337. list_add(&page->lru, migratelist);
  338. cc->nr_migratepages++;
  339. nr_isolated++;
  340. /* Avoid isolating too much */
  341. if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
  342. ++low_pfn;
  343. break;
  344. }
  345. }
  346. acct_isolated(zone, cc);
  347. spin_unlock_irq(&zone->lru_lock);
  348. trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
  349. return low_pfn;
  350. }
  351. /*
  352. * Isolate all pages that can be migrated from the block pointed to by
  353. * the migrate scanner within compact_control.
  354. */
  355. static isolate_migrate_t isolate_migratepages(struct zone *zone,
  356. struct compact_control *cc)
  357. {
  358. unsigned long low_pfn, end_pfn;
  359. /* Do not scan outside zone boundaries */
  360. low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
  361. /* Only scan within a pageblock boundary */
  362. end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
  363. /* Do not cross the free scanner or scan within a memory hole */
  364. if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
  365. cc->migrate_pfn = end_pfn;
  366. return ISOLATE_NONE;
  367. }
  368. /* Perform the isolation */
  369. low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn);
  370. if (!low_pfn)
  371. return ISOLATE_ABORT;
  372. cc->migrate_pfn = low_pfn;
  373. return ISOLATE_SUCCESS;
  374. }
  375. /*
  376. * This is a migrate-callback that "allocates" freepages by taking pages
  377. * from the isolated freelists in the block we are migrating to.
  378. */
  379. static struct page *compaction_alloc(struct page *migratepage,
  380. unsigned long data,
  381. int **result)
  382. {
  383. struct compact_control *cc = (struct compact_control *)data;
  384. struct page *freepage;
  385. /* Isolate free pages if necessary */
  386. if (list_empty(&cc->freepages)) {
  387. isolate_freepages(cc->zone, cc);
  388. if (list_empty(&cc->freepages))
  389. return NULL;
  390. }
  391. freepage = list_entry(cc->freepages.next, struct page, lru);
  392. list_del(&freepage->lru);
  393. cc->nr_freepages--;
  394. return freepage;
  395. }
  396. /*
  397. * We cannot control nr_migratepages and nr_freepages fully when migration is
  398. * running as migrate_pages() has no knowledge of compact_control. When
  399. * migration is complete, we count the number of pages on the lists by hand.
  400. */
  401. static void update_nr_listpages(struct compact_control *cc)
  402. {
  403. int nr_migratepages = 0;
  404. int nr_freepages = 0;
  405. struct page *page;
  406. list_for_each_entry(page, &cc->migratepages, lru)
  407. nr_migratepages++;
  408. list_for_each_entry(page, &cc->freepages, lru)
  409. nr_freepages++;
  410. cc->nr_migratepages = nr_migratepages;
  411. cc->nr_freepages = nr_freepages;
  412. }
  413. static int compact_finished(struct zone *zone,
  414. struct compact_control *cc)
  415. {
  416. unsigned int order;
  417. unsigned long watermark;
  418. if (fatal_signal_pending(current))
  419. return COMPACT_PARTIAL;
  420. /* Compaction run completes if the migrate and free scanner meet */
  421. if (cc->free_pfn <= cc->migrate_pfn)
  422. return COMPACT_COMPLETE;
  423. /*
  424. * order == -1 is expected when compacting via
  425. * /proc/sys/vm/compact_memory
  426. */
  427. if (cc->order == -1)
  428. return COMPACT_CONTINUE;
  429. /* Compaction run is not finished if the watermark is not met */
  430. watermark = low_wmark_pages(zone);
  431. watermark += (1 << cc->order);
  432. if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
  433. return COMPACT_CONTINUE;
  434. /* Direct compactor: Is a suitable page free? */
  435. for (order = cc->order; order < MAX_ORDER; order++) {
  436. /* Job done if page is free of the right migratetype */
  437. if (!list_empty(&zone->free_area[order].free_list[cc->migratetype]))
  438. return COMPACT_PARTIAL;
  439. /* Job done if allocation would set block type */
  440. if (order >= pageblock_order && zone->free_area[order].nr_free)
  441. return COMPACT_PARTIAL;
  442. }
  443. return COMPACT_CONTINUE;
  444. }
  445. /*
  446. * compaction_suitable: Is this suitable to run compaction on this zone now?
  447. * Returns
  448. * COMPACT_SKIPPED - If there are too few free pages for compaction
  449. * COMPACT_PARTIAL - If the allocation would succeed without compaction
  450. * COMPACT_CONTINUE - If compaction should run now
  451. */
  452. unsigned long compaction_suitable(struct zone *zone, int order)
  453. {
  454. int fragindex;
  455. unsigned long watermark;
  456. /*
  457. * order == -1 is expected when compacting via
  458. * /proc/sys/vm/compact_memory
  459. */
  460. if (order == -1)
  461. return COMPACT_CONTINUE;
  462. /*
  463. * Watermarks for order-0 must be met for compaction. Note the 2UL.
  464. * This is because during migration, copies of pages need to be
  465. * allocated and for a short time, the footprint is higher
  466. */
  467. watermark = low_wmark_pages(zone) + (2UL << order);
  468. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  469. return COMPACT_SKIPPED;
  470. /*
  471. * fragmentation index determines if allocation failures are due to
  472. * low memory or external fragmentation
  473. *
  474. * index of -1000 implies allocations might succeed depending on
  475. * watermarks
  476. * index towards 0 implies failure is due to lack of memory
  477. * index towards 1000 implies failure is due to fragmentation
  478. *
  479. * Only compact if a failure would be due to fragmentation.
  480. */
  481. fragindex = fragmentation_index(zone, order);
  482. if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
  483. return COMPACT_SKIPPED;
  484. if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
  485. 0, 0))
  486. return COMPACT_PARTIAL;
  487. return COMPACT_CONTINUE;
  488. }
  489. static int compact_zone(struct zone *zone, struct compact_control *cc)
  490. {
  491. int ret;
  492. ret = compaction_suitable(zone, cc->order);
  493. switch (ret) {
  494. case COMPACT_PARTIAL:
  495. case COMPACT_SKIPPED:
  496. /* Compaction is likely to fail */
  497. return ret;
  498. case COMPACT_CONTINUE:
  499. /* Fall through to compaction */
  500. ;
  501. }
  502. /* Setup to move all movable pages to the end of the zone */
  503. cc->migrate_pfn = zone->zone_start_pfn;
  504. cc->free_pfn = cc->migrate_pfn + zone->spanned_pages;
  505. cc->free_pfn &= ~(pageblock_nr_pages-1);
  506. migrate_prep_local();
  507. while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
  508. unsigned long nr_migrate, nr_remaining;
  509. int err;
  510. switch (isolate_migratepages(zone, cc)) {
  511. case ISOLATE_ABORT:
  512. ret = COMPACT_PARTIAL;
  513. goto out;
  514. case ISOLATE_NONE:
  515. continue;
  516. case ISOLATE_SUCCESS:
  517. ;
  518. }
  519. nr_migrate = cc->nr_migratepages;
  520. err = migrate_pages(&cc->migratepages, compaction_alloc,
  521. (unsigned long)cc, false,
  522. cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC);
  523. update_nr_listpages(cc);
  524. nr_remaining = cc->nr_migratepages;
  525. count_vm_event(COMPACTBLOCKS);
  526. count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
  527. if (nr_remaining)
  528. count_vm_events(COMPACTPAGEFAILED, nr_remaining);
  529. trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
  530. nr_remaining);
  531. /* Release LRU pages not migrated */
  532. if (err) {
  533. putback_lru_pages(&cc->migratepages);
  534. cc->nr_migratepages = 0;
  535. }
  536. }
  537. out:
  538. /* Release free pages and check accounting */
  539. cc->nr_freepages -= release_freepages(&cc->freepages);
  540. VM_BUG_ON(cc->nr_freepages != 0);
  541. return ret;
  542. }
  543. static unsigned long compact_zone_order(struct zone *zone,
  544. int order, gfp_t gfp_mask,
  545. bool sync)
  546. {
  547. struct compact_control cc = {
  548. .nr_freepages = 0,
  549. .nr_migratepages = 0,
  550. .order = order,
  551. .migratetype = allocflags_to_migratetype(gfp_mask),
  552. .zone = zone,
  553. .sync = sync,
  554. };
  555. INIT_LIST_HEAD(&cc.freepages);
  556. INIT_LIST_HEAD(&cc.migratepages);
  557. return compact_zone(zone, &cc);
  558. }
  559. int sysctl_extfrag_threshold = 500;
  560. /**
  561. * try_to_compact_pages - Direct compact to satisfy a high-order allocation
  562. * @zonelist: The zonelist used for the current allocation
  563. * @order: The order of the current allocation
  564. * @gfp_mask: The GFP mask of the current allocation
  565. * @nodemask: The allowed nodes to allocate from
  566. * @sync: Whether migration is synchronous or not
  567. *
  568. * This is the main entry point for direct page compaction.
  569. */
  570. unsigned long try_to_compact_pages(struct zonelist *zonelist,
  571. int order, gfp_t gfp_mask, nodemask_t *nodemask,
  572. bool sync)
  573. {
  574. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  575. int may_enter_fs = gfp_mask & __GFP_FS;
  576. int may_perform_io = gfp_mask & __GFP_IO;
  577. struct zoneref *z;
  578. struct zone *zone;
  579. int rc = COMPACT_SKIPPED;
  580. /*
  581. * Check whether it is worth even starting compaction. The order check is
  582. * made because an assumption is made that the page allocator can satisfy
  583. * the "cheaper" orders without taking special steps
  584. */
  585. if (!order || !may_enter_fs || !may_perform_io)
  586. return rc;
  587. count_vm_event(COMPACTSTALL);
  588. /* Compact each zone in the list */
  589. for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
  590. nodemask) {
  591. int status;
  592. status = compact_zone_order(zone, order, gfp_mask, sync);
  593. rc = max(status, rc);
  594. /* If a normal allocation would succeed, stop compacting */
  595. if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
  596. break;
  597. }
  598. return rc;
  599. }
  600. /* Compact all zones within a node */
  601. static int __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
  602. {
  603. int zoneid;
  604. struct zone *zone;
  605. for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
  606. zone = &pgdat->node_zones[zoneid];
  607. if (!populated_zone(zone))
  608. continue;
  609. cc->nr_freepages = 0;
  610. cc->nr_migratepages = 0;
  611. cc->zone = zone;
  612. INIT_LIST_HEAD(&cc->freepages);
  613. INIT_LIST_HEAD(&cc->migratepages);
  614. if (cc->order == -1 || !compaction_deferred(zone, cc->order))
  615. compact_zone(zone, cc);
  616. if (cc->order > 0) {
  617. int ok = zone_watermark_ok(zone, cc->order,
  618. low_wmark_pages(zone), 0, 0);
  619. if (ok && cc->order > zone->compact_order_failed)
  620. zone->compact_order_failed = cc->order + 1;
  621. /* Currently async compaction is never deferred. */
  622. else if (!ok && cc->sync)
  623. defer_compaction(zone, cc->order);
  624. }
  625. VM_BUG_ON(!list_empty(&cc->freepages));
  626. VM_BUG_ON(!list_empty(&cc->migratepages));
  627. }
  628. return 0;
  629. }
  630. int compact_pgdat(pg_data_t *pgdat, int order)
  631. {
  632. struct compact_control cc = {
  633. .order = order,
  634. .sync = false,
  635. };
  636. return __compact_pgdat(pgdat, &cc);
  637. }
  638. static int compact_node(int nid)
  639. {
  640. struct compact_control cc = {
  641. .order = -1,
  642. .sync = true,
  643. };
  644. return __compact_pgdat(NODE_DATA(nid), &cc);
  645. }
  646. /* Compact all nodes in the system */
  647. static int compact_nodes(void)
  648. {
  649. int nid;
  650. /* Flush pending updates to the LRU lists */
  651. lru_add_drain_all();
  652. for_each_online_node(nid)
  653. compact_node(nid);
  654. return COMPACT_COMPLETE;
  655. }
  656. /* The written value is actually unused, all memory is compacted */
  657. int sysctl_compact_memory;
  658. /* This is the entry point for compacting all nodes via /proc/sys/vm */
  659. int sysctl_compaction_handler(struct ctl_table *table, int write,
  660. void __user *buffer, size_t *length, loff_t *ppos)
  661. {
  662. if (write)
  663. return compact_nodes();
  664. return 0;
  665. }
  666. int sysctl_extfrag_handler(struct ctl_table *table, int write,
  667. void __user *buffer, size_t *length, loff_t *ppos)
  668. {
  669. proc_dointvec_minmax(table, write, buffer, length, ppos);
  670. return 0;
  671. }
  672. #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
  673. ssize_t sysfs_compact_node(struct device *dev,
  674. struct device_attribute *attr,
  675. const char *buf, size_t count)
  676. {
  677. int nid = dev->id;
  678. if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
  679. /* Flush pending updates to the LRU lists */
  680. lru_add_drain_all();
  681. compact_node(nid);
  682. }
  683. return count;
  684. }
  685. static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
  686. int compaction_register_node(struct node *node)
  687. {
  688. return device_create_file(&node->dev, &dev_attr_compact);
  689. }
  690. void compaction_unregister_node(struct node *node)
  691. {
  692. return device_remove_file(&node->dev, &dev_attr_compact);
  693. }
  694. #endif /* CONFIG_SYSFS && CONFIG_NUMA */