cfg80211.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803
  1. /*
  2. * Intel Wireless Multicomm 3200 WiFi driver
  3. *
  4. * Copyright (C) 2009 Intel Corporation <ilw@linux.intel.com>
  5. * Samuel Ortiz <samuel.ortiz@intel.com>
  6. * Zhu Yi <yi.zhu@intel.com>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License version
  10. * 2 as published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  20. * 02110-1301, USA.
  21. *
  22. */
  23. #include <linux/kernel.h>
  24. #include <linux/netdevice.h>
  25. #include <linux/etherdevice.h>
  26. #include <linux/wireless.h>
  27. #include <linux/ieee80211.h>
  28. #include <net/cfg80211.h>
  29. #include "iwm.h"
  30. #include "commands.h"
  31. #include "cfg80211.h"
  32. #include "debug.h"
  33. #define RATETAB_ENT(_rate, _rateid, _flags) \
  34. { \
  35. .bitrate = (_rate), \
  36. .hw_value = (_rateid), \
  37. .flags = (_flags), \
  38. }
  39. #define CHAN2G(_channel, _freq, _flags) { \
  40. .band = IEEE80211_BAND_2GHZ, \
  41. .center_freq = (_freq), \
  42. .hw_value = (_channel), \
  43. .flags = (_flags), \
  44. .max_antenna_gain = 0, \
  45. .max_power = 30, \
  46. }
  47. #define CHAN5G(_channel, _flags) { \
  48. .band = IEEE80211_BAND_5GHZ, \
  49. .center_freq = 5000 + (5 * (_channel)), \
  50. .hw_value = (_channel), \
  51. .flags = (_flags), \
  52. .max_antenna_gain = 0, \
  53. .max_power = 30, \
  54. }
  55. static struct ieee80211_rate iwm_rates[] = {
  56. RATETAB_ENT(10, 0x1, 0),
  57. RATETAB_ENT(20, 0x2, 0),
  58. RATETAB_ENT(55, 0x4, 0),
  59. RATETAB_ENT(110, 0x8, 0),
  60. RATETAB_ENT(60, 0x10, 0),
  61. RATETAB_ENT(90, 0x20, 0),
  62. RATETAB_ENT(120, 0x40, 0),
  63. RATETAB_ENT(180, 0x80, 0),
  64. RATETAB_ENT(240, 0x100, 0),
  65. RATETAB_ENT(360, 0x200, 0),
  66. RATETAB_ENT(480, 0x400, 0),
  67. RATETAB_ENT(540, 0x800, 0),
  68. };
  69. #define iwm_a_rates (iwm_rates + 4)
  70. #define iwm_a_rates_size 8
  71. #define iwm_g_rates (iwm_rates + 0)
  72. #define iwm_g_rates_size 12
  73. static struct ieee80211_channel iwm_2ghz_channels[] = {
  74. CHAN2G(1, 2412, 0),
  75. CHAN2G(2, 2417, 0),
  76. CHAN2G(3, 2422, 0),
  77. CHAN2G(4, 2427, 0),
  78. CHAN2G(5, 2432, 0),
  79. CHAN2G(6, 2437, 0),
  80. CHAN2G(7, 2442, 0),
  81. CHAN2G(8, 2447, 0),
  82. CHAN2G(9, 2452, 0),
  83. CHAN2G(10, 2457, 0),
  84. CHAN2G(11, 2462, 0),
  85. CHAN2G(12, 2467, 0),
  86. CHAN2G(13, 2472, 0),
  87. CHAN2G(14, 2484, 0),
  88. };
  89. static struct ieee80211_channel iwm_5ghz_a_channels[] = {
  90. CHAN5G(34, 0), CHAN5G(36, 0),
  91. CHAN5G(38, 0), CHAN5G(40, 0),
  92. CHAN5G(42, 0), CHAN5G(44, 0),
  93. CHAN5G(46, 0), CHAN5G(48, 0),
  94. CHAN5G(52, 0), CHAN5G(56, 0),
  95. CHAN5G(60, 0), CHAN5G(64, 0),
  96. CHAN5G(100, 0), CHAN5G(104, 0),
  97. CHAN5G(108, 0), CHAN5G(112, 0),
  98. CHAN5G(116, 0), CHAN5G(120, 0),
  99. CHAN5G(124, 0), CHAN5G(128, 0),
  100. CHAN5G(132, 0), CHAN5G(136, 0),
  101. CHAN5G(140, 0), CHAN5G(149, 0),
  102. CHAN5G(153, 0), CHAN5G(157, 0),
  103. CHAN5G(161, 0), CHAN5G(165, 0),
  104. CHAN5G(184, 0), CHAN5G(188, 0),
  105. CHAN5G(192, 0), CHAN5G(196, 0),
  106. CHAN5G(200, 0), CHAN5G(204, 0),
  107. CHAN5G(208, 0), CHAN5G(212, 0),
  108. CHAN5G(216, 0),
  109. };
  110. static struct ieee80211_supported_band iwm_band_2ghz = {
  111. .channels = iwm_2ghz_channels,
  112. .n_channels = ARRAY_SIZE(iwm_2ghz_channels),
  113. .bitrates = iwm_g_rates,
  114. .n_bitrates = iwm_g_rates_size,
  115. };
  116. static struct ieee80211_supported_band iwm_band_5ghz = {
  117. .channels = iwm_5ghz_a_channels,
  118. .n_channels = ARRAY_SIZE(iwm_5ghz_a_channels),
  119. .bitrates = iwm_a_rates,
  120. .n_bitrates = iwm_a_rates_size,
  121. };
  122. static int iwm_key_init(struct iwm_key *key, u8 key_index,
  123. const u8 *mac_addr, struct key_params *params)
  124. {
  125. key->hdr.key_idx = key_index;
  126. if (!mac_addr || is_broadcast_ether_addr(mac_addr)) {
  127. key->hdr.multicast = 1;
  128. memset(key->hdr.mac, 0xff, ETH_ALEN);
  129. } else {
  130. key->hdr.multicast = 0;
  131. memcpy(key->hdr.mac, mac_addr, ETH_ALEN);
  132. }
  133. if (params) {
  134. if (params->key_len > WLAN_MAX_KEY_LEN ||
  135. params->seq_len > IW_ENCODE_SEQ_MAX_SIZE)
  136. return -EINVAL;
  137. key->cipher = params->cipher;
  138. key->key_len = params->key_len;
  139. key->seq_len = params->seq_len;
  140. memcpy(key->key, params->key, key->key_len);
  141. memcpy(key->seq, params->seq, key->seq_len);
  142. }
  143. return 0;
  144. }
  145. static int iwm_cfg80211_add_key(struct wiphy *wiphy, struct net_device *ndev,
  146. u8 key_index, const u8 *mac_addr,
  147. struct key_params *params)
  148. {
  149. struct iwm_priv *iwm = ndev_to_iwm(ndev);
  150. struct iwm_key *key = &iwm->keys[key_index];
  151. int ret;
  152. IWM_DBG_WEXT(iwm, DBG, "Adding key for %pM\n", mac_addr);
  153. memset(key, 0, sizeof(struct iwm_key));
  154. ret = iwm_key_init(key, key_index, mac_addr, params);
  155. if (ret < 0) {
  156. IWM_ERR(iwm, "Invalid key_params\n");
  157. return ret;
  158. }
  159. return iwm_set_key(iwm, 0, key);
  160. }
  161. static int iwm_cfg80211_get_key(struct wiphy *wiphy, struct net_device *ndev,
  162. u8 key_index, const u8 *mac_addr, void *cookie,
  163. void (*callback)(void *cookie,
  164. struct key_params*))
  165. {
  166. struct iwm_priv *iwm = ndev_to_iwm(ndev);
  167. struct iwm_key *key = &iwm->keys[key_index];
  168. struct key_params params;
  169. IWM_DBG_WEXT(iwm, DBG, "Getting key %d\n", key_index);
  170. memset(&params, 0, sizeof(params));
  171. params.cipher = key->cipher;
  172. params.key_len = key->key_len;
  173. params.seq_len = key->seq_len;
  174. params.seq = key->seq;
  175. params.key = key->key;
  176. callback(cookie, &params);
  177. return key->key_len ? 0 : -ENOENT;
  178. }
  179. static int iwm_cfg80211_del_key(struct wiphy *wiphy, struct net_device *ndev,
  180. u8 key_index, const u8 *mac_addr)
  181. {
  182. struct iwm_priv *iwm = ndev_to_iwm(ndev);
  183. struct iwm_key *key = &iwm->keys[key_index];
  184. if (!iwm->keys[key_index].key_len) {
  185. IWM_DBG_WEXT(iwm, DBG, "Key %d not used\n", key_index);
  186. return 0;
  187. }
  188. if (key_index == iwm->default_key)
  189. iwm->default_key = -1;
  190. return iwm_set_key(iwm, 1, key);
  191. }
  192. static int iwm_cfg80211_set_default_key(struct wiphy *wiphy,
  193. struct net_device *ndev,
  194. u8 key_index)
  195. {
  196. struct iwm_priv *iwm = ndev_to_iwm(ndev);
  197. IWM_DBG_WEXT(iwm, DBG, "Default key index is: %d\n", key_index);
  198. if (!iwm->keys[key_index].key_len) {
  199. IWM_ERR(iwm, "Key %d not used\n", key_index);
  200. return -EINVAL;
  201. }
  202. iwm->default_key = key_index;
  203. return iwm_set_tx_key(iwm, key_index);
  204. }
  205. static int iwm_cfg80211_get_station(struct wiphy *wiphy,
  206. struct net_device *ndev,
  207. u8 *mac, struct station_info *sinfo)
  208. {
  209. struct iwm_priv *iwm = ndev_to_iwm(ndev);
  210. if (memcmp(mac, iwm->bssid, ETH_ALEN))
  211. return -ENOENT;
  212. sinfo->filled |= STATION_INFO_TX_BITRATE;
  213. sinfo->txrate.legacy = iwm->rate * 10;
  214. if (test_bit(IWM_STATUS_ASSOCIATED, &iwm->status)) {
  215. sinfo->filled |= STATION_INFO_SIGNAL;
  216. sinfo->signal = iwm->wstats.qual.level;
  217. }
  218. return 0;
  219. }
  220. int iwm_cfg80211_inform_bss(struct iwm_priv *iwm)
  221. {
  222. struct wiphy *wiphy = iwm_to_wiphy(iwm);
  223. struct iwm_bss_info *bss, *next;
  224. struct iwm_umac_notif_bss_info *umac_bss;
  225. struct ieee80211_mgmt *mgmt;
  226. struct ieee80211_channel *channel;
  227. struct ieee80211_supported_band *band;
  228. s32 signal;
  229. int freq;
  230. list_for_each_entry_safe(bss, next, &iwm->bss_list, node) {
  231. umac_bss = bss->bss;
  232. mgmt = (struct ieee80211_mgmt *)(umac_bss->frame_buf);
  233. if (umac_bss->band == UMAC_BAND_2GHZ)
  234. band = wiphy->bands[IEEE80211_BAND_2GHZ];
  235. else if (umac_bss->band == UMAC_BAND_5GHZ)
  236. band = wiphy->bands[IEEE80211_BAND_5GHZ];
  237. else {
  238. IWM_ERR(iwm, "Invalid band: %d\n", umac_bss->band);
  239. return -EINVAL;
  240. }
  241. freq = ieee80211_channel_to_frequency(umac_bss->channel);
  242. channel = ieee80211_get_channel(wiphy, freq);
  243. signal = umac_bss->rssi * 100;
  244. if (!cfg80211_inform_bss_frame(wiphy, channel, mgmt,
  245. le16_to_cpu(umac_bss->frame_len),
  246. signal, GFP_KERNEL))
  247. return -EINVAL;
  248. }
  249. return 0;
  250. }
  251. static int iwm_cfg80211_change_iface(struct wiphy *wiphy,
  252. struct net_device *ndev,
  253. enum nl80211_iftype type, u32 *flags,
  254. struct vif_params *params)
  255. {
  256. struct wireless_dev *wdev;
  257. struct iwm_priv *iwm;
  258. u32 old_mode;
  259. wdev = ndev->ieee80211_ptr;
  260. iwm = ndev_to_iwm(ndev);
  261. old_mode = iwm->conf.mode;
  262. switch (type) {
  263. case NL80211_IFTYPE_STATION:
  264. iwm->conf.mode = UMAC_MODE_BSS;
  265. break;
  266. case NL80211_IFTYPE_ADHOC:
  267. iwm->conf.mode = UMAC_MODE_IBSS;
  268. break;
  269. default:
  270. return -EOPNOTSUPP;
  271. }
  272. wdev->iftype = type;
  273. if ((old_mode == iwm->conf.mode) || !iwm->umac_profile)
  274. return 0;
  275. iwm->umac_profile->mode = cpu_to_le32(iwm->conf.mode);
  276. if (iwm->umac_profile_active)
  277. iwm_invalidate_mlme_profile(iwm);
  278. return 0;
  279. }
  280. static int iwm_cfg80211_scan(struct wiphy *wiphy, struct net_device *ndev,
  281. struct cfg80211_scan_request *request)
  282. {
  283. struct iwm_priv *iwm = ndev_to_iwm(ndev);
  284. int ret;
  285. if (!test_bit(IWM_STATUS_READY, &iwm->status)) {
  286. IWM_ERR(iwm, "Scan while device is not ready\n");
  287. return -EIO;
  288. }
  289. if (test_bit(IWM_STATUS_SCANNING, &iwm->status)) {
  290. IWM_ERR(iwm, "Scanning already\n");
  291. return -EAGAIN;
  292. }
  293. if (test_bit(IWM_STATUS_SCAN_ABORTING, &iwm->status)) {
  294. IWM_ERR(iwm, "Scanning being aborted\n");
  295. return -EAGAIN;
  296. }
  297. set_bit(IWM_STATUS_SCANNING, &iwm->status);
  298. ret = iwm_scan_ssids(iwm, request->ssids, request->n_ssids);
  299. if (ret) {
  300. clear_bit(IWM_STATUS_SCANNING, &iwm->status);
  301. return ret;
  302. }
  303. iwm->scan_request = request;
  304. return 0;
  305. }
  306. static int iwm_cfg80211_set_wiphy_params(struct wiphy *wiphy, u32 changed)
  307. {
  308. struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
  309. if (changed & WIPHY_PARAM_RTS_THRESHOLD &&
  310. (iwm->conf.rts_threshold != wiphy->rts_threshold)) {
  311. int ret;
  312. iwm->conf.rts_threshold = wiphy->rts_threshold;
  313. ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX,
  314. CFG_RTS_THRESHOLD,
  315. iwm->conf.rts_threshold);
  316. if (ret < 0)
  317. return ret;
  318. }
  319. if (changed & WIPHY_PARAM_FRAG_THRESHOLD &&
  320. (iwm->conf.frag_threshold != wiphy->frag_threshold)) {
  321. int ret;
  322. iwm->conf.frag_threshold = wiphy->frag_threshold;
  323. ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_FA_CFG_FIX,
  324. CFG_FRAG_THRESHOLD,
  325. iwm->conf.frag_threshold);
  326. if (ret < 0)
  327. return ret;
  328. }
  329. return 0;
  330. }
  331. static int iwm_cfg80211_join_ibss(struct wiphy *wiphy, struct net_device *dev,
  332. struct cfg80211_ibss_params *params)
  333. {
  334. struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
  335. struct ieee80211_channel *chan = params->channel;
  336. if (!test_bit(IWM_STATUS_READY, &iwm->status))
  337. return -EIO;
  338. /* UMAC doesn't support creating or joining an IBSS network
  339. * with specified bssid. */
  340. if (params->bssid)
  341. return -EOPNOTSUPP;
  342. iwm->channel = ieee80211_frequency_to_channel(chan->center_freq);
  343. iwm->umac_profile->ibss.band = chan->band;
  344. iwm->umac_profile->ibss.channel = iwm->channel;
  345. iwm->umac_profile->ssid.ssid_len = params->ssid_len;
  346. memcpy(iwm->umac_profile->ssid.ssid, params->ssid, params->ssid_len);
  347. return iwm_send_mlme_profile(iwm);
  348. }
  349. static int iwm_cfg80211_leave_ibss(struct wiphy *wiphy, struct net_device *dev)
  350. {
  351. struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
  352. if (iwm->umac_profile_active)
  353. return iwm_invalidate_mlme_profile(iwm);
  354. return 0;
  355. }
  356. static int iwm_set_auth_type(struct iwm_priv *iwm,
  357. enum nl80211_auth_type sme_auth_type)
  358. {
  359. u8 *auth_type = &iwm->umac_profile->sec.auth_type;
  360. switch (sme_auth_type) {
  361. case NL80211_AUTHTYPE_AUTOMATIC:
  362. case NL80211_AUTHTYPE_OPEN_SYSTEM:
  363. IWM_DBG_WEXT(iwm, DBG, "OPEN auth\n");
  364. *auth_type = UMAC_AUTH_TYPE_OPEN;
  365. break;
  366. case NL80211_AUTHTYPE_SHARED_KEY:
  367. if (iwm->umac_profile->sec.flags &
  368. (UMAC_SEC_FLG_WPA_ON_MSK | UMAC_SEC_FLG_RSNA_ON_MSK)) {
  369. IWM_DBG_WEXT(iwm, DBG, "WPA auth alg\n");
  370. *auth_type = UMAC_AUTH_TYPE_RSNA_PSK;
  371. } else {
  372. IWM_DBG_WEXT(iwm, DBG, "WEP shared key auth alg\n");
  373. *auth_type = UMAC_AUTH_TYPE_LEGACY_PSK;
  374. }
  375. break;
  376. default:
  377. IWM_ERR(iwm, "Unsupported auth alg: 0x%x\n", sme_auth_type);
  378. return -ENOTSUPP;
  379. }
  380. return 0;
  381. }
  382. static int iwm_set_wpa_version(struct iwm_priv *iwm, u32 wpa_version)
  383. {
  384. IWM_DBG_WEXT(iwm, DBG, "wpa_version: %d\n", wpa_version);
  385. if (!wpa_version) {
  386. iwm->umac_profile->sec.flags = UMAC_SEC_FLG_LEGACY_PROFILE;
  387. return 0;
  388. }
  389. if (wpa_version & NL80211_WPA_VERSION_2)
  390. iwm->umac_profile->sec.flags = UMAC_SEC_FLG_RSNA_ON_MSK;
  391. if (wpa_version & NL80211_WPA_VERSION_1)
  392. iwm->umac_profile->sec.flags |= UMAC_SEC_FLG_WPA_ON_MSK;
  393. return 0;
  394. }
  395. static int iwm_set_cipher(struct iwm_priv *iwm, u32 cipher, bool ucast)
  396. {
  397. u8 *profile_cipher = ucast ? &iwm->umac_profile->sec.ucast_cipher :
  398. &iwm->umac_profile->sec.mcast_cipher;
  399. if (!cipher) {
  400. *profile_cipher = UMAC_CIPHER_TYPE_NONE;
  401. return 0;
  402. }
  403. IWM_DBG_WEXT(iwm, DBG, "%ccast cipher is 0x%x\n", ucast ? 'u' : 'm',
  404. cipher);
  405. switch (cipher) {
  406. case IW_AUTH_CIPHER_NONE:
  407. *profile_cipher = UMAC_CIPHER_TYPE_NONE;
  408. break;
  409. case WLAN_CIPHER_SUITE_WEP40:
  410. *profile_cipher = UMAC_CIPHER_TYPE_WEP_40;
  411. break;
  412. case WLAN_CIPHER_SUITE_WEP104:
  413. *profile_cipher = UMAC_CIPHER_TYPE_WEP_104;
  414. break;
  415. case WLAN_CIPHER_SUITE_TKIP:
  416. *profile_cipher = UMAC_CIPHER_TYPE_TKIP;
  417. break;
  418. case WLAN_CIPHER_SUITE_CCMP:
  419. *profile_cipher = UMAC_CIPHER_TYPE_CCMP;
  420. break;
  421. default:
  422. IWM_ERR(iwm, "Unsupported cipher: 0x%x\n", cipher);
  423. return -ENOTSUPP;
  424. }
  425. return 0;
  426. }
  427. static int iwm_set_key_mgt(struct iwm_priv *iwm, u32 key_mgt)
  428. {
  429. u8 *auth_type = &iwm->umac_profile->sec.auth_type;
  430. IWM_DBG_WEXT(iwm, DBG, "key_mgt: 0x%x\n", key_mgt);
  431. if (key_mgt == WLAN_AKM_SUITE_8021X)
  432. *auth_type = UMAC_AUTH_TYPE_8021X;
  433. else if (key_mgt == WLAN_AKM_SUITE_PSK) {
  434. if (iwm->umac_profile->sec.flags &
  435. (UMAC_SEC_FLG_WPA_ON_MSK | UMAC_SEC_FLG_RSNA_ON_MSK))
  436. *auth_type = UMAC_AUTH_TYPE_RSNA_PSK;
  437. else
  438. *auth_type = UMAC_AUTH_TYPE_LEGACY_PSK;
  439. } else {
  440. IWM_ERR(iwm, "Invalid key mgt: 0x%x\n", key_mgt);
  441. return -EINVAL;
  442. }
  443. return 0;
  444. }
  445. static int iwm_cfg80211_connect(struct wiphy *wiphy, struct net_device *dev,
  446. struct cfg80211_connect_params *sme)
  447. {
  448. struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
  449. struct ieee80211_channel *chan = sme->channel;
  450. struct key_params key_param;
  451. int ret;
  452. if (!test_bit(IWM_STATUS_READY, &iwm->status))
  453. return -EIO;
  454. if (!sme->ssid)
  455. return -EINVAL;
  456. if (iwm->umac_profile_active) {
  457. ret = iwm_invalidate_mlme_profile(iwm);
  458. if (ret) {
  459. IWM_ERR(iwm, "Couldn't invalidate profile\n");
  460. return ret;
  461. }
  462. }
  463. if (chan)
  464. iwm->channel =
  465. ieee80211_frequency_to_channel(chan->center_freq);
  466. iwm->umac_profile->ssid.ssid_len = sme->ssid_len;
  467. memcpy(iwm->umac_profile->ssid.ssid, sme->ssid, sme->ssid_len);
  468. if (sme->bssid) {
  469. IWM_DBG_WEXT(iwm, DBG, "BSSID: %pM\n", sme->bssid);
  470. memcpy(&iwm->umac_profile->bssid[0], sme->bssid, ETH_ALEN);
  471. iwm->umac_profile->bss_num = 1;
  472. } else {
  473. memset(&iwm->umac_profile->bssid[0], 0, ETH_ALEN);
  474. iwm->umac_profile->bss_num = 0;
  475. }
  476. ret = iwm_set_wpa_version(iwm, sme->crypto.wpa_versions);
  477. if (ret < 0)
  478. return ret;
  479. ret = iwm_set_auth_type(iwm, sme->auth_type);
  480. if (ret < 0)
  481. return ret;
  482. if (sme->crypto.n_ciphers_pairwise) {
  483. ret = iwm_set_cipher(iwm, sme->crypto.ciphers_pairwise[0],
  484. true);
  485. if (ret < 0)
  486. return ret;
  487. }
  488. ret = iwm_set_cipher(iwm, sme->crypto.cipher_group, false);
  489. if (ret < 0)
  490. return ret;
  491. if (sme->crypto.n_akm_suites) {
  492. ret = iwm_set_key_mgt(iwm, sme->crypto.akm_suites[0]);
  493. if (ret < 0)
  494. return ret;
  495. }
  496. /*
  497. * We save the WEP key in case we want to do shared authentication.
  498. * We have to do it so because UMAC will assert whenever it gets a
  499. * key before a profile.
  500. */
  501. if (sme->key) {
  502. key_param.key = kmemdup(sme->key, sme->key_len, GFP_KERNEL);
  503. if (key_param.key == NULL)
  504. return -ENOMEM;
  505. key_param.key_len = sme->key_len;
  506. key_param.seq_len = 0;
  507. key_param.cipher = sme->crypto.ciphers_pairwise[0];
  508. ret = iwm_key_init(&iwm->keys[sme->key_idx], sme->key_idx,
  509. NULL, &key_param);
  510. kfree(key_param.key);
  511. if (ret < 0) {
  512. IWM_ERR(iwm, "Invalid key_params\n");
  513. return ret;
  514. }
  515. iwm->default_key = sme->key_idx;
  516. }
  517. ret = iwm_send_mlme_profile(iwm);
  518. if (iwm->umac_profile->sec.auth_type != UMAC_AUTH_TYPE_LEGACY_PSK ||
  519. sme->key == NULL)
  520. return ret;
  521. /*
  522. * We want to do shared auth.
  523. * We need to actually set the key we previously cached,
  524. * and then tell the UMAC it's the default one.
  525. * That will trigger the auth+assoc UMAC machinery, and again,
  526. * this must be done after setting the profile.
  527. */
  528. ret = iwm_set_key(iwm, 0, &iwm->keys[sme->key_idx]);
  529. if (ret < 0)
  530. return ret;
  531. return iwm_set_tx_key(iwm, iwm->default_key);
  532. }
  533. static int iwm_cfg80211_disconnect(struct wiphy *wiphy, struct net_device *dev,
  534. u16 reason_code)
  535. {
  536. struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
  537. IWM_DBG_WEXT(iwm, DBG, "Active: %d\n", iwm->umac_profile_active);
  538. if (iwm->umac_profile_active)
  539. iwm_invalidate_mlme_profile(iwm);
  540. return 0;
  541. }
  542. static int iwm_cfg80211_set_txpower(struct wiphy *wiphy,
  543. enum tx_power_setting type, int dbm)
  544. {
  545. switch (type) {
  546. case TX_POWER_AUTOMATIC:
  547. return 0;
  548. default:
  549. return -EOPNOTSUPP;
  550. }
  551. return 0;
  552. }
  553. static int iwm_cfg80211_get_txpower(struct wiphy *wiphy, int *dbm)
  554. {
  555. struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
  556. *dbm = iwm->txpower;
  557. return 0;
  558. }
  559. static int iwm_cfg80211_set_power_mgmt(struct wiphy *wiphy,
  560. struct net_device *dev,
  561. bool enabled, int timeout)
  562. {
  563. struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
  564. u32 power_index;
  565. if (enabled)
  566. power_index = IWM_POWER_INDEX_DEFAULT;
  567. else
  568. power_index = IWM_POWER_INDEX_MIN;
  569. if (power_index == iwm->conf.power_index)
  570. return 0;
  571. iwm->conf.power_index = power_index;
  572. return iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX,
  573. CFG_POWER_INDEX, iwm->conf.power_index);
  574. }
  575. static struct cfg80211_ops iwm_cfg80211_ops = {
  576. .change_virtual_intf = iwm_cfg80211_change_iface,
  577. .add_key = iwm_cfg80211_add_key,
  578. .get_key = iwm_cfg80211_get_key,
  579. .del_key = iwm_cfg80211_del_key,
  580. .set_default_key = iwm_cfg80211_set_default_key,
  581. .get_station = iwm_cfg80211_get_station,
  582. .scan = iwm_cfg80211_scan,
  583. .set_wiphy_params = iwm_cfg80211_set_wiphy_params,
  584. .connect = iwm_cfg80211_connect,
  585. .disconnect = iwm_cfg80211_disconnect,
  586. .join_ibss = iwm_cfg80211_join_ibss,
  587. .leave_ibss = iwm_cfg80211_leave_ibss,
  588. .set_tx_power = iwm_cfg80211_set_txpower,
  589. .get_tx_power = iwm_cfg80211_get_txpower,
  590. .set_power_mgmt = iwm_cfg80211_set_power_mgmt,
  591. };
  592. static const u32 cipher_suites[] = {
  593. WLAN_CIPHER_SUITE_WEP40,
  594. WLAN_CIPHER_SUITE_WEP104,
  595. WLAN_CIPHER_SUITE_TKIP,
  596. WLAN_CIPHER_SUITE_CCMP,
  597. };
  598. struct wireless_dev *iwm_wdev_alloc(int sizeof_bus, struct device *dev)
  599. {
  600. int ret = 0;
  601. struct wireless_dev *wdev;
  602. /*
  603. * We're trying to have the following memory
  604. * layout:
  605. *
  606. * +-------------------------+
  607. * | struct wiphy |
  608. * +-------------------------+
  609. * | struct iwm_priv |
  610. * +-------------------------+
  611. * | bus private data |
  612. * | (e.g. iwm_priv_sdio) |
  613. * +-------------------------+
  614. *
  615. */
  616. wdev = kzalloc(sizeof(struct wireless_dev), GFP_KERNEL);
  617. if (!wdev) {
  618. dev_err(dev, "Couldn't allocate wireless device\n");
  619. return ERR_PTR(-ENOMEM);
  620. }
  621. wdev->wiphy = wiphy_new(&iwm_cfg80211_ops,
  622. sizeof(struct iwm_priv) + sizeof_bus);
  623. if (!wdev->wiphy) {
  624. dev_err(dev, "Couldn't allocate wiphy device\n");
  625. ret = -ENOMEM;
  626. goto out_err_new;
  627. }
  628. set_wiphy_dev(wdev->wiphy, dev);
  629. wdev->wiphy->max_scan_ssids = UMAC_WIFI_IF_PROBE_OPTION_MAX;
  630. wdev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
  631. BIT(NL80211_IFTYPE_ADHOC);
  632. wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = &iwm_band_2ghz;
  633. wdev->wiphy->bands[IEEE80211_BAND_5GHZ] = &iwm_band_5ghz;
  634. wdev->wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM;
  635. wdev->wiphy->cipher_suites = cipher_suites;
  636. wdev->wiphy->n_cipher_suites = ARRAY_SIZE(cipher_suites);
  637. ret = wiphy_register(wdev->wiphy);
  638. if (ret < 0) {
  639. dev_err(dev, "Couldn't register wiphy device\n");
  640. goto out_err_register;
  641. }
  642. return wdev;
  643. out_err_register:
  644. wiphy_free(wdev->wiphy);
  645. out_err_new:
  646. kfree(wdev);
  647. return ERR_PTR(ret);
  648. }
  649. void iwm_wdev_free(struct iwm_priv *iwm)
  650. {
  651. struct wireless_dev *wdev = iwm_to_wdev(iwm);
  652. if (!wdev)
  653. return;
  654. wiphy_unregister(wdev->wiphy);
  655. wiphy_free(wdev->wiphy);
  656. kfree(wdev);
  657. }