huge_memory.c 65 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/sched.h>
  9. #include <linux/highmem.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/mm_inline.h>
  15. #include <linux/kthread.h>
  16. #include <linux/khugepaged.h>
  17. #include <linux/freezer.h>
  18. #include <linux/mman.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/migrate.h>
  21. #include <asm/tlb.h>
  22. #include <asm/pgalloc.h>
  23. #include "internal.h"
  24. /*
  25. * By default transparent hugepage support is enabled for all mappings
  26. * and khugepaged scans all mappings. Defrag is only invoked by
  27. * khugepaged hugepage allocations and by page faults inside
  28. * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  29. * allocations.
  30. */
  31. unsigned long transparent_hugepage_flags __read_mostly =
  32. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  33. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  34. #endif
  35. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  36. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  37. #endif
  38. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  39. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  40. /* default scan 8*512 pte (or vmas) every 30 second */
  41. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  42. static unsigned int khugepaged_pages_collapsed;
  43. static unsigned int khugepaged_full_scans;
  44. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  45. /* during fragmentation poll the hugepage allocator once every minute */
  46. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  47. static struct task_struct *khugepaged_thread __read_mostly;
  48. static DEFINE_MUTEX(khugepaged_mutex);
  49. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  50. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  51. /*
  52. * default collapse hugepages if there is at least one pte mapped like
  53. * it would have happened if the vma was large enough during page
  54. * fault.
  55. */
  56. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  57. static int khugepaged(void *none);
  58. static int mm_slots_hash_init(void);
  59. static int khugepaged_slab_init(void);
  60. static void khugepaged_slab_free(void);
  61. #define MM_SLOTS_HASH_HEADS 1024
  62. static struct hlist_head *mm_slots_hash __read_mostly;
  63. static struct kmem_cache *mm_slot_cache __read_mostly;
  64. /**
  65. * struct mm_slot - hash lookup from mm to mm_slot
  66. * @hash: hash collision list
  67. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  68. * @mm: the mm that this information is valid for
  69. */
  70. struct mm_slot {
  71. struct hlist_node hash;
  72. struct list_head mm_node;
  73. struct mm_struct *mm;
  74. };
  75. /**
  76. * struct khugepaged_scan - cursor for scanning
  77. * @mm_head: the head of the mm list to scan
  78. * @mm_slot: the current mm_slot we are scanning
  79. * @address: the next address inside that to be scanned
  80. *
  81. * There is only the one khugepaged_scan instance of this cursor structure.
  82. */
  83. struct khugepaged_scan {
  84. struct list_head mm_head;
  85. struct mm_slot *mm_slot;
  86. unsigned long address;
  87. };
  88. static struct khugepaged_scan khugepaged_scan = {
  89. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  90. };
  91. static int set_recommended_min_free_kbytes(void)
  92. {
  93. struct zone *zone;
  94. int nr_zones = 0;
  95. unsigned long recommended_min;
  96. extern int min_free_kbytes;
  97. if (!khugepaged_enabled())
  98. return 0;
  99. for_each_populated_zone(zone)
  100. nr_zones++;
  101. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  102. recommended_min = pageblock_nr_pages * nr_zones * 2;
  103. /*
  104. * Make sure that on average at least two pageblocks are almost free
  105. * of another type, one for a migratetype to fall back to and a
  106. * second to avoid subsequent fallbacks of other types There are 3
  107. * MIGRATE_TYPES we care about.
  108. */
  109. recommended_min += pageblock_nr_pages * nr_zones *
  110. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  111. /* don't ever allow to reserve more than 5% of the lowmem */
  112. recommended_min = min(recommended_min,
  113. (unsigned long) nr_free_buffer_pages() / 20);
  114. recommended_min <<= (PAGE_SHIFT-10);
  115. if (recommended_min > min_free_kbytes)
  116. min_free_kbytes = recommended_min;
  117. setup_per_zone_wmarks();
  118. return 0;
  119. }
  120. late_initcall(set_recommended_min_free_kbytes);
  121. static int start_khugepaged(void)
  122. {
  123. int err = 0;
  124. if (khugepaged_enabled()) {
  125. if (!khugepaged_thread)
  126. khugepaged_thread = kthread_run(khugepaged, NULL,
  127. "khugepaged");
  128. if (unlikely(IS_ERR(khugepaged_thread))) {
  129. printk(KERN_ERR
  130. "khugepaged: kthread_run(khugepaged) failed\n");
  131. err = PTR_ERR(khugepaged_thread);
  132. khugepaged_thread = NULL;
  133. }
  134. if (!list_empty(&khugepaged_scan.mm_head))
  135. wake_up_interruptible(&khugepaged_wait);
  136. set_recommended_min_free_kbytes();
  137. } else if (khugepaged_thread) {
  138. kthread_stop(khugepaged_thread);
  139. khugepaged_thread = NULL;
  140. }
  141. return err;
  142. }
  143. #ifdef CONFIG_SYSFS
  144. static ssize_t double_flag_show(struct kobject *kobj,
  145. struct kobj_attribute *attr, char *buf,
  146. enum transparent_hugepage_flag enabled,
  147. enum transparent_hugepage_flag req_madv)
  148. {
  149. if (test_bit(enabled, &transparent_hugepage_flags)) {
  150. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  151. return sprintf(buf, "[always] madvise never\n");
  152. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  153. return sprintf(buf, "always [madvise] never\n");
  154. else
  155. return sprintf(buf, "always madvise [never]\n");
  156. }
  157. static ssize_t double_flag_store(struct kobject *kobj,
  158. struct kobj_attribute *attr,
  159. const char *buf, size_t count,
  160. enum transparent_hugepage_flag enabled,
  161. enum transparent_hugepage_flag req_madv)
  162. {
  163. if (!memcmp("always", buf,
  164. min(sizeof("always")-1, count))) {
  165. set_bit(enabled, &transparent_hugepage_flags);
  166. clear_bit(req_madv, &transparent_hugepage_flags);
  167. } else if (!memcmp("madvise", buf,
  168. min(sizeof("madvise")-1, count))) {
  169. clear_bit(enabled, &transparent_hugepage_flags);
  170. set_bit(req_madv, &transparent_hugepage_flags);
  171. } else if (!memcmp("never", buf,
  172. min(sizeof("never")-1, count))) {
  173. clear_bit(enabled, &transparent_hugepage_flags);
  174. clear_bit(req_madv, &transparent_hugepage_flags);
  175. } else
  176. return -EINVAL;
  177. return count;
  178. }
  179. static ssize_t enabled_show(struct kobject *kobj,
  180. struct kobj_attribute *attr, char *buf)
  181. {
  182. return double_flag_show(kobj, attr, buf,
  183. TRANSPARENT_HUGEPAGE_FLAG,
  184. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  185. }
  186. static ssize_t enabled_store(struct kobject *kobj,
  187. struct kobj_attribute *attr,
  188. const char *buf, size_t count)
  189. {
  190. ssize_t ret;
  191. ret = double_flag_store(kobj, attr, buf, count,
  192. TRANSPARENT_HUGEPAGE_FLAG,
  193. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  194. if (ret > 0) {
  195. int err;
  196. mutex_lock(&khugepaged_mutex);
  197. err = start_khugepaged();
  198. mutex_unlock(&khugepaged_mutex);
  199. if (err)
  200. ret = err;
  201. }
  202. return ret;
  203. }
  204. static struct kobj_attribute enabled_attr =
  205. __ATTR(enabled, 0644, enabled_show, enabled_store);
  206. static ssize_t single_flag_show(struct kobject *kobj,
  207. struct kobj_attribute *attr, char *buf,
  208. enum transparent_hugepage_flag flag)
  209. {
  210. return sprintf(buf, "%d\n",
  211. !!test_bit(flag, &transparent_hugepage_flags));
  212. }
  213. static ssize_t single_flag_store(struct kobject *kobj,
  214. struct kobj_attribute *attr,
  215. const char *buf, size_t count,
  216. enum transparent_hugepage_flag flag)
  217. {
  218. unsigned long value;
  219. int ret;
  220. ret = kstrtoul(buf, 10, &value);
  221. if (ret < 0)
  222. return ret;
  223. if (value > 1)
  224. return -EINVAL;
  225. if (value)
  226. set_bit(flag, &transparent_hugepage_flags);
  227. else
  228. clear_bit(flag, &transparent_hugepage_flags);
  229. return count;
  230. }
  231. /*
  232. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  233. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  234. * memory just to allocate one more hugepage.
  235. */
  236. static ssize_t defrag_show(struct kobject *kobj,
  237. struct kobj_attribute *attr, char *buf)
  238. {
  239. return double_flag_show(kobj, attr, buf,
  240. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  241. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  242. }
  243. static ssize_t defrag_store(struct kobject *kobj,
  244. struct kobj_attribute *attr,
  245. const char *buf, size_t count)
  246. {
  247. return double_flag_store(kobj, attr, buf, count,
  248. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  249. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  250. }
  251. static struct kobj_attribute defrag_attr =
  252. __ATTR(defrag, 0644, defrag_show, defrag_store);
  253. #ifdef CONFIG_DEBUG_VM
  254. static ssize_t debug_cow_show(struct kobject *kobj,
  255. struct kobj_attribute *attr, char *buf)
  256. {
  257. return single_flag_show(kobj, attr, buf,
  258. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  259. }
  260. static ssize_t debug_cow_store(struct kobject *kobj,
  261. struct kobj_attribute *attr,
  262. const char *buf, size_t count)
  263. {
  264. return single_flag_store(kobj, attr, buf, count,
  265. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  266. }
  267. static struct kobj_attribute debug_cow_attr =
  268. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  269. #endif /* CONFIG_DEBUG_VM */
  270. static struct attribute *hugepage_attr[] = {
  271. &enabled_attr.attr,
  272. &defrag_attr.attr,
  273. #ifdef CONFIG_DEBUG_VM
  274. &debug_cow_attr.attr,
  275. #endif
  276. NULL,
  277. };
  278. static struct attribute_group hugepage_attr_group = {
  279. .attrs = hugepage_attr,
  280. };
  281. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  282. struct kobj_attribute *attr,
  283. char *buf)
  284. {
  285. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  286. }
  287. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  288. struct kobj_attribute *attr,
  289. const char *buf, size_t count)
  290. {
  291. unsigned long msecs;
  292. int err;
  293. err = strict_strtoul(buf, 10, &msecs);
  294. if (err || msecs > UINT_MAX)
  295. return -EINVAL;
  296. khugepaged_scan_sleep_millisecs = msecs;
  297. wake_up_interruptible(&khugepaged_wait);
  298. return count;
  299. }
  300. static struct kobj_attribute scan_sleep_millisecs_attr =
  301. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  302. scan_sleep_millisecs_store);
  303. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  304. struct kobj_attribute *attr,
  305. char *buf)
  306. {
  307. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  308. }
  309. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  310. struct kobj_attribute *attr,
  311. const char *buf, size_t count)
  312. {
  313. unsigned long msecs;
  314. int err;
  315. err = strict_strtoul(buf, 10, &msecs);
  316. if (err || msecs > UINT_MAX)
  317. return -EINVAL;
  318. khugepaged_alloc_sleep_millisecs = msecs;
  319. wake_up_interruptible(&khugepaged_wait);
  320. return count;
  321. }
  322. static struct kobj_attribute alloc_sleep_millisecs_attr =
  323. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  324. alloc_sleep_millisecs_store);
  325. static ssize_t pages_to_scan_show(struct kobject *kobj,
  326. struct kobj_attribute *attr,
  327. char *buf)
  328. {
  329. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  330. }
  331. static ssize_t pages_to_scan_store(struct kobject *kobj,
  332. struct kobj_attribute *attr,
  333. const char *buf, size_t count)
  334. {
  335. int err;
  336. unsigned long pages;
  337. err = strict_strtoul(buf, 10, &pages);
  338. if (err || !pages || pages > UINT_MAX)
  339. return -EINVAL;
  340. khugepaged_pages_to_scan = pages;
  341. return count;
  342. }
  343. static struct kobj_attribute pages_to_scan_attr =
  344. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  345. pages_to_scan_store);
  346. static ssize_t pages_collapsed_show(struct kobject *kobj,
  347. struct kobj_attribute *attr,
  348. char *buf)
  349. {
  350. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  351. }
  352. static struct kobj_attribute pages_collapsed_attr =
  353. __ATTR_RO(pages_collapsed);
  354. static ssize_t full_scans_show(struct kobject *kobj,
  355. struct kobj_attribute *attr,
  356. char *buf)
  357. {
  358. return sprintf(buf, "%u\n", khugepaged_full_scans);
  359. }
  360. static struct kobj_attribute full_scans_attr =
  361. __ATTR_RO(full_scans);
  362. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  363. struct kobj_attribute *attr, char *buf)
  364. {
  365. return single_flag_show(kobj, attr, buf,
  366. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  367. }
  368. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  369. struct kobj_attribute *attr,
  370. const char *buf, size_t count)
  371. {
  372. return single_flag_store(kobj, attr, buf, count,
  373. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  374. }
  375. static struct kobj_attribute khugepaged_defrag_attr =
  376. __ATTR(defrag, 0644, khugepaged_defrag_show,
  377. khugepaged_defrag_store);
  378. /*
  379. * max_ptes_none controls if khugepaged should collapse hugepages over
  380. * any unmapped ptes in turn potentially increasing the memory
  381. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  382. * reduce the available free memory in the system as it
  383. * runs. Increasing max_ptes_none will instead potentially reduce the
  384. * free memory in the system during the khugepaged scan.
  385. */
  386. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  387. struct kobj_attribute *attr,
  388. char *buf)
  389. {
  390. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  391. }
  392. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  393. struct kobj_attribute *attr,
  394. const char *buf, size_t count)
  395. {
  396. int err;
  397. unsigned long max_ptes_none;
  398. err = strict_strtoul(buf, 10, &max_ptes_none);
  399. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  400. return -EINVAL;
  401. khugepaged_max_ptes_none = max_ptes_none;
  402. return count;
  403. }
  404. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  405. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  406. khugepaged_max_ptes_none_store);
  407. static struct attribute *khugepaged_attr[] = {
  408. &khugepaged_defrag_attr.attr,
  409. &khugepaged_max_ptes_none_attr.attr,
  410. &pages_to_scan_attr.attr,
  411. &pages_collapsed_attr.attr,
  412. &full_scans_attr.attr,
  413. &scan_sleep_millisecs_attr.attr,
  414. &alloc_sleep_millisecs_attr.attr,
  415. NULL,
  416. };
  417. static struct attribute_group khugepaged_attr_group = {
  418. .attrs = khugepaged_attr,
  419. .name = "khugepaged",
  420. };
  421. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  422. {
  423. int err;
  424. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  425. if (unlikely(!*hugepage_kobj)) {
  426. printk(KERN_ERR "hugepage: failed kobject create\n");
  427. return -ENOMEM;
  428. }
  429. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  430. if (err) {
  431. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  432. goto delete_obj;
  433. }
  434. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  435. if (err) {
  436. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  437. goto remove_hp_group;
  438. }
  439. return 0;
  440. remove_hp_group:
  441. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  442. delete_obj:
  443. kobject_put(*hugepage_kobj);
  444. return err;
  445. }
  446. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  447. {
  448. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  449. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  450. kobject_put(hugepage_kobj);
  451. }
  452. #else
  453. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  454. {
  455. return 0;
  456. }
  457. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  458. {
  459. }
  460. #endif /* CONFIG_SYSFS */
  461. static int __init hugepage_init(void)
  462. {
  463. int err;
  464. struct kobject *hugepage_kobj;
  465. if (!has_transparent_hugepage()) {
  466. transparent_hugepage_flags = 0;
  467. return -EINVAL;
  468. }
  469. err = hugepage_init_sysfs(&hugepage_kobj);
  470. if (err)
  471. return err;
  472. err = khugepaged_slab_init();
  473. if (err)
  474. goto out;
  475. err = mm_slots_hash_init();
  476. if (err) {
  477. khugepaged_slab_free();
  478. goto out;
  479. }
  480. /*
  481. * By default disable transparent hugepages on smaller systems,
  482. * where the extra memory used could hurt more than TLB overhead
  483. * is likely to save. The admin can still enable it through /sys.
  484. */
  485. if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
  486. transparent_hugepage_flags = 0;
  487. start_khugepaged();
  488. return 0;
  489. out:
  490. hugepage_exit_sysfs(hugepage_kobj);
  491. return err;
  492. }
  493. module_init(hugepage_init)
  494. static int __init setup_transparent_hugepage(char *str)
  495. {
  496. int ret = 0;
  497. if (!str)
  498. goto out;
  499. if (!strcmp(str, "always")) {
  500. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  501. &transparent_hugepage_flags);
  502. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  503. &transparent_hugepage_flags);
  504. ret = 1;
  505. } else if (!strcmp(str, "madvise")) {
  506. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  507. &transparent_hugepage_flags);
  508. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  509. &transparent_hugepage_flags);
  510. ret = 1;
  511. } else if (!strcmp(str, "never")) {
  512. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  513. &transparent_hugepage_flags);
  514. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  515. &transparent_hugepage_flags);
  516. ret = 1;
  517. }
  518. out:
  519. if (!ret)
  520. printk(KERN_WARNING
  521. "transparent_hugepage= cannot parse, ignored\n");
  522. return ret;
  523. }
  524. __setup("transparent_hugepage=", setup_transparent_hugepage);
  525. static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  526. {
  527. if (likely(vma->vm_flags & VM_WRITE))
  528. pmd = pmd_mkwrite(pmd);
  529. return pmd;
  530. }
  531. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  532. struct vm_area_struct *vma,
  533. unsigned long haddr, pmd_t *pmd,
  534. struct page *page)
  535. {
  536. pgtable_t pgtable;
  537. VM_BUG_ON(!PageCompound(page));
  538. pgtable = pte_alloc_one(mm, haddr);
  539. if (unlikely(!pgtable))
  540. return VM_FAULT_OOM;
  541. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  542. __SetPageUptodate(page);
  543. spin_lock(&mm->page_table_lock);
  544. if (unlikely(!pmd_none(*pmd))) {
  545. spin_unlock(&mm->page_table_lock);
  546. mem_cgroup_uncharge_page(page);
  547. put_page(page);
  548. pte_free(mm, pgtable);
  549. } else {
  550. pmd_t entry;
  551. entry = mk_pmd(page, vma->vm_page_prot);
  552. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  553. entry = pmd_mkhuge(entry);
  554. /*
  555. * The spinlocking to take the lru_lock inside
  556. * page_add_new_anon_rmap() acts as a full memory
  557. * barrier to be sure clear_huge_page writes become
  558. * visible after the set_pmd_at() write.
  559. */
  560. page_add_new_anon_rmap(page, vma, haddr);
  561. set_pmd_at(mm, haddr, pmd, entry);
  562. pgtable_trans_huge_deposit(mm, pgtable);
  563. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  564. mm->nr_ptes++;
  565. spin_unlock(&mm->page_table_lock);
  566. }
  567. return 0;
  568. }
  569. static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
  570. {
  571. return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
  572. }
  573. static inline struct page *alloc_hugepage_vma(int defrag,
  574. struct vm_area_struct *vma,
  575. unsigned long haddr, int nd,
  576. gfp_t extra_gfp)
  577. {
  578. return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
  579. HPAGE_PMD_ORDER, vma, haddr, nd);
  580. }
  581. #ifndef CONFIG_NUMA
  582. static inline struct page *alloc_hugepage(int defrag)
  583. {
  584. return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
  585. HPAGE_PMD_ORDER);
  586. }
  587. #endif
  588. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  589. unsigned long address, pmd_t *pmd,
  590. unsigned int flags)
  591. {
  592. struct page *page;
  593. unsigned long haddr = address & HPAGE_PMD_MASK;
  594. pte_t *pte;
  595. if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
  596. if (unlikely(anon_vma_prepare(vma)))
  597. return VM_FAULT_OOM;
  598. if (unlikely(khugepaged_enter(vma)))
  599. return VM_FAULT_OOM;
  600. page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  601. vma, haddr, numa_node_id(), 0);
  602. if (unlikely(!page)) {
  603. count_vm_event(THP_FAULT_FALLBACK);
  604. goto out;
  605. }
  606. count_vm_event(THP_FAULT_ALLOC);
  607. if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
  608. put_page(page);
  609. goto out;
  610. }
  611. if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
  612. page))) {
  613. mem_cgroup_uncharge_page(page);
  614. put_page(page);
  615. goto out;
  616. }
  617. return 0;
  618. }
  619. out:
  620. /*
  621. * Use __pte_alloc instead of pte_alloc_map, because we can't
  622. * run pte_offset_map on the pmd, if an huge pmd could
  623. * materialize from under us from a different thread.
  624. */
  625. if (unlikely(pmd_none(*pmd)) &&
  626. unlikely(__pte_alloc(mm, vma, pmd, address)))
  627. return VM_FAULT_OOM;
  628. /* if an huge pmd materialized from under us just retry later */
  629. if (unlikely(pmd_trans_huge(*pmd)))
  630. return 0;
  631. /*
  632. * A regular pmd is established and it can't morph into a huge pmd
  633. * from under us anymore at this point because we hold the mmap_sem
  634. * read mode and khugepaged takes it in write mode. So now it's
  635. * safe to run pte_offset_map().
  636. */
  637. pte = pte_offset_map(pmd, address);
  638. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  639. }
  640. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  641. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  642. struct vm_area_struct *vma)
  643. {
  644. struct page *src_page;
  645. pmd_t pmd;
  646. pgtable_t pgtable;
  647. int ret;
  648. ret = -ENOMEM;
  649. pgtable = pte_alloc_one(dst_mm, addr);
  650. if (unlikely(!pgtable))
  651. goto out;
  652. spin_lock(&dst_mm->page_table_lock);
  653. spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
  654. ret = -EAGAIN;
  655. pmd = *src_pmd;
  656. if (unlikely(!pmd_trans_huge(pmd))) {
  657. pte_free(dst_mm, pgtable);
  658. goto out_unlock;
  659. }
  660. if (unlikely(pmd_trans_splitting(pmd))) {
  661. /* split huge page running from under us */
  662. spin_unlock(&src_mm->page_table_lock);
  663. spin_unlock(&dst_mm->page_table_lock);
  664. pte_free(dst_mm, pgtable);
  665. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  666. goto out;
  667. }
  668. src_page = pmd_page(pmd);
  669. VM_BUG_ON(!PageHead(src_page));
  670. get_page(src_page);
  671. page_dup_rmap(src_page);
  672. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  673. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  674. pmd = pmd_mkold(pmd_wrprotect(pmd));
  675. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  676. pgtable_trans_huge_deposit(dst_mm, pgtable);
  677. dst_mm->nr_ptes++;
  678. ret = 0;
  679. out_unlock:
  680. spin_unlock(&src_mm->page_table_lock);
  681. spin_unlock(&dst_mm->page_table_lock);
  682. out:
  683. return ret;
  684. }
  685. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  686. struct vm_area_struct *vma,
  687. unsigned long address,
  688. pmd_t *pmd, pmd_t orig_pmd,
  689. struct page *page,
  690. unsigned long haddr)
  691. {
  692. pgtable_t pgtable;
  693. pmd_t _pmd;
  694. int ret = 0, i;
  695. struct page **pages;
  696. unsigned long mmun_start; /* For mmu_notifiers */
  697. unsigned long mmun_end; /* For mmu_notifiers */
  698. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  699. GFP_KERNEL);
  700. if (unlikely(!pages)) {
  701. ret |= VM_FAULT_OOM;
  702. goto out;
  703. }
  704. for (i = 0; i < HPAGE_PMD_NR; i++) {
  705. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  706. __GFP_OTHER_NODE,
  707. vma, address, page_to_nid(page));
  708. if (unlikely(!pages[i] ||
  709. mem_cgroup_newpage_charge(pages[i], mm,
  710. GFP_KERNEL))) {
  711. if (pages[i])
  712. put_page(pages[i]);
  713. mem_cgroup_uncharge_start();
  714. while (--i >= 0) {
  715. mem_cgroup_uncharge_page(pages[i]);
  716. put_page(pages[i]);
  717. }
  718. mem_cgroup_uncharge_end();
  719. kfree(pages);
  720. ret |= VM_FAULT_OOM;
  721. goto out;
  722. }
  723. }
  724. for (i = 0; i < HPAGE_PMD_NR; i++) {
  725. copy_user_highpage(pages[i], page + i,
  726. haddr + PAGE_SIZE * i, vma);
  727. __SetPageUptodate(pages[i]);
  728. cond_resched();
  729. }
  730. mmun_start = haddr;
  731. mmun_end = haddr + HPAGE_PMD_SIZE;
  732. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  733. spin_lock(&mm->page_table_lock);
  734. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  735. goto out_free_pages;
  736. VM_BUG_ON(!PageHead(page));
  737. pmdp_clear_flush(vma, haddr, pmd);
  738. /* leave pmd empty until pte is filled */
  739. pgtable = pgtable_trans_huge_withdraw(mm);
  740. pmd_populate(mm, &_pmd, pgtable);
  741. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  742. pte_t *pte, entry;
  743. entry = mk_pte(pages[i], vma->vm_page_prot);
  744. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  745. page_add_new_anon_rmap(pages[i], vma, haddr);
  746. pte = pte_offset_map(&_pmd, haddr);
  747. VM_BUG_ON(!pte_none(*pte));
  748. set_pte_at(mm, haddr, pte, entry);
  749. pte_unmap(pte);
  750. }
  751. kfree(pages);
  752. smp_wmb(); /* make pte visible before pmd */
  753. pmd_populate(mm, pmd, pgtable);
  754. page_remove_rmap(page);
  755. spin_unlock(&mm->page_table_lock);
  756. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  757. ret |= VM_FAULT_WRITE;
  758. put_page(page);
  759. out:
  760. return ret;
  761. out_free_pages:
  762. spin_unlock(&mm->page_table_lock);
  763. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  764. mem_cgroup_uncharge_start();
  765. for (i = 0; i < HPAGE_PMD_NR; i++) {
  766. mem_cgroup_uncharge_page(pages[i]);
  767. put_page(pages[i]);
  768. }
  769. mem_cgroup_uncharge_end();
  770. kfree(pages);
  771. goto out;
  772. }
  773. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  774. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  775. {
  776. int ret = 0;
  777. struct page *page, *new_page;
  778. unsigned long haddr;
  779. unsigned long mmun_start; /* For mmu_notifiers */
  780. unsigned long mmun_end; /* For mmu_notifiers */
  781. VM_BUG_ON(!vma->anon_vma);
  782. spin_lock(&mm->page_table_lock);
  783. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  784. goto out_unlock;
  785. page = pmd_page(orig_pmd);
  786. VM_BUG_ON(!PageCompound(page) || !PageHead(page));
  787. haddr = address & HPAGE_PMD_MASK;
  788. if (page_mapcount(page) == 1) {
  789. pmd_t entry;
  790. entry = pmd_mkyoung(orig_pmd);
  791. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  792. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  793. update_mmu_cache_pmd(vma, address, pmd);
  794. ret |= VM_FAULT_WRITE;
  795. goto out_unlock;
  796. }
  797. get_page(page);
  798. spin_unlock(&mm->page_table_lock);
  799. if (transparent_hugepage_enabled(vma) &&
  800. !transparent_hugepage_debug_cow())
  801. new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  802. vma, haddr, numa_node_id(), 0);
  803. else
  804. new_page = NULL;
  805. if (unlikely(!new_page)) {
  806. count_vm_event(THP_FAULT_FALLBACK);
  807. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  808. pmd, orig_pmd, page, haddr);
  809. if (ret & VM_FAULT_OOM)
  810. split_huge_page(page);
  811. put_page(page);
  812. goto out;
  813. }
  814. count_vm_event(THP_FAULT_ALLOC);
  815. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  816. put_page(new_page);
  817. split_huge_page(page);
  818. put_page(page);
  819. ret |= VM_FAULT_OOM;
  820. goto out;
  821. }
  822. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  823. __SetPageUptodate(new_page);
  824. mmun_start = haddr;
  825. mmun_end = haddr + HPAGE_PMD_SIZE;
  826. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  827. spin_lock(&mm->page_table_lock);
  828. put_page(page);
  829. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  830. spin_unlock(&mm->page_table_lock);
  831. mem_cgroup_uncharge_page(new_page);
  832. put_page(new_page);
  833. goto out_mn;
  834. } else {
  835. pmd_t entry;
  836. VM_BUG_ON(!PageHead(page));
  837. entry = mk_pmd(new_page, vma->vm_page_prot);
  838. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  839. entry = pmd_mkhuge(entry);
  840. pmdp_clear_flush(vma, haddr, pmd);
  841. page_add_new_anon_rmap(new_page, vma, haddr);
  842. set_pmd_at(mm, haddr, pmd, entry);
  843. update_mmu_cache_pmd(vma, address, pmd);
  844. page_remove_rmap(page);
  845. put_page(page);
  846. ret |= VM_FAULT_WRITE;
  847. }
  848. spin_unlock(&mm->page_table_lock);
  849. out_mn:
  850. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  851. out:
  852. return ret;
  853. out_unlock:
  854. spin_unlock(&mm->page_table_lock);
  855. return ret;
  856. }
  857. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  858. unsigned long addr,
  859. pmd_t *pmd,
  860. unsigned int flags)
  861. {
  862. struct mm_struct *mm = vma->vm_mm;
  863. struct page *page = NULL;
  864. assert_spin_locked(&mm->page_table_lock);
  865. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  866. goto out;
  867. page = pmd_page(*pmd);
  868. VM_BUG_ON(!PageHead(page));
  869. if (flags & FOLL_TOUCH) {
  870. pmd_t _pmd;
  871. /*
  872. * We should set the dirty bit only for FOLL_WRITE but
  873. * for now the dirty bit in the pmd is meaningless.
  874. * And if the dirty bit will become meaningful and
  875. * we'll only set it with FOLL_WRITE, an atomic
  876. * set_bit will be required on the pmd to set the
  877. * young bit, instead of the current set_pmd_at.
  878. */
  879. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  880. set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
  881. }
  882. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  883. if (page->mapping && trylock_page(page)) {
  884. lru_add_drain();
  885. if (page->mapping)
  886. mlock_vma_page(page);
  887. unlock_page(page);
  888. }
  889. }
  890. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  891. VM_BUG_ON(!PageCompound(page));
  892. if (flags & FOLL_GET)
  893. get_page_foll(page);
  894. out:
  895. return page;
  896. }
  897. /* NUMA hinting page fault entry point for trans huge pmds */
  898. int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  899. unsigned long addr, pmd_t pmd, pmd_t *pmdp)
  900. {
  901. struct page *page = NULL;
  902. unsigned long haddr = addr & HPAGE_PMD_MASK;
  903. int target_nid;
  904. int current_nid = -1;
  905. spin_lock(&mm->page_table_lock);
  906. if (unlikely(!pmd_same(pmd, *pmdp)))
  907. goto out_unlock;
  908. page = pmd_page(pmd);
  909. get_page(page);
  910. spin_unlock(&mm->page_table_lock);
  911. current_nid = page_to_nid(page);
  912. count_vm_numa_event(NUMA_HINT_FAULTS);
  913. if (current_nid == numa_node_id())
  914. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  915. target_nid = mpol_misplaced(page, vma, haddr);
  916. if (target_nid == -1)
  917. goto clear_pmdnuma;
  918. /*
  919. * Due to lacking code to migrate thp pages, we'll split
  920. * (which preserves the special PROT_NONE) and re-take the
  921. * fault on the normal pages.
  922. */
  923. split_huge_page(page);
  924. put_page(page);
  925. return 0;
  926. clear_pmdnuma:
  927. spin_lock(&mm->page_table_lock);
  928. if (unlikely(!pmd_same(pmd, *pmdp)))
  929. goto out_unlock;
  930. pmd = pmd_mknonnuma(pmd);
  931. set_pmd_at(mm, haddr, pmdp, pmd);
  932. VM_BUG_ON(pmd_numa(*pmdp));
  933. update_mmu_cache_pmd(vma, addr, pmdp);
  934. out_unlock:
  935. spin_unlock(&mm->page_table_lock);
  936. if (page) {
  937. put_page(page);
  938. task_numa_fault(numa_node_id(), HPAGE_PMD_NR);
  939. }
  940. return 0;
  941. }
  942. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  943. pmd_t *pmd, unsigned long addr)
  944. {
  945. int ret = 0;
  946. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  947. struct page *page;
  948. pgtable_t pgtable;
  949. pmd_t orig_pmd;
  950. pgtable = pgtable_trans_huge_withdraw(tlb->mm);
  951. orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
  952. page = pmd_page(orig_pmd);
  953. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  954. page_remove_rmap(page);
  955. VM_BUG_ON(page_mapcount(page) < 0);
  956. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  957. VM_BUG_ON(!PageHead(page));
  958. tlb->mm->nr_ptes--;
  959. spin_unlock(&tlb->mm->page_table_lock);
  960. tlb_remove_page(tlb, page);
  961. pte_free(tlb->mm, pgtable);
  962. ret = 1;
  963. }
  964. return ret;
  965. }
  966. int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  967. unsigned long addr, unsigned long end,
  968. unsigned char *vec)
  969. {
  970. int ret = 0;
  971. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  972. /*
  973. * All logical pages in the range are present
  974. * if backed by a huge page.
  975. */
  976. spin_unlock(&vma->vm_mm->page_table_lock);
  977. memset(vec, 1, (end - addr) >> PAGE_SHIFT);
  978. ret = 1;
  979. }
  980. return ret;
  981. }
  982. int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
  983. unsigned long old_addr,
  984. unsigned long new_addr, unsigned long old_end,
  985. pmd_t *old_pmd, pmd_t *new_pmd)
  986. {
  987. int ret = 0;
  988. pmd_t pmd;
  989. struct mm_struct *mm = vma->vm_mm;
  990. if ((old_addr & ~HPAGE_PMD_MASK) ||
  991. (new_addr & ~HPAGE_PMD_MASK) ||
  992. old_end - old_addr < HPAGE_PMD_SIZE ||
  993. (new_vma->vm_flags & VM_NOHUGEPAGE))
  994. goto out;
  995. /*
  996. * The destination pmd shouldn't be established, free_pgtables()
  997. * should have release it.
  998. */
  999. if (WARN_ON(!pmd_none(*new_pmd))) {
  1000. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  1001. goto out;
  1002. }
  1003. ret = __pmd_trans_huge_lock(old_pmd, vma);
  1004. if (ret == 1) {
  1005. pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
  1006. VM_BUG_ON(!pmd_none(*new_pmd));
  1007. set_pmd_at(mm, new_addr, new_pmd, pmd);
  1008. spin_unlock(&mm->page_table_lock);
  1009. }
  1010. out:
  1011. return ret;
  1012. }
  1013. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1014. unsigned long addr, pgprot_t newprot, int prot_numa)
  1015. {
  1016. struct mm_struct *mm = vma->vm_mm;
  1017. int ret = 0;
  1018. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  1019. pmd_t entry;
  1020. entry = pmdp_get_and_clear(mm, addr, pmd);
  1021. if (!prot_numa)
  1022. entry = pmd_modify(entry, newprot);
  1023. else {
  1024. struct page *page = pmd_page(*pmd);
  1025. /* only check non-shared pages */
  1026. if (page_mapcount(page) == 1 &&
  1027. !pmd_numa(*pmd)) {
  1028. entry = pmd_mknuma(entry);
  1029. }
  1030. }
  1031. set_pmd_at(mm, addr, pmd, entry);
  1032. spin_unlock(&vma->vm_mm->page_table_lock);
  1033. ret = 1;
  1034. }
  1035. return ret;
  1036. }
  1037. /*
  1038. * Returns 1 if a given pmd maps a stable (not under splitting) thp.
  1039. * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
  1040. *
  1041. * Note that if it returns 1, this routine returns without unlocking page
  1042. * table locks. So callers must unlock them.
  1043. */
  1044. int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  1045. {
  1046. spin_lock(&vma->vm_mm->page_table_lock);
  1047. if (likely(pmd_trans_huge(*pmd))) {
  1048. if (unlikely(pmd_trans_splitting(*pmd))) {
  1049. spin_unlock(&vma->vm_mm->page_table_lock);
  1050. wait_split_huge_page(vma->anon_vma, pmd);
  1051. return -1;
  1052. } else {
  1053. /* Thp mapped by 'pmd' is stable, so we can
  1054. * handle it as it is. */
  1055. return 1;
  1056. }
  1057. }
  1058. spin_unlock(&vma->vm_mm->page_table_lock);
  1059. return 0;
  1060. }
  1061. pmd_t *page_check_address_pmd(struct page *page,
  1062. struct mm_struct *mm,
  1063. unsigned long address,
  1064. enum page_check_address_pmd_flag flag)
  1065. {
  1066. pgd_t *pgd;
  1067. pud_t *pud;
  1068. pmd_t *pmd, *ret = NULL;
  1069. if (address & ~HPAGE_PMD_MASK)
  1070. goto out;
  1071. pgd = pgd_offset(mm, address);
  1072. if (!pgd_present(*pgd))
  1073. goto out;
  1074. pud = pud_offset(pgd, address);
  1075. if (!pud_present(*pud))
  1076. goto out;
  1077. pmd = pmd_offset(pud, address);
  1078. if (pmd_none(*pmd))
  1079. goto out;
  1080. if (pmd_page(*pmd) != page)
  1081. goto out;
  1082. /*
  1083. * split_vma() may create temporary aliased mappings. There is
  1084. * no risk as long as all huge pmd are found and have their
  1085. * splitting bit set before __split_huge_page_refcount
  1086. * runs. Finding the same huge pmd more than once during the
  1087. * same rmap walk is not a problem.
  1088. */
  1089. if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  1090. pmd_trans_splitting(*pmd))
  1091. goto out;
  1092. if (pmd_trans_huge(*pmd)) {
  1093. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  1094. !pmd_trans_splitting(*pmd));
  1095. ret = pmd;
  1096. }
  1097. out:
  1098. return ret;
  1099. }
  1100. static int __split_huge_page_splitting(struct page *page,
  1101. struct vm_area_struct *vma,
  1102. unsigned long address)
  1103. {
  1104. struct mm_struct *mm = vma->vm_mm;
  1105. pmd_t *pmd;
  1106. int ret = 0;
  1107. /* For mmu_notifiers */
  1108. const unsigned long mmun_start = address;
  1109. const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
  1110. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1111. spin_lock(&mm->page_table_lock);
  1112. pmd = page_check_address_pmd(page, mm, address,
  1113. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
  1114. if (pmd) {
  1115. /*
  1116. * We can't temporarily set the pmd to null in order
  1117. * to split it, the pmd must remain marked huge at all
  1118. * times or the VM won't take the pmd_trans_huge paths
  1119. * and it won't wait on the anon_vma->root->mutex to
  1120. * serialize against split_huge_page*.
  1121. */
  1122. pmdp_splitting_flush(vma, address, pmd);
  1123. ret = 1;
  1124. }
  1125. spin_unlock(&mm->page_table_lock);
  1126. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1127. return ret;
  1128. }
  1129. static void __split_huge_page_refcount(struct page *page)
  1130. {
  1131. int i;
  1132. struct zone *zone = page_zone(page);
  1133. struct lruvec *lruvec;
  1134. int tail_count = 0;
  1135. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1136. spin_lock_irq(&zone->lru_lock);
  1137. lruvec = mem_cgroup_page_lruvec(page, zone);
  1138. compound_lock(page);
  1139. /* complete memcg works before add pages to LRU */
  1140. mem_cgroup_split_huge_fixup(page);
  1141. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  1142. struct page *page_tail = page + i;
  1143. /* tail_page->_mapcount cannot change */
  1144. BUG_ON(page_mapcount(page_tail) < 0);
  1145. tail_count += page_mapcount(page_tail);
  1146. /* check for overflow */
  1147. BUG_ON(tail_count < 0);
  1148. BUG_ON(atomic_read(&page_tail->_count) != 0);
  1149. /*
  1150. * tail_page->_count is zero and not changing from
  1151. * under us. But get_page_unless_zero() may be running
  1152. * from under us on the tail_page. If we used
  1153. * atomic_set() below instead of atomic_add(), we
  1154. * would then run atomic_set() concurrently with
  1155. * get_page_unless_zero(), and atomic_set() is
  1156. * implemented in C not using locked ops. spin_unlock
  1157. * on x86 sometime uses locked ops because of PPro
  1158. * errata 66, 92, so unless somebody can guarantee
  1159. * atomic_set() here would be safe on all archs (and
  1160. * not only on x86), it's safer to use atomic_add().
  1161. */
  1162. atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
  1163. &page_tail->_count);
  1164. /* after clearing PageTail the gup refcount can be released */
  1165. smp_mb();
  1166. /*
  1167. * retain hwpoison flag of the poisoned tail page:
  1168. * fix for the unsuitable process killed on Guest Machine(KVM)
  1169. * by the memory-failure.
  1170. */
  1171. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
  1172. page_tail->flags |= (page->flags &
  1173. ((1L << PG_referenced) |
  1174. (1L << PG_swapbacked) |
  1175. (1L << PG_mlocked) |
  1176. (1L << PG_uptodate)));
  1177. page_tail->flags |= (1L << PG_dirty);
  1178. /* clear PageTail before overwriting first_page */
  1179. smp_wmb();
  1180. /*
  1181. * __split_huge_page_splitting() already set the
  1182. * splitting bit in all pmd that could map this
  1183. * hugepage, that will ensure no CPU can alter the
  1184. * mapcount on the head page. The mapcount is only
  1185. * accounted in the head page and it has to be
  1186. * transferred to all tail pages in the below code. So
  1187. * for this code to be safe, the split the mapcount
  1188. * can't change. But that doesn't mean userland can't
  1189. * keep changing and reading the page contents while
  1190. * we transfer the mapcount, so the pmd splitting
  1191. * status is achieved setting a reserved bit in the
  1192. * pmd, not by clearing the present bit.
  1193. */
  1194. page_tail->_mapcount = page->_mapcount;
  1195. BUG_ON(page_tail->mapping);
  1196. page_tail->mapping = page->mapping;
  1197. page_tail->index = page->index + i;
  1198. BUG_ON(!PageAnon(page_tail));
  1199. BUG_ON(!PageUptodate(page_tail));
  1200. BUG_ON(!PageDirty(page_tail));
  1201. BUG_ON(!PageSwapBacked(page_tail));
  1202. lru_add_page_tail(page, page_tail, lruvec);
  1203. }
  1204. atomic_sub(tail_count, &page->_count);
  1205. BUG_ON(atomic_read(&page->_count) <= 0);
  1206. __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
  1207. __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
  1208. ClearPageCompound(page);
  1209. compound_unlock(page);
  1210. spin_unlock_irq(&zone->lru_lock);
  1211. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1212. struct page *page_tail = page + i;
  1213. BUG_ON(page_count(page_tail) <= 0);
  1214. /*
  1215. * Tail pages may be freed if there wasn't any mapping
  1216. * like if add_to_swap() is running on a lru page that
  1217. * had its mapping zapped. And freeing these pages
  1218. * requires taking the lru_lock so we do the put_page
  1219. * of the tail pages after the split is complete.
  1220. */
  1221. put_page(page_tail);
  1222. }
  1223. /*
  1224. * Only the head page (now become a regular page) is required
  1225. * to be pinned by the caller.
  1226. */
  1227. BUG_ON(page_count(page) <= 0);
  1228. }
  1229. static int __split_huge_page_map(struct page *page,
  1230. struct vm_area_struct *vma,
  1231. unsigned long address)
  1232. {
  1233. struct mm_struct *mm = vma->vm_mm;
  1234. pmd_t *pmd, _pmd;
  1235. int ret = 0, i;
  1236. pgtable_t pgtable;
  1237. unsigned long haddr;
  1238. spin_lock(&mm->page_table_lock);
  1239. pmd = page_check_address_pmd(page, mm, address,
  1240. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
  1241. if (pmd) {
  1242. pgtable = pgtable_trans_huge_withdraw(mm);
  1243. pmd_populate(mm, &_pmd, pgtable);
  1244. haddr = address;
  1245. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1246. pte_t *pte, entry;
  1247. BUG_ON(PageCompound(page+i));
  1248. entry = mk_pte(page + i, vma->vm_page_prot);
  1249. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1250. if (!pmd_write(*pmd))
  1251. entry = pte_wrprotect(entry);
  1252. else
  1253. BUG_ON(page_mapcount(page) != 1);
  1254. if (!pmd_young(*pmd))
  1255. entry = pte_mkold(entry);
  1256. if (pmd_numa(*pmd))
  1257. entry = pte_mknuma(entry);
  1258. pte = pte_offset_map(&_pmd, haddr);
  1259. BUG_ON(!pte_none(*pte));
  1260. set_pte_at(mm, haddr, pte, entry);
  1261. pte_unmap(pte);
  1262. }
  1263. smp_wmb(); /* make pte visible before pmd */
  1264. /*
  1265. * Up to this point the pmd is present and huge and
  1266. * userland has the whole access to the hugepage
  1267. * during the split (which happens in place). If we
  1268. * overwrite the pmd with the not-huge version
  1269. * pointing to the pte here (which of course we could
  1270. * if all CPUs were bug free), userland could trigger
  1271. * a small page size TLB miss on the small sized TLB
  1272. * while the hugepage TLB entry is still established
  1273. * in the huge TLB. Some CPU doesn't like that. See
  1274. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1275. * Erratum 383 on page 93. Intel should be safe but is
  1276. * also warns that it's only safe if the permission
  1277. * and cache attributes of the two entries loaded in
  1278. * the two TLB is identical (which should be the case
  1279. * here). But it is generally safer to never allow
  1280. * small and huge TLB entries for the same virtual
  1281. * address to be loaded simultaneously. So instead of
  1282. * doing "pmd_populate(); flush_tlb_range();" we first
  1283. * mark the current pmd notpresent (atomically because
  1284. * here the pmd_trans_huge and pmd_trans_splitting
  1285. * must remain set at all times on the pmd until the
  1286. * split is complete for this pmd), then we flush the
  1287. * SMP TLB and finally we write the non-huge version
  1288. * of the pmd entry with pmd_populate.
  1289. */
  1290. pmdp_invalidate(vma, address, pmd);
  1291. pmd_populate(mm, pmd, pgtable);
  1292. ret = 1;
  1293. }
  1294. spin_unlock(&mm->page_table_lock);
  1295. return ret;
  1296. }
  1297. /* must be called with anon_vma->root->mutex hold */
  1298. static void __split_huge_page(struct page *page,
  1299. struct anon_vma *anon_vma)
  1300. {
  1301. int mapcount, mapcount2;
  1302. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1303. struct anon_vma_chain *avc;
  1304. BUG_ON(!PageHead(page));
  1305. BUG_ON(PageTail(page));
  1306. mapcount = 0;
  1307. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1308. struct vm_area_struct *vma = avc->vma;
  1309. unsigned long addr = vma_address(page, vma);
  1310. BUG_ON(is_vma_temporary_stack(vma));
  1311. mapcount += __split_huge_page_splitting(page, vma, addr);
  1312. }
  1313. /*
  1314. * It is critical that new vmas are added to the tail of the
  1315. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1316. * and establishes a child pmd before
  1317. * __split_huge_page_splitting() freezes the parent pmd (so if
  1318. * we fail to prevent copy_huge_pmd() from running until the
  1319. * whole __split_huge_page() is complete), we will still see
  1320. * the newly established pmd of the child later during the
  1321. * walk, to be able to set it as pmd_trans_splitting too.
  1322. */
  1323. if (mapcount != page_mapcount(page))
  1324. printk(KERN_ERR "mapcount %d page_mapcount %d\n",
  1325. mapcount, page_mapcount(page));
  1326. BUG_ON(mapcount != page_mapcount(page));
  1327. __split_huge_page_refcount(page);
  1328. mapcount2 = 0;
  1329. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1330. struct vm_area_struct *vma = avc->vma;
  1331. unsigned long addr = vma_address(page, vma);
  1332. BUG_ON(is_vma_temporary_stack(vma));
  1333. mapcount2 += __split_huge_page_map(page, vma, addr);
  1334. }
  1335. if (mapcount != mapcount2)
  1336. printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
  1337. mapcount, mapcount2, page_mapcount(page));
  1338. BUG_ON(mapcount != mapcount2);
  1339. }
  1340. int split_huge_page(struct page *page)
  1341. {
  1342. struct anon_vma *anon_vma;
  1343. int ret = 1;
  1344. BUG_ON(!PageAnon(page));
  1345. anon_vma = page_lock_anon_vma(page);
  1346. if (!anon_vma)
  1347. goto out;
  1348. ret = 0;
  1349. if (!PageCompound(page))
  1350. goto out_unlock;
  1351. BUG_ON(!PageSwapBacked(page));
  1352. __split_huge_page(page, anon_vma);
  1353. count_vm_event(THP_SPLIT);
  1354. BUG_ON(PageCompound(page));
  1355. out_unlock:
  1356. page_unlock_anon_vma(anon_vma);
  1357. out:
  1358. return ret;
  1359. }
  1360. #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
  1361. int hugepage_madvise(struct vm_area_struct *vma,
  1362. unsigned long *vm_flags, int advice)
  1363. {
  1364. struct mm_struct *mm = vma->vm_mm;
  1365. switch (advice) {
  1366. case MADV_HUGEPAGE:
  1367. /*
  1368. * Be somewhat over-protective like KSM for now!
  1369. */
  1370. if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
  1371. return -EINVAL;
  1372. if (mm->def_flags & VM_NOHUGEPAGE)
  1373. return -EINVAL;
  1374. *vm_flags &= ~VM_NOHUGEPAGE;
  1375. *vm_flags |= VM_HUGEPAGE;
  1376. /*
  1377. * If the vma become good for khugepaged to scan,
  1378. * register it here without waiting a page fault that
  1379. * may not happen any time soon.
  1380. */
  1381. if (unlikely(khugepaged_enter_vma_merge(vma)))
  1382. return -ENOMEM;
  1383. break;
  1384. case MADV_NOHUGEPAGE:
  1385. /*
  1386. * Be somewhat over-protective like KSM for now!
  1387. */
  1388. if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
  1389. return -EINVAL;
  1390. *vm_flags &= ~VM_HUGEPAGE;
  1391. *vm_flags |= VM_NOHUGEPAGE;
  1392. /*
  1393. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1394. * this vma even if we leave the mm registered in khugepaged if
  1395. * it got registered before VM_NOHUGEPAGE was set.
  1396. */
  1397. break;
  1398. }
  1399. return 0;
  1400. }
  1401. static int __init khugepaged_slab_init(void)
  1402. {
  1403. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1404. sizeof(struct mm_slot),
  1405. __alignof__(struct mm_slot), 0, NULL);
  1406. if (!mm_slot_cache)
  1407. return -ENOMEM;
  1408. return 0;
  1409. }
  1410. static void __init khugepaged_slab_free(void)
  1411. {
  1412. kmem_cache_destroy(mm_slot_cache);
  1413. mm_slot_cache = NULL;
  1414. }
  1415. static inline struct mm_slot *alloc_mm_slot(void)
  1416. {
  1417. if (!mm_slot_cache) /* initialization failed */
  1418. return NULL;
  1419. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1420. }
  1421. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1422. {
  1423. kmem_cache_free(mm_slot_cache, mm_slot);
  1424. }
  1425. static int __init mm_slots_hash_init(void)
  1426. {
  1427. mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
  1428. GFP_KERNEL);
  1429. if (!mm_slots_hash)
  1430. return -ENOMEM;
  1431. return 0;
  1432. }
  1433. #if 0
  1434. static void __init mm_slots_hash_free(void)
  1435. {
  1436. kfree(mm_slots_hash);
  1437. mm_slots_hash = NULL;
  1438. }
  1439. #endif
  1440. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1441. {
  1442. struct mm_slot *mm_slot;
  1443. struct hlist_head *bucket;
  1444. struct hlist_node *node;
  1445. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1446. % MM_SLOTS_HASH_HEADS];
  1447. hlist_for_each_entry(mm_slot, node, bucket, hash) {
  1448. if (mm == mm_slot->mm)
  1449. return mm_slot;
  1450. }
  1451. return NULL;
  1452. }
  1453. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1454. struct mm_slot *mm_slot)
  1455. {
  1456. struct hlist_head *bucket;
  1457. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1458. % MM_SLOTS_HASH_HEADS];
  1459. mm_slot->mm = mm;
  1460. hlist_add_head(&mm_slot->hash, bucket);
  1461. }
  1462. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1463. {
  1464. return atomic_read(&mm->mm_users) == 0;
  1465. }
  1466. int __khugepaged_enter(struct mm_struct *mm)
  1467. {
  1468. struct mm_slot *mm_slot;
  1469. int wakeup;
  1470. mm_slot = alloc_mm_slot();
  1471. if (!mm_slot)
  1472. return -ENOMEM;
  1473. /* __khugepaged_exit() must not run from under us */
  1474. VM_BUG_ON(khugepaged_test_exit(mm));
  1475. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1476. free_mm_slot(mm_slot);
  1477. return 0;
  1478. }
  1479. spin_lock(&khugepaged_mm_lock);
  1480. insert_to_mm_slots_hash(mm, mm_slot);
  1481. /*
  1482. * Insert just behind the scanning cursor, to let the area settle
  1483. * down a little.
  1484. */
  1485. wakeup = list_empty(&khugepaged_scan.mm_head);
  1486. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1487. spin_unlock(&khugepaged_mm_lock);
  1488. atomic_inc(&mm->mm_count);
  1489. if (wakeup)
  1490. wake_up_interruptible(&khugepaged_wait);
  1491. return 0;
  1492. }
  1493. int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
  1494. {
  1495. unsigned long hstart, hend;
  1496. if (!vma->anon_vma)
  1497. /*
  1498. * Not yet faulted in so we will register later in the
  1499. * page fault if needed.
  1500. */
  1501. return 0;
  1502. if (vma->vm_ops)
  1503. /* khugepaged not yet working on file or special mappings */
  1504. return 0;
  1505. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1506. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1507. hend = vma->vm_end & HPAGE_PMD_MASK;
  1508. if (hstart < hend)
  1509. return khugepaged_enter(vma);
  1510. return 0;
  1511. }
  1512. void __khugepaged_exit(struct mm_struct *mm)
  1513. {
  1514. struct mm_slot *mm_slot;
  1515. int free = 0;
  1516. spin_lock(&khugepaged_mm_lock);
  1517. mm_slot = get_mm_slot(mm);
  1518. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1519. hlist_del(&mm_slot->hash);
  1520. list_del(&mm_slot->mm_node);
  1521. free = 1;
  1522. }
  1523. spin_unlock(&khugepaged_mm_lock);
  1524. if (free) {
  1525. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1526. free_mm_slot(mm_slot);
  1527. mmdrop(mm);
  1528. } else if (mm_slot) {
  1529. /*
  1530. * This is required to serialize against
  1531. * khugepaged_test_exit() (which is guaranteed to run
  1532. * under mmap sem read mode). Stop here (after we
  1533. * return all pagetables will be destroyed) until
  1534. * khugepaged has finished working on the pagetables
  1535. * under the mmap_sem.
  1536. */
  1537. down_write(&mm->mmap_sem);
  1538. up_write(&mm->mmap_sem);
  1539. }
  1540. }
  1541. static void release_pte_page(struct page *page)
  1542. {
  1543. /* 0 stands for page_is_file_cache(page) == false */
  1544. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1545. unlock_page(page);
  1546. putback_lru_page(page);
  1547. }
  1548. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1549. {
  1550. while (--_pte >= pte) {
  1551. pte_t pteval = *_pte;
  1552. if (!pte_none(pteval))
  1553. release_pte_page(pte_page(pteval));
  1554. }
  1555. }
  1556. static void release_all_pte_pages(pte_t *pte)
  1557. {
  1558. release_pte_pages(pte, pte + HPAGE_PMD_NR);
  1559. }
  1560. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1561. unsigned long address,
  1562. pte_t *pte)
  1563. {
  1564. struct page *page;
  1565. pte_t *_pte;
  1566. int referenced = 0, isolated = 0, none = 0;
  1567. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1568. _pte++, address += PAGE_SIZE) {
  1569. pte_t pteval = *_pte;
  1570. if (pte_none(pteval)) {
  1571. if (++none <= khugepaged_max_ptes_none)
  1572. continue;
  1573. else {
  1574. release_pte_pages(pte, _pte);
  1575. goto out;
  1576. }
  1577. }
  1578. if (!pte_present(pteval) || !pte_write(pteval)) {
  1579. release_pte_pages(pte, _pte);
  1580. goto out;
  1581. }
  1582. page = vm_normal_page(vma, address, pteval);
  1583. if (unlikely(!page)) {
  1584. release_pte_pages(pte, _pte);
  1585. goto out;
  1586. }
  1587. VM_BUG_ON(PageCompound(page));
  1588. BUG_ON(!PageAnon(page));
  1589. VM_BUG_ON(!PageSwapBacked(page));
  1590. /* cannot use mapcount: can't collapse if there's a gup pin */
  1591. if (page_count(page) != 1) {
  1592. release_pte_pages(pte, _pte);
  1593. goto out;
  1594. }
  1595. /*
  1596. * We can do it before isolate_lru_page because the
  1597. * page can't be freed from under us. NOTE: PG_lock
  1598. * is needed to serialize against split_huge_page
  1599. * when invoked from the VM.
  1600. */
  1601. if (!trylock_page(page)) {
  1602. release_pte_pages(pte, _pte);
  1603. goto out;
  1604. }
  1605. /*
  1606. * Isolate the page to avoid collapsing an hugepage
  1607. * currently in use by the VM.
  1608. */
  1609. if (isolate_lru_page(page)) {
  1610. unlock_page(page);
  1611. release_pte_pages(pte, _pte);
  1612. goto out;
  1613. }
  1614. /* 0 stands for page_is_file_cache(page) == false */
  1615. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1616. VM_BUG_ON(!PageLocked(page));
  1617. VM_BUG_ON(PageLRU(page));
  1618. /* If there is no mapped pte young don't collapse the page */
  1619. if (pte_young(pteval) || PageReferenced(page) ||
  1620. mmu_notifier_test_young(vma->vm_mm, address))
  1621. referenced = 1;
  1622. }
  1623. if (unlikely(!referenced))
  1624. release_all_pte_pages(pte);
  1625. else
  1626. isolated = 1;
  1627. out:
  1628. return isolated;
  1629. }
  1630. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1631. struct vm_area_struct *vma,
  1632. unsigned long address,
  1633. spinlock_t *ptl)
  1634. {
  1635. pte_t *_pte;
  1636. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1637. pte_t pteval = *_pte;
  1638. struct page *src_page;
  1639. if (pte_none(pteval)) {
  1640. clear_user_highpage(page, address);
  1641. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1642. } else {
  1643. src_page = pte_page(pteval);
  1644. copy_user_highpage(page, src_page, address, vma);
  1645. VM_BUG_ON(page_mapcount(src_page) != 1);
  1646. release_pte_page(src_page);
  1647. /*
  1648. * ptl mostly unnecessary, but preempt has to
  1649. * be disabled to update the per-cpu stats
  1650. * inside page_remove_rmap().
  1651. */
  1652. spin_lock(ptl);
  1653. /*
  1654. * paravirt calls inside pte_clear here are
  1655. * superfluous.
  1656. */
  1657. pte_clear(vma->vm_mm, address, _pte);
  1658. page_remove_rmap(src_page);
  1659. spin_unlock(ptl);
  1660. free_page_and_swap_cache(src_page);
  1661. }
  1662. address += PAGE_SIZE;
  1663. page++;
  1664. }
  1665. }
  1666. static void khugepaged_alloc_sleep(void)
  1667. {
  1668. wait_event_freezable_timeout(khugepaged_wait, false,
  1669. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  1670. }
  1671. #ifdef CONFIG_NUMA
  1672. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1673. {
  1674. if (IS_ERR(*hpage)) {
  1675. if (!*wait)
  1676. return false;
  1677. *wait = false;
  1678. *hpage = NULL;
  1679. khugepaged_alloc_sleep();
  1680. } else if (*hpage) {
  1681. put_page(*hpage);
  1682. *hpage = NULL;
  1683. }
  1684. return true;
  1685. }
  1686. static struct page
  1687. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1688. struct vm_area_struct *vma, unsigned long address,
  1689. int node)
  1690. {
  1691. VM_BUG_ON(*hpage);
  1692. /*
  1693. * Allocate the page while the vma is still valid and under
  1694. * the mmap_sem read mode so there is no memory allocation
  1695. * later when we take the mmap_sem in write mode. This is more
  1696. * friendly behavior (OTOH it may actually hide bugs) to
  1697. * filesystems in userland with daemons allocating memory in
  1698. * the userland I/O paths. Allocating memory with the
  1699. * mmap_sem in read mode is good idea also to allow greater
  1700. * scalability.
  1701. */
  1702. *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
  1703. node, __GFP_OTHER_NODE);
  1704. /*
  1705. * After allocating the hugepage, release the mmap_sem read lock in
  1706. * preparation for taking it in write mode.
  1707. */
  1708. up_read(&mm->mmap_sem);
  1709. if (unlikely(!*hpage)) {
  1710. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1711. *hpage = ERR_PTR(-ENOMEM);
  1712. return NULL;
  1713. }
  1714. count_vm_event(THP_COLLAPSE_ALLOC);
  1715. return *hpage;
  1716. }
  1717. #else
  1718. static struct page *khugepaged_alloc_hugepage(bool *wait)
  1719. {
  1720. struct page *hpage;
  1721. do {
  1722. hpage = alloc_hugepage(khugepaged_defrag());
  1723. if (!hpage) {
  1724. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1725. if (!*wait)
  1726. return NULL;
  1727. *wait = false;
  1728. khugepaged_alloc_sleep();
  1729. } else
  1730. count_vm_event(THP_COLLAPSE_ALLOC);
  1731. } while (unlikely(!hpage) && likely(khugepaged_enabled()));
  1732. return hpage;
  1733. }
  1734. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1735. {
  1736. if (!*hpage)
  1737. *hpage = khugepaged_alloc_hugepage(wait);
  1738. if (unlikely(!*hpage))
  1739. return false;
  1740. return true;
  1741. }
  1742. static struct page
  1743. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1744. struct vm_area_struct *vma, unsigned long address,
  1745. int node)
  1746. {
  1747. up_read(&mm->mmap_sem);
  1748. VM_BUG_ON(!*hpage);
  1749. return *hpage;
  1750. }
  1751. #endif
  1752. static void collapse_huge_page(struct mm_struct *mm,
  1753. unsigned long address,
  1754. struct page **hpage,
  1755. struct vm_area_struct *vma,
  1756. int node)
  1757. {
  1758. pgd_t *pgd;
  1759. pud_t *pud;
  1760. pmd_t *pmd, _pmd;
  1761. pte_t *pte;
  1762. pgtable_t pgtable;
  1763. struct page *new_page;
  1764. spinlock_t *ptl;
  1765. int isolated;
  1766. unsigned long hstart, hend;
  1767. unsigned long mmun_start; /* For mmu_notifiers */
  1768. unsigned long mmun_end; /* For mmu_notifiers */
  1769. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1770. /* release the mmap_sem read lock. */
  1771. new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
  1772. if (!new_page)
  1773. return;
  1774. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
  1775. return;
  1776. /*
  1777. * Prevent all access to pagetables with the exception of
  1778. * gup_fast later hanlded by the ptep_clear_flush and the VM
  1779. * handled by the anon_vma lock + PG_lock.
  1780. */
  1781. down_write(&mm->mmap_sem);
  1782. if (unlikely(khugepaged_test_exit(mm)))
  1783. goto out;
  1784. vma = find_vma(mm, address);
  1785. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1786. hend = vma->vm_end & HPAGE_PMD_MASK;
  1787. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  1788. goto out;
  1789. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  1790. (vma->vm_flags & VM_NOHUGEPAGE))
  1791. goto out;
  1792. if (!vma->anon_vma || vma->vm_ops)
  1793. goto out;
  1794. if (is_vma_temporary_stack(vma))
  1795. goto out;
  1796. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1797. pgd = pgd_offset(mm, address);
  1798. if (!pgd_present(*pgd))
  1799. goto out;
  1800. pud = pud_offset(pgd, address);
  1801. if (!pud_present(*pud))
  1802. goto out;
  1803. pmd = pmd_offset(pud, address);
  1804. /* pmd can't go away or become huge under us */
  1805. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1806. goto out;
  1807. anon_vma_lock(vma->anon_vma);
  1808. pte = pte_offset_map(pmd, address);
  1809. ptl = pte_lockptr(mm, pmd);
  1810. mmun_start = address;
  1811. mmun_end = address + HPAGE_PMD_SIZE;
  1812. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1813. spin_lock(&mm->page_table_lock); /* probably unnecessary */
  1814. /*
  1815. * After this gup_fast can't run anymore. This also removes
  1816. * any huge TLB entry from the CPU so we won't allow
  1817. * huge and small TLB entries for the same virtual address
  1818. * to avoid the risk of CPU bugs in that area.
  1819. */
  1820. _pmd = pmdp_clear_flush(vma, address, pmd);
  1821. spin_unlock(&mm->page_table_lock);
  1822. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1823. spin_lock(ptl);
  1824. isolated = __collapse_huge_page_isolate(vma, address, pte);
  1825. spin_unlock(ptl);
  1826. if (unlikely(!isolated)) {
  1827. pte_unmap(pte);
  1828. spin_lock(&mm->page_table_lock);
  1829. BUG_ON(!pmd_none(*pmd));
  1830. set_pmd_at(mm, address, pmd, _pmd);
  1831. spin_unlock(&mm->page_table_lock);
  1832. anon_vma_unlock(vma->anon_vma);
  1833. goto out;
  1834. }
  1835. /*
  1836. * All pages are isolated and locked so anon_vma rmap
  1837. * can't run anymore.
  1838. */
  1839. anon_vma_unlock(vma->anon_vma);
  1840. __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
  1841. pte_unmap(pte);
  1842. __SetPageUptodate(new_page);
  1843. pgtable = pmd_pgtable(_pmd);
  1844. _pmd = mk_pmd(new_page, vma->vm_page_prot);
  1845. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  1846. _pmd = pmd_mkhuge(_pmd);
  1847. /*
  1848. * spin_lock() below is not the equivalent of smp_wmb(), so
  1849. * this is needed to avoid the copy_huge_page writes to become
  1850. * visible after the set_pmd_at() write.
  1851. */
  1852. smp_wmb();
  1853. spin_lock(&mm->page_table_lock);
  1854. BUG_ON(!pmd_none(*pmd));
  1855. page_add_new_anon_rmap(new_page, vma, address);
  1856. set_pmd_at(mm, address, pmd, _pmd);
  1857. update_mmu_cache_pmd(vma, address, pmd);
  1858. pgtable_trans_huge_deposit(mm, pgtable);
  1859. spin_unlock(&mm->page_table_lock);
  1860. *hpage = NULL;
  1861. khugepaged_pages_collapsed++;
  1862. out_up_write:
  1863. up_write(&mm->mmap_sem);
  1864. return;
  1865. out:
  1866. mem_cgroup_uncharge_page(new_page);
  1867. goto out_up_write;
  1868. }
  1869. static int khugepaged_scan_pmd(struct mm_struct *mm,
  1870. struct vm_area_struct *vma,
  1871. unsigned long address,
  1872. struct page **hpage)
  1873. {
  1874. pgd_t *pgd;
  1875. pud_t *pud;
  1876. pmd_t *pmd;
  1877. pte_t *pte, *_pte;
  1878. int ret = 0, referenced = 0, none = 0;
  1879. struct page *page;
  1880. unsigned long _address;
  1881. spinlock_t *ptl;
  1882. int node = -1;
  1883. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1884. pgd = pgd_offset(mm, address);
  1885. if (!pgd_present(*pgd))
  1886. goto out;
  1887. pud = pud_offset(pgd, address);
  1888. if (!pud_present(*pud))
  1889. goto out;
  1890. pmd = pmd_offset(pud, address);
  1891. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1892. goto out;
  1893. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1894. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  1895. _pte++, _address += PAGE_SIZE) {
  1896. pte_t pteval = *_pte;
  1897. if (pte_none(pteval)) {
  1898. if (++none <= khugepaged_max_ptes_none)
  1899. continue;
  1900. else
  1901. goto out_unmap;
  1902. }
  1903. if (!pte_present(pteval) || !pte_write(pteval))
  1904. goto out_unmap;
  1905. page = vm_normal_page(vma, _address, pteval);
  1906. if (unlikely(!page))
  1907. goto out_unmap;
  1908. /*
  1909. * Chose the node of the first page. This could
  1910. * be more sophisticated and look at more pages,
  1911. * but isn't for now.
  1912. */
  1913. if (node == -1)
  1914. node = page_to_nid(page);
  1915. VM_BUG_ON(PageCompound(page));
  1916. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  1917. goto out_unmap;
  1918. /* cannot use mapcount: can't collapse if there's a gup pin */
  1919. if (page_count(page) != 1)
  1920. goto out_unmap;
  1921. if (pte_young(pteval) || PageReferenced(page) ||
  1922. mmu_notifier_test_young(vma->vm_mm, address))
  1923. referenced = 1;
  1924. }
  1925. if (referenced)
  1926. ret = 1;
  1927. out_unmap:
  1928. pte_unmap_unlock(pte, ptl);
  1929. if (ret)
  1930. /* collapse_huge_page will return with the mmap_sem released */
  1931. collapse_huge_page(mm, address, hpage, vma, node);
  1932. out:
  1933. return ret;
  1934. }
  1935. static void collect_mm_slot(struct mm_slot *mm_slot)
  1936. {
  1937. struct mm_struct *mm = mm_slot->mm;
  1938. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  1939. if (khugepaged_test_exit(mm)) {
  1940. /* free mm_slot */
  1941. hlist_del(&mm_slot->hash);
  1942. list_del(&mm_slot->mm_node);
  1943. /*
  1944. * Not strictly needed because the mm exited already.
  1945. *
  1946. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1947. */
  1948. /* khugepaged_mm_lock actually not necessary for the below */
  1949. free_mm_slot(mm_slot);
  1950. mmdrop(mm);
  1951. }
  1952. }
  1953. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  1954. struct page **hpage)
  1955. __releases(&khugepaged_mm_lock)
  1956. __acquires(&khugepaged_mm_lock)
  1957. {
  1958. struct mm_slot *mm_slot;
  1959. struct mm_struct *mm;
  1960. struct vm_area_struct *vma;
  1961. int progress = 0;
  1962. VM_BUG_ON(!pages);
  1963. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  1964. if (khugepaged_scan.mm_slot)
  1965. mm_slot = khugepaged_scan.mm_slot;
  1966. else {
  1967. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  1968. struct mm_slot, mm_node);
  1969. khugepaged_scan.address = 0;
  1970. khugepaged_scan.mm_slot = mm_slot;
  1971. }
  1972. spin_unlock(&khugepaged_mm_lock);
  1973. mm = mm_slot->mm;
  1974. down_read(&mm->mmap_sem);
  1975. if (unlikely(khugepaged_test_exit(mm)))
  1976. vma = NULL;
  1977. else
  1978. vma = find_vma(mm, khugepaged_scan.address);
  1979. progress++;
  1980. for (; vma; vma = vma->vm_next) {
  1981. unsigned long hstart, hend;
  1982. cond_resched();
  1983. if (unlikely(khugepaged_test_exit(mm))) {
  1984. progress++;
  1985. break;
  1986. }
  1987. if ((!(vma->vm_flags & VM_HUGEPAGE) &&
  1988. !khugepaged_always()) ||
  1989. (vma->vm_flags & VM_NOHUGEPAGE)) {
  1990. skip:
  1991. progress++;
  1992. continue;
  1993. }
  1994. if (!vma->anon_vma || vma->vm_ops)
  1995. goto skip;
  1996. if (is_vma_temporary_stack(vma))
  1997. goto skip;
  1998. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1999. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2000. hend = vma->vm_end & HPAGE_PMD_MASK;
  2001. if (hstart >= hend)
  2002. goto skip;
  2003. if (khugepaged_scan.address > hend)
  2004. goto skip;
  2005. if (khugepaged_scan.address < hstart)
  2006. khugepaged_scan.address = hstart;
  2007. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  2008. while (khugepaged_scan.address < hend) {
  2009. int ret;
  2010. cond_resched();
  2011. if (unlikely(khugepaged_test_exit(mm)))
  2012. goto breakouterloop;
  2013. VM_BUG_ON(khugepaged_scan.address < hstart ||
  2014. khugepaged_scan.address + HPAGE_PMD_SIZE >
  2015. hend);
  2016. ret = khugepaged_scan_pmd(mm, vma,
  2017. khugepaged_scan.address,
  2018. hpage);
  2019. /* move to next address */
  2020. khugepaged_scan.address += HPAGE_PMD_SIZE;
  2021. progress += HPAGE_PMD_NR;
  2022. if (ret)
  2023. /* we released mmap_sem so break loop */
  2024. goto breakouterloop_mmap_sem;
  2025. if (progress >= pages)
  2026. goto breakouterloop;
  2027. }
  2028. }
  2029. breakouterloop:
  2030. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  2031. breakouterloop_mmap_sem:
  2032. spin_lock(&khugepaged_mm_lock);
  2033. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  2034. /*
  2035. * Release the current mm_slot if this mm is about to die, or
  2036. * if we scanned all vmas of this mm.
  2037. */
  2038. if (khugepaged_test_exit(mm) || !vma) {
  2039. /*
  2040. * Make sure that if mm_users is reaching zero while
  2041. * khugepaged runs here, khugepaged_exit will find
  2042. * mm_slot not pointing to the exiting mm.
  2043. */
  2044. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  2045. khugepaged_scan.mm_slot = list_entry(
  2046. mm_slot->mm_node.next,
  2047. struct mm_slot, mm_node);
  2048. khugepaged_scan.address = 0;
  2049. } else {
  2050. khugepaged_scan.mm_slot = NULL;
  2051. khugepaged_full_scans++;
  2052. }
  2053. collect_mm_slot(mm_slot);
  2054. }
  2055. return progress;
  2056. }
  2057. static int khugepaged_has_work(void)
  2058. {
  2059. return !list_empty(&khugepaged_scan.mm_head) &&
  2060. khugepaged_enabled();
  2061. }
  2062. static int khugepaged_wait_event(void)
  2063. {
  2064. return !list_empty(&khugepaged_scan.mm_head) ||
  2065. kthread_should_stop();
  2066. }
  2067. static void khugepaged_do_scan(void)
  2068. {
  2069. struct page *hpage = NULL;
  2070. unsigned int progress = 0, pass_through_head = 0;
  2071. unsigned int pages = khugepaged_pages_to_scan;
  2072. bool wait = true;
  2073. barrier(); /* write khugepaged_pages_to_scan to local stack */
  2074. while (progress < pages) {
  2075. if (!khugepaged_prealloc_page(&hpage, &wait))
  2076. break;
  2077. cond_resched();
  2078. if (unlikely(kthread_should_stop() || freezing(current)))
  2079. break;
  2080. spin_lock(&khugepaged_mm_lock);
  2081. if (!khugepaged_scan.mm_slot)
  2082. pass_through_head++;
  2083. if (khugepaged_has_work() &&
  2084. pass_through_head < 2)
  2085. progress += khugepaged_scan_mm_slot(pages - progress,
  2086. &hpage);
  2087. else
  2088. progress = pages;
  2089. spin_unlock(&khugepaged_mm_lock);
  2090. }
  2091. if (!IS_ERR_OR_NULL(hpage))
  2092. put_page(hpage);
  2093. }
  2094. static void khugepaged_wait_work(void)
  2095. {
  2096. try_to_freeze();
  2097. if (khugepaged_has_work()) {
  2098. if (!khugepaged_scan_sleep_millisecs)
  2099. return;
  2100. wait_event_freezable_timeout(khugepaged_wait,
  2101. kthread_should_stop(),
  2102. msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
  2103. return;
  2104. }
  2105. if (khugepaged_enabled())
  2106. wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
  2107. }
  2108. static int khugepaged(void *none)
  2109. {
  2110. struct mm_slot *mm_slot;
  2111. set_freezable();
  2112. set_user_nice(current, 19);
  2113. while (!kthread_should_stop()) {
  2114. khugepaged_do_scan();
  2115. khugepaged_wait_work();
  2116. }
  2117. spin_lock(&khugepaged_mm_lock);
  2118. mm_slot = khugepaged_scan.mm_slot;
  2119. khugepaged_scan.mm_slot = NULL;
  2120. if (mm_slot)
  2121. collect_mm_slot(mm_slot);
  2122. spin_unlock(&khugepaged_mm_lock);
  2123. return 0;
  2124. }
  2125. void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
  2126. {
  2127. struct page *page;
  2128. spin_lock(&mm->page_table_lock);
  2129. if (unlikely(!pmd_trans_huge(*pmd))) {
  2130. spin_unlock(&mm->page_table_lock);
  2131. return;
  2132. }
  2133. page = pmd_page(*pmd);
  2134. VM_BUG_ON(!page_count(page));
  2135. get_page(page);
  2136. spin_unlock(&mm->page_table_lock);
  2137. split_huge_page(page);
  2138. put_page(page);
  2139. BUG_ON(pmd_trans_huge(*pmd));
  2140. }
  2141. static void split_huge_page_address(struct mm_struct *mm,
  2142. unsigned long address)
  2143. {
  2144. pgd_t *pgd;
  2145. pud_t *pud;
  2146. pmd_t *pmd;
  2147. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  2148. pgd = pgd_offset(mm, address);
  2149. if (!pgd_present(*pgd))
  2150. return;
  2151. pud = pud_offset(pgd, address);
  2152. if (!pud_present(*pud))
  2153. return;
  2154. pmd = pmd_offset(pud, address);
  2155. if (!pmd_present(*pmd))
  2156. return;
  2157. /*
  2158. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2159. * materialize from under us.
  2160. */
  2161. split_huge_page_pmd(mm, pmd);
  2162. }
  2163. void __vma_adjust_trans_huge(struct vm_area_struct *vma,
  2164. unsigned long start,
  2165. unsigned long end,
  2166. long adjust_next)
  2167. {
  2168. /*
  2169. * If the new start address isn't hpage aligned and it could
  2170. * previously contain an hugepage: check if we need to split
  2171. * an huge pmd.
  2172. */
  2173. if (start & ~HPAGE_PMD_MASK &&
  2174. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2175. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2176. split_huge_page_address(vma->vm_mm, start);
  2177. /*
  2178. * If the new end address isn't hpage aligned and it could
  2179. * previously contain an hugepage: check if we need to split
  2180. * an huge pmd.
  2181. */
  2182. if (end & ~HPAGE_PMD_MASK &&
  2183. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2184. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2185. split_huge_page_address(vma->vm_mm, end);
  2186. /*
  2187. * If we're also updating the vma->vm_next->vm_start, if the new
  2188. * vm_next->vm_start isn't page aligned and it could previously
  2189. * contain an hugepage: check if we need to split an huge pmd.
  2190. */
  2191. if (adjust_next > 0) {
  2192. struct vm_area_struct *next = vma->vm_next;
  2193. unsigned long nstart = next->vm_start;
  2194. nstart += adjust_next << PAGE_SHIFT;
  2195. if (nstart & ~HPAGE_PMD_MASK &&
  2196. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2197. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2198. split_huge_page_address(next->vm_mm, nstart);
  2199. }
  2200. }