smp.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656
  1. /*
  2. * linux/arch/arm/kernel/smp.c
  3. *
  4. * Copyright (C) 2002 ARM Limited, All Rights Reserved.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/delay.h>
  12. #include <linux/init.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/sched.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/cache.h>
  17. #include <linux/profile.h>
  18. #include <linux/errno.h>
  19. #include <linux/mm.h>
  20. #include <linux/err.h>
  21. #include <linux/cpu.h>
  22. #include <linux/smp.h>
  23. #include <linux/seq_file.h>
  24. #include <linux/irq.h>
  25. #include <linux/percpu.h>
  26. #include <linux/clockchips.h>
  27. #include <linux/completion.h>
  28. #include <asm/atomic.h>
  29. #include <asm/cacheflush.h>
  30. #include <asm/cpu.h>
  31. #include <asm/cputype.h>
  32. #include <asm/mmu_context.h>
  33. #include <asm/pgtable.h>
  34. #include <asm/pgalloc.h>
  35. #include <asm/processor.h>
  36. #include <asm/sections.h>
  37. #include <asm/tlbflush.h>
  38. #include <asm/ptrace.h>
  39. #include <asm/localtimer.h>
  40. /*
  41. * as from 2.5, kernels no longer have an init_tasks structure
  42. * so we need some other way of telling a new secondary core
  43. * where to place its SVC stack
  44. */
  45. struct secondary_data secondary_data;
  46. enum ipi_msg_type {
  47. IPI_TIMER = 2,
  48. IPI_RESCHEDULE,
  49. IPI_CALL_FUNC,
  50. IPI_CALL_FUNC_SINGLE,
  51. IPI_CPU_STOP,
  52. };
  53. static inline void identity_mapping_add(pgd_t *pgd, unsigned long start,
  54. unsigned long end)
  55. {
  56. unsigned long addr, prot;
  57. pmd_t *pmd;
  58. prot = PMD_TYPE_SECT | PMD_SECT_AP_WRITE;
  59. if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
  60. prot |= PMD_BIT4;
  61. for (addr = start & PGDIR_MASK; addr < end;) {
  62. pmd = pmd_offset(pgd + pgd_index(addr), addr);
  63. pmd[0] = __pmd(addr | prot);
  64. addr += SECTION_SIZE;
  65. pmd[1] = __pmd(addr | prot);
  66. addr += SECTION_SIZE;
  67. flush_pmd_entry(pmd);
  68. outer_clean_range(__pa(pmd), __pa(pmd + 1));
  69. }
  70. }
  71. static inline void identity_mapping_del(pgd_t *pgd, unsigned long start,
  72. unsigned long end)
  73. {
  74. unsigned long addr;
  75. pmd_t *pmd;
  76. for (addr = start & PGDIR_MASK; addr < end; addr += PGDIR_SIZE) {
  77. pmd = pmd_offset(pgd + pgd_index(addr), addr);
  78. pmd[0] = __pmd(0);
  79. pmd[1] = __pmd(0);
  80. clean_pmd_entry(pmd);
  81. outer_clean_range(__pa(pmd), __pa(pmd + 1));
  82. }
  83. }
  84. int __cpuinit __cpu_up(unsigned int cpu)
  85. {
  86. struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu);
  87. struct task_struct *idle = ci->idle;
  88. pgd_t *pgd;
  89. int ret;
  90. /*
  91. * Spawn a new process manually, if not already done.
  92. * Grab a pointer to its task struct so we can mess with it
  93. */
  94. if (!idle) {
  95. idle = fork_idle(cpu);
  96. if (IS_ERR(idle)) {
  97. printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
  98. return PTR_ERR(idle);
  99. }
  100. ci->idle = idle;
  101. } else {
  102. /*
  103. * Since this idle thread is being re-used, call
  104. * init_idle() to reinitialize the thread structure.
  105. */
  106. init_idle(idle, cpu);
  107. }
  108. /*
  109. * Allocate initial page tables to allow the new CPU to
  110. * enable the MMU safely. This essentially means a set
  111. * of our "standard" page tables, with the addition of
  112. * a 1:1 mapping for the physical address of the kernel.
  113. */
  114. pgd = pgd_alloc(&init_mm);
  115. if (!pgd)
  116. return -ENOMEM;
  117. if (PHYS_OFFSET != PAGE_OFFSET) {
  118. #ifndef CONFIG_HOTPLUG_CPU
  119. identity_mapping_add(pgd, __pa(__init_begin), __pa(__init_end));
  120. #endif
  121. identity_mapping_add(pgd, __pa(_stext), __pa(_etext));
  122. identity_mapping_add(pgd, __pa(_sdata), __pa(_edata));
  123. }
  124. /*
  125. * We need to tell the secondary core where to find
  126. * its stack and the page tables.
  127. */
  128. secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
  129. secondary_data.pgdir = virt_to_phys(pgd);
  130. __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
  131. outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
  132. /*
  133. * Now bring the CPU into our world.
  134. */
  135. ret = boot_secondary(cpu, idle);
  136. if (ret == 0) {
  137. unsigned long timeout;
  138. /*
  139. * CPU was successfully started, wait for it
  140. * to come online or time out.
  141. */
  142. timeout = jiffies + HZ;
  143. while (time_before(jiffies, timeout)) {
  144. if (cpu_online(cpu))
  145. break;
  146. udelay(10);
  147. barrier();
  148. }
  149. if (!cpu_online(cpu)) {
  150. pr_crit("CPU%u: failed to come online\n", cpu);
  151. ret = -EIO;
  152. }
  153. } else {
  154. pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
  155. }
  156. secondary_data.stack = NULL;
  157. secondary_data.pgdir = 0;
  158. if (PHYS_OFFSET != PAGE_OFFSET) {
  159. #ifndef CONFIG_HOTPLUG_CPU
  160. identity_mapping_del(pgd, __pa(__init_begin), __pa(__init_end));
  161. #endif
  162. identity_mapping_del(pgd, __pa(_stext), __pa(_etext));
  163. identity_mapping_del(pgd, __pa(_sdata), __pa(_edata));
  164. }
  165. pgd_free(&init_mm, pgd);
  166. return ret;
  167. }
  168. #ifdef CONFIG_HOTPLUG_CPU
  169. static void percpu_timer_stop(void);
  170. /*
  171. * __cpu_disable runs on the processor to be shutdown.
  172. */
  173. int __cpu_disable(void)
  174. {
  175. unsigned int cpu = smp_processor_id();
  176. struct task_struct *p;
  177. int ret;
  178. ret = platform_cpu_disable(cpu);
  179. if (ret)
  180. return ret;
  181. /*
  182. * Take this CPU offline. Once we clear this, we can't return,
  183. * and we must not schedule until we're ready to give up the cpu.
  184. */
  185. set_cpu_online(cpu, false);
  186. /*
  187. * OK - migrate IRQs away from this CPU
  188. */
  189. migrate_irqs();
  190. /*
  191. * Stop the local timer for this CPU.
  192. */
  193. percpu_timer_stop();
  194. /*
  195. * Flush user cache and TLB mappings, and then remove this CPU
  196. * from the vm mask set of all processes.
  197. */
  198. flush_cache_all();
  199. local_flush_tlb_all();
  200. read_lock(&tasklist_lock);
  201. for_each_process(p) {
  202. if (p->mm)
  203. cpumask_clear_cpu(cpu, mm_cpumask(p->mm));
  204. }
  205. read_unlock(&tasklist_lock);
  206. return 0;
  207. }
  208. static DECLARE_COMPLETION(cpu_died);
  209. /*
  210. * called on the thread which is asking for a CPU to be shutdown -
  211. * waits until shutdown has completed, or it is timed out.
  212. */
  213. void __cpu_die(unsigned int cpu)
  214. {
  215. if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
  216. pr_err("CPU%u: cpu didn't die\n", cpu);
  217. return;
  218. }
  219. printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
  220. if (!platform_cpu_kill(cpu))
  221. printk("CPU%u: unable to kill\n", cpu);
  222. }
  223. /*
  224. * Called from the idle thread for the CPU which has been shutdown.
  225. *
  226. * Note that we disable IRQs here, but do not re-enable them
  227. * before returning to the caller. This is also the behaviour
  228. * of the other hotplug-cpu capable cores, so presumably coming
  229. * out of idle fixes this.
  230. */
  231. void __ref cpu_die(void)
  232. {
  233. unsigned int cpu = smp_processor_id();
  234. idle_task_exit();
  235. local_irq_disable();
  236. mb();
  237. /* Tell __cpu_die() that this CPU is now safe to dispose of */
  238. complete(&cpu_died);
  239. /*
  240. * actual CPU shutdown procedure is at least platform (if not
  241. * CPU) specific.
  242. */
  243. platform_cpu_die(cpu);
  244. /*
  245. * Do not return to the idle loop - jump back to the secondary
  246. * cpu initialisation. There's some initialisation which needs
  247. * to be repeated to undo the effects of taking the CPU offline.
  248. */
  249. __asm__("mov sp, %0\n"
  250. " b secondary_start_kernel"
  251. :
  252. : "r" (task_stack_page(current) + THREAD_SIZE - 8));
  253. }
  254. #endif /* CONFIG_HOTPLUG_CPU */
  255. /*
  256. * Called by both boot and secondaries to move global data into
  257. * per-processor storage.
  258. */
  259. static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
  260. {
  261. struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
  262. cpu_info->loops_per_jiffy = loops_per_jiffy;
  263. }
  264. /*
  265. * This is the secondary CPU boot entry. We're using this CPUs
  266. * idle thread stack, but a set of temporary page tables.
  267. */
  268. asmlinkage void __cpuinit secondary_start_kernel(void)
  269. {
  270. struct mm_struct *mm = &init_mm;
  271. unsigned int cpu = smp_processor_id();
  272. printk("CPU%u: Booted secondary processor\n", cpu);
  273. /*
  274. * All kernel threads share the same mm context; grab a
  275. * reference and switch to it.
  276. */
  277. atomic_inc(&mm->mm_users);
  278. atomic_inc(&mm->mm_count);
  279. current->active_mm = mm;
  280. cpumask_set_cpu(cpu, mm_cpumask(mm));
  281. cpu_switch_mm(mm->pgd, mm);
  282. enter_lazy_tlb(mm, current);
  283. local_flush_tlb_all();
  284. cpu_init();
  285. preempt_disable();
  286. trace_hardirqs_off();
  287. /*
  288. * Give the platform a chance to do its own initialisation.
  289. */
  290. platform_secondary_init(cpu);
  291. /*
  292. * Enable local interrupts.
  293. */
  294. notify_cpu_starting(cpu);
  295. local_irq_enable();
  296. local_fiq_enable();
  297. /*
  298. * Setup the percpu timer for this CPU.
  299. */
  300. percpu_timer_setup();
  301. calibrate_delay();
  302. smp_store_cpu_info(cpu);
  303. /*
  304. * OK, now it's safe to let the boot CPU continue
  305. */
  306. set_cpu_online(cpu, true);
  307. /*
  308. * OK, it's off to the idle thread for us
  309. */
  310. cpu_idle();
  311. }
  312. void __init smp_cpus_done(unsigned int max_cpus)
  313. {
  314. int cpu;
  315. unsigned long bogosum = 0;
  316. for_each_online_cpu(cpu)
  317. bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
  318. printk(KERN_INFO "SMP: Total of %d processors activated "
  319. "(%lu.%02lu BogoMIPS).\n",
  320. num_online_cpus(),
  321. bogosum / (500000/HZ),
  322. (bogosum / (5000/HZ)) % 100);
  323. }
  324. void __init smp_prepare_boot_cpu(void)
  325. {
  326. unsigned int cpu = smp_processor_id();
  327. per_cpu(cpu_data, cpu).idle = current;
  328. }
  329. void __init smp_prepare_cpus(unsigned int max_cpus)
  330. {
  331. unsigned int ncores = num_possible_cpus();
  332. smp_store_cpu_info(smp_processor_id());
  333. /*
  334. * are we trying to boot more cores than exist?
  335. */
  336. if (max_cpus > ncores)
  337. max_cpus = ncores;
  338. if (max_cpus > 1) {
  339. /*
  340. * Enable the local timer or broadcast device for the
  341. * boot CPU, but only if we have more than one CPU.
  342. */
  343. percpu_timer_setup();
  344. /*
  345. * Initialise the SCU if there are more than one CPU
  346. * and let them know where to start.
  347. */
  348. platform_smp_prepare_cpus(max_cpus);
  349. }
  350. }
  351. void arch_send_call_function_ipi_mask(const struct cpumask *mask)
  352. {
  353. smp_cross_call(mask, IPI_CALL_FUNC);
  354. }
  355. void arch_send_call_function_single_ipi(int cpu)
  356. {
  357. smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
  358. }
  359. static const char *ipi_types[NR_IPI] = {
  360. #define S(x,s) [x - IPI_TIMER] = s
  361. S(IPI_TIMER, "Timer broadcast interrupts"),
  362. S(IPI_RESCHEDULE, "Rescheduling interrupts"),
  363. S(IPI_CALL_FUNC, "Function call interrupts"),
  364. S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
  365. S(IPI_CPU_STOP, "CPU stop interrupts"),
  366. };
  367. void show_ipi_list(struct seq_file *p, int prec)
  368. {
  369. unsigned int cpu, i;
  370. for (i = 0; i < NR_IPI; i++) {
  371. seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
  372. for_each_present_cpu(cpu)
  373. seq_printf(p, "%10u ",
  374. __get_irq_stat(cpu, ipi_irqs[i]));
  375. seq_printf(p, " %s\n", ipi_types[i]);
  376. }
  377. }
  378. u64 smp_irq_stat_cpu(unsigned int cpu)
  379. {
  380. u64 sum = 0;
  381. int i;
  382. for (i = 0; i < NR_IPI; i++)
  383. sum += __get_irq_stat(cpu, ipi_irqs[i]);
  384. #ifdef CONFIG_LOCAL_TIMERS
  385. sum += __get_irq_stat(cpu, local_timer_irqs);
  386. #endif
  387. return sum;
  388. }
  389. /*
  390. * Timer (local or broadcast) support
  391. */
  392. static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
  393. static void ipi_timer(void)
  394. {
  395. struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
  396. irq_enter();
  397. evt->event_handler(evt);
  398. irq_exit();
  399. }
  400. #ifdef CONFIG_LOCAL_TIMERS
  401. asmlinkage void __exception do_local_timer(struct pt_regs *regs)
  402. {
  403. struct pt_regs *old_regs = set_irq_regs(regs);
  404. int cpu = smp_processor_id();
  405. if (local_timer_ack()) {
  406. __inc_irq_stat(cpu, local_timer_irqs);
  407. ipi_timer();
  408. }
  409. set_irq_regs(old_regs);
  410. }
  411. void show_local_irqs(struct seq_file *p, int prec)
  412. {
  413. unsigned int cpu;
  414. seq_printf(p, "%*s: ", prec, "LOC");
  415. for_each_present_cpu(cpu)
  416. seq_printf(p, "%10u ", __get_irq_stat(cpu, local_timer_irqs));
  417. seq_printf(p, " Local timer interrupts\n");
  418. }
  419. #endif
  420. #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
  421. static void smp_timer_broadcast(const struct cpumask *mask)
  422. {
  423. smp_cross_call(mask, IPI_TIMER);
  424. }
  425. #else
  426. #define smp_timer_broadcast NULL
  427. #endif
  428. #ifndef CONFIG_LOCAL_TIMERS
  429. static void broadcast_timer_set_mode(enum clock_event_mode mode,
  430. struct clock_event_device *evt)
  431. {
  432. }
  433. static void local_timer_setup(struct clock_event_device *evt)
  434. {
  435. evt->name = "dummy_timer";
  436. evt->features = CLOCK_EVT_FEAT_ONESHOT |
  437. CLOCK_EVT_FEAT_PERIODIC |
  438. CLOCK_EVT_FEAT_DUMMY;
  439. evt->rating = 400;
  440. evt->mult = 1;
  441. evt->set_mode = broadcast_timer_set_mode;
  442. clockevents_register_device(evt);
  443. }
  444. #endif
  445. void __cpuinit percpu_timer_setup(void)
  446. {
  447. unsigned int cpu = smp_processor_id();
  448. struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
  449. evt->cpumask = cpumask_of(cpu);
  450. evt->broadcast = smp_timer_broadcast;
  451. local_timer_setup(evt);
  452. }
  453. #ifdef CONFIG_HOTPLUG_CPU
  454. /*
  455. * The generic clock events code purposely does not stop the local timer
  456. * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
  457. * manually here.
  458. */
  459. static void percpu_timer_stop(void)
  460. {
  461. unsigned int cpu = smp_processor_id();
  462. struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
  463. evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
  464. }
  465. #endif
  466. static DEFINE_SPINLOCK(stop_lock);
  467. /*
  468. * ipi_cpu_stop - handle IPI from smp_send_stop()
  469. */
  470. static void ipi_cpu_stop(unsigned int cpu)
  471. {
  472. if (system_state == SYSTEM_BOOTING ||
  473. system_state == SYSTEM_RUNNING) {
  474. spin_lock(&stop_lock);
  475. printk(KERN_CRIT "CPU%u: stopping\n", cpu);
  476. dump_stack();
  477. spin_unlock(&stop_lock);
  478. }
  479. set_cpu_online(cpu, false);
  480. local_fiq_disable();
  481. local_irq_disable();
  482. while (1)
  483. cpu_relax();
  484. }
  485. /*
  486. * Main handler for inter-processor interrupts
  487. */
  488. asmlinkage void __exception do_IPI(int ipinr, struct pt_regs *regs)
  489. {
  490. unsigned int cpu = smp_processor_id();
  491. struct pt_regs *old_regs = set_irq_regs(regs);
  492. if (ipinr >= IPI_TIMER && ipinr < IPI_TIMER + NR_IPI)
  493. __inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_TIMER]);
  494. switch (ipinr) {
  495. case IPI_TIMER:
  496. ipi_timer();
  497. break;
  498. case IPI_RESCHEDULE:
  499. /*
  500. * nothing more to do - eveything is
  501. * done on the interrupt return path
  502. */
  503. break;
  504. case IPI_CALL_FUNC:
  505. generic_smp_call_function_interrupt();
  506. break;
  507. case IPI_CALL_FUNC_SINGLE:
  508. generic_smp_call_function_single_interrupt();
  509. break;
  510. case IPI_CPU_STOP:
  511. ipi_cpu_stop(cpu);
  512. break;
  513. default:
  514. printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
  515. cpu, ipinr);
  516. break;
  517. }
  518. set_irq_regs(old_regs);
  519. }
  520. void smp_send_reschedule(int cpu)
  521. {
  522. smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
  523. }
  524. void smp_send_stop(void)
  525. {
  526. unsigned long timeout;
  527. if (num_online_cpus() > 1) {
  528. cpumask_t mask = cpu_online_map;
  529. cpu_clear(smp_processor_id(), mask);
  530. smp_cross_call(&mask, IPI_CPU_STOP);
  531. }
  532. /* Wait up to one second for other CPUs to stop */
  533. timeout = USEC_PER_SEC;
  534. while (num_online_cpus() > 1 && timeout--)
  535. udelay(1);
  536. if (num_online_cpus() > 1)
  537. pr_warning("SMP: failed to stop secondary CPUs\n");
  538. }
  539. /*
  540. * not supported here
  541. */
  542. int setup_profiling_timer(unsigned int multiplier)
  543. {
  544. return -EINVAL;
  545. }